Collaborative Mixed Reality Visualization of an Archaeological Excavation

Hrvoje Benko
Department of Computer Science
Columbia University

MIT talk – January 12, 2005
Multidisciplinary Team
Excavation is destructive and physically “unreconstructable” process

Need to preserve as much data as possible for analysis

Data interpretation happens off-site

Current tools focus on 2D data and do not incorporate 3D information

Many experts—collaboration is a must!
Archaeological Excavation at Monte Polizzo, Sicily, Summer 2003
Ian Morris, Director (Stanford University)
Working in the field!
Meshed 3D Model (13 scans)
We have a 3D site model, now what?

Real

Virtual
Two Problems

► How to combine all this data in one seamless environment?
► How to make it easy to interact with?
VITA: Visual Interaction Tool for Archaeology

► Multiple users
► Multiple displays
 ▪ Projected tabletop
 ▪ Handheld
 ▪ High-resolution monitor
 ▪ See-through head-worn
► Multiple interaction devices
 ▪ MERL DiamondTouch table
 ▪ EssentialReality P5 gloves
 ▪ Speech input
 ▪ 6DOF tracker
Design Considerations

► Use the most appropriate display for the given data
► Facilitate both human-system and human-human interaction
Modular Architecture

3D Modules

AR Module

AR Module

Message Facilitator

Database

2D Modules

DT Module

SCREEN Module

HANDHELD Module
AR Module Components

- Head Tracker (Intersense IS900)
- Hand Tracker (Intersense IS900)
- Sony Head-Worn Display (LDI-D100B)
- Microphone
- P5 Glove (Essential Reality)
- DiamondTouch Table Connector (MERL)
Life-size Immersive Exploration
Provide natural interaction mechanism for our 3D environment

Modalities
- Speech: IBM ViaVoice 10
- Gestures: EssentialReality P5 glove
- Selection statistics: SenseShapes

Focus on selection
- Based on collaboration with Phil Cohen et al. (ICMI 2003) and SenseShapes (ISMAR 2003)
VirtualTray
Desktop Components

- High-resolution Display
- Touch-sensitive Projective Display (MERL DiamondTouch)
- Handheld Display
World-In-Miniature
Harris Matrix
Enhanced Harris Matrix
Enhanced Harris Matrix
Cross-Dimensional Hybrid Gestures

- Synchronized 2D and 3D gestures
- Facilitate seamless transition across dimensions

To appear in IEEE VR 2005
Cross-Dimensional Hybrid Gestures

Pull
Push

To appear in IEEE VR 2005
Cross-Dimensional Hybrid Gestures

Pull
Pin
Drag
Rotate
Push

To appear in IEEE VR 2005
Cross-Dimensional Hybrid Gestures

To appear in IEEE VR 2005
Handheld Focus-in-Context Display

- Movable high-resolution inset
 - Tracked by DiamondTouch
 - Projection suppressed in its bounds
 - Physical magic lens
Tabletop Interaction
User Feedback

► Overall very positive reaction
► Archaeologists benefited from:
 - Temporal–Spatial connection
 - Aggregated collection of all data
 - Accurate 3D model
 - Simple touch-based interactions
► Potential for increased collaboration
Room for Improvement

► Reduce wires
► Reduce weight
► Eye occlusion hinders communication
► Missing data:
 - More objects, features, notes and pictures
 - More scans during excavation (time-lapse spatial record)
► Missing features:
 - Virtual scale measure (implemented since)
 - Variable site model scaling
 - Improved selection in world-in-miniature
Current and Future Work

► Larger Site:
 ▪ Summer 2004 - Thulamela, South Africa

► Personalized user experience based on expertise

► Environment management
Acknowledgments

► Special thanks to:
 - Peter Allen, Alejandro Troccoli, and Ben Smith (CU Robotics Lab)
 - Ian Morris and Trinity Jackman (Stanford Archaeology Center)
 - Lynn Meskell and James Conlon (CU Dept. of Archaeology)
 - Sajid Sadi and Avinanindra Utukuri (P5 glove)
 - Shezan Baig
 - Mitsubishi Electric Research Labs (DiamondTouch table)
 - Alias Systems
 - Microsoft Research

Questions?