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ABSTRACT 

Maguro is a system for efficiently searching very large 

collections of text content of up to 1 trillion documents at 

low cost. Search engines span across content that is very 

dynamic and highly augmented with metadata to the tail 

content of the web. A long tail distribution of content calls 

for different trade-offs in the design space for good 

efficiency across the entire index range. Maguro is designed 

for the long tail of content with less dynamics and less 

metadata, but very good cost efficiency. Maguro is part of 

the serving stack in Bing and allows us to scale the index 

significantly better.  

1. INTRODUCTION 
Designing an efficient index serving system to 

comprehensively index the entire World Wide Web is 

extremely challenging. Given the versatility of the content 

on the web, it makes sense for Bing to use a portfolio of 

technologies for efficient and cost effective index serving for 

different subsets of the web. The head of the web has 

extreme dynamics in both content and references, and the 

amount of information external to the page itself (links, 

anchors, tweets, likes, shares, etc.) are in many cases vastly 

larger than the content itself. The number of external signals 

to determine the actual search engine ranking of a head 

object is large, and the requirements to handle these 

dynamics drives the index serving system design. Moving 

into the web’s extremely long tail of content, very few 

signals outside the content itself exists, and the scale of the 

web tail drives the requirements for us to build a very 

efficient index serving system for this content.  

The storage hierarchy economics implies that we need to 

utilize hard drives to handle the web tail in an efficient 

manner. Maguro is designed to index any atom from a web 

page (word, n-gram, tuple, and feature) and to distribute the 

index of each atom across hard disks and machines to 

optimize the retrieval cost, hence enabling a flexible model 

for trading off efficiency for retrieval features at fine 

granularity. Maguro’s use of hard drives enables it to index 

more documents per machines as well as a large selection of 

compound atoms, such as n-grams and tuples. In addition, 

Maguro’s atom partitioned serving architecture reduces the 

number of machines that need to participate in every query 

as compared to a document partitioned serving architecture 

that involves all machines[13][16][14]. Finally, Maguro 

takes advantage of its phrase-based indexing with n-gram 

and tuple based query formulation to additionally reduce 

both the number of machines that must participate in each 

query as well as the computation needed to answer the query. 

Maguro achieves 12x cost efficiency improvement over 

Bing’s baseline search engine that serves head content on the 

same hardware, and over 40x improvement, when run on 

hardware with a faster network interconnect. By reducing 

the number of machines that participate in computing the 

query results, Maguro is able to demonstrate better latency 

scaling characteristics and enables providing fast and 

consistent query response even when indexing and serving a 

large collection of tail documents.  

The rest of the paper is organized as follows. Section 2 talks 

about overall search engine architecture, introduces the 

funnel architecture for how we design search engines and 

helps motivate the Maguro system design based on hardware 

and scale trends. Section 3 presents the overall Maguro 

system architecture along with descriptions of the key 

building blocks. Section 4 provides experimental evaluation 

of the Maguro system. Finally, Section 5 covers related 

work, and Section 6 concludes the paper. Protecting Bing’s 

business interests requires us to reduce some level of detail 

and omit additional information that may have been 

appropriate. Examples of this include the details of the hash 

function used, query formulation algorithm, posting list 

compression, and the omission of absolute numbers from the 

graphs in Section 4. 

2. BACKGROUND 
 

A search engine [13][4][3] is a very complex system 

operating with multiple large components. Overall, one 

model of a search engine can be broken down into: 

1) Selection and crawling. Using a map of the 

webgraph to select what documents to schedule for 

fetching, and a crawler to efficiently download and 

discover these.  

2) Index building by inverting the content of 

documents into efficient inverted indexes for 

searching. 

3) Matching and ranking documents upon user 

queries. 

4) A search engine user interface to handle the dialog 

with the user. 

 

Figure 1: Anatomy of a search engine 



 

 

2.1 THE MATCHING FUNNEL  
We break matching and ranking down into multiple phases 

that are sequenced in a funnel. A rational breakdown can be: 

1) L0 – Matching. Given a query, find all candidate 

matches for the query. 

2) L1 – Preliminary ranking and pruning. The number 

of matches from stage 1 can be very large, so stage 

2 is using efficient and preliminary ranking to prune 

away matches that are unlikely to be part of the 

final answer. 

3) L2 – Final ranking and sorting. Based on the pruned 

results from stage 2, use a full featured ranking 

system to derive final scores and sort the matches. 

 

Figure 2: Search matching funnel 

This is illustrated above, and Maguro covers both L0 and L1 

in this model, and uses pre-computed scores to prune the lists 

in L1.  

 

2.2 HARDWARE TRENDS 
 

Running a search engine at extreme scale implies a relentless 

focus on cost efficiency. To the extent possible, datacenters 

are made up of commodity components. When considering 

the index serving problem at large scale, recent hardware 

trends open up and suggest specific architectural directions. 

In particular we take into account trends in 3 major areas: 

1) HDD cost trends: HDD storage cost is significantly 

lower than other storage systems, and currently 

trending at around $0.05/Gbyte. The technology is 

expecting to be able to increase the density of 

storage at least 50x, so there seems to be no 

immediate physical barrier to be hit here. The 

challenge is to scale throughput and latency, which 

is more stagnant. 

2) The evolution of SSD: Flash-based storage has 

rapidly entered the stage as a viable storage layer. 

Since 2007 the cost per GB of SSD has dropped 

from 120x the cost of HDD to around 25x the cost 

of HDD, and it has huge advantages in latency of 

access. Though, there are challenges in lifetime 

management and write cycles handling. 

3) 10Gbit commodity networks: With the introduction 

of 10Gbit networking, the bandwidth between 

machines enables remote storage to be as fast as 

local storage. Architecturally, this opens up the 

ability to do more global computation across 

machines, and this is a key element in the 

scalability of the Maguro serving platform. 

 

3. MAGURO SYSTEM OVERVIEW 
Maguro breaks the searchable index into disjoint segments 

that are queried in parallel. These segments can be selected 

based on different criteria such as language, region, topic or 

static rank. Inside a segment, the index is again distributed 

onto leaf nodes of computing. At the top, a CorpusRoot 

orchestrates querying across segments, while inside a 

segment, the SegmentRoot handles query execution and 

result computation. Each leaf node contains an L01Matcher 

component and an L2Ranker component that implements the 

search funnel. Overall the architecture can be illustrated as 

below. 

 

 

Figure 3: Maguro architecture overview 

 

3.1 Basic Data Model and atom-based 

indexing 
The fundamental data model for Maguro is a mapping from 

an atom to a list of documents containing the atom called a 

posting list, e.g: 

(atom  {(docid, attributes)} 

Documents to be indexed are represented as stream of 

tokens, e.g (w1, w2, w3, …), and Maguro generates atoms 

from the following logic: 

1) All unigrams/words in the stream are atoms. 

2) All n-grams (up to a given n) are considered as 

atoms. 

3) A selection of all n-grams (beyond length n) are 

considered as atoms. 

4) A selection of known n-grams of arbitrarily length 

are considered as atoms. 

5) A selection of all tuples (wi, wj) are considered as 

atoms. 



 

The selection process is based on several a-priori 

distributions from the document corpus and query logs. 

From the candidate set above, Maguro generates a set of 

atoms (a1, aN) for each document, as a mix of unigrams along 

with n-grams and tuples that we collectively refer to as 

phrases. The primary location for the posting lists is on hard-

drive, and hence Maguro is more sensitive to the length of 

each posting list, rather than the total space used for all 

postings. This makes it feasible to generate posting lists for 

a large number of atoms and potentially reduce the number 

of IOPS and the length of each transfer due to richer atoms. 

For example, the posting list length of n-gram “ab” is 

typically 1/1000 times smaller than the length of the posting 

lists for its constituent unigrams, a and b. 

The posting lists are generated as the join of documents for 

a given atom: 

P = (atom  {(docid, score)}) 

Here, the score is a pre-computed ranking score, 

Rank_L1(query, doc) with atom itself as the query. We refer 

to this score as the L1 Score. The total index is then the union 

of all posting lists for all atoms. 

3.2 Partitioning the index by atoms 
Maguro distributes the index across machines inside a 

segment by the hash value of each atom. This is similar to 

global indexing schemes described extensively in the 

literature [13][16][14]. Hence for a given doc, the postings 

will be scattered over potentially all the machines inside a 

segment, implying the need for query execution to 

coordinate fetching results from the machines. 

Partitioning the index by atom instead of document is driven 

by the desire to utilize hard-disk efficiently. For a given 

query, the number of IO requests with this scheme is linear 

to the number of atoms in the query, as compared to a 

document partitioning model that will issue IO requests for 

each atom on each machine. Hence if we have a query of 10 

words, which is quite feasible after query augmentation and 

analysis, each segment in an atom partitioned configuration 

will do O(10) IO operations. If the data was partitioned by 

documents, and assuming that N machines are needed to 

index the entire document corpus, we are looking at 

significantly more IO operations O(10*N). The amortized 

amount of IO operations in document partitioned models is 

prohibitive, and hence most search engines will use DRAM 

or SSD to store such an index, where the IOPS capacity is 

way higher. Typically, this implies that each node has many 

fewer documents (say 20M), and a significantly wider fan-

out. While the throughput of such a DRAM/SSD based index 

is expected to be higher, the impact of wide fanout is higher 

latency variations, and typically this is compensated with 

large capacity buffers to have less latency flux. Latency is an 

extremely important element of large-scale online services, 

and as we will show later in this paper, the lower fanout 

enables us to run with smaller capacity buffers, making the 

disk based index very attractive. 

3.3 Efficient atom lookup 
The search index on each machine comprised of inverted 

posting lists is organized as a multi-level hash-based index. 

We use a custom hash function that is fast to compute and 

has almost zero collisions even when indexing trillions of 

atoms, while still using a small number of bits for space 

efficiency. The hash-structure is organized in three levels 

across DRAM, SSD, and HDD with the most popular atoms 

in DRAM and the least popular ones on HDD. Atom 

popularity is determined by occurrence frequency in query 

logs and the document corpus. When N machines participate 

in a Maguro segment, the amount of atoms accessible 

without going to HDD is proportional to N x (DRAM size 

reserved + SSD size reserved), which is sufficient to ensure 

that the vast majority of query atoms can be efficiently 

looked up without accessing HDD. This lookup only 

provides summary statistics about the atom and requires an 

additional HDD lookup to retrieve the posting list. 

Maguro uses such a hash-based structure because efficient 

atom lookup is crucial to our phrase-based query formulation 

where a large candidate set of atoms are examined prior to 

selecting the subset of atoms whose posting lists need to be 

examined and intersected. Since not all phrases (n-grams, 

tuples) are present in our index we need to quickly determine 

if the atom exists in the index along with other information 

such as occurrence frequency and score distribution that is 

important for effective query formulation. 

3.4 Handling long posting lists 
Maguro’s efficiency primarily arises from using HDD to 

index a much larger number of documents per machine. In 

addition, since it uses a global indexing scheme [13][16][14] 

each machine’s inverted posting list comprises all 

documents indexed by the segment. Consequently, posting 

lists, especially for popular atoms, can grow extremely large 

and require special consideration for efficient processing. 

This issue is partially addressed by aggressively indexing 

and using phrases (n-grams, tuples) in query formulation, 

which have significantly smaller posting lists as compared to 

unigrams. In addition, Maguro tiers posting lists based on a 

posting’s pre-computed L1 score. High scoring postings are 

placed in tier 0, the next set of postings are placed in tier 1, 

and finally, tier 2 is a catch-all tier that contains all remaining 

postings. Query planning takes this tiering of posting lists 

into account while formulating the query. Tier 0 postings are 

always examined by all queries and the size of tier 0 is tuned 

to strike a balance between HDD IOPS, transfer latency, and 

L1 score cutoff for query relevance. Tier 2 postings are too 

long to store on a single machine and are distributed across 

all machines in the segment. They are also too long to 

transfer in a timely manner over the network and are locally 

intersected against rarer query atoms with shorter posting 

lists. The results of this intersection are communicated over 

the network and aggregated. Cascading query execution that 

we describe later can choose to use tier 1 and occasionally 



tier 2 postings when there are insufficient high scoring 

results from examining only tier 0 postings.  

3.5 Query planning 
The sharding of the index data across machines calls for 

more logic in coordinating the query execution. Maguro 

builds a query plan upon receiving an augmented and parsed 

query. A query plan is a hierarchical set of instructions that 

each leaf node is capable of executing. The results of the 

execution will be sent to a different machine or kept on the 

local machine for further processing. The instructions use 

the notion of a sequence as the result of the instruction, 

which is an addressable array structure. Maguro has an 

instruction set with the following basic operations: 

 

Operation Semantics 

ATOMSEQ(a) 

Generate a result sequence for the 

atomic unit a. Results returned 

sorted by document with 

approximate ranking (L1 doc 

ranks).  

NEARSEQ(a1, a2) 

Generate a result sequence for the 

tuple of atoms a1 and a2 that are 

near each other (predefined to be 

k). Results returned sorted by 

document with approximate 

ranking.  

ADJSEQ(a1,a2, 

…aN) 

Generate a result sequence for the 

exact phrase composed of the 

atoms  a1,..aN.  

AND(s1, s2, …, sN, 

∂) 

Perform a ranking intersection of 

all sequences in the argument list, 

computing the rank as 

𝜕(𝑅(𝑠1), 𝑅(𝑠2), … , 𝑅(𝑠𝑁)) where 

∂ would default to the sum. 

SOFTAND(s1, s2, 

…, sN, ∂) 

Perform a ranking soft 

intersection of all sequences in the 

argument list, computing the rank 

as 𝜕(𝑅(𝑠1), 𝑅(𝑠2), … , 𝑅(𝑠𝑁)) 
where ∂ would default to the sum. 

The intersection softly converts 

into a union operator when stream 

hits natural boundaries due to 

tiering posting lists.  

OR(s1, s2, …, sN, ∂) Perform a ranking union of all 

sequences in the argument list, 

computing the rank as 

𝜕(𝑅(𝑠1), 𝑅(𝑠2), … , 𝑅(𝑠𝑁)) where 

∂ would default to the max over 

the set. 

ANDNOT(s0, s2, …, 

sN) 

Perform a disjunction of the first 

sequence and the N-1 following 

atomic sequences, not impacting 

ranking already found in s0. 

RELAXEDAND(s1, 

s2, …, sN , m, ∂) 

Perform a relaxed AND where m 

of N atoms need to be present for 

the intersection to be considered 

“successful”. 

FILTER(s1, s2, …, 

sN , ∂) 

Filter a set of sequences based on 

document attributes ∂, like 

language, spam or porn. 

WAND(s1, w1, s2, 

w2,…, sN, wN, ∂) 

Perform a ranking intersection 

with weights on each atom and a 

threshold ∂, to trigger a 

“successful” match. 

 

In addition, each instruction also carries metadata about 

what machine to execute the instruction on, and expected 

external consumers of the resulting sequence. 

 

Since the query from an end user has no strict Boolean 

language or constructs in the common case, we need to 

reformulate the query into a stricter model. Operators like 

RelaxedAnd are helpful to enable a bit more “fuzziness” in 

the evaluation of the query, and this has positive impact in 

overall relevance especially for a tail index aiming at good 

recall [5]. 
 

3.6 Query execution 
 

The query execution performance of Maguro is strongly 

correlated to the ability to use n-gram and tuple atoms in the 

query. The actual formulation of the query for execution on 

a Maguro segment is currently based on different aspects: 

1) Signals from query analysis and augmentation. 

Bing uses multiple techniques to detect entities, 

indicate phrase and tuple connections in the query, 

as well as tag it with classification metadata. This 

is a rich set of rules, and Maguro uses these signals 

to formulate parts of the query terms into n-gram 

and tuple atoms.  

2) Atom statistics itself. Upon dictionary data 

extraction in Maguro, we have available statistics 

about the frequency and score of each atom. This 

data is stored in the index along with the atom and 

used to make late-binding decisions about where n-

gram and tuple formulations make sense.  

3) Network topology and load state on nodes. Since 

queries can be hierarchically evaluated and shipped 

across the network between machines, we also take 

the load and topology into account when planning 

execution. This enables us to dynamically make 

trade-offs between minimal execution time and 

avoiding resource congestion. The load and 

resource state data is continuously updated, and 

available to any node doing the query planning. 

4) Cascading operations. Maguro has the capability 

of cascading query operations through early short-

circuit of Boolean expressions. For instance can a 

query “foo bar” be executed as “ngram(foo,bar) OR 



(term(foo) AND term(bar))”, where we only 

evaluate the OR after knowing the statistics of the 

ngram(foo,bar).” 

 

The leaf machine nodes in a Maguro segment have 3 roles, 

namely SegmentRoot, L01Matcher and L2Ranker. For 

L01Matcher, each node has an atom-based partition of the 

entire reverse index. For the L2Ranker, we partition the 

ranking data needed across the segment of machines with a 

uniform distribution and place this data on SSD. Hence, each 

machine has a range of documents, Di..Dj, for which it has 

ranking information.  illustrates this along with our query 

execution workflow.  

 

Query execution takes place as follows: 

1) Any machine can be a SegmentRoot, and for each 

query a random machine is selected. The query is 

routed down to one of the SegmentRoot machines, 

and the machine computes the query plan as 

described above. 

2) During query execution, the root machine that is the 

SegmentRoot selected in step 1 for the query calls 

out to the L01Matchers holding posting lists for 

each atom in consideration in the query plan, or it 

even sends partial query plans out to other nodes for 

execution. A map of all machines in the segments 

(with partition and load information) is locally 

available in any machine to guide routing. 

3) Eventually, the root machine assembles the final 

result set.  

4) The top N results are selected for second-level 

ranking, and again the map is consulted to find the 

required L2Rankers to do the final ranking of the 

top N results.  

5) The re-ranked results are aggregated and returned 

to the calling service. 

 

This process is done in parallel on each segment, and is 

illustrated in steps below: 

 
Figure 4 - Life of a query in Maguro 

 

 

3.7 Fault-tolerant serving operations 
Fault-tolerant operations are crucial to running an online 

search engine. It is also important to have stable performance 

and fast failovers. The failure scenarios to handle within a 

Maguro segment are as follows: 

1) Machine failure. A machine(s) is failing due to 

software or hardware problems. 

2) Network partition. A machine is only reachable 

from a subset of the expected network, hence the 

network has an error. 

3) Load hotspot occurring on machine. Machines 

fail queries or are very slow in answering queries 

due to high load. 

4) Slow or partially failing machine. Disk errors, or 

general outlier characteristics occur on a machine. 

5) Planned maintenance. Updating a service requires 

it to gracefully finish its current tasks and shut 

down. Also merging, updating and OS upgrades 

have this same code path. 

All machines in a Maguro segment have a map of what it 

perceives as the state of each machine in the segment. This 

map is used both for marking failed nodes and partitions as 

well as for dynamic query planning and load balancing. The 

map holds the following information for all nodes in the 

segment: 

Field Description 

Node Network address of the node 

State Overall state of machine (UP, 

DOWN, PROBATION) 

L01Load Load information for the L01 

processes on the node 

L2Load Load information for the L2 

processes on the node 

L01Partitions List of partitions for L01Matching 

on this node 

L2Partitions List of partitions for L2 ranking on 

this node 

CPU state Total load state for CPU 

Disk state Total load state for disks on this 

machine 

Network Total load state for network on this 

machine 

Connection 

Status 

Immediate status of the remote 

connection 

 

Failures are detected by multiple mechanisms: 

1) Peer-based watchdogs. Each machine in a 

segment is responsible for watching a set of other 

machines by monitoring heartbeat requests from 

other machines. Lack of response will have a 

machine moved into PROBATION state. If it is a 



temporal failure and does not recur, it will be 

moved back into UP state. Otherwise it will be 

marked as DOWN by the watchdog and eventually 

that state is shared. 

2) Absolute watchdogs. Maguro operates in the 

Microsoft-based cluster management system [10] 

that also holds dedicated watchdogs; these will ping 

and send sanity RPC requests to machines and 

trigger DOWN state settings if no response occurs. 

3) Failure detection in calling remote machines. 
Every call to a remote machine for query execution 

can fail, and repeated failures causes a machine to 

be first placed in a probation state. 

4) Self-detection. Machines can also mark themselves 

as bad from internal failures and errors detected in 

serving software or through periodic integrity 

checks being run. 

 

When a machine is marked as DOWN, it can return to an UP 

state by self-fixing and transitioning through PROBATION 

mode. When a machine registers that there is consensus in 

the map that it is DOWN, it can run a set of verifications 

about its ability to serve. If these pass, it can register itself 

into PROBATION mode. When the probation state is 

registered across the segment, other machines will probe 

connectivity and serving availability and gradually form a 

consensus that the machine is ok, and can get back into the 

UP state. A machine with permanent failure due to hardware 

failure(s) will be fixed by replacing with a spare machine. 

Once the repair process is completed the new machine will 

be tagged as UP. 

The map that carries the machine states is updated across the 

segment by means of two mechanisms. In regular update 

mode, a simple gossip protocol is used where each node 

shares its current map with others. Each receiving node will 

update its own map based on the receiving maps by 

accumulating load and serving state information across the 

segment machines. This protocol will never reach consensus 

on load information, but it will give a balanced view of load 

across the segment machines, so that a query plan will never 

generate amplifications around hotspots. In addition, a 

subset of machines in a segment form a Paxos protected 

quorum [11] to make consistent decision about state changes 

(DOWN to PROBATION, PROBATION to UP). 

 

3.8 Continuous Index Updates 
Maguro generates a relatively large index through exploding 

the number of atoms indexed per document. Maguro Index 

Build employs a true delta update mechanism. There is a 

continuous stream of new and updated documents coming in 

from the crawl and document processing systems. The 

documents classified as tail documents are accumulated and 

processed in a batch for processing efficiency.  The 

computational nature of building index updates maps very 

well to the computing paradigm championed in 

Cosmos/Scope [7] and the Dryad engine [9]. 

3.8.1 Building the index 
The continuous stream of tail documents flowing from the 

crawl and document processing subsystem are assigned and 

accumulated into the appropriate Maguro segment streams 

(Queues) in Cosmos. When the count of unprocessed 

documents for a segment exceeds a threshold, an index build 

job (SCOPE job) is spawned to process the accumulated 

documents to build index updates for the segment.  

An index build job processes a batch of documents and 

produces the following index update artifacts which 

constitutes a mutation to the index served by the segment. 

1) Inverted Index updates: These constitute updates 

to the inverted index that is used to match user 

queries against documents served by the segment. 

Every document is processed to produce a set of 

hit records {Atom Bucket, Atom Id, Document Id, 

Ranking payload} for the document. Since 

Maguro employs an atom partitioned inverted 

index within each segment, the hit records are 

grouped first by the atom bucket, then grouped by 

the atom Id, ordered by the Document Id and 

output into a set of inverted index update files (1 

per atom bucket). 

 

2) Forward index updates : These constitute updates 

to the per document index used for final ranking 

(L2 ranking) for the set of candidate documents 

that matched the user query.  Every document is 

processed to produce a set of per document index 

records {Document Bucket, Document Id, per 

document index blob}. Since this index is 

partitioned by document within each segment, the 

document records are grouped by document 

bucket, ordered by document id and output into a 

set of forward index update files (1 per doc 

bucket). 

 

3) URL to Document Id Mapping: Since Maguro is a 

large scale index (dealing with potentially a 

trillion documents), it is expensive for the index 

build sub system to assign a globally unique 

document id to every document. The Document Id 

employed by an Index Build Job is typically only 

guaranteed to be temporally unique (perhaps 

within the context of a single job/mutation). Each 

serving segment in Maguro employs its own 

scheme of document id assignment to identify a 

document uniquely in its index. The index build 

job also outputs the URLDocument Id map 

employed in the mutation which is used by the 

segment nodes to remap the index build document 



ids to the actual serving document ids for the 

documents that got processed in the mutation. 

3.8.2 Updating serving index 
Each Index node in the Maguro segment monitors a special 

location in cosmos to check if there are any new updates 

produced for its segment. When new updates are available, 

each node downloads the portion of the updates that concern 

that node (based on the atom bucket and document bucket 

assignment to segment nodes). The serving nodes download 

the updates and also transform them by reassigning 

document Ids to facilitate efficient index merge.  

Periodically the serving nodes are instructed to merge the 

updates accumulated into the index served by the node.  For 

document level consistency the merge is constrained to 

include only the set of index build updates that are present 

on all the nodes in that segment. Once the set of updates for 

a round of update merge has been established, the index 

update reduces to an n-way merge of the served index files 

with the update files.  

Listed below is an outline of the update merge process. 

1) Merge URL  Document Id map in the served 

index with updates to the Map that were computed 

as a part of the transformation process and build a 

bit vector (D) of documents deleted from the 

index.  This reduces to a simple n-way merge of 

the map files with conflict resolution handled as 

follows 

a. If there are multiple entries for a URL 

then the highest document id wins and 

the bits for other document ids for the 

document are set in the deleted 

documents bit vector (D). 

 

2) Inverted Index Merge is an n-way Merge of the 

posting lists from the base index and the inverted 

index update files. The postings for document ids 

that have bits set in deleted document bit vector 

(D) are dropped from the merged index. 

3) Forward index is also an n-way merge of the 

served index file with forward index update files. 

The per document records for document ids that 

have bits set in deleted document bit vector (D) 

are dropped from the merged index. 

3.9 Index Growth 
The number of documents indexed by a Maguro machine is 

determined by local HDD capacity. The number of machines 

(N) in a Maguro segment is determined by the QPS and 

serving latency SLA (Service Level Agreement) 

requirements as these dictate the HDD IOPS and network 

bandwidth that the segment must support. Consequently, 

index growth is achieved by adding more segments to the 

system architecture rather than adding more machines to a 

segment. Adding more machines to a segment while keeping 

the number of documents indexed per machine constant will 

increase serving latency as more postings must be examined 

to return relevant results. The downside of adding entire 

segments rather than increasing the size of a segment is that 

index growth in not very granular, but this is not a significant 

concern for the tail.  

3.10 Discussion 
Maguro achieves its cost-efficiency goals for serving a large 

tail document corpus through a well-designed and 

synergistic combination of techniques that exploit low HDD 

costs along with availability of SSD and high speed 

commodity networks. The use of HDD allows each machine 

to index and serve a significantly larger amount of 

documents. This also forces the index to be partitioned 

across machines by atoms rather than documents due to 

HDD IOPS considerations as described earlier. Since atoms 

are partitioned across machines, multi-word queries require 

postings lists to be transferred across the network and 

intersected and benefit from a high-speed network. The use 

of HDD also permits indexing n-grams, tuples, and phrases 

in addition to unigrams and allows query planning to 

leverage this to reduce the number of remote posting lists 

that need to be transferred over the network for a multi-term 

query. Posting lists contain pre-computed ranking scores and 

this enables tiering posting lists based on these scores. This 

use of tiering for posting lists cuts down on the average 

quantity of remote postings that need to be transferred over 

the network. Pre-computing and storing ranking scores in the 

inverted index trades off experimental agility for execution 

efficiency and is an appropriate design point for indexing the 

web’s long tail of content. Finally, separating the index data 

used for final L2 ranking and placing this on SSD frees this 

ranking from HDD IOPS constraints and increases the 

number of documents that can be ranked. 

4. EXPERIMENTAL EVALUATION 
Maguro indexes tail documents and is part of the serving 

stack in Bing. In this section we evaluate the serving 

efficiency and scaling characteristics of Maguro by 

comparing it against the baseline serving system, which is a 

conventional document partitioned, RAM-based 

architecture, that indexes and serves head documents. 

4.1 Methodology and Metrics 
Search is a large-scale online distributed system and both 

query latency, and throughput, measured in queries per 

second (QPS), are key performance metrics. Query latency 

has strict SLA requirements (average latency, 95% latency, 

etc.) that must be satisfied both for good user experience and 

to meet contractual obligations. Hence the performance 

objective is to maximize the system throughput in terms of 

QPS while successfully meeting all query latency SLAs. 

However, this QPS metric and overall system cost is highly 

sensitive to the configuration of the search engine in terms 

of how many million documents are indexed by a single 

machine. To account for this, we use DQ, which is the 



product of QPS and millions of documents indexed per 

machine, as our search efficiency metric. Computing DQ for 

a document partitioned architecture is trivial as queries are 

sent to all machines in parallel. However, for an atom 

partitioned architecture only a subset of machines participate 

in each query so the effective DQ of a machine in an atom 

partitioned segment is computed as ((Documents indexed by 

the segment) x (QPS of the segment))/(Number of machines 

in the segment). 

Search relevance as measured by normalized discounted 

cumulative gain (NDCG) is another key search engine metric 

[11]. For relevance measurements, Maguro is queried in 

parallel with the baseline system serving head documents, 

results from both tiers are aggregated, and the top scoring 

results across these tiers are surfaced. All measurement 

reported here are for Maguro configurations where the 

NDCG as measured on multiple collections of search queries 

used by the Bing relevance team is either at parity or better 

than the baseline system when Maguro results are not 

surfaced.  

We perform all measurements using a custom capacity and 

latency testing tool to send several millions of user queries 

taken from query logs to production beds serving the 

baseline index and the tail index served by Maguro, that were 

temporarily removed from the active serving rotation. 

4.2 Comparative search efficiency 
We compare the search efficiency of Maguro measured in 

DQ against the baseline system that indexes and serves head 

documents. We note that the comparison is likely biased 

against the baseline system due to availability and usage of 

many more signals for head documents as compared to tail 

documents that must be taken into consideration while 

matching and ranking documents, though the magnitude of 

improvement suggests that this is a second order effect.  

The first set of comparisons measure the performance of the 

Maguro search engine running on identical hardware as the 

baseline system. Next, we measure the efficiency of the 

Maguro system running on machines with a fast network 

interconnect. In addition, for both sets of tests we also 

evaluate a Maguro configuration where use of n-grams and 

tuples in query formulation is disabled. Figure 5 shows the 

results of these measurements. The results indicate that 

Maguro shows over 12x efficiency gains over the baseline 

system running on identical hardware. Using n-grams and 

tuples in query formulation contributes a little bit less than 

3x to this overall efficiency gain. On hardware with a fast 

interconnect, Maguro’s efficiency improvements 

dramatically increase to over 40x the baseline system, with 

usage of n-grams and tuples in query formulation again 

contributing a bit less than 3x to the overall efficiency gain. 

The faster network interconnect permits increasing the QPS 

the system can sustain while still meeting its latency SLA. 

Maguro’s efficiency arises from using hard disks to 

significantly increase the number of documents that can be 

indexed and served per machine and the atom partitioned 

serving architecture reduces the number of machines that 

need to participate in every query. Maguro’s phrase-based 

indexing and query formulation further reduces both the 

number of machines that must participate in each query as 

well as the computation needed to answer the query. 

 

 

Figure 5: Maguro performance characteristics 

Figure 6 shows the index size comparison at different scales 

between Maguro’s phrase based index and a unigram index 

for the same set of documents. Maguro is selective about 

indexing n-grams and tuples as described in section 3 but 

despite this the index size is over 20x larger. This index size 

increase is possible because Maguro stores its index on hard 

disk (several terabytes per machine), and is justified because 

the use of n-grams and tuples provides almost a 3x 

improvement in serving efficiency. 

 

 

Figure 6: Maguro index size 

 

4.3 Serving latency characteristics 
Search is an online distributed system and users expect quick 

responses to their queries. In addition, the user experience is 

not just influenced by the average query response latency but 

it is also sensitive to higher percentile latencies, such as the 

95% latency. Providing low latency response even at the 

95% is extremely challenging for large distributed systems 

where many machines must participate in computing the 

response. In addition, for a consistent user experience the 



gap between the average latency and 95% latency should not 

be too large.  

Figure 7 shows the 95% latency comparison between the 

baseline search engine and Maguro at three different scale 

points. Each scale point corresponds to system 

configurations that index the same number of documents. 

The first data point corresponds to a single machine 

configuration for the baseline system indexing several 

million documents. Since the smallest Maguro configuration 

is an atom-sharded segment that involves many more 

machines, the 95% latency is around 70% higher than the 

baseline single machine system. The next data point 

corresponds to the baseline system indexing all the head 

documents. Maguro uses an identical number of machines 

(as the first configuration) to index these amount of 

documents and as a result its 95% latency is comparable to 

the first configuration. However, since the baseline system 

now has to send the query to many more machines, its 95% 

latency is now three times higher than the first configuration 

and also much higher than the Maguro system indexing the 

same number of documents. Finally, the third data point 

corresponds to the full Maguro system indexing all the tail 

documents. The increase in 95% latency for Maguro is 

modest even at this scale and still lower than the 95% latency 

of the baseline system in the second configuration where the 

number of documents indexed is significantly smaller. The 

baseline system does not have sufficient machine capacity to 

index and serve this amount of documents. But even if it 

were capable, the 95% latency would be much higher due to 

the large number of machines required.  

Maguro’s 95% latency is lower than the baseline system 

primarily because a smaller number of machines are 

involved in responding to individual user queries. This 

reduction in machine fan-out arises from indexing a larger 

number of documents per machine by leveraging hard disk 

and from Maguro’s phrase-based atom partitioned 

architecture where only machines than contain query atoms 

participate in computing the query response. This low 

machine fan out also enables Maguro to scale out and index 

a large number of documents without significantly 

impacting the 95% latency. 

 

Figure 7: 95% Latency scaling 

Figure 8 indicates the ratio of 95% latency to average latency 

as the load on the system is increased for system 

configurations corresponding to the second data point in 

Figure 7. Maguro, despite being a hard disk based index, has 

a reasonable 95% to average latency ratio. In addition, due 

to its comparatively lower machine fan-out, Maguro has 

stable 95% latencies that increase at a lower rate than the 

average latency. As a result, the ratio of 95% to average 

latency decreases as the load on the system is increased. By 

contrast, the baseline index serving system shows more 

conventional behavior where the ratio of 95% to average 

latency grows with increasing load. 

 

Figure 8: Latency scaling with increasing load 

5. RELATED WORK 
Discussions around methods for distribution of inverted 

posting lists have been studied for many years. Conclusions 

vary quite a bit, there are several papers that conclude on that 

term-sharded models are superior on performance [18]. 

Though, the commercial scale of search engines and the 

impact on commodity hardware usage and datacenter 

network models makes it hard to rely too much on these 

results.  

The overall aspects of a search engine architecture is 

described in several keynote talks, and also described in [3]. 

 

6. CONCLUSIONS 
Maguro is designed for efficiently searching very large 

collections of text content of up to 1 trillion documents at 

low cost. It achieves this by using hard disks to significantly 

increase the number of documents that can be indexed and 

served per machine. In addition, it employs an atom 

partitioned serving architecture to reduce the number of 

machines that need to participate in every query. Finally, 

Maguro’s phrase-based indexing and query formulation uses 

a large selection of n-grams and tuples to additionally reduce 

both the number of machines that must participate in each 

query as well as the computation needed to answer the query. 

Maguro achieves 12x cost efficiency improvement over 

Bing’s baseline search engine that serves head content on the 

same hardware, and over 40x improvement, when run on 

hardware with a faster network interconnect. By reducing 

the number of machines that participate in computing the 

query results, Maguro is able to demonstrate better latency 

scaling characteristics and enables providing fast and 

consistent query response even when indexing and serving a 



large collection of tail documents. Maguro is part of the 

serving stack in Bing and allows us to scale the index 

significantly better. 
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