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Abstract 
We present results of network analyses of information 
diffusion on Twitter, via users’ ongoing social interactions 
as denoted by “@username” mentions. Incorporating 
survival analysis, we constructed a novel model to capture 
the three major properties of information diffusion: speed, 
scale, and range. On the whole, we find that some properties 
of the tweets themselves predict greater information 
propagation but that properties of the users, the rate with 
which a user is mentioned historically in particular, are 
equal or stronger predictors. Implications for end users and 
system designers are discussed. 

 Introduction   
The practice of microblogging, characterized by short 
status updates posted frequently to social media sites, has 
gained significant usage and attention in recent months. 
Twitter, with its sole purpose of sharing short statuses to a 
largely public audience, arguably is the best known 
example of microblogging. With significant recent growth 
and attention, Twitter may make microblogging on par 
with social networking and blogging as a form of social 
media. With this rise in usage and popular media attention, 
it is important to understand exactly how Twitter users are 
interacting with one another and how information 
propagates through Twitter. 

Large scale network analyses of Twitter have been 
relatively scarce. Java et al. (2007) examined the follower 
network and reported high degree correlation and 
reciprocity in the follower network and revealed there is 
great variety in users’ intentions and usages on Twitter. 
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Huberman, et al., (2009) examined tweeting behavior in 
relation to the following networks of Twitter users and 
what they refer to as the friend network. A friend is another 
user to which the user has directed two or more tweets 
(using the “@username” convention). Their results show 
that the number of tweets is more strongly related to the 
number of friends than the number of followers, suggesting 
that users’ actual interactions reflect a different network 
than the following relationships suggest. Thus the 
interaction network, rather than the follower network, is 
preferable for network analyses of Twitter. 

While studies of Twitter have been sparse, similar 
analyses are much more prevalent in the blog arena. Most 
relevant to the present work are network structure and 
information diffusion analyses. For example, links have 
been used to detect communities (Adamic & Glance, 2005; 
Tseng, et al., 2005), and a variety of factors such as 
geography (Liben-Nowell, et al., 2005), age and common 
interests (Kumar, et al., 2004), and existing friends 
(Backstrom, et al., 2006) have been correlated with link 
formation. In terms of information diffusion, the efforts 
include but are not limited to: identification of topics over 
time (Gabrilovich, et al., 2004; Havre, et al., 2000), 
tracking topic flows (Adar & Adamic, 2005; Adar, et al., 
2004; Leskovec, et al., 2009), and modeling the dynamics 
of adoption cascades (Gruhl, et al., 2004; Leskovec, et al.,  
2007, 2009). 

In summary, while network properties of Twitter have 
not been studied extensively, previous work including 
considerable work on blogging networks, suggests that the 
active interaction network is of higher value than the 
follower network, particularly with respect to analyses of 
information diffusion. We build on this by constructing 
interaction networks based on @username mentions to 
extract network structural properties and attributes of users  



and content that predict information propagation within 
these structures. 

Analysis 
Data and Methods 
Data. Our primary data source is one month of the Twitter 
“spritzer” feed, a sample of the public timeline, crawled 
daily through the Twitter API from July 8th 2009 to 
August 8th 2009. Our crawler augments these data with 
results of an additional query of the standard Twitter 
search for the string “http://”. Our dataset contains 
3,243,437 unique users and 22,241,221 posts. 

Method. We focused our analyses on mentioning, the 
practice of referring to another user in a tweet via the 
“@username” convention. In contrast to following, 
mentioning represents an active user interaction. In our 
definition, mentioning includes all uses of @ (e.g., retweet, 
reply). Given our focus on information diffusion, this 
inclusive definition captures most comprehensively the 
social links between users. We note here that retweeting 
has been shown to take different forms, such as “RT” and 
“via” (boyd, et al., 2010), but most if not all retweets still 
include “@username” and thus should be included in our 
analyses.  
Diffusion Network. To measure how topics propagate 
through network structures in Twitter we constructed a 
diffusion network based on @username mentioning, with a 
constraint of topical similarity in the tweet. That is, we 
build a link from A to B, if B mentions A in her tweet that 
contains topic C that A had talked about earlier (Figure 1). 
Given the lack of explicit threading in Twitter, this is the 
optimal approximation of the path of person A diffusing 
information about topic C. 

Figure 2 shows how we then built the diffusion network 
with timestamps. All posts that contain the topic keywords 
(e.g., “Iran election”) are labeled with timestamps and 
track the diffusion links as defined above. Blue gradient 

colored nodes (outlined) are counted into the network 
while other (yellow) nodes are those who just mentioned 
the topic but without linking to any ancestor node. 
Local dynamics: speed, scale, and range. We developed 
models for three dimensions of diffusion networks in 
Twitter (Figure 3): speed, whether and when the first 
diffusion instance will take place; scale, the number of 
affected instances at the first degree; and range, how far 
the diffusion chain can continue on in depth. 
Speed The most straightforward question when seeing a 
post about a particular topic, is how the followers would be 
influenced and retweet, reply, or otherwise mention the 
initial tweet in their own tweets about the same topic. This 
question involves two parts: whether one would mention at 
all and if so, when will this mention happen. Employing 
survival analysis, both questions can be addressed in a 
single model: we predict when a tweet containing a topic is 
likely to be mentioned by another tweet also containing the 
topic.  

We then use the Cox proportional hazards regression 
model (Cox & Oakes, 1984) to quantify the degree to 
which a number of features of both users and tweets 
themselves predict the speed of diffusion to the first degree 
offspring. For instance, aspects of each individual author, 
such as their activity level in tweeting and mentioning and 
being mentioned may also predict diffusion speed. In terms 
of characteristics of tweets, we examined whether the 
tweet contains a link, whether it itself is a mention, and 
what we call stage: whether the tweet comes at an earlier 
or later stage in the topic lifespan. To simplify the stage 
variable, we divided tweets based on their timestamp into 
two sets: before and after 10 days following our earliest 
observation of the topic. 

We ran regression analyses on these variables predicting 
whether and when a tweet produces its first offspring node 
over different topics. As an example topic see “Iran 
Election” in the third column of Table 1. We see that when 
the author is more active in posting (nPost) and has a 
higher rate of being mentioned (MentionedRate), the 

 
 

Figure 1: Topic-constrained 
diffusion link between two Users. 

Figure 2: Building a 
diffusion network. 

 
Figure 3: Three measures of local diffusion tree 

Topic Apollo Iran Election Google Voice Harry Potter Bing Chrome OS Swine Flu Ice Age 3 
nPost  1.0004**  1.0007***  1.0006***   
nMention  1.0006**  1.0006. 1.0013** 1.0004*  1.0178* 
nMentioned 1.0020***  0.9987*** 1.0027*** 1.0007*** 1.0001** 1.003***  
MentionedRate 1.3785*** 1.1479*** 2.4490*** 1.0447*** 1.1664*** 1.0875*** 1.091*** 5.1330*** 
isMention  1.2077**  2.2106***     
haveLink   2.5876*** 0.6944*** 1.5730*** 1.2895** 1.301**  
stage 0.1653*** 0.3372*** 2.2156** 0.3934*** 0.6893*** 0.6052*** 1.131** 3.1194* 

R2(max possible) 0.028(0.473) 0.067  (0.975) 0.059  (0.777) 0.009(0.245) 0.016(0.597) 0.01(0.738) 0.016(0.588) 0.028(0.192) 
Reporting exp(coef) with p-value. Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 1: Predicting whether & when a post will get mentioned by an offspring node about the same topic. Only significnt effects are shown. Values 
above 1.0 indicate a positive relationship between the predictor and speed of influence. Values below 1.0 indicate a negative relationship. 

 



present tweet will gain offspring in a shorter time. When 
the post is a mention per se (isMention), it has a higher 
chance to continue the diffusion. Stage (when the tweet is 
tweeted) also counts for a significant effect. For this topic, 
posts in an earlier stage (Jul 8-17) are more likely to 
produce an offspring in a shorter time. Finally, whether the 
tweet contains links does not affect the ability to generate 
offspring nodes for this topic. 

For almost all topics in Table 1, the author’s rate of 
being mentioned by other people (MentionedRate) is an 
important predictor for whether and how fast her tweet on 
this topic would be mentioned. The time when the tweet is 
posted (indicated as stage) is also a frequent predictor. For 
many cases, earlier posts can be more effective in 
producing offspring (in the table, when coefficient<1). 
However, there are also opposite cases, such as with the 
Google Voice and Ice Age 3 topics for which tweets later 
in the observation period generated offspring tweets more 
rapidly. These results suggest that a topic might have a 
different diffusion efficiency at different time stages of its 
life cycle. That is, when information is diffused through 
the network, the speed and efficiency would vary over time 
versus being linear over time. To understand how 
information diffusion efficiency varies over time would be 
an interesting area for future exploration. Similarly, the 
presence of link(s) in a tweet may increase the likelihood 
of producing offspring nodes, but the direction of the effect 
is not stable, as it is positive for most topics, but negative 
for the Harry Potter topic. This implies an interaction 
between topic properties and tweet properties, suggesting a 
role for additional text analysis in future work. 
Scale Next we turn to the question of scale: for each tweet, 
how many people mentioned the same topic as first degree 
child nodes in the diffusion network? Here each user is 
only counted once for their first post about a given topic. 
Because the majority of posts did not produce a child, we 
only predict based on tweets that had at least one child 
node. Further, we used the logarithm of those variables 
given significant skew from a normal distribution. 

Table 2 presents regression results on our sample 
trending topics. R2 of the regression is presented in the 
second to last row and the correlation coefficient between 
the predictor and log(nChild) is presented in each cell with 
significance codes. In general, these regressions yield 
much better prediction power than for the speed analysis. 
The activity level of the user and number of times she is 
mentioned are stable predictors and account for the 
majority of the variance. For example, the correlation 
coefficient between log(nChild) and log(Mentioned) is 
0.63 for the Iran Election topic. In addition, including links 
in tweets often generates more child nodes. 

 
Range As a final metric of local diffusion, we measure the 
range of influence as indicated by the number of hops in a 
diffusion chain. To do so, we trace a topic from a given 
start node to its second and third degree of offspring nodes, 
and so on. As shown in Figure 2, the length of the chain 
indicates how far the original node diffuses in depth. 

First we investigated general patterns of these diffusion 
chains. For most of these topics, more than half the 
ancestor nodes fail to produce offspring of the first degree, 
and less than 30% continued to the second degree. After 5 
hops away, for most topics, less than 5% of ancestor nodes 
still continue producing offspring. In addition, the various 
topics yielded significant differences in chain life (Survival 
Difference test, p<0.0001). Topics like “Iran Election” tend 
to have longer chain life than topics like “Apollo”.  

Similar to our analyses for speed and scale, we again 
examined aspects of users and tweets that may predict 
greater range of diffusion. Table 3 presents the predictors 
of the length of a topic chain within a diffusion network. 
Consistently, greater activity in posting and being 
mentioned are often predictors of longer diffusion hops 
across topics. Interestingly, we also see that a tweet being a 
mention itself, occurring in later stage, and containing link 
(except for Harry Porter) predicts longer chains.  

 

Topic Apollo Iran Election Google Voice Harry Potter Bing Chrome OS Swine Flu Michael Jackson 
Log(nPost) 0.1726** 0.1415*** 0.2024*** 0.0685. 0.2331*** 0.2444*** 0.1416** 0.1342** 
Log(nMention)  0.2516***  0.0812** 0.1781*** 0.1212***  0.0845. 
Log(nMentioned) 0.4565*** 0.6270*** 0.4001*** 0.2943*** 0.4467*** 0.5821*** 0.3789*** 0.3916*** 
MentionedRate 0.4071*** 0.0941*** 0.4701*** 0.1371*** 0.3862*** 0.4271*** 0.1835*** 0.3092*** 
isMention -0.1374*   0.0767**  -0.0620*   
haveLink  0.0654* 0.1837*** 0.1634*** 0.0920* 0.0576*  0.1128** 
stage   0.1511**   -0.0570*   
R2 0.3357 0.4192 0.3108 0.1567 0.251 0.4643 0.1966 0.219 
Reporting correlation coefficient. Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 2: Predicting number of child nodes one can produce. Only significnt effects are shown. 
Topic Apollo Iran Election Google Voice Harry Potter Bing Chrome OS Swine Flu Michael Jackson 
nPost 0.9999. 0.9986***  0.9970*** 0.9996*** 0.9998* 0.9992*** 0.9997* 
nMention  0.9967*** 1.0022* 1.0018***   1.0020**  
nMentioned   0.9945**  0.9991* 0.9952*** 0.9984* 0.9964*** 
MentionedRate 0.6919*** 0.7336***   0.8650*** 0.7303*** 0.8518*** 0.9585. 
isMention  0.7281*** 0.5780* 0.6859*** 0.5650*** 0.8618* 0.6630** 0.6205*** 
haveLink   0.5118*** 1.0765*** 0.8420*** 0.9052*** 0.6743*** 0.8897*** 
stage 0.9313* 0.6280*** 0.1902*** 0.5348*** 0.3860*** 0.3277*** 0.6519*** 0.3452*** 
R2(max possible) 0.043(1) 0.083(1) 0.168(0.993) 0.040(1) 0.115(1) 0.140(1) 0.055(1) 0.185 (1)  

Table 3: Predicting length of influence chain of ancestor nodes. Only significnt effects are shown. 

 



Discussion 
Our analyses investigated @username mentions in order to 
utilize the “hidden” network of actual user interactions in 
Twitter rather than the potentially very passive follower 
network. We constructed diffusion network by scoping it 
to specific topics to measure aspects of how the network 
impact information diffusion in Twitter. In particular, we 
focused on the properties of the network that predict the 
speed, scale, and range of information propagating through 
Twitter.  

First, for speed (how quickly will a tweet produce an 
offspring tweet), the amount a user is mentioned is a good 
predictor of producing offspring rapidly, although across 
our eight sample topics, the regression equations predict 
only a small amount of variance. Interestingly, in some 
cases, tweets appearing later in our observation of a topic 
yielded offspring more quickly. This suggests that system 
designers are wise to not simply assume that the earliest 
tweet about a topic is the most important, but instead 
should continue to watch the topic for tweets with the 
greatest amount of influence. 

In terms of scale (number of child nodes one can 
produce), again the amount a person is mentioned is the 
best predictor of producing more child nodes. In this case 
the correlation is quite strong, as high as .63 for the Iran 
Election topic. This analysis (see Table 2) revealed a few 
surprises in terms of variables not predicting the generation 
of greater numbers of child nodes. First, containing a link 
does tend to correlate positively with generating more 
children, but the correlations are not terribly strong. The 
same holds for whether the tweet is itself a mention. This 
suggests that looking exclusively at the properties of the 
tweet itself, while useful, is not necessarily the best 
strategy for predicting whether a tweet will generate 
offspring. Instead a combination of properties of the tweet 
and tweeter is suggested. 

Finally, for range (number of hops in the diffusion 
network), a few predictors stand out. As we have seen 
consistently, the mentioned rate of the tweeter is a 
significant predictor of tweets traveling longer distances in 
the network. As with speed, tweets that came later in the 
observation often were more influential, in this case 
traveling further in the network. Again this suggests that 
for uses like surfacing tweets for search results or for 
various other analysis purposes, not simply searching for 
the first or even the earlier tweets on a topic, will help 
uncover the most influential content. We do see evidence 
for the inclusion of links in tweets reaching further across 
the network, and thus suggest easy queries (e.g., tweets 
with “http://”) for end users and system designers looking 
for tweets that touch lots of users. 

Taken together, we see a clear theme that the mention 
rate of the person tweeting is a strong predictor of all 
aspects of information diffusion through social networks in 
Twitter. Other attributes of the tweets themselves, such as 
whether it includes a link or comes at the early or late 

stages of a topic also are important, but based on our 
analysis we suggest utilizing these in conjunction with 
properties of the user for any type of network ranking 
algorithm.  
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