1 Error in Proposition 1

While constructing a PVS specification and proof of [1] with PVS [2], a small error was found in the statement of Proposition 1. That proposition states:

Proposition 1 Let \(\langle S, \rightarrow, \rightarrow \rangle \) and \(\langle S, \rightarrow', \rightarrow' \rangle \) be system executions, both of which have global-time models, such that for any \(A, B \in S : A \rightarrow B \) implies \(A \rightarrow' B \). For any global-time model \(\mu \) of \(\langle S, \rightarrow, \rightarrow \rangle \) there exists a global-time model \(\mu' \) of \(\langle S, \rightarrow', \rightarrow' \rangle \) such that \(\mu'(A) \subseteq \mu(A) \) for every \(A \in S \).

Here is a counterexample to Proposition 1. Let execution 1 be over the set \(S = \{op_1, op_2\} \), where \(A \rightarrow B \) is false for all pairs of operations and \(A \rightarrow' B \) is true for all pairs of operations. Let execution 2 be over the same set of operations, but \(op_1 \rightarrow op_2 \) and \(op_1 \rightarrow' op_2 \), and there are no other precedes or can-affect relationships. It is easy to see that both system executions satisfy axioms A1–A5. We now show that all of the conditions of Proposition 1 are satisfied.

- Execution 1 has a global-time model. Here is an example:

 \[
 \begin{align*}
 \mu(op_1) &= [1, 2] \\
 \mu(op_2) &= [0, 1]
 \end{align*}
 \]

- Execution 2 has a global-time model. Here is an example:

 \[
 \begin{align*}
 \mu(op_1) &= [0, 1] \\
 \mu(op_2) &= [2, 3]
 \end{align*}
 \]

- For any \(A, B \in S : A \rightarrow B \) implies \(A \rightarrow' B \). This is trivially satisfied.

Let \(\mu \) be the global-time model of execution 1 given above. Then proposition 1 claims that a global-time model \(\mu' \) of execution 2 exists such that \(\mu'(A) \subseteq \mu(A) \) for every \(A \in S \). But this is impossible, since every element of \(\mu'(op_1) \) must be less than any element of \(\mu'(op_2) \).
2 Repairing the error

Proposition 1 can only be falsified by choosing \(\mu \) so that one operation begins at precisely the instant that another ends, making the intersection of their execution intervals a singleton. In the PVS specification and proof located at http://www.ittc.ku.edu/consistency/, a modified version of Proposition 1 is stated and proved, as follows.

Definition 1 A global-time model \(\mu \) of a system execution \(\langle S, \rightarrow, \longrightarrow \rangle \) is nonsimultaneous if there are no operations \(A, B \in S \) such that \(\max(\mu(A)) = \min(\mu(B)) \).

Proposition 1 (Corrected) Let \(\langle S, \rightarrow, \longrightarrow \rangle \) and \(\langle S, \rightarrow', \longrightarrow' \rangle \) be system executions, both of which have global-time models, such that for any \(A, B \in S : A \rightarrow B \) implies \(A \rightarrow' B \). For any nonsimultaneous global-time model \(\mu \) of \(\langle S, \rightarrow, \longrightarrow \rangle \) there exists a global-time model \(\mu' \) of \(\langle S, \rightarrow', \longrightarrow' \rangle \) such that \(\mu'(A) \subseteq \mu(A) \) for every \(A \in S \).

Furthermore, we show that the argument in [1] to which Proposition 1 was applied can be salvaged as follows.

Theorem 2 Let \(\langle S, \rightarrow, \longrightarrow \rangle \) be a system execution with a global-time model \(\mu \). Then there exists a nonsimultaneous global-time model \(\mu' \) of \(\langle S, \rightarrow, \longrightarrow \rangle \).

References
