A Demonstration of FlexPref:
Extensible Preference Evaluation Inside the DBMS Engine:

Justin J. Levandoski

Mohamed F. Mokbel

Mohamed E. Khalefa

Venkateshwar R. Korukanti
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
{justin,mokbel,khalefa,venkat}@cs.umn.edu

ABSTRACT

This demonstration presents FlexPref, a framework imple-
mented inside the DBMS query processor that enables effi-
cient and extensible preference query processing. FlexPref
provides query processing support inside the database en-
gine for a wide-array of preference evaluation methods (e.g.,
skyline, top-k, k-dominance, k-frequency) in a single exten-
sible code base. Integration with FlexPref is simple, involv-
ing the registration of only three functions that capture the
essence of the preference method. Once integrated, the pref-
erence method “lives” at the core of the database, enabling
the efficient execution of preference queries involving com-
mon database operations (e.g, selection, join). Functional-
ity of FlexPref, implemented inside PostgreSQL, is demon-
strated through the implementation and use of several state-
of-the-art preference methods in a real application scenario.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems

General Terms

Algorithms, Design, Performance

1. INTRODUCTION

Preference query processing has become an important
concept, helping to realize applications such as multi-criteria
decision-making tools and personalized databases. In re-
cent years, a number of preference methods have been pro-
posed, including top-k [4], skylines [1], k-dominance [2], k-
frequency [3], and top-k dominance [7]. Each of these meth-
ods have semantics that challenge the notion of “best” an-
swers. Since “best” is subjective, we will likely see the pro-
posal of a number of new preference methods in the future.
From a systems perspective, a fundamental issue is how we
can realize each existing and future method inside a DBMS

*This work is supported in part by the National Science
Foundation under Grants IIS-0811998, I1S-0811935, CNS-
0708604, and by a Microsoft Research Gift

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’10, June 6-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

engine in order to efficiently handle arbitrary select-project-
join queries.

Currently, there exist two approaches to implement-
ing preference methods using a DBMS. (1) The first and
most common is the on-top approach, where the preference
method is implemented outside of the DBMS. This approach
treats the DBMS as a “black box”, where the preference eval-
uation method is completely decoupled from the database,
and hence not concerned with internal database operations
(e.g., joins) necessary to retrieve the data. The on-top ap-
proach is convenient to implement, as it exists in a separate
code-based outside the DBMS, but has limited efficiency, as
it cannot interact with database internals to take advantage
of query processor optimizations. (2) The second approach
is the built-in approach, that tightly couples the preference
method with the DBMS engine. This approach is efficient,
as it pushes the preference evaluation inside the DBMS, but
impractical, as it would require a custom DBMS implemen-
tation for each preference method, requiring a non-trivial
amount of effort and maintenance.

This demonstration presents FlexPref [5], a centrist ap-
proach to preference implementation in a DBMS, combining
the convenience of the on-top approach with the efficiency
of the built-in approach. FlexPref is implemented inside
the query processor of PostgreSQL [6], tightly coupled with
existing DBMS operations (e.g., selection, joins), and is ex-
tensible to arbitrary preference methods. The major advan-
tages of FlexPref are:

1. FEase of implementation. Placing a preference function
in FlexPref (and hence within the DBMS), requires the
implementation of only three functions (outside Post-
greSQL) that define the semantics of the preference
method, that are then registered with FlexPref.

2. Small footprint. FlexPref requires orders of magnitude
less code to implement a preference method compared
to the built-in approach. For instance, a custom sky-
line implementation in PostreSQL [6] requires 2,000
lines of code, while in FlexPref requires only 300 lines.

3. Seamless DBMS integration. Since FlexPref is extensi-
ble, a preference method, once registered, is instantly
ready for use in arbitrary select-project-join queries.

4. Efficiency. FlexPref is tightly coupled with the
DBMS query processor, meaning a registered prefer-
ence method realizes efficient query processing com-
prable to the built-in implementation approach.

This demonstration showcases the registration of several
state-of-the-art preference functions in FlexPref, underneath
an actual location-based application built into Google Maps.

o e N

Query Processor

FlexPref

Skyline

MyPref
Function
Definitions

v

Figure 1: Flexpref
2. USING FLEXPREF

Using FlexPref is simple and straightforward. This section
provides an overview of preference method registration in
FlexPref, and the method’s use in a DBMS.

2.1 General Functions

We require the definition of two macros and three func-
tions in order to register a preference method with FlexPref.
The two required macros are:

e #define DefaultScore: Each object in FlexPref is as-
sociated with a score, internal to the underlying pref-
erence method. Defining a default score ensures that
each object is assigned a value.

e #define IsTransitive: Indicates whether the prefer-
ence method exhibits transitivity or not. Knowledge of
transitivity leads to better query processing efficiency.

The three general functions requiring implementation are:

e PairwiseCompare(Object P, Object Q): Given two data
objects P and Q, update the score of P and return 1 if
Q@ can never be a preferred object, —1 if P can never
be a preferred object, 0 otherwise.

e IsPreferredObject(Object P, PreferenceSet S): Given
a data object P and a set of preferred objects S, return
true if P is a preferred object and can be added to S,
false otherwise.

e AddPreferredToSet(Object P, PreferenceSet S): Given
a data object P and a preference set S, add P to S
and remove or rearrange objects from S, if necessary.

These functions break down preference evaluation into a set
of modular operations that need not be aware of query pro-
cessor specifics.

2.2 Preference Method Registration

Adding a preference method to FlexPref requires the im-
plementation of three functions outside the database engine
(details in Section 2.1). Once implemented, the preference
method is registered using a DefinePreference command:

DefinePreference [Name] WITH [File]

The name argument is the name of the preference method,
while the file argument specifies the file containing the func-
tion definitions. DefinePreference compiles the preference
code into our framework. This process is depicted in Fig-
ure 1 for a preference method “MyPref”.

2.3 Queries in FlexPref

Once a preference method is registered with FlexPref, it
can be used in database queries immediately. FlexPref re-
quires the extension of the SQL syntax in order to select the
appropriate preference methods and specify their objectives.
FlexPref adds a Preferring and Using clause to conventional
SQL in order to issue preference queries. A typical query in
FlexPref is:

Select [Select Clause]
Where [Where Clause]
Preferring [Preference Attributes]
Using [method] With [Parameter]
Objectives [Objective]

Here, the method (with objectives) specified in the Us-
ing clause is responsible for selecting the preference eval-
uation method to be applied over the attributes given in
the Preferring clause. As an example, consider the follow-
ing query for the well-known skyline [1] preference method
implemented in FlexPref.

Select * From Restaurant R
Preferring R.price d1 AND R.dist d2 AND R.rating d3
Using Skyline With Objectives MIN di, MIN d2, MAX d3;

This query will evaluate the skyline of restaurant data,
where the preference objectives require minimizing both
price and distance attributes, while maximizing rating. As
another example, consider the following abbreviated query
for the Top-k dominating [7] preference method.

Using Top-K-Domination With K=2
Objectives MIN di, MIN d2, MAX d3;

From [Tables]

Here, the Using clause specifies that: (1) K=2 answers are
required and (2) Preference is based on minimizing both
price and distance, while maximizing rating.

3. FLEXPREF FUNCTIONALITY

To provide efficient query processing support for the
registered preference methods, FlexPref provides extensi-
ble query operators, implemented inside the engine of the
DBMS. We note that these operators require implementa-
tion in the query processor only once. Once in place, these
operators use the general macro and function definitions to
evaluate the preference method from within the query pro-
cessor, requiring no further changes to the DBMS engine.
We now provide an overview of three core FlexPref extensi-
ble operators we have developed (details in [5]).

Selection. The FlexPref selection algorithm evaluates
the set of preferred objects from a single table. The main
idea is to compare tuples pairwise while incrementally build-
ing a preferred answer set. During execution, a data object
P may be found to be dominated (i.e., guaranteed never to
be a preferred answer). If the underlying preference method
is transitive, P is immediately discarded and not processed
further, thus leading to more efficient execution.

Join. The FlexPref join algorithm enables efficient pref-
erence evaluation for data that exists in multiple tables. The
main idea behind this join operation involves using the gen-
eral functions to prune tuples from the join input that are
guaranteed not to be in the final answer. Pruning enhances
join performance for two reasons: (a) the amount of data to
be joined from input tables is greatly reduced due to prun-
ing the input data, and (b) the amount of data processed
by the final preference evaluation after the join is reduced
based on the multiplying factor of the join.

Sorted list (index) access. Availability of sorted at-
tributes (e.g., indexes such as the B-+-tree), allow for effi-
cient preference evaluation. The idea is that complete pref-
erence answer generation can be guaranteed after reading
only a portion of the sorted data, thus reducing the I/O
overhead compared to query processing over unsorted or
non-indexed data. FlexPref exploits this idea by employ-
ing an algorithm capable of processing sorted attributes in
round-robin fashion, and stopping I/O once a stopping con-
dition, provided by the general functions, has been met.

S

[=@)Es
FlexPref Attr: r.dl, r.d2, r.d3, s.dl, s.d2, s.d3 B
FlexPref Method: bnl 6 dim localskyline:yes globalskyline:no outerglobalskyline:no
FlexPref Stats: passes=1 rows=
FlexPref Window: size=0k slots=0 policy=entropy
FlexPref Cmps: tuples=9439253 fields=25042618
FlexPref PrefInfo: prefmethod=0 k=-1 numWin=1
FlexPref WindowInfo: WinSize=0 Winslots=0
-> Hash Join (cost=280.00..35908.90 rows=2995340 width=32) (actual time=314.882..32
Hash Cond: (s.id = r.id)
-> FlexPref (cost=5977.98..6052.98 rows=53 width=16) (actual time=175.623..17
FlexPref Attr: s.dl, s.d2, s.d3
FlexPref Method: bnl 3 dim localskyline:yes globalskyline:no outerglobal
FlexPref Stats: passes=1 rows=
FlexPref Window: size=0k slots=0 policy=-entropy
FlexPref Cmps: tuples=259853 fields=649831
FlexPref PrefInfo: prefmethod=0 k=-1 numWin=10000
FlexPref WindowInfo: WinSize=0 WinSlots=0
-> Seq Scan on i3d30000j300 s (cost=0.00..463.00 rows=30000 width=16) (
rows=30000 loops=1)
-> Hash (cost=155.00..155.00 rows=10000 width=16) (actual time=139.221..139.2
-> FlexPref (cost=1590.60..1615.60 rows=42 width=16) (actual time=136.9
ps=1)
FlexPref Attr: r.dl, r.d2, r.d3
Flexref Method: bnl 3 dim localskyline:yes globalskyline:no outer
FlexPref Stats: passes=1 rows=
FlexPref Window: size=0k slots=0 policy=entropy
FlexPref Cmps: tuples=85180 fields=212758
FlexPref PrefInfo: prefmethod=0 k=-1 numWin=10000
FlexPref WindowInfo: WinSize=0 WinSlots=0
-> Seq Scan on i3d100003100 r (cost=0.00..155.00 rows=10000 width
1.911 rows=10000 loops=1) L
Total runtime: 3006.080 ms
(30 rows)

jltest=# I v

Figure 2: PostgreSQL backend with query plan

4. DEMO SCENARIO

Our demonstration scenario showcases the complete work-
flow for implementing and using a preference function within
FlexPref. We allow the demonstration attendee to ex-
perience this workflow for any one of five popular state-
of-the-art preference methods: top-k [4], skylines [1], k-
dominance [2], k-frequency [3], or top-k dominance [7]. The
showcase involves: (1) Preference registration, viewing pref-
erence method’s general function implementation and reg-
istration in FlexPref, (2) backend access, viewing the pref-
erence method’s use within our PostgreSQL prototype aug-
mented with FlexPref, and (3) an application scenario, view-
ing FlexPref in action under an application scenario devel-
oped for this demonstration: a preference-aware location-
based restaurant finder implemented with Google Maps.

Preference registration. We provide to the demo at-
tendee the general function implementation for any one of
five state-of-the-art preference functions (as outlined in Sec-
tion 2.1). We then demonstrate the ease of compilation and
registration of the preference function within our FlexPref
prototype (as outlined in Section 2.2). The demo attendee
is also welcome to create their own preference method, or
alter existing methods, and (re)compile it into our FlexPref
prototype.

Backend access. Once the preference method is regis-
tered with our FlexPref prototype, we then allow the demo
attendee to witness the newly-registered preference method
in action. We first explore the execution of FlexPref by
accessing PostgreSQL directly through a backend client, as
depicted in Figure 2. Attendees can: (a) Issue ad-hoc select-
project-join preference queries that follow our new FlexPref
SQL syntax outlined in Section 2.3. (b) Explore query plans
used to execute preference and context-aware queries. For
example, Figure 2 depicts the statistics for a query plan
using the FlexPref operator for a join-query between two
tables. (c¢) Enable or disable FlezPref optimization features
(e.g., join optimizations) to contrast performance speedups
between relatively naive query plans and more optimized
plans.

Application scenario. We also showcase the use of
FlexPref within a live application scenario developed for
this demonstration. Our application is a location-based
restaurant-finder that relies on our FlexPref prototype for
its underlying DBMS preference query processing. Figure 3

[CareDB Demo Application

€ C || %2 http//www-users.cs.umn.edu/-venkat/caredb/inclex. php > B &~
3]
" ” [map [satellite Hybrid
CareDB Demo Application = 3 g §
z o~ Windom
H onigtas z B Merara Par
‘Show Profile Welcome Justin (Sign out) |7 @ Z @ =
oo Qury (- Hasce
Nomneasi Cometery
SetCurent Locaion [(@) [Bren = o
% e @&
Query:) |
ELECT* From Restaurants, 3
Loousn v
Retuntop| 8 [+]results 3 s
Vae
Ouakyion

Executed Preference Query: “

i i T
[SELECT * From Restaurant R, Review RY Where Rd=RV.d =/ Minneapolis ;
PREFERRING R Price d1, RV.Rating d2, TravelFn(Usr Loc., O D W 23 Shepeses @
MSPRoad_Net, WSTraffic, R Location) d3 [40/ & / A
USING SKYLINE Lowest d1, Highest d2, Lowest d3) | i Wy Bancs:
g o) = Eatfe
T« @ o RSB
Copyrights © University of Minnesota, Twin Cities W Frankin Ave e e i
Gl ? o 3 jvilege A @
z Philps)
Bl o & n o
A i i ks

E]
3

wass
Lyn-Lakel
W

EB0 S e

€ Lok st 5 € Lake s)
2\ Longtelon,

%

a0

o eputt

fizme
amnst

s

e iy B SO ey
Bxjogl Lt MaltaB s Tee Atlss 11111 O Lise:

Figure 3: Client Demo Application

Hide Profile Welcome Justin (Sign out)
Attribute Preference Value Importance
Price (in §) | Minimize El
Rating (0-5) | Maximize [+] ¢ PRk
Travel Time [< e e R
i) Minimize [=] POOOK L

Execute using: | Top-k Domination E
All
Skyline

Manage Aftributes » op-k (Sum Scores
Top-k Domination
Kbominance |

Figure 4: Profile with Preference Method Choice

depicts the application, capable of running on both a web-
browser or a mobile device (e.g., Blackberry, iPhone). Users
give the application their preference objectives by defining a
preference profile for restaurant attributes using a web-based
setup screen, as depicted in Figures 4. This screen also al-
lows users to choose the preference evaluation method used
to answer their query. This choice is mapped to a drop-down
box (depicted in Figure 4), that mirrors the available prefer-
ence methods currently available in the underlying FlexPref
DBMS. The user then saves the profile and clicks a button
“query”, that submits a preference-enhanced SQL query to
the underlying FlexPref DBMS. Answers from the DBMS
are displayed on the web-based map. Naturally, as users
change the preference method in use, they will see different
answers returned by the DBMS due to the differing seman-
tics of the preference method.

5. REFERENCES

[1] S. Boérzsényi, D. Kossmann, and K. Stocker. The Skyline
Operator. In ICDE, 2001.

[2] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang.
Finding k-Dominant Skylines in High Dimensional Space. In
SIGMOD, 2006.

[3] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang.
On High Dimensional Skylines. In EDBT, 2006.

[4] S. Chaudhuri and L. Gravano. Evaluating Top-K Selection
Queries. In VLDB, 1999.

[5] J. J. Levandoski, M. F. Mokbel, and M. E. Khalefa. FlexPref: A
Framework for Extensible Preference Evaluation in Database
Systems. In ICDE, 2010.

[6] PostgreSQL: http://www.postgresql.org.

[7) M. L. Yiu and N. Mamoulis. Efficient Processing of Top-k
Dominating Queries on Multi-Dimensional Data. In VLDB,
2007.

