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Abstract

We address the problem of incorporating user preference
in automatic image enhancement. Unlike generic tools for
automatically enhancing images, we seek to develop meth-
ods that can first observe user preferences on a training set,
and then learn a model of these preferences to personalize
enhancement of unseen images. The challenge of designing
such system lies at intersection of computer vision, learn-
ing, and usability; we use techniques such as active sensor
selection and distance metric learning in order to solve the
problem. The experimental evaluation based on user studies
indicates that different users do have different preferences
in image enhancement, which suggests that personalization
can further help improve the subjective quality of generic
image enhancements.

1. Introduction

Digital cameras are becoming increasingly ubiquitous as
aresult of decreasing cost and expanded functionalities, but
taking good quality photos remains a challenge for the typi-
cal consumer. While almost every photograph could benefit
from some tone and color adjustment, manually touching up
every single image is impractical. There are generic auto-
matic enhancement tools (such as Picasa or Windows Live
Photo Gallery) that attempt to address this problem, but they
operate without considering any user preference. While it
is reasonable to assume that different people have different
tastes in photo enhancement, there are hardly any attempts
to explore different user preferences and show how these
can be used to personalize image enhancements.

In this paper, we seek to explore and understand the role
of such personalization and build an image enhancement
system that learns about user preferences. The key points
that we wish to address are: (1) Are user preferences in
image enhancement different enough to warrant personal-
ization? (2) How can we capture user preferences? To this
end, we describe a system capable of user-dependent image
enhancement. The system learns a user’s preference model
by asking her to enhance a small set of training photographs
with help of a novel visualization interface. The learned
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preference model can then be used to automatically enhance
any fest (unseen) image. We conduct user studies whose re-
sults indicate that indeed the different users have different
preferences in image enhancement and that personalization
can improve the quality of automatic image enhancement.

The end-to-end system we describe addresses a unique
mix of challenges from computer vision, learning, and UI
design. Our work has several technical contributions: We
develop a technique that helps provide a good overview of
possible enhancement candidates to the user. In particular,
one of the key contribution of our work is the interpretation
and application of an active sensor selection to determine
representative images for training. We also use a distance
metric learning technique in order to determine a similarity
measure that would map all images with similar enhance-
ment requirements in the similar regions in image space. Fi-
nally, we present an end-to-end pipeline that covers training,
user interface issues and testing; this system shows promis-
ing results on personalized image enhancement.

2. Related work

Most techniques for automatic image correction or en-
hancement typically focus on very specific features. For
example, there is substantial work on denoising (e.g., [18]),
geometric distortion removal (e.g., [6]), and optical correc-
tion (e.g., [12]) from a single image. There are also tech-
niques for automatically linearizing the color space of a
single image, e.g., through inverse gamma correction [5]
and linearizing the color edge profile in RGB space [14].
Such approaches generally produce results that are objec-
tively better than the inputs and thus user-independent.

There is also a fair amount of work done on automatic or
semi-automatic color correction, e.g., [9, 10, 11]. Because
of the ill-posed nature of the problem, such techniques may
fail when assumptions made (such as average pixels being
gray) are not applicable. There are also learning-based tech-
niques for automatically enhancing images (e.g., dictionary
learning [4, 16] and example-based [8]), but the database
used for learning tend be generic.

The work closest to ours is that of Dale et al. [3].
They developed a system for restoring images using a large
database of images. Given an image to be restored, the sys-
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Figure 1. Basic idea of our approach. The control parameters for
image enhancement are represented by vector ¢.

tem finds the closest images in the database and inherits
their color and intensity distributions to produce an inter-
mediate corrected image. It then finds the restoration op-
erations that is closest to the intermediate corrected image.
They assume that the database consists of images of high
visual quality and that taking linear combinations of color
distributions is appropriate. The validation is done quan-
titatively with those assumptions, without a user study. In
addition, it is assumed that the restoration is general.

To make it easier for the user to train our system, we
designed its interface so that the user need only click
through a series of images that the user deem to be visu-
ally more pleasing. Our interface is similar to those of
[17, 20]. Adobe Photoshop has a pre-defined set of “ac-
tions” (macros) that simplifies batch image enhancement,
and allows the user to save new actions. However, it is not
clear how these actions can be automatically customized for
a given user.

3. System overview

Our personalized image enhancement framework is de-
picted in Figure 1. In the training phase, a database is con-
structed by presenting the user with a set of training im-
ages, and asking her to enhance each image using a simple
and general user interface. The database stores the feature
vector describing each training set image Ii, ;, along with
a vector of enhancement parameters ¢;. Given a new input
image, this database is then searched for the best matching
image, and the corresponding enhancement parameters are
used to perform the enhancement.

We used the following enhancement operators to com-
pose ¢: white balancing via changes in temperature and
tint, and contrast manipulation via changes in power and
S-curves. We first describe our enhancement operators.
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Figure 2. Image enhancement pipeline.

4. Image enhancement pipeline

Figure 2 shows our system’s image enhancement
pipeline. We approximate the processes of linearization and
reversion to original nonlinear space with gamma curves
with parameter v = 2.2 and y~! = 0.455, respectively.
RGB is linearized using cjipear = ¢, where ¢ = R, G, B
(normalized). The linearized RGB values are then color cor-
rected and contrast enhanced, and finally “unlinearized” by
applying the inverse operation.

The enhancement itself is performed in two steps: auto-
enhancement, and personalized enhancement. The auto-
enhancement step (Section 4.3) is necessary to handle bad
quality photos that the system is not trained to handle. This
step generates some kind of a baseline image that is then
further adjusted using personalized enhancement.

In our work, we used three parameters associated with
contrast (7, A, a) and two associated with color correction
(T, h). We limit the number of parameters to five primarily
to limit complexity, since the search space grows exponen-
tially with the number of parameters.

4.1. Contrast curve specification

To manipulate the contrast, we use the power and S-
curves.

Power curve: 7. This is equivalent to the gamma curve
(but note that is kept separate from the gamma curve, as
seen in Figure 2): y = 7, with = and y being the normal-
ized input and output intensities.

S-curve: A, a. The S-curve is also commonly used to
globally modify contrast. The formula we used to specify
the S-curve is

afa(lff))\ ifrz<a
= A (1)
a+(l—a) (f:g) otherwise

with  and y being the normalized input and output intensi-
ties (see Figure 3(a)).

4.2. Color correction: temperature 7" and tint /

We color correct based on color temperature 7" and tint h,
rather than applying a 3 x 3 diagonal matrix. The notion of
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Figure 3. Two examples of contrast curves. (a) S curve to specify
global contrast change. (b) Parameterized curve to specify shadow,
mid-tone, and highlight regions. In our enhancement pipeline, we
use (a).

temperature and tint is a more natural parameterization from
the photographer’s perspective. Also, we deal with only two
instead of three parameters. (One can “normalize” the ma-
trix so that the resulting luminance is unchanged, yielding
two independent parameters, but these numbers are percep-
tually less meaningful.)

The color temperature is determined by comparing its
chromaticity with that of an ideal black-body radiator. In
practice, however, color temperature is relative to a stan-
dard, usually D65 standard, which is equivalent to 6500
Kelvin. The temperature curve is along the blue-yellow
line. Unintuitive as it may seem, higher color temperatures
(5000 K or more) are “cool” colors (green to blue), while
lower are “warm” colors (yellow to red). Tint, however,
is orthogonal to color temperature, and controls change
along the green-magenta axis. The details on the pro-
cess of color correction using 7" and h can be found in
http://www.brucelindbloom.com/.

4.3. Auto-correction as preprocess step

Unfortunately, in practice, images have a very wide vari-
ance in quality. It is very difficult to sample the full range
of quality. Our solution is to preprocess the input image
using a set of auto-correction techniques. This is to bring
it closer to a more acceptable quality, and have the person-
alized enhancement push it to a more subjectively pleasing
result. Our version of auto-correction consists of auto-white
balance followed by auto-contrast stretch.

Auto-white balance. We assume gray-world assumption
for the brightest 5% of the pixels; this is a variant of [1].
More sophisticated techniques (such as [11]) may be used,
but even then, limitations exist. This portion generates 3
parameters, each a color band multiplier.

Auto-contrast stretch. We find the intensity I such that
a maximum of 0.4% of the pixels are darker or as dark as I,
and intensity /; such that a maximum of 1% of the pixels

are brighter or as bright as I;. We then linearly stretch the
brightness so that I is mapped to 0 and 7 is mapped to
255 (with appropriate clamping at 0 and 255). This portion
generates 2 parameters, a shift and a scale, similarly applied
to all color bands.

5. Learning components of system

At the heart of the system are the learning components.
They enable the system to first collect training data about
user preferences and then, given a new (unseen) image, at-
tempt to provide the best set of enhancement parameters
that match the user’s taste. More specifically, during the
training phase, the user explores the set of possible enhance-
ments for each training image via a novel interface and se-
lects the one she prefers the best. Once the training is com-
pleted, to enhance any unseen test image, the system first
finds the training image most similar to it. The enhance-
ment parameters associated with the closest training image
are then applied to that test image.

However, there are three issues we need to resolve in or-
der to make the above components work: (1) How to mea-
sure similarity between images in order to match the test
image to the ones in the training set? (2) How to deter-
mine a good training set of images? (3) How to enable the
non-expert user to easily explore the space of possible en-
hancements of the training images in the training phase? We
tackle all of these three issues below.

5.1. Learning a distance metric between images

We propose to solve the first problem with distance met-
ric learning. Note that there are many different metrics to
compare images. For example, one can compare images
according to their color distribution, intensity, contrast, tex-
ture and even aspect ratio. However, our task is to determine
similarity such that it correlates well with the enhancement
parameters. In particular, we would like images that require
similar enhancement parameters to be similar to each other;
consequently, our goal is to learn a distance metric that en-
forces such regularization.

We construct the distance metric between two images as
a linear combination of 38 different individual distances.
These distances include differences of histograms in each
of the channels of RGB, HSL, and intensity space using
different ways to measure histogram distances (Lo norm,
symmetric KL-divergence, smoothed Lo norm). We also
consider the difference in intensity histogram of gradient
images in both x and y directions. Finally, in addition to
the distribution-based distances, we also consider distances
that use entropy in each of the channels as well as the size
and the aspect ratio of images [7]. Formally, the parametric
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Here, o are the parameters in the linear combination and
DF(-) denotes the individual distances computed.

In order to learn the right distant metric, we start by
first randomly selecting 5,000 images from the LabelMe
dataset [19] (http://labelme.csail.mit.edu/).
Assume that we knew enhancement parameters for all these
images. Then, we would seek to learn a distance metric
Dy, parameterized with «, such that it minimizes the
following objective:
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where DP2r™s(j 43 is the Lo norm distance between the
enhancement parameters for I; and those for I;.

The objective (3) examines all pairs of images and mea-
sures how much the distance in image space differs from
the distance in the parameter space. Thus, minimizing this
objective leads to finding an appropriate distance function
that reflects how far two images should be in terms of their
enhancement parameters. Note that this objective is convex;
the unique optimum can thus be easily found by running a
gradient descent procedure. In our implementation, we used
an implementation of limited memory BFGS [15], which
is a quasi-Newton optimization algorithm to optimize the
function. Note that the optimization procedure needs en-
hancement parameters for the 5,000 images and it is not
feasible for any user to find these parameters manually.
Instead, we used the automatically-determined parameters
from our auto-enhance component (Figure 2, Section 4.3)
to estimate DP"*™5(.). Although not personalized, these
parameters do capture how these images are likely to be en-
hanced, and thus it is assumed that the learnt distance metric
using these proxy parameters leads to reasonable estimates
of the relevant distance metric in the image space.

5.2. Selection of training set

Ideally, we need a rich enough training data set that sam-
ples well the set of possible input images and appropriate
enhancement transformations. Unfortunately, including a
large number of images in the training set is not feasible,
because each user would have to go through a tedious train-
ing phase. Thus, we seek to answer the following question:
if the typical user is willing to spend the time enhancing,
say, only 25 images, what should those 25 images be?

We answer this question of selecting the training images
as a sensor placement problem [13]. Each instance can be
thought of as a possible sensor location, where a probe is
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Figure 4. Two versions of UL (a) Our interface,( w)here the central
image is currently being considered while the images at the pe-
riphery are different modified versions. (b) A version where the
same images are arranged in linear order. The subject can flip be-
tween (i.e., blink compare) any pair of enhanced image candidates
by mousing over them.

placed in order to “sense” the space of images. Given a
sensor budget (the number of training images), we choose
a set that can provide maximum information about rest of
the images. Intuitively, our approach builds upon the obser-
vation that instances that are close to each other can be ex-
pected to share similar properties, including the appropriate
enhancement parameters. Thus, our aim is to select a subset
of instances that share the highest mutual information with
the rest of the high-dimensional space and is therefore most
representative of the full set.

Selecting such maximally informative set is NP-
complete, and a greedy and myopic selection procedure
maximizing mutual information gain is the best possible
approximation [13]. We therefore employ this approach.
Formally, we consider a Gaussian Process (used in [13])
perspective with covariance function (alternatively, kernel
function):

images . .
Dy g (i,5)
images
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Here DI™a8°(j 5) is the learnt distance as described in
Section 5.1. Note that because of the negative exponent, £;;
measures similarity between images I; and I; and ranges
from O (infinitely far apart) to 1 (at the same location). The
matrix K = [k;;] therefore encodes similarity and how
well information flows in the space. Including image I; in
the selected set provides a good representation of instances
where k;; is high, but is unrepresentative of the portion of
the space where k;; approaches zero. At each step in the
greedy selection, given the existing set of selected instances
S and unselected instances U, we select the instance that
maximizes the gain in mutual information on the remainder
of the unselected instances:

I*

arg max f(i),
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MI(X,Y) is the mutual information between X and Y [2].
The second line in the equation follows from the Gaussian
Process models, where Kg g is the similarity matrix among
images in S, Ky —; y—; is the similarity matrix among U
excluding I;, and kg ;, ky—;,; are each similarity vectors
between I; and images in .S and U — i (U excluding I;),
respectively. The numerator characterizes the similarity of
I; to the previously selected instances and the denomina-
tor characterizes the similarity of /; to other currently uns-
elected instances. Choosing ¢ that maximizes the ratio se-
lects an instance that is farthest from previously selected
instances (most dissimilar to those previously selected) but
also central to the unselected instances (most representative
of those currently unselected).

The above procedure results in a ranking of all of our
5,000 images. The top 25 images (shown in Figure 5) are
selected as the training set. We found 25 to be a reasonable
number, resulting in a training phase of 25-45 minutes, in
our user studies.

5.3. Enabling seamless browsing for training

We developed a user interface that allows a user to seam-
lessly explore the space of possible enhancements for each
of the training images and indicate his/her preferences. This
user interface, shown in Figure 4, was designed to allow
non-expert users to quickly steer a given training image to-
wards the most subjectively pleasing version, using only a
few mouse clicks. The design of our interface is similar to
those of [17, 20]; the user has the choice of toggling be-
tween the 3 x 3 tiled view in (a) and the linear view in (b).
While the tiled view provides an overview that reflects un-
derlying structure of enhanced image space, the linear view
enables a higher resolution view with an ability to do pair-
wise comparisons across candidates.

The basic idea in both views is to give a Ul to the sub-
ject where she can inspect and browse the space of images
resulting from all possible combination of enhancement pa-
rameters. Since the number of images resulting from all
possible combinations is prohibitively large, we use tools
from machine learning to reduce the number of images
shown to the user at any given time, and lay them out in a
manner that reflects some structure in the space of enhanced
images.

More specifically, given an input image, we first apply
all the operators described in Sections 4.1 and 4.2 to sample
a neighborhood of the images in the enhancements space.
This neighborhood is sampled by considering 3 parameter
settings for each of the 5 enhancement parameters: a nega-
tive step, a zero step, and a positive step. All possible com-
binations of these steps yield 3% = 243 candidate images.
From these images we select 8 representatives and display
them to the user, as described below. The current, unmod-
ified image is displayed as well, resulting in a total of 9

choices. The user then selects the version that he/she likes
the best by clicking on it, and the entire procedure is re-
peated around the selected image. The process continues
until the user selects the unmodified image. The user is also
able to control the step size used to generate the variations.

Determining what images to show. Given the 243 im-
ages, the system must decide what images to show the user.
The goal is to select 8 images which best represent the dif-
ferent variations present in the set of 243 images, and pro-
vide a holistic overview of the corresponding neighborhood
in the space of enhancements. We use the same sensor se-
lection procedure described in Section 5.2 to accomplish
this task.

Tiling images in user interface. Once the 8 representa-
tive images are generated, the next step is to determine how
to lay them out in the UL Ideally, the layout should ef-
fectively convey the underlying structure of the space. It
should be noted that due to a handful of operators and pa-
rameters we use, it is expected that the images lie on a sub-
space or a manifold, and we use dimensionality reduction to
project them onto a 2D space. To this end, we can use any
standard dimensionally reduction technique including PCA.
However, since many of the parameters in our image en-
hancement pipeline are correlated, a linear projection might
not be useful. Hence, our choice is non-linear dimensional-
ity reduction with ISOMAP [21] to project the images onto
a 2D space. The resulting 2D projections from ISOMAP
should expose some structure to the user and visualize the
distribution of the images on a plane where the two axis cor-
respond to the highest degree of variations on the manifold.
The selected 8 images can be then tiled around the current
(unmodified) image according to the quadrant they lie in the
2D projection. Figure 4(a) shows example of such tiling.

6. Experiments

We ran two experiments; the first to train the system, the
second (pairwise comparison user studies) to test the signif-
icance of personalizing image enhancement. For both ex-
periments, we used the same 14 subjects (colleagues and
acquaintances in our organization), 9 males and 5 females.
None of the subjects are experts in photography. Let us de-
note the set of subjects as B = {b;,i = 1, ...14}, with b; be-
ing the ith subject. Given the training data, a test image can
be enhanced by first finding the most similar training image
(using the metric described in Section 5.1) and then using
the enhancement parameters associated with that training
image.

6.1. Pairwise comparison user studies

In the pairwise comparison user studies, we ask the same
set of subjects B to perform pairwise comparisons amongst



Figure 5. Selected 25 training images.
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Figure 6. Interface for pairwise comparison.

the following versions:

1. Original

2. Auto-corrected using Picasa (http://picasa.
google.com/)

3. Auto-corrected using Windows Live Photo
Gallery (http://download.live.com/
photogallery)

4. Proposed technique (auto-corrected followed by per-
sonalized enhancement using the subject’s prefer-
ences)

5. Proposed technique (auto-corrected followed by per-
sonalized enhancement using a “median” subject’s
preferences)

The “median” subject is selected by first computing sum-
of-squared distance over the enhancement parameters asso-
ciated with all the training images for subject b; and those
for the other subjects B — {b; }. The “median” subject is the
subject from B — {b;} with the median distance.

The following pairs were compared: 4-1, 4-2, 4-3, 4-5,
and 2-3. Note that the order of pairs and placement of first
and second images within each pair shown to the subject are
randomized. The interface for the pairwise comparison is
shown in Figure 6. The subject selects either “left,” “right,”
or “no preference.” The user study was conducted in the
same room under the same lighting condition and same dis-
play as the first (learning) phase.

We used 20 images (see Figure 7) for our pairwise com-
parison user study. These images were selected from a large
group of images taken by our colleagues and from the web.

They were selected based on two criteria: (1) there is a rea-
sonable variation in scenes and lighting condition, and (2)
they look like they require some form of color correction
and/or contrast enhancement. The images are all different
from those used for training. The pairwise comparison por-
tion took each subject between 10-20 minutes to complete.

6.2. Results of pairwise comparison user study

The results of the user study are summarized in the two
graphs in Figure 9. We first looked at the result of pair-
wise comparisons across different subjects. In particular,
we consider the 20 images in the test data, we look at the
percentage of times a participant choose a system in each
of the comparisons (Subject vs. Input, Subject vs. Median,
Subject vs. Picasa, Subject vs. Photo Gallery, and Picasa
vs. Photo Gallery). In summary, for every subject we have
the percentage of times (out of 20 images) that participant
choose a system over another for each pairwise task and can
analyze the data to see significant effects.

Figure 9(a) graphically shows the means of these per-
centages averaged over all the 14 subjects (error bars denote
the standard error). We further did significance analysis us-
ing Wilcoxon [22] signed ranked test for each of the pair-
wise conditions, and found significant differences in scores
between Subject vs. Input (p < 0.01) and Subject vs. Me-
dian (p < 0.01). These results indicate that the partici-
pants overwhelmingly selected their own model (mean =
59.30%) over the input image (mean = 30.70%), suggest-
ing that the procedure did help enhance the input image.
More interestingly, the participants also preferred their own
model (mean = 57.10%) instead of the Median model (mean
= 28.20%), suggesting that the preferences among partici-
pants vary quite a bit and provides further evidence that the
personalized image enhancement is required instead of just
a single “auto-enhance” functionality. Figure 8 shows the
different versions for one of the test images.

Finally, the participants showed some bias in preference
towards the personalized enhancement when compared to
existing commercial systems (mean = 50.35% vs 39.30%
against Photo Gallery and mean = 44.65% vs 41.75%
against Picasa). While the difference was significant for
Photo Gallery (p < 0.05), it was not for Picasa. Note that
the proposed system only uses 5 simple enhancement oper-
ations; we hypothesize that the personalized enhancement
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Figure 8. Sample image versions. From left to right: input, Picasa auto-enhanced, Photo Gallery auto-enhanced, enhanced using preferences
of Subject 1, 7, and 9, respectively. In this case, the subject-enhanced images were favored by the respective subjects. Notice the significant

Input Picasa

Subject #1

differences in color across the different versions.

has the potential to further improve upon the performance
of the existing commercial systems by using them as a “pre-
process” step and then overlaying the personalization.

Next, we also compared the number of subjects that pre-
ferred one system over another in the five pairwise compar-
isons. Specifically, we consider that a participant prefers
one system over another when he/she chose more images
corresponding to the former system than the latter. Fig-
ure 9(b) graphically shows the results. To judge the sig-
nificance of the numbers we did an exact binomial sign test
and the results indicate that the subjects personalized model
was significantly preferred over the input image (p < 0.01)
and the Median model (p < 0.01).

7. Discussion

In this work, we focus on user-specific image enhance-
ment instead of correcting arbitrarily bad images (which
span a large space). We see the role of personalization
as refining the output of a “generic” automatic enhance-
ment module. Our improvement over Picasa is marginal
but statistically insignificant; our “generic” (i.e., non-user-
specific) portion of our system is likely to be less effec-
tive than that of Picasa. However, note that our back-end
“generic” version can be easily replaced with Picasa or Win-
dows Live Photo Gallery, thus potentially providing further
opportunities for enhancements.

In our system, only 5 parameters are used for personal-
izing image enhancement. While results do show in favor
of personalized versions, it is likely that more parameters
are needed to optimize the personalization effect. There
are other important features, such as auto-cropping, fil-
ters (e.g., sharpening), other types of contrast enhance-
ment (e.g., shadow-midtone-highlight curve specification

as shown in Figure 3(b)), and optical correction (e.g., vi-
gnetting and barrel distortion correction).

Clearly we need to balance the initial training set size
with user effort in personalizing the system. We are looking
into incremental training: the user manually corrects if the
system-generated output is inadequate, and the correction is
used to update the user’s preference database.

Another interesting direction is the possibility of clusters
in the training data. The existence of clusters would suggest
a simpler approach to personalization: we generate “preset”
preferences (each set corresponding to a cluster) and select
the best “preset” preference based on just a few images the
user corrects. Here, studies on a much larger scale would
be required.

8. Concluding remarks

We present an end-to-end pipeline that covers training,
and user interface issues and testing. In designing our sys-
tem, we apply two learning techniques. We use a distance
metric learning technique to allow us to match images that
have similar enhancement requirements. We use an active
sensor selection technique for two important functions: (1)
to select the training set from a larger database of images,
and (2) during the training phase, to determine a subset of
images that best represent variation in the spectrum of pos-
sible candidates in the space of enhanced images. Results
suggest that while general techniques for enhancing images
are helpful, image enhancement has a strong personaliza-
tion component, which should help improve the (subjective)
quality of images even further.
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Figure 9. Results of pairwise comparison user study comparing the inputs and subjects’, “median” (see text) subjects’, Picasa auto-
enhanced, and PhotoGallery auto-enhanced versions. The first triplet in each graph, for example, is the result of comparing the subject’s
enhanced version with the input. (a) Graph comparing mean frequency of image version favored (in percent over 20 images, with standard
deviation bars). (b) Graph comparing number of subjects predominantly favoring the image version. Here, each triplet add to 14 subjects.
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