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Abstract. This paper describes a unified approach, based on Gaussian
Processes, for achieving sensor fusion under the problematic conditions of
missing channels and noisy labels. Under the proposed approach, Gaus-
sian Processes generate separate class labels corresponding to each indi-
vidual modality. The final classification is based upon a hidden random
variable, which probabilistically combines the sensors. Given both la-
beled and test data, the inference on unknown variables, parameters and
class labels for the test data is performed using the variational bound
and Expectation Propagation. We apply this method to the challenge
of classifying a student’s interest level using observations from the face
and postures, together with information from the task the students are
performing. Classification with the proposed new approach achieves ac-
curacy of over 83%, significantly outperforming the classification using
individual modalities and other common classifier combination schemes.

1 Introduction

There are a growing number of scenarios in pattern recognition where multi-
modal information is used, and where information from multiple sensors needs
to be fused to recover the variable of interest. Multi-sensor classification is a
problem that has been addressed previously by using either data-level fusion
or classifier combination schemes. In the former, a single classifier is trained on
joint features; however, when the data has even one missing channel, a frequent
problem, then usually all the data is ignored for that time block, resulting in a
significant reduction in the total amount of data for training. One way to address
this problem is by training a classifier for each modality that is present, and then
combining these for a final decision.

The problem becomes even more challenging when there is labeling noise;
that is, some data points have incorrect labels. In many computer vision and
HCT applications like emotion recognition, there is always an uncertainty about
the true labels of the data; thus, requiring a principled approach to handle any
labeling noise in the data.

The highly challenging problem we address in this paper combines the three
problems described above: there is multi-sensory data, channels are frequently
missing and there might be labeling errors in the data.



We address this challenging problem in a Bayesian framework using a com-
bination of Expectation Propagation [9] and variational approximate inference
[1]. The framework utilizes a mixture of Gaussian Processes, where the classifi-
cation using each channel is learned via Expectation Propagation, a technique
for approximate Bayesian inference. The resulting posterior over each classifica-
tion function is a product of Gaussians and can be updated very quickly. We
evaluate the multi-sensor classification scheme on the task of detecting the af-
fective state of interest in children trying to solve a puzzle, combining sensory
information from the face, the postures and the state of the puzzle task, to infer
the student’s state. The proposed unified approach achieves a significantly bet-
ter recognition accuracy than classification based on individual channels and the
standard classifier combination methods. Also, on the affect data set we found
that the standard classifier combination rules, which are justified using the prob-
ability theory, work better when the individual classifiers are probabilistic (as in
the Gaussian Process classification) as opposed to the SVM.

1.1 Previous Work

There are many methods, including Boosting [12] and Bagging [2], which gen-
erate an ensemble of classifiers by choosing different samples from the training
set. These methods require a common set of training data, which is a set of
joint vectors formed by stacking the features extracted from all the modalities
into one big vector. As mentioned earlier, often in multi-sensor fusion problems
the training data has missing channels and labels; thus most of the data can-
not be used to form a common set of training data. Similarly, most of the data
remains unused in “feature-level fusion,” where a single classifier is trained on
joint features.

Kittler et al. [7] have described a common framework for combining classifiers
and provided theoretical justification for using simple operators such as major-
ity vote, sum, product, maximum and minimum. Hong and Jain [4] have used
a similar framework to fuse multiple modalities for personal identification. Sim-
ilarly, Han and Bhanu [3] also perform rule-based fusion for gait-based human
recognition. One problem with these fixed rules is that, it is difficult to predict
which rule would perform best. Then there are methods, such as layered HMMs
proposed by Oliver et al. [10], which perform decision fusion and sensor selection
depending upon utility functions and stacked classifiers. One main disadvantage
of using stacked based classification is that these methods require a large amount
of labeled training data. There are other mixture-of-experts [5] and critic-driven
approaches [8] where base-level classifiers (experts) are combined using second
level classifiers (critics or gating functions) that predict how well an expert is
going to perform on the current input. To make a classifier selection, the critic
can either look at the current input or base its decision upon some other contex-
tual features as well. For example, Toyama and Horvitz [13] demonstrate a head
tracking system based on multiple algorithms, that uses contextual features as
reliability indicators for the different tracking algorithms. The framework de-
scribed by us in this paper is also based on sensor-selection and is most similar



to Tresp [14], where the mixture of Gaussian Processes is described. The key dif-
ferences include classification based on Gaussian Process rather than regression;
also, we use Expectation Propagation for Gaussian Process classification and our
classification likelihood is robust to labeling errors and noise. Our framework is
also capable of quickly re-learning the classification given updated label associa-
tions. Further, we provide a complete Bayesian treatment of the problem rather
than using a maximum-likelihood training.

2 Owur Approach

Figure 1 shows the model we follow to solve the problem. In the figure, the data
xP from P different sensors generate soft class labels y. The switching variable
A, determines modalities that finally decide the hard class label ¢t € {1,—1}.
In section 2.1, we first review classification using Gaussian Process (GP). Sec-
tion 2.2 then extends the idea to a Mixture of Gaussian Processes and de-
scribes how to handle multiple modalities in the same Bayesian framework.

@ @ 2.1 Gaussian Process Classification

Assume we are given a set of labeled data
points X = {xi,..,X,}, with class labels
t = {t1,..,tn}. For two-way classification,
the labels are, ¢ € {—1,1}. Under the
Bayesian framework, given an unlabeled
point x*, we are interested in the distri-
bution p(¢*|X, t,x*). Here ¢* is a random
variable denoting the class label for the
point x*. Although, in this paper we only
describe how to classify one new point, all
the machinery described applies as well to
a set of new points without any additional computational overhead.

The idea behind GP classification is that the hard labels t depend upon hid-
den soft-labels y = {y1, ..., yn }- These hidden soft-labels arise due to application
of a function f directly on the input data points (i.e. y; = f(z;) Vi € [1..n]). Fur-
ther, we assume a Gaussian Process prior on the function f; thus, the results y of
the evaluation of the function f on any number of input data points x are jointly
Gaussian. Further, the covariance between two outputs y; and y; can be specified
using a kernel function applied to x; and x;. Formally, {y1,..,y,} ~ N(0, K)
where K is a n-by-n kernel matrix with K;; = K(x;,x;).

The observed labels t are assumed to be conditionally independent given the
soft labels y and each ¢; depends upon y; through the conditional distribution:

p(tilys) = e+ (1 — 26)P(y; - ts)

Here, € is the labeling error rate and &(z) = f_zoo N(z;0,1). Very similar like-
lihoods have been previously used for Gaussian Process classification [11] and

Fig. 1. A mixture of Gaussian Pro-
cesses for p sensors



Bayes-point machines [9]. The above described likelihood explicitly models the
labeling error rate; thus, the model should be more robust to label noise.
Our task is then to infer p(¢*|D), where D = {X, t,x*}. Specifically:

p(#1D) = p(t"[X, £, x") o / P 1y v )Py, 1K 6 x7) (1)

y,y*

Where the posterior p(y, y*|X,t,x*) can be written as:

p(y, v X, t,x") = p(y,y"|D) x p(y, y"|X, x")p(t]y)

The term p(y,y*|X,x*) ~ N(0, K) is the GP prior and it enforces a smooth-
ness constraint. The second term, p(t|y) incorporates information provided in
the labels. In the frameworks described here, p(y,y*|D) is approximated as a
Gaussian distribution using Expectation Propagation (EP), a technique for ap-
proximate Bayesian inference [9]. Assuming conditional independence of labels
given the soft-labels, p(t|y) can be written as:

n

p(tly) = Hp(tilyi) =[]le+ 1 —20)8(y: - )]

i=1

The idea behind using EP is to approximate P(y,y*|D) as a Gaussian. Although
the prior p(y,y*|X,x*) is a Gaussian distribution, the exact posterior is not a
Gaussian due to the form of p(t|y). Nonetheless, we can use EP to approximate
the posterior as a Gaussian. Specifically, the method approximates the terms

p(tily:) as:

L (i - t: —mi)?) @)

p(tily) =t = s; exp(—2—vi

EP starts with the GP prior N(0,K) and incorporates all the approximate terms
t; to approximate the posterior p(y,y*|D) = N(M,V) as a Gaussian. For de-
tails readers are encouraged to look at [9]. To classify the test point x*, the
approximate distribution p(y*|D) =~ N(M*,V*) can be obtained by marginaliz-
ing p(y,y*|D) and then equation 1 can be used:

M* -t

p(t"|D) 0</* Py IN(M™, V") = e+ (1 —Mﬂm) ®3)

2.2 Mixture of Gaussian Processes for Sensor Fusion

Given n data points Xy, .., X,,, obtained from P different sensors, our approach
follows a mixture of Gaussian Processes model described in figure 1. Let every
it" data point be represented as X; = {xgl),..,xgp)}, and the soft labels as
Vi = {y(l), ..,ygp)}. Given \; € {1,.., P}, the random variable that determines

K3
the combination of the channels for the final classification, the classification

likelihood can be written as:

P(ti|5i, M = §) = P(tily) = e + (1 — 26)9(t; - )



Given {X,t} and x*

Step 1: Initialization
-For all the labeled points ¢ = 1 to n do
- Initialize Q(A;) using uniform distribution
-For all the modalities p = 1 to P do
- Incorporate all the labeled data points to obtain a Gaussian posterior for the soft labels:
po (y(P)) — N(y(p); My(P) s Vy(p))
- Initialize: Q(y®) = p°(y @)

Step 2: Variational Updates
-Repeat until change in posteriors is less than some small threshold
- Update Q(A) using equation 6.
- Update Q(Y) using equation 7.

Step 3: Classifying Test Data
-Compute A = arg maxa Q(A)
-Use P-way classification to get the posterior Q(\™)
-Estimate p(¢*|X,t) using equation 9

Fig. 2. Summary of the algorithm to classify the test data point using a mixture of
Gaussian Processes. This algorithm can be readily extended to more than one test
points without any computational overhead.

Given a test point x*, let X = {X;,..,%X,,%X*} denote all the training and the
test points. Further, let Y = {y(l), Ly P )}, denote the hidden soft labels corre-
sponding to each channel of all the data including the test point. Let, Q(Y) =
H5:1 Q(y®) and Q(A) = [T, Q(\;), denote the approximate posterior over
the hidden variables Y and A, where A = {);,..,\,} are the switches corre-
sponding only to the n labeled data points. Let p(Y) and p(A) be the priors
with p(Y) = Hle p(y®), the product of GP priors and p(A) uniform. Given

X and the labels t, our algorithm iteratively optimizes the variational bound:

_ ~ p(Y)p(A)p(t|X, Y, A)
r= [ Qa0 "RERE S
The classification using EP is required only once, irrespective of the number of
iterations. In each iteration to optimize the bound given in equation 4, the clas-
sification rules are updated using the Gaussian approximations provided by EP.
The algorithm is shown in figure 2 and can be divided into 3 steps: initialization,
optimization and classification, which are described below.

) (4)

Step 1: Initialization: In the first step, the approximate posterior Q(Y)Q(A)
= H5=1 Q(y™) 1, Q(\:) is initialized. Here, Q(\;) are multinomial distri-
butions and are initialized randomly using a uniform distribution. Q(y?) are
normal distributions and to initialize them, we first use EP as described in section
2.1, considering all the data points irrespective of the state of the switches. EP
results in the approximate Gaussian posteriors p°(y(®) = N(y?); My, Vi)
for all p € {1, .., P}, which are used to initialize Q(y?).A very useful bi-product
of EP is the Gaussian approximations of the likelihoods, which would later be
used to update our classification during the variational iterations in step 2.




Step 2: Optimization: The bound given in equation 4 is optimized by itera-
tively updating Q(Y) and Q(A). Given the approximations Q*(A) and Q*(Y)
from the kt” iteration, Q**'(A) and Q*+'(Y) can be updated using variational
updated rules [1]. Specifically, update rules for Q();) and Q(y‘®) are as follows:

Q1 (M) o exp /Y Q" (V) log p(t:[ ¥, M)}

Q" (y™) x exp{/ Q" (A)log p(y )p(tly™, A)}
A
The update for Q(\; = p) can be written as:

Qi =p) el [ Q") logp(tily”)} (5)
Yi

—exp{ [ | Q") log(e + (1~ 208t} (©)

Equation 6 is intractable but can be computed efficiently by importance sam-

pling using the 1-D Gaussian Q*(y?) as a proposal distribution. Further, we

k3
have the Gaussian approximations from EP for the likelihood term p(t,-|y§p )) ~
s exp(— ) ™ - t; — m{P)2). It can be shown that the update rule for Q(y®)
reduces down to:

n
Q™) o py) [[ Ny m® - i,

i=1

v i(p)

QF(Ni)
This is just a product of Gaussian terms; thus, there is no need to rerun the
EP to estimate the new posterior over soft classifications. Further, note that
Q();) divides the variance, hence controlling the contribution of each labeled
data point for different channels.

) (7)

Step 3: Classification: In the final step, given the posterior over the switches,
Q(A;) Vi € [1..n], we first infer the switches for the test data X*. For this, we
do a P-way classification using the GP algorithm described in 2.1 with A=
argmaxp QQ(A) as labels. Specifically, for an unlabeled point x*, P different
classifications are done where each classification provides us with g, where r €
{1, .., P}, and equals to the probability that channel r was chosen to classify

x*. The posterior Q(A* = r) is then set to qui —. In our experiments, for
each of these P classifications, we clubbed all the channels together using -1 as
observations for the modalities that were missing. Note, that we are not limited
to using all the channels clubbed together; but, various combinations of the
modalities can be used including other indicator and contextual variables.

Once we have the posterior over the switch for the test data, Q(\*), we can
infer class probability of an unlabeled data point X* using:

p(t*|X,t)=LA*P(t*|Y,A*)Q(A*)Q(Y) (8)
Nk 9 M) -t
= ;Q()\ =p)e+(1-2 )35(71 o ) (9)
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Fig. 3. (a) Toy dataset with the labeled points highlighted, and classification results
using (b) X-modality only, (c¢) Y-modality only, (d) sum rule, (e) product rule and (f)
the mixture of GP. The circles in (f) represent points classified with a greater weight
on the X-modality and the triangles with a greater weight on the Y-modality.

Here, M;(p) and V%, are the mean and the variance of the marginal Gaussian
approximation for pt* channel corresponding to the hidden soft label y*.

3 Experiments and Results

We first demonstrate the features of the approach on a toy dataset and then apply
it to the task of affect recognition using multiple modalities. We also evaluate
the performance of other classifier combination schemes by training SVMs and
the GP classifiers on the complete data. These standard classifier combination
schemes are shown in Table 1.

Toy Dataset: A toy dataset is shown in figure 3(a), which has been previ-
ously introduced by Zhou et al. [15]. The top and the bottom half moon corre-
spond to two different classes. The example shown in the figure has 15 labeled
points from each class (30 total) and 100 test points (200 total). First, we per-
form two GP classifications using the method described in 2.1; one classifies the
test points by just using the X-modality (dimension) and the other just using
the Y-modality (dimension). Figures 3(b) & (c) show the results of these classi-
fications using each individual modality, which is fairly poor. Figure 3(d) & (e)
show classification using the sum and the product rule applied using the result
of X and the Y classification. Finally, figure 3(f) shows successful classification
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Fig. 4. (a) MATLAB boxplots comparing the standard classifier combination methods
for GP and SVM on the affect data. The squares represent the mean, the lines in the
middle of the box represents the median, the bounding box represent quartile values
and the 4’ symbols represent the statistical outliers. (b) Recognition rates of mix of
GP vs. GP(posture) and (c) Mix of GP vs. SVM(posture) for the 24 runs. Each point is
(accuracy SVM/GP (posture), accuracy mix of GP). Points over the lines correspond
to the trials when mix of GP had the better recognition rate. The circle radii represent
repeating results; the larger the circle the more the repetition of the points.

using the mixture of GP framework. In figure 3(f) the data points drawn as
triangles were classified with a greater weight on the Y modality and the data
points drawn as circles with a greater weight on the X-modality. We can see
from the figure, that the final classification decision adapts itself according to
the input space; thus, demonstrating the capability to perform sensor selection.

Recognizing Affect: We applied the mixture of GP framework to the prob-
lem of machine recognition of affect using multiple modalities. We look at the
problem of detecting the affective state of interest in a child who is solving a puz-
zle on the computer. The training and the testing data consists of observations
from three different channels: the face, posture and the puzzle activity. Every
feature vector corresponding to a datapoint encodes the facial activity, posture
activity and game information for a time segment of 8 secs [6]. The database
includes 8 children and consists of 61 samples of high-interest, 59 samples of
low-interest and 16 samples of refreshing. Only 49 samples had all three chan-
nels present. The other 87 samples had the face channel missing. In this paper,
we only look at the binary problem of detecting the state of high-interest (61
samples) versus the states of low-interest and refreshing (75 samples).

We trained GP classifiers for each of the three channels using an RBF ker-
nel to compute the similarity matrices for the GP priors with the kernel-width
hyper-parameter o fixed to 0.81, 7.47 and 5.90 for the face, the posture and the
puzzle channel respectively. The value of € was fixed at 0.42 for face, 0.0 for
posture and 0.37 for the puzzle modality. These parameters were choosen using
evidence maximization a standard approach within the Bayesian framework. We
randomly selected 87.5% of the points as training data and computed the hyper-
paramters using evidence maximization. This process was repeated 10 times and
the mean values of the hyperparameters were used in our experiments. The P-



Table 1. Classifier Combination Methods. Table 2. A\ferz.ige .recognition.rates
(standard deviation in parenthesis) for

24 runs on affect data.

[Rule ] Criteria | |F |52 :(?‘;1\(/[1 4)| 52 7?713(0 7 |
1 P P ace . o( 1. - 0l U.
Sum _ |p(t= 1|x(l)~x( ) < ooy p(t = 1xP) Posture  |82.09%(0.6)| 82.02%(0.9)
Product|p(t = 1|x™.x™®)) o [TF_, p(t = 1]xP) Puzzle 60.82%(1.5)| 60.54%(0.9)
Max p(t = 1|xD . xP)) o« max, p(t = 1|x?)) Sum 63.63%(0.9)| 81.34%(1.2)
Min p(t = 1|x(1)..x(P)) oc min,, p(t = l‘x(P)) Prod 63.76%(0.9)| 81.34%(1.2)
Pt = 1‘x(1)__x(P)) o Max 71.94%(1.5)| 81.37%(1.0)
18t 2P [p(t = 1/x®)] > 2] Min 71.94%(1.5)| 81.37%(1.0)
Vote {p Luzr=t] =121y Vote 62.35%(1.2)| 60.90%(0.6)
Mix of GP NA 83.55%(1.2)

way classification for estimating the posterior over \* was also performed using
an RBF kernel with kernel width set to 10.38.

We also evaluate the performance of SVM on this dataset. The SVMs were
trained using an RBF kernel and the leave-one-out validation procedure was
applied for selecting the penalty parameter C and the kernel width ¢. The vali-
dation procedure was performed ten times, where each time 87.5% of datapoints
were randomly choosen as training data. The mean of the resulting 10 param-
eters (o, C) were finally choosen and were equal to (10.48, 1.49), (11.47, 1.33)
and (10.66, 2.24) for the face, the posture and the puzzle modality respectively.

We performed 8-fold cross-validation to report the results. In every round
the dataset was equally split into 8 parts. The algorithms were tested on every
part with the other 7 parts (87.5% of data) used as the training set. Each of
these rounds was repeated 24 times to report the results.

First, we compare the performance of standard classifier combination meth-
ods for GP based classification and SVMs. The GP classification provides class
probabilities for the datapoints, which can directly be used in the standard clas-
sifier combination methods (table 1). The sigmoid function can be used to map
an SVM output to a value between 0 and 1 and can be used to combine classifiers
using the standard rules. There have been many other approaches suggested to
convert the SVM output to a probability value and we leave the comparison
of those as future work. Figure 4 shows the MATLAB boxplots and compares
the performance of the different fixed classifier combination approaches for GP
and SVM. The figure plots the mean, the median and quartile values. The fig-
ure shows that the GP based classifier combinations outperform the classifier
combinations based on the probabilistic interpretation of the SVM output.

Further, table 2 shows the recognition results for each individual modality
and many classifier combination rules. Among the individual modalities, the
posture channel achieves the highest recognition both with the GP classification
and the SVM. Further, it can be easily seen that the classification based on the
posture modality outperforms the standard classifier combination rules. Since
most of the discriminating information is contained in the posture channel, the
standard classifier combination methods don’t work well as they assign equal



importance to all the channels. The mixture of GP approach on the other hand
is sensitive to this kind of information and thus can adapt to whichever channel
works well. The scatter plots shown in the figures 4 (b) and (c) compares the
performance of every single trial among the 24 runs of the mixture of GP ap-
proach vs SVM/GP classifiers trained on the posture modality. It can be seen
clearly that the mixture of GP based approach outperforms the posture modal-
ity both when using SVM and GP classification and with table 2 we can see that
it outperforms the standard classifier combination methods.

4 Conclusions and Future Work

In this paper, we proposed a unified approach using a mixture of Gaussian Pro-
cesses for achieving sensor fusion under the challenging conditions of missing
channels and noisy labels. We provide a Bayesian algorithm designed with a
fast update of classification decisions based on variational and Gaussian ap-
proximations. On both a toy example, and on the task of classifying affective
state of interest using information from face, postures and task information,
the mixture of GP method outperforms several standard classifier combination
schemes. Future work includes incorporation of active learning and application
of this framework to other challenging problems with limited labeled data.
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