
Maguro, a system for indexing and searching over very
large text collections

Knut Magne Risvik, Trishul Chilimbi, Henry Tan, Chris Anderson, Karthik Kalyanaraman

{knutmr, trishulc, htan, chand, karthk}@microsoft.com

Microsoft Corporation
ABSTRACT

Maguro is a system for efficiently searching very large

collections of text content of up to 1 trillion documents at

low cost. Search engines span across content that is very

dynamic and highly augmented with metadata to the tail

content of the web. A long tail distribution of content calls

for different trade-offs in the design space for good

efficiency across the entire index range. Maguro is designed

for the long tail of content with less dynamics and less

metadata, but very good cost efficiency. Maguro is part of

the serving stack in Bing and allows us to scale the index

significantly better.

1. INTRODUCTION
Designing an efficient index serving system to

comprehensively index the entire World Wide Web is

extremely challenging. Given the versatility of the content

on the web, it makes sense for Bing to use a portfolio of

technologies for efficient and cost effective index serving for

different subsets of the web. The head of the web has

extreme dynamics in both content and references, and the

amount of information external to the page itself (links,

anchors, tweets, likes, shares, etc.) are in many cases vastly

larger than the content itself. The number of external signals

to determine the actual search engine ranking of a head

object is large, and the requirements to handle these

dynamics drives the index serving system design. Moving

into the web’s extremely long tail of content, very few

signals outside the content itself exists, and the scale of the

web tail drives the requirements for us to build a very

efficient index serving system for this content.

The storage hierarchy economics implies that we need to

utilize hard drives to handle the web tail in an efficient

manner. Maguro is designed to index any atom from a web

page (word, n-gram, tuple, and feature) and to distribute the

index of each atom across hard disks and machines to

optimize the retrieval cost, hence enabling a flexible model

for trading off efficiency for retrieval features at fine

granularity. Maguro’s use of hard drives enables it to index

more documents per machines as well as a large selection of

compound atoms, such as n-grams and tuples. In addition,

Maguro’s atom partitioned serving architecture reduces the

number of machines that need to participate in every query

as compared to a document partitioned serving architecture

that involves all machines[13][16][14]. Finally, Maguro

takes advantage of its phrase-based indexing with n-gram

and tuple based query formulation to additionally reduce

both the number of machines that must participate in each

query as well as the computation needed to answer the query.

Maguro achieves 12x cost efficiency improvement over

Bing’s baseline search engine that serves head content on the

same hardware, and over 40x improvement, when run on

hardware with a faster network interconnect. By reducing

the number of machines that participate in computing the

query results, Maguro is able to demonstrate better latency

scaling characteristics and enables providing fast and

consistent query response even when indexing and serving a

large collection of tail documents.

The rest of the paper is organized as follows. Section 2 talks

about overall search engine architecture, introduces the

funnel architecture for how we design search engines and

helps motivate the Maguro system design based on hardware

and scale trends. Section 3 presents the overall Maguro

system architecture along with descriptions of the key

building blocks. Section 4 provides experimental evaluation

of the Maguro system. Finally, Section 5 covers related

work, and Section 6 concludes the paper. Protecting Bing’s

business interests requires us to reduce some level of detail

and omit additional information that may have been

appropriate. Examples of this include the details of the hash

function used, query formulation algorithm, posting list

compression, and the omission of absolute numbers from the

graphs in Section 4.

2. BACKGROUND

A search engine [13][4][3] is a very complex system

operating with multiple large components. Overall, one

model of a search engine can be broken down into:

1) Selection and crawling. Using a map of the

webgraph to select what documents to schedule for

fetching, and a crawler to efficiently download and

discover these.

2) Index building by inverting the content of

documents into efficient inverted indexes for

searching.

3) Matching and ranking documents upon user

queries.

4) A search engine user interface to handle the dialog

with the user.

Figure 1: Anatomy of a search engine

2.1 THE MATCHING FUNNEL
We break matching and ranking down into multiple phases

that are sequenced in a funnel. A rational breakdown can be:

1) L0 – Matching. Given a query, find all candidate

matches for the query.

2) L1 – Preliminary ranking and pruning. The number

of matches from stage 1 can be very large, so stage

2 is using efficient and preliminary ranking to prune

away matches that are unlikely to be part of the

final answer.

3) L2 – Final ranking and sorting. Based on the pruned

results from stage 2, use a full featured ranking

system to derive final scores and sort the matches.

Figure 2: Search matching funnel

This is illustrated above, and Maguro covers both L0 and L1

in this model, and uses pre-computed scores to prune the lists

in L1.

2.2 HARDWARE TRENDS

Running a search engine at extreme scale implies a relentless

focus on cost efficiency. To the extent possible, datacenters

are made up of commodity components. When considering

the index serving problem at large scale, recent hardware

trends open up and suggest specific architectural directions.

In particular we take into account trends in 3 major areas:

1) HDD cost trends: HDD storage cost is significantly

lower than other storage systems, and currently

trending at around $0.05/Gbyte. The technology is

expecting to be able to increase the density of

storage at least 50x, so there seems to be no

immediate physical barrier to be hit here. The

challenge is to scale throughput and latency, which

is more stagnant.

2) The evolution of SSD: Flash-based storage has

rapidly entered the stage as a viable storage layer.

Since 2007 the cost per GB of SSD has dropped

from 120x the cost of HDD to around 25x the cost

of HDD, and it has huge advantages in latency of

access. Though, there are challenges in lifetime

management and write cycles handling.

3) 10Gbit commodity networks: With the introduction

of 10Gbit networking, the bandwidth between

machines enables remote storage to be as fast as

local storage. Architecturally, this opens up the

ability to do more global computation across

machines, and this is a key element in the

scalability of the Maguro serving platform.

3. MAGURO SYSTEM OVERVIEW
Maguro breaks the searchable index into disjoint segments

that are queried in parallel. These segments can be selected

based on different criteria such as language, region, topic or

static rank. Inside a segment, the index is again distributed

onto leaf nodes of computing. At the top, a CorpusRoot

orchestrates querying across segments, while inside a

segment, the SegmentRoot handles query execution and

result computation. Each leaf node contains an L01Matcher

component and an L2Ranker component that implements the

search funnel. Overall the architecture can be illustrated as

below.

Figure 3: Maguro architecture overview

3.1 Basic Data Model and atom-based

indexing
The fundamental data model for Maguro is a mapping from

an atom to a list of documents containing the atom called a

posting list, e.g:

(atom  {(docid, attributes)}

Documents to be indexed are represented as stream of

tokens, e.g (w1, w2, w3, …), and Maguro generates atoms

from the following logic:

1) All unigrams/words in the stream are atoms.

2) All n-grams (up to a given n) are considered as

atoms.

3) A selection of all n-grams (beyond length n) are

considered as atoms.

4) A selection of known n-grams of arbitrarily length

are considered as atoms.

5) A selection of all tuples (wi, wj) are considered as

atoms.

The selection process is based on several a-priori

distributions from the document corpus and query logs.

From the candidate set above, Maguro generates a set of

atoms (a1, aN) for each document, as a mix of unigrams along

with n-grams and tuples that we collectively refer to as

phrases. The primary location for the posting lists is on hard-

drive, and hence Maguro is more sensitive to the length of

each posting list, rather than the total space used for all

postings. This makes it feasible to generate posting lists for

a large number of atoms and potentially reduce the number

of IOPS and the length of each transfer due to richer atoms.

For example, the posting list length of n-gram “ab” is

typically 1/1000 times smaller than the length of the posting

lists for its constituent unigrams, a and b.

The posting lists are generated as the join of documents for

a given atom:

P = (atom  {(docid, score)})

Here, the score is a pre-computed ranking score,

Rank_L1(query, doc) with atom itself as the query. We refer

to this score as the L1 Score. The total index is then the union

of all posting lists for all atoms.

3.2 Partitioning the index by atoms
Maguro distributes the index across machines inside a

segment by the hash value of each atom. This is similar to

global indexing schemes described extensively in the

literature [13][16][14]. Hence for a given doc, the postings

will be scattered over potentially all the machines inside a

segment, implying the need for query execution to

coordinate fetching results from the machines.

Partitioning the index by atom instead of document is driven

by the desire to utilize hard-disk efficiently. For a given

query, the number of IO requests with this scheme is linear

to the number of atoms in the query, as compared to a

document partitioning model that will issue IO requests for

each atom on each machine. Hence if we have a query of 10

words, which is quite feasible after query augmentation and

analysis, each segment in an atom partitioned configuration

will do O(10) IO operations. If the data was partitioned by

documents, and assuming that N machines are needed to

index the entire document corpus, we are looking at

significantly more IO operations O(10*N). The amortized

amount of IO operations in document partitioned models is

prohibitive, and hence most search engines will use DRAM

or SSD to store such an index, where the IOPS capacity is

way higher. Typically, this implies that each node has many

fewer documents (say 20M), and a significantly wider fan-

out. While the throughput of such a DRAM/SSD based index

is expected to be higher, the impact of wide fanout is higher

latency variations, and typically this is compensated with

large capacity buffers to have less latency flux. Latency is an

extremely important element of large-scale online services,

and as we will show later in this paper, the lower fanout

enables us to run with smaller capacity buffers, making the

disk based index very attractive.

3.3 Efficient atom lookup
The search index on each machine comprised of inverted

posting lists is organized as a multi-level hash-based index.

We use a custom hash function that is fast to compute and

has almost zero collisions even when indexing trillions of

atoms, while still using a small number of bits for space

efficiency. The hash-structure is organized in three levels

across DRAM, SSD, and HDD with the most popular atoms

in DRAM and the least popular ones on HDD. Atom

popularity is determined by occurrence frequency in query

logs and the document corpus. When N machines participate

in a Maguro segment, the amount of atoms accessible

without going to HDD is proportional to N x (DRAM size

reserved + SSD size reserved), which is sufficient to ensure

that the vast majority of query atoms can be efficiently

looked up without accessing HDD. This lookup only

provides summary statistics about the atom and requires an

additional HDD lookup to retrieve the posting list.

Maguro uses such a hash-based structure because efficient

atom lookup is crucial to our phrase-based query formulation

where a large candidate set of atoms are examined prior to

selecting the subset of atoms whose posting lists need to be

examined and intersected. Since not all phrases (n-grams,

tuples) are present in our index we need to quickly determine

if the atom exists in the index along with other information

such as occurrence frequency and score distribution that is

important for effective query formulation.

3.4 Handling long posting lists
Maguro’s efficiency primarily arises from using HDD to

index a much larger number of documents per machine. In

addition, since it uses a global indexing scheme [13][16][14]

each machine’s inverted posting list comprises all

documents indexed by the segment. Consequently, posting

lists, especially for popular atoms, can grow extremely large

and require special consideration for efficient processing.

This issue is partially addressed by aggressively indexing

and using phrases (n-grams, tuples) in query formulation,

which have significantly smaller posting lists as compared to

unigrams. In addition, Maguro tiers posting lists based on a

posting’s pre-computed L1 score. High scoring postings are

placed in tier 0, the next set of postings are placed in tier 1,

and finally, tier 2 is a catch-all tier that contains all remaining

postings. Query planning takes this tiering of posting lists

into account while formulating the query. Tier 0 postings are

always examined by all queries and the size of tier 0 is tuned

to strike a balance between HDD IOPS, transfer latency, and

L1 score cutoff for query relevance. Tier 2 postings are too

long to store on a single machine and are distributed across

all machines in the segment. They are also too long to

transfer in a timely manner over the network and are locally

intersected against rarer query atoms with shorter posting

lists. The results of this intersection are communicated over

the network and aggregated. Cascading query execution that

we describe later can choose to use tier 1 and occasionally

tier 2 postings when there are insufficient high scoring

results from examining only tier 0 postings.

3.5 Query planning
The sharding of the index data across machines calls for

more logic in coordinating the query execution. Maguro

builds a query plan upon receiving an augmented and parsed

query. A query plan is a hierarchical set of instructions that

each leaf node is capable of executing. The results of the

execution will be sent to a different machine or kept on the

local machine for further processing. The instructions use

the notion of a sequence as the result of the instruction,

which is an addressable array structure. Maguro has an

instruction set with the following basic operations:

Operation Semantics

ATOMSEQ(a)

Generate a result sequence for the

atomic unit a. Results returned

sorted by document with

approximate ranking (L1 doc

ranks).

NEARSEQ(a1, a2)

Generate a result sequence for the

tuple of atoms a1 and a2 that are

near each other (predefined to be

k). Results returned sorted by

document with approximate

ranking.

ADJSEQ(a1,a2,

…aN)

Generate a result sequence for the

exact phrase composed of the

atoms a1,..aN.

AND(s1, s2, …, sN,

∂)

Perform a ranking intersection of

all sequences in the argument list,

computing the rank as

𝜕(𝑅(𝑠1), 𝑅(𝑠2), … , 𝑅(𝑠𝑁)) where

∂ would default to the sum.

SOFTAND(s1, s2,

…, sN, ∂)

Perform a ranking soft

intersection of all sequences in the

argument list, computing the rank

as 𝜕(𝑅(𝑠1), 𝑅(𝑠2), … , 𝑅(𝑠𝑁))
where ∂ would default to the sum.

The intersection softly converts

into a union operator when stream

hits natural boundaries due to

tiering posting lists.

OR(s1, s2, …, sN, ∂) Perform a ranking union of all

sequences in the argument list,

computing the rank as

𝜕(𝑅(𝑠1), 𝑅(𝑠2), … , 𝑅(𝑠𝑁)) where

∂ would default to the max over

the set.

ANDNOT(s0, s2, …,

sN)

Perform a disjunction of the first

sequence and the N-1 following

atomic sequences, not impacting

ranking already found in s0.

RELAXEDAND(s1,

s2, …, sN , m, ∂)

Perform a relaxed AND where m

of N atoms need to be present for

the intersection to be considered

“successful”.

FILTER(s1, s2, …,

sN , ∂)

Filter a set of sequences based on

document attributes ∂, like

language, spam or porn.

WAND(s1, w1, s2,

w2,…, sN, wN, ∂)

Perform a ranking intersection

with weights on each atom and a

threshold ∂, to trigger a

“successful” match.

In addition, each instruction also carries metadata about

what machine to execute the instruction on, and expected

external consumers of the resulting sequence.

Since the query from an end user has no strict Boolean

language or constructs in the common case, we need to

reformulate the query into a stricter model. Operators like

RelaxedAnd are helpful to enable a bit more “fuzziness” in

the evaluation of the query, and this has positive impact in

overall relevance especially for a tail index aiming at good

recall [5].

3.6 Query execution

The query execution performance of Maguro is strongly

correlated to the ability to use n-gram and tuple atoms in the

query. The actual formulation of the query for execution on

a Maguro segment is currently based on different aspects:

1) Signals from query analysis and augmentation.

Bing uses multiple techniques to detect entities,

indicate phrase and tuple connections in the query,

as well as tag it with classification metadata. This

is a rich set of rules, and Maguro uses these signals

to formulate parts of the query terms into n-gram

and tuple atoms.

2) Atom statistics itself. Upon dictionary data

extraction in Maguro, we have available statistics

about the frequency and score of each atom. This

data is stored in the index along with the atom and

used to make late-binding decisions about where n-

gram and tuple formulations make sense.

3) Network topology and load state on nodes. Since

queries can be hierarchically evaluated and shipped

across the network between machines, we also take

the load and topology into account when planning

execution. This enables us to dynamically make

trade-offs between minimal execution time and

avoiding resource congestion. The load and

resource state data is continuously updated, and

available to any node doing the query planning.

4) Cascading operations. Maguro has the capability

of cascading query operations through early short-

circuit of Boolean expressions. For instance can a

query “foo bar” be executed as “ngram(foo,bar) OR

(term(foo) AND term(bar))”, where we only

evaluate the OR after knowing the statistics of the

ngram(foo,bar).”

The leaf machine nodes in a Maguro segment have 3 roles,

namely SegmentRoot, L01Matcher and L2Ranker. For

L01Matcher, each node has an atom-based partition of the

entire reverse index. For the L2Ranker, we partition the

ranking data needed across the segment of machines with a

uniform distribution and place this data on SSD. Hence, each

machine has a range of documents, Di..Dj, for which it has

ranking information. illustrates this along with our query

execution workflow.

Query execution takes place as follows:

1) Any machine can be a SegmentRoot, and for each

query a random machine is selected. The query is

routed down to one of the SegmentRoot machines,

and the machine computes the query plan as

described above.

2) During query execution, the root machine that is the

SegmentRoot selected in step 1 for the query calls

out to the L01Matchers holding posting lists for

each atom in consideration in the query plan, or it

even sends partial query plans out to other nodes for

execution. A map of all machines in the segments

(with partition and load information) is locally

available in any machine to guide routing.

3) Eventually, the root machine assembles the final

result set.

4) The top N results are selected for second-level

ranking, and again the map is consulted to find the

required L2Rankers to do the final ranking of the

top N results.

5) The re-ranked results are aggregated and returned

to the calling service.

This process is done in parallel on each segment, and is

illustrated in steps below:

Figure 4 - Life of a query in Maguro

3.7 Fault-tolerant serving operations
Fault-tolerant operations are crucial to running an online

search engine. It is also important to have stable performance

and fast failovers. The failure scenarios to handle within a

Maguro segment are as follows:

1) Machine failure. A machine(s) is failing due to

software or hardware problems.

2) Network partition. A machine is only reachable

from a subset of the expected network, hence the

network has an error.

3) Load hotspot occurring on machine. Machines

fail queries or are very slow in answering queries

due to high load.

4) Slow or partially failing machine. Disk errors, or

general outlier characteristics occur on a machine.

5) Planned maintenance. Updating a service requires

it to gracefully finish its current tasks and shut

down. Also merging, updating and OS upgrades

have this same code path.

All machines in a Maguro segment have a map of what it

perceives as the state of each machine in the segment. This

map is used both for marking failed nodes and partitions as

well as for dynamic query planning and load balancing. The

map holds the following information for all nodes in the

segment:

Field Description

Node Network address of the node

State Overall state of machine (UP,

DOWN, PROBATION)

L01Load Load information for the L01

processes on the node

L2Load Load information for the L2

processes on the node

L01Partitions List of partitions for L01Matching

on this node

L2Partitions List of partitions for L2 ranking on

this node

CPU state Total load state for CPU

Disk state Total load state for disks on this

machine

Network Total load state for network on this

machine

Connection

Status

Immediate status of the remote

connection

Failures are detected by multiple mechanisms:

1) Peer-based watchdogs. Each machine in a

segment is responsible for watching a set of other

machines by monitoring heartbeat requests from

other machines. Lack of response will have a

machine moved into PROBATION state. If it is a

temporal failure and does not recur, it will be

moved back into UP state. Otherwise it will be

marked as DOWN by the watchdog and eventually

that state is shared.

2) Absolute watchdogs. Maguro operates in the

Microsoft-based cluster management system [10]

that also holds dedicated watchdogs; these will ping

and send sanity RPC requests to machines and

trigger DOWN state settings if no response occurs.

3) Failure detection in calling remote machines.
Every call to a remote machine for query execution

can fail, and repeated failures causes a machine to

be first placed in a probation state.

4) Self-detection. Machines can also mark themselves

as bad from internal failures and errors detected in

serving software or through periodic integrity

checks being run.

When a machine is marked as DOWN, it can return to an UP

state by self-fixing and transitioning through PROBATION

mode. When a machine registers that there is consensus in

the map that it is DOWN, it can run a set of verifications

about its ability to serve. If these pass, it can register itself

into PROBATION mode. When the probation state is

registered across the segment, other machines will probe

connectivity and serving availability and gradually form a

consensus that the machine is ok, and can get back into the

UP state. A machine with permanent failure due to hardware

failure(s) will be fixed by replacing with a spare machine.

Once the repair process is completed the new machine will

be tagged as UP.

The map that carries the machine states is updated across the

segment by means of two mechanisms. In regular update

mode, a simple gossip protocol is used where each node

shares its current map with others. Each receiving node will

update its own map based on the receiving maps by

accumulating load and serving state information across the

segment machines. This protocol will never reach consensus

on load information, but it will give a balanced view of load

across the segment machines, so that a query plan will never

generate amplifications around hotspots. In addition, a

subset of machines in a segment form a Paxos protected

quorum [11] to make consistent decision about state changes

(DOWN to PROBATION, PROBATION to UP).

3.8 Continuous Index Updates
Maguro generates a relatively large index through exploding

the number of atoms indexed per document. Maguro Index

Build employs a true delta update mechanism. There is a

continuous stream of new and updated documents coming in

from the crawl and document processing systems. The

documents classified as tail documents are accumulated and

processed in a batch for processing efficiency. The

computational nature of building index updates maps very

well to the computing paradigm championed in

Cosmos/Scope [7] and the Dryad engine [9].

3.8.1 Building the index
The continuous stream of tail documents flowing from the

crawl and document processing subsystem are assigned and

accumulated into the appropriate Maguro segment streams

(Queues) in Cosmos. When the count of unprocessed

documents for a segment exceeds a threshold, an index build

job (SCOPE job) is spawned to process the accumulated

documents to build index updates for the segment.

An index build job processes a batch of documents and

produces the following index update artifacts which

constitutes a mutation to the index served by the segment.

1) Inverted Index updates: These constitute updates

to the inverted index that is used to match user

queries against documents served by the segment.

Every document is processed to produce a set of

hit records {Atom Bucket, Atom Id, Document Id,

Ranking payload} for the document. Since

Maguro employs an atom partitioned inverted

index within each segment, the hit records are

grouped first by the atom bucket, then grouped by

the atom Id, ordered by the Document Id and

output into a set of inverted index update files (1

per atom bucket).

2) Forward index updates : These constitute updates

to the per document index used for final ranking

(L2 ranking) for the set of candidate documents

that matched the user query. Every document is

processed to produce a set of per document index

records {Document Bucket, Document Id, per

document index blob}. Since this index is

partitioned by document within each segment, the

document records are grouped by document

bucket, ordered by document id and output into a

set of forward index update files (1 per doc

bucket).

3) URL to Document Id Mapping: Since Maguro is a

large scale index (dealing with potentially a

trillion documents), it is expensive for the index

build sub system to assign a globally unique

document id to every document. The Document Id

employed by an Index Build Job is typically only

guaranteed to be temporally unique (perhaps

within the context of a single job/mutation). Each

serving segment in Maguro employs its own

scheme of document id assignment to identify a

document uniquely in its index. The index build

job also outputs the URLDocument Id map

employed in the mutation which is used by the

segment nodes to remap the index build document

ids to the actual serving document ids for the

documents that got processed in the mutation.

3.8.2 Updating serving index
Each Index node in the Maguro segment monitors a special

location in cosmos to check if there are any new updates

produced for its segment. When new updates are available,

each node downloads the portion of the updates that concern

that node (based on the atom bucket and document bucket

assignment to segment nodes). The serving nodes download

the updates and also transform them by reassigning

document Ids to facilitate efficient index merge.

Periodically the serving nodes are instructed to merge the

updates accumulated into the index served by the node. For

document level consistency the merge is constrained to

include only the set of index build updates that are present

on all the nodes in that segment. Once the set of updates for

a round of update merge has been established, the index

update reduces to an n-way merge of the served index files

with the update files.

Listed below is an outline of the update merge process.

1) Merge URL  Document Id map in the served

index with updates to the Map that were computed

as a part of the transformation process and build a

bit vector (D) of documents deleted from the

index. This reduces to a simple n-way merge of

the map files with conflict resolution handled as

follows

a. If there are multiple entries for a URL

then the highest document id wins and

the bits for other document ids for the

document are set in the deleted

documents bit vector (D).

2) Inverted Index Merge is an n-way Merge of the

posting lists from the base index and the inverted

index update files. The postings for document ids

that have bits set in deleted document bit vector

(D) are dropped from the merged index.

3) Forward index is also an n-way merge of the

served index file with forward index update files.

The per document records for document ids that

have bits set in deleted document bit vector (D)

are dropped from the merged index.

3.9 Index Growth
The number of documents indexed by a Maguro machine is

determined by local HDD capacity. The number of machines

(N) in a Maguro segment is determined by the QPS and

serving latency SLA (Service Level Agreement)

requirements as these dictate the HDD IOPS and network

bandwidth that the segment must support. Consequently,

index growth is achieved by adding more segments to the

system architecture rather than adding more machines to a

segment. Adding more machines to a segment while keeping

the number of documents indexed per machine constant will

increase serving latency as more postings must be examined

to return relevant results. The downside of adding entire

segments rather than increasing the size of a segment is that

index growth in not very granular, but this is not a significant

concern for the tail.

3.10 Discussion
Maguro achieves its cost-efficiency goals for serving a large

tail document corpus through a well-designed and

synergistic combination of techniques that exploit low HDD

costs along with availability of SSD and high speed

commodity networks. The use of HDD allows each machine

to index and serve a significantly larger amount of

documents. This also forces the index to be partitioned

across machines by atoms rather than documents due to

HDD IOPS considerations as described earlier. Since atoms

are partitioned across machines, multi-word queries require

postings lists to be transferred across the network and

intersected and benefit from a high-speed network. The use

of HDD also permits indexing n-grams, tuples, and phrases

in addition to unigrams and allows query planning to

leverage this to reduce the number of remote posting lists

that need to be transferred over the network for a multi-term

query. Posting lists contain pre-computed ranking scores and

this enables tiering posting lists based on these scores. This

use of tiering for posting lists cuts down on the average

quantity of remote postings that need to be transferred over

the network. Pre-computing and storing ranking scores in the

inverted index trades off experimental agility for execution

efficiency and is an appropriate design point for indexing the

web’s long tail of content. Finally, separating the index data

used for final L2 ranking and placing this on SSD frees this

ranking from HDD IOPS constraints and increases the

number of documents that can be ranked.

4. EXPERIMENTAL EVALUATION
Maguro indexes tail documents and is part of the serving

stack in Bing. In this section we evaluate the serving

efficiency and scaling characteristics of Maguro by

comparing it against the baseline serving system, which is a

conventional document partitioned, RAM-based

architecture, that indexes and serves head documents.

4.1 Methodology and Metrics
Search is a large-scale online distributed system and both

query latency, and throughput, measured in queries per

second (QPS), are key performance metrics. Query latency

has strict SLA requirements (average latency, 95% latency,

etc.) that must be satisfied both for good user experience and

to meet contractual obligations. Hence the performance

objective is to maximize the system throughput in terms of

QPS while successfully meeting all query latency SLAs.

However, this QPS metric and overall system cost is highly

sensitive to the configuration of the search engine in terms

of how many million documents are indexed by a single

machine. To account for this, we use DQ, which is the

product of QPS and millions of documents indexed per

machine, as our search efficiency metric. Computing DQ for

a document partitioned architecture is trivial as queries are

sent to all machines in parallel. However, for an atom

partitioned architecture only a subset of machines participate

in each query so the effective DQ of a machine in an atom

partitioned segment is computed as ((Documents indexed by

the segment) x (QPS of the segment))/(Number of machines

in the segment).

Search relevance as measured by normalized discounted

cumulative gain (NDCG) is another key search engine metric

[11]. For relevance measurements, Maguro is queried in

parallel with the baseline system serving head documents,

results from both tiers are aggregated, and the top scoring

results across these tiers are surfaced. All measurement

reported here are for Maguro configurations where the

NDCG as measured on multiple collections of search queries

used by the Bing relevance team is either at parity or better

than the baseline system when Maguro results are not

surfaced.

We perform all measurements using a custom capacity and

latency testing tool to send several millions of user queries

taken from query logs to production beds serving the

baseline index and the tail index served by Maguro, that were

temporarily removed from the active serving rotation.

4.2 Comparative search efficiency
We compare the search efficiency of Maguro measured in

DQ against the baseline system that indexes and serves head

documents. We note that the comparison is likely biased

against the baseline system due to availability and usage of

many more signals for head documents as compared to tail

documents that must be taken into consideration while

matching and ranking documents, though the magnitude of

improvement suggests that this is a second order effect.

The first set of comparisons measure the performance of the

Maguro search engine running on identical hardware as the

baseline system. Next, we measure the efficiency of the

Maguro system running on machines with a fast network

interconnect. In addition, for both sets of tests we also

evaluate a Maguro configuration where use of n-grams and

tuples in query formulation is disabled. Figure 5 shows the

results of these measurements. The results indicate that

Maguro shows over 12x efficiency gains over the baseline

system running on identical hardware. Using n-grams and

tuples in query formulation contributes a little bit less than

3x to this overall efficiency gain. On hardware with a fast

interconnect, Maguro’s efficiency improvements

dramatically increase to over 40x the baseline system, with

usage of n-grams and tuples in query formulation again

contributing a bit less than 3x to the overall efficiency gain.

The faster network interconnect permits increasing the QPS

the system can sustain while still meeting its latency SLA.

Maguro’s efficiency arises from using hard disks to

significantly increase the number of documents that can be

indexed and served per machine and the atom partitioned

serving architecture reduces the number of machines that

need to participate in every query. Maguro’s phrase-based

indexing and query formulation further reduces both the

number of machines that must participate in each query as

well as the computation needed to answer the query.

Figure 5: Maguro performance characteristics

Figure 6 shows the index size comparison at different scales

between Maguro’s phrase based index and a unigram index

for the same set of documents. Maguro is selective about

indexing n-grams and tuples as described in section 3 but

despite this the index size is over 20x larger. This index size

increase is possible because Maguro stores its index on hard

disk (several terabytes per machine), and is justified because

the use of n-grams and tuples provides almost a 3x

improvement in serving efficiency.

Figure 6: Maguro index size

4.3 Serving latency characteristics
Search is an online distributed system and users expect quick

responses to their queries. In addition, the user experience is

not just influenced by the average query response latency but

it is also sensitive to higher percentile latencies, such as the

95% latency. Providing low latency response even at the

95% is extremely challenging for large distributed systems

where many machines must participate in computing the

response. In addition, for a consistent user experience the

gap between the average latency and 95% latency should not

be too large.

Figure 7 shows the 95% latency comparison between the

baseline search engine and Maguro at three different scale

points. Each scale point corresponds to system

configurations that index the same number of documents.

The first data point corresponds to a single machine

configuration for the baseline system indexing several

million documents. Since the smallest Maguro configuration

is an atom-sharded segment that involves many more

machines, the 95% latency is around 70% higher than the

baseline single machine system. The next data point

corresponds to the baseline system indexing all the head

documents. Maguro uses an identical number of machines

(as the first configuration) to index these amount of

documents and as a result its 95% latency is comparable to

the first configuration. However, since the baseline system

now has to send the query to many more machines, its 95%

latency is now three times higher than the first configuration

and also much higher than the Maguro system indexing the

same number of documents. Finally, the third data point

corresponds to the full Maguro system indexing all the tail

documents. The increase in 95% latency for Maguro is

modest even at this scale and still lower than the 95% latency

of the baseline system in the second configuration where the

number of documents indexed is significantly smaller. The

baseline system does not have sufficient machine capacity to

index and serve this amount of documents. But even if it

were capable, the 95% latency would be much higher due to

the large number of machines required.

Maguro’s 95% latency is lower than the baseline system

primarily because a smaller number of machines are

involved in responding to individual user queries. This

reduction in machine fan-out arises from indexing a larger

number of documents per machine by leveraging hard disk

and from Maguro’s phrase-based atom partitioned

architecture where only machines than contain query atoms

participate in computing the query response. This low

machine fan out also enables Maguro to scale out and index

a large number of documents without significantly

impacting the 95% latency.

Figure 7: 95% Latency scaling

Figure 8 indicates the ratio of 95% latency to average latency

as the load on the system is increased for system

configurations corresponding to the second data point in

Figure 7. Maguro, despite being a hard disk based index, has

a reasonable 95% to average latency ratio. In addition, due

to its comparatively lower machine fan-out, Maguro has

stable 95% latencies that increase at a lower rate than the

average latency. As a result, the ratio of 95% to average

latency decreases as the load on the system is increased. By

contrast, the baseline index serving system shows more

conventional behavior where the ratio of 95% to average

latency grows with increasing load.

Figure 8: Latency scaling with increasing load

5. RELATED WORK
Discussions around methods for distribution of inverted

posting lists have been studied for many years. Conclusions

vary quite a bit, there are several papers that conclude on that

term-sharded models are superior on performance [18].

Though, the commercial scale of search engines and the

impact on commodity hardware usage and datacenter

network models makes it hard to rely too much on these

results.

The overall aspects of a search engine architecture is

described in several keynote talks, and also described in [3].

6. CONCLUSIONS
Maguro is designed for efficiently searching very large

collections of text content of up to 1 trillion documents at

low cost. It achieves this by using hard disks to significantly

increase the number of documents that can be indexed and

served per machine. In addition, it employs an atom

partitioned serving architecture to reduce the number of

machines that need to participate in every query. Finally,

Maguro’s phrase-based indexing and query formulation uses

a large selection of n-grams and tuples to additionally reduce

both the number of machines that must participate in each

query as well as the computation needed to answer the query.

Maguro achieves 12x cost efficiency improvement over

Bing’s baseline search engine that serves head content on the

same hardware, and over 40x improvement, when run on

hardware with a faster network interconnect. By reducing

the number of machines that participate in computing the

query results, Maguro is able to demonstrate better latency

scaling characteristics and enables providing fast and

consistent query response even when indexing and serving a

large collection of tail documents. Maguro is part of the

serving stack in Bing and allows us to scale the index

significantly better.

7. ACKNOWLEDGEMENTS
Special thanks to Daniel Yuan, Madan Musuvathi, Reddy

Duggempudi, Vishesh Parikh, Tanj Bennett, Richard Kasperski,

Dexin Zhu, Lin Song, Nan Zhang, Jinru He and Bing Shi who made

several contributions to the Maguro system. In addition, we would

like to thank Qi Lu, Harry Shum, and Chad Walters for their

support throughout the project.

8. REFERENCES
[1] Badue C., Baeza-Yates R., Ribeiro-Neto B., and

Ziviani N. 2001. Distributed query processing using

partitioned inverted files. In G. Navarro, editor, Proc.

String Processing and Information Retrieval Symp.,

IEEE Computer Society, Laguna de San Rafael, Chile,

10–20.

[2] Baeza-Yates, R., Ribeiro-Neto, B. 1999. Modern

information retrieval. ACM Press, New York, NY.

[3] Barroso, L. A., Dean, J., & Holzle, U. 2003. Web

search for a planet: The Google cluster architecture.

IEEE Micro, 23, 2, 22–28.

[4] Bing L. 2011. Web Data Mining: Exploring

Hyperlinks, Contents, and Usage Data, Springer Berlin

Heidelberg.

[5] Broder, A., Carmel, D., Herscovici, M., Soffer, A.,

Zien, J. Efficient query evaluation using a two-level

retrieval process. In Proceedings of the CIKM, 2003.

[6] Chaiken, R., Jenkins, B., Larson P., Ramsey, B.,

Shakib, D., Weaver, S., Zhou J. SCOPE: Easy and

efficient parallel processing of massive data sets. Proc.

VLDB Endow. 1, 2. August 2008.

[7] Greenberg, A., Hamilton, J., Jain N., Kandula, S., Kim,

C., Lahri, P., Maltz, D., Patel, P., Sengupta, S. VL2: A

scalable and flexible data center network.

Communications of the ACM, March 2008.

[8] Greenberg, A., Lahri, P., Maltz, D., Patel, P., Sengupta

S. Towards a next generation data center architecture:

scalability and commoditization. Proc. ACM workshop

on Programmable routers for extensible services of

tomorrow., 2008.

[9] Isard, M., Mihai, B., Yuan, Y., Birell, A., Fetterly, D.

Dryad: Distributed Data-parallel Programs from

Sequential Building Blocks. Proc. Of ACM Eurosys,

2007.

[10] Isard, M. 2007. Autopilot: Automatic Data Center

Management, in Operating Systems Review, 41, 2

(April 2007), 60-67.

[11] Jarvelin, K., Kekalainen, J. Cumulated gain-based

evaluation of IR techniques. In ACM Transactions on

Information Systems 20(4). 2002.

[12] Lorch J. R., Adya A., Bolosky W. J., Chaiken R.,

Douceur J. R., Howell J. 2006. The smart way to

migrate replicated stateful services, In Proceedings of

ACM Eurosys.

[13] Manning C. D., Raghavan P., Schutze H. 2008.

Introduction to Information Retrieval, Cambridge

University Press.

[14] Marin, M., Gomez, C., Gonzalez, S., Costa, G.V. 2008.

Scheduling Intersection Queries in Term Partitioned

Inverted Files, 14th European Conference on Parallel

and Distributed Computing (EuroPar 2008), LNCS,

Springer (Aug. 26-29), Spain.

[15] Melink, S., Raghavan, S., Yang, B., Garcia-Molina, H.

2001. Building a distributed full-text index for the

web. ACM Trans. Inf. Syst. 19, 3, 217–241.

[16] Moffat, A., Webber, W., Zobel, J. 2006. Load

balancing for term-distributed parallel retrieval. In

Proceeding of SIGIR 2006: 29th annual international

ACM SIGIR conference on Research and development

in information retrieval, 348–355.

[17] Moffat, A., Webber, W., Zobel, J., Baeza-Yates, R.

2007. A pipelined architecture for distributed text

query evaluation. Information Retrieval, 10, 3, 205-

231.

[18] Ribeiro-Neto, B., Barbosa, R. Query performance for

tightly coupled distributed digital libraries. In Proc.

ACM Digital Libraries, June 1998.

[19] Tomasic, A., H. Garcia-Molina, H. 1996. Performance

issues in distributed shared-nothing information-

retrieval systems. Information Processing &

Management, 32, 6, 647–665.

http://research.microsoft.com/apps/pubs/default.aspx?id=64604
http://research.microsoft.com/apps/pubs/default.aspx?id=64604
file:///C:/publication/author/Marin
file:///C:/publication/author/Gomez
file:///C:/publication/author/Gonzalez
file:///C:/publication/author/Costa

