
J. Li, “Embedded Audio Coding (EAC) With Implicit Auditory Masking”, ACM Multimedia
2002, Nice, France, Dec. 2002.

Copyright © 2002 by the Association for Computing Machinery, Inc. Permission to make
digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers, or to redis-
tribute to lists, requires prior specific permission and/or a fee. Request permissions from
Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Embedded Audio Coding (EAC) With Implicit Auditory Masking
Jin Li

Microsoft Research, One Microsoft Way, Bld. 113, Redmond, WA 98052.
Tel. + 1 (425) 703-8451 Email: jinl@microsoft.com

ABSTRACT

An embedded audio coder (EAC) is proposed with compression
performance rivals the best available non-scalable audio coder.
The key technology that empowers the EAC with high perform-
ance is the implicit auditory masking. Unlike the common prac-
tice, where an auditory masking threshold is derived from the
input audio signal, transmitted to the decoder and used to quantize
(modify) the transform coefficients; the EAC integrates the audi-
tory masking process into the embedded entropy coding. The
auditory masking threshold is derived from the encoded coeffi-
cients and used to change the order of coding. There is no need to
store or send the auditory masking threshold in the EAC. By
eliminating the overhead of the auditory mask, EAC greatly im-
proves the compression efficiency, especially at low bitrate. Ex-
tensive experimental results demonstrate that the EAC coder sub-
stantially outperforms existing scalable audio coders and audio
compression standards (MP3 and MPEG-4), and rivals the best
available commercial audio coder. Yet the EAC compressed bit-
stream is fully scalable, in term of the coding bitrate, number of
audio channels and audio sampling rate.
Keywords
Audio compression, scalable, JND threshold, implicit auditory
masking, entropy coding, sub-bitplane, bitstream assembler

1. INTRODUCTION
The availability of high performance audio codec brings digital

music into reality, and revolutionizes our audio experiences. The
most popular audio compression technology today is probably
MP3[4], which stands for layer III of the MPEG-1 audio com-
pression standard. MP3 device is quickly replacing cassette and
CD player as the choice for music playback; and swapping MP3
compressed songs over the internet has become a national hobby
for young college students. Developed in the early 1990s, MP3
does not perform very well in terms of the compression efficiency.
More advanced audio compression technologies have been pro-
posed later, such as the MPEG-4[5][11], Real™ and Windows
Media Audio (WMA™). The later two are commercial audio
coders developed by RealNetworks and Microsoft, respectively.

Most existing audio coders optimize only on a single target
compression ratio, striving to deliver the best perceptual audio
quality given the length of the bitstream, or deliver the shortest
length of the bitstream given a constraint on playback quality.
However, such goal is far from enough, especially considering the
unique characteristics of media (including audio) compression.
Unlike data compression, where all content must be exactly pre-

served during the compression, media compression is elastic and
tolerates distortion. It is always possible to compress the media a
little more or a little less, with corresponding larger or smaller
distortion. In fact, in many applications, it is difficult to foresee
the exact compression ratio required at the time the media is com-
pressed. The ability to quickly change the compression ratio af-
terwards has important applications, and led to better user experi-
ence in media storage and transmission. For example, if the com-
pression ratio on the stored media is adjustable, the compressed
media can be quickly tailored to meet the exact requirements of
the customer. The storage device can use the highest possible
compression ratio so long as all the compressed media fits in the
device, and thus waste no storage space. When more media needs
to be stored, the device can simply increase the compression ratio
of the existing media, free up the storage space and squeeze in
new content. The ability to quickly adjust the compression ratio is
also very useful in the media communication/streaming scenery,
where the server and the client may adjust the size of the com-
pressed media to match the instantaneous bandwidth and condi-
tion of the network, and thus reliably deliver the best possible
media quality over network.

Transcoding technologies have been developed to adjust the
compression ratio of standard compressed bitstream, such as
MP3. Comparing with decoding and then re-encoding the media,
transcoding achieves modest computation saving by skipping part
of the compression operations, mainly the inverse and forward
transform and motion estimation (for video transcoding). Almost
all existing transcoding techniques still need to perform the en-
tropy coding, therefore, the speed of the transcoding is not very
fast, usually at least 25% of that of media encoding.

The scalable/embedded media coders have attracted much at-
tention recently. Pioneered by Shapiro[12] in the work of the
embedded zerotree wavelet (EZW) image coding, embedded
coder has the attractive property that the high compression ratio
bitstream (called application bitstream) is embedded in the low
compression ratio bitstream (called master bitstream). The conver-
sion of compression ratio can thus be done very quickly by ex-
tracting the subset of the compressed bitstream that corresponds to
the application bitstream from the master bitstream. In the case of
embedded image compression, this operation can be further sim-
plified to truncate the existing bitstream. In the domain of image
compression, it has been shown[13][10][14] that embedded cod-
ing can not only achieve flexible bitstream adjustment, but also
obtain state-of-the-art compression performance and reasonable
computation complexity. In fact, the most recent image compres-
sion standard – the JPEG-2000[7] is an embedded image coder.
Inspired by the success in embedded image coding, a number of
embedded audio[11][22][23][24] and video[15] compression
algorithms have been developed. However, none achieves the
popularity and success of the embedded image coding. A primary
reason is that the existing scalable audio and video coders lag
quite a bit behind the state-of-the-art in compression performance.
There is thus a misconception that you have to pay for the scalable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM Multimedia ’2002, Dec.1-6, 2002, Nice, France.

functionality with compression performance, which renders the
scalable audio and video coder unattractive.

However, we believe that the misconception is not true. Just as
the embedded image coder does not take off until highly efficient
bitplane entropy coder is developed, highly efficient embedded
audio (and video) coder needs unique technologies that suit its
need for embedded coding. In this work, we have developed an
embedded audio coder (EAC) with performance exceeds or
matches that of the best available audio coders. The key technol-
ogy that empowers EAC with such high performance is the use of
the implicit auditory masking. Unlike all existing audio coders
and the existing embedded audio coding approaches, EAC does
not send the auditory masking thresholds to the decoder. Instead,
they are derived from already coded coefficients. Furthermore,
rather than quantizing (changing) the audio coefficients according
to the auditory masking thresholds, the masking thresholds con-
trol the order that the coefficients are encoded. The implicit audi-
tory masking approach has several advantages. By deriving the
auditory masking thresholds from the coded coefficients, the
overhead of sending the masking thresholds is eliminated. The
audio compression efficiency can thus be substantially improved,
especially at low bitrate. It is also feasible to adopt different psy-
choacoustic models at different stages (bitrate) of encoding, and
improve the perceptual quality of the compressed audio over a
wide range of bitrate. Moreover, the implicit auditory masking
approach produces no error sensitive header. The bitstream is thus
more robust to be transmitted over error prone channels, such as a
wireless channel.

The rest of the paper is organized as follows. The framework of
the EAC coder is outlined in Section 2. Two most important mod-
ules of the EAC, the sub-bitplane entropy coder with implicit
auditory masking and the bitstream assembler are examined in
Section 3 and 4. Experimental results are shown in Section 5. And
finally, we give a conclusion in Section 6.

2. FRAMEWORK OF THE EMBEDDED
AUDIO CODER (EAC)

MLT SECTION
SPLIT

BITSTR
ASSEMBLE

AUDIO

L+R

L-R

MLT

MUX

. . .

. . .

BITSTREAM
SECTION

SPLIT

ENTROPY
CODER

ENTROPY
CODER

ENTROPY
CODER

ENTROPY
CODER

ENTROPY
CODER

ENTROPY
CODER

. . .

. . .

. . .

. . .

. . .

MLT SECTION
SPLIT

BITSTR
ASSEMBLE

AUDIO

L+R

L-R

MLT

MUX

.

.

BITSTREAM
SECTION

SPLIT

ENTROPY
CODER

ENTROPY
CODER

ENTROPY
CODER

ENTROPY
CODER

ENTROPY
CODER

ENTROPY
CODER

.

.

.

.

.
Figure 1 Framework of the embedded audio coder

The embedded audio coder (EAC) is a fully scalable generic
waveform coder. There are three components of the EAC: an en-
coder that turns the input audio waveform into a compressed bit-
stream, a decoder that turns the compressed bitstream into a play-
back audio waveform, and a parser that extracts a subset of the
master compressed bitstream to form an application bitstream with
increased compression ratio, reduced sampling rate or reduced
number of audio channels. The framework of the EAC encoder
can be shown in Figure 1. The EAC decoder is simply the reverse.

The input audio waveform first goes through a multiplexer
(MUX). If the input audio is stereo, it is separated into L+R and
L-R components, where L and R represent the waveform of the

left and right audio channel, respectively. If the input audio is
mono, the MUX simply passes through the audio. The MUX op-
eration ensures that the compressed bitstream can be scaled by
audio channels, as the mono audio compressed bitstream can be
obtained from the compressed stereo master bitstream by simply
dropping the L-R components.

The waveform of each audio component is then transformed by
a modulated lapped transform (MLT)[16] with switching win-
dows. Assuming the input audio is sampled at 44.1kHz, the size
of the MLT window is adaptively adjusted between 2048 and 256
samples. The long window is used for homogeneous audio seg-
ments, while the short window is used for audio segments with
large energy fluctuation to reduce the effect of pre-echoing. After
the MLT transform, the coefficients are optionally split into a
number of sections. A sample split is shown in Table 1, where the
long and short windows are split into three sections of 0-0.25π,
0.25-0.50π and 0.50-1.00π. Such section split enables the sam-
pling rate of the reconstructed audio to be at 11.025, 22.05 and
44.1 kHz, respectively. In case the decoder does not have a
speaker with high frequency response, or it wants to save the
computation power, the section corresponding to the high fre-
quency coefficients can be dropped, while the remaining audio
coefficients are inversely transformed by a MLT with a half (drop-
ping section 3) or a quarter of the window size (dropping section
2 and 3). Using again our example, if the section 3 coefficients are
not used, the decoded coefficients in section 1 and 2 can be in-
versed transformed by a MLT of window size 1024 and 128 for
the long and short window, respectively; and result in a decoded
audio waveform sampled at 22.05kHz (11.025kHz bandwidth).
Such audio sampling rate reduction can be considered as passing
the audio waveform through a low pass filter that first transforms
the audio by MLT, throws away half the coefficients, and then
inversely transforms the coefficients with MLT at half window
size. The section split provides an effective means of sampling
rate reduction of the compressed audio.

Each section of the MLT transform coefficients is then entropy
encoded into an embedded bitstream, which can be truncated and
reassembled later. To improve the efficiency of the entropy coder,
we group the MLT coefficients of a certain number of consecutive
windows into a timeslot. In our experimental configuration, a
timeslot consists of 16 long MLT windows or 128 short windows,
though this number can be easily changed. A timeslot therefore
consists of 32,768 samples, which is about 0.74 second if the
input audio is sampled at 44.1kHz. The functionality of the en-
tropy coder is thus to convert the coefficients of a section of a
timeslot into an embedded bitstream.

Finally, a bitstream assemble module allocates the available
coding bits among the timeslots, channels, and sections, and pro-
duces the final compressed bitstream.

Among the EAC modules, the MUX and MLT modules are
conventional. The entropy coding module employs a unique tech-
nology termed the implicit auditory masking, which enables the
performance of the embedded audio coder to rival the state-of-the-
art generic audio coders. The bitstream assemble module ensures
that the EAC compressed bitstream can be quickly reshaped to
produce an application bitstream of different compression ratio,
number of audio channels and audio sampling rate. Our discus-
sion in the following is hence focused on the entropy coding
module and the bitstream assemble module.

Table 1 MLT coefficient split.
Window size Section 1

(0-0.25π)
Section 2
(0.25-0.50π)

Section 3
(0.50-1.00π)

2048 (long) 0-511 512-1027 1028-2047
256 (short) 0-63 64-127 128-255

3. SUB-BITPLANE ENTROPY CODER
WITH IMPLICIT AUDITORY MASKING

In this section, we discuss the motivation, framework and im-
plementation of the entropy coder with the implicit auditory
masking that enables the high performance of the embedded audio
coder (EAC). We first explain the human auditory system in Sec-
tion 3.1. The difference between the implicit and the conventional
auditory masking is elaborated in Section 3.2. The basic bitplane
entropy coder is discussed in Section 3.3. Implementation of the
implicit auditory masking on top of the bitplane entropy coder is
shown in Section 3.4. The speed up of the implicit auditory mask-
ing operation is explained in Section 3.5.

3.1 Background – Human auditory masking
Human ear does not respond equal to all frequency components.

The auditory system can be roughly divided into 26 critical bands,
each of which is a bandpass filter-bank with bandwidth in the
order of 50 to 100Hz for signal below 500Hz, and up to 5000Hz
for signal at high frequencies. Within each critical band, an audi-
tory masking threshold, which is also referred as the psychoacous-
tic masking threshold or the threshold of the just noticeable dis-
tortion (JND)[1], can be determined. Audio waveform with en-
ergy level below the threshold will not be audible.

The auditory JND threshold is highly correlated to the spectral
envelope of the signal. For different audio input waveforms, the
auditory JND threshold level can be completely different. This is
rather dissimilar to the JND threshold in the human visual system,
where the masking of weak signal by the nearby strong signal
occurs in a very short range, and the dominant visual sensitivity is
the same for a certain frequency regardless of the input.

Let the auditory JND threshold of a critical band k at time in-
stance i be THi,k. The JND threshold can be calculated as the
maximum of a quite threshold and a masking threshold. The quite
threshold TH_STk dictates the sensitivity of the auditory system
for critical band k without the presence of any audio signal. It can
be calculated through an equal loudness curve, such as the
Fletcher-Munson curve [2] shown in Figure 2. According to the
quite threshold, the sensitivity of the ear is nearly linear for a large
range (1-8kHz), and drops dramatically before 500Hz and after
10kHz .

In the presence of input audio signal, the auditory JND thresh-
old is largely shaped by masking, which states that a low-level
signal (the maskee) can be made inaudible by a simultaneously
occurring strong signal (the masker) as long as the masker and the
maskee are close enough to each other in time and frequency. The
most basic form of the auditory masking is the simultaneous intra-
band masking, where the maskee and the masker are at the same
time instance and within the same critical band. The intra-band
masking threshold TH_INTRAi,k is directly proportional to the
spectral envelope of the masker (its average energy) in the critical
band of the same time instance AVEi,k, and can be expressed as:
 TH_INTRAi,k (dB) = AVEi,k(dB) - Rfac, (1)
where Rfac is a constant offset value determined through psycho-
acoustic experiment. The masker also masks small signal in the

neighbor critical bands. The level of such inter-band masking
TH_INTERi,k can be formulated as:
 TH_INTERi,k= max (THi,k-1 – Rhigh, THi,k+1 – Rlow), (2)
where Rhigh and Rlow are the attenuation factor towards the high
and low-frequency critical band, respectively. The higher fre-
quency coefficients are more easily masked; thus the attenuation
Rhigh is smaller than Rlow. Combining the quite, intra- and inter-
band auditory masking, the auditory masking threshold created by
a strong audio signal identified as the “masker” can be illustrated
in Figure 2, where the auditory JND threshold is shown as the
dashed line. Any sound below the JND threshold, e.g., compres-
sion distortion, will not be audible by the human ears.

QUITE THRESHOLD

MASKER

INTER-BAND
MASKING

MASKED
SOUND

INTRA-BAND
MASKING

QUITE THRESHOLD

MASKER

INTER-BAND
MASKING

MASKED
SOUND

INTRA-BAND
MASKING

Figure 2 Auditory masking threshold.

Strong masker can also mask weak signal in the immediate pro-
ceeding or following time interval. The effect is called temporal
masking. The duration within which premasking applies is less
than one tenth of that of the postmasking, which is in the order of
50 to 200 ms. The temporal masking threshold TH_TIMEi,k can be
calculated as:
 TH_TIMEi,k= max(THi-1,k – Rpost, THi+1,k – Rpre), (3)
where Rpre and Rpost are the attenuation factor for the proceeding
and following time interval, respectively. A sample temporal
masking generated by a masker can be shown in Figure 3.

Figure 3 Temporal auditory masking

The combined auditory JND threshold is the maximum among
the quite threshold, the intra- and inter-band masking, and the
masking of the neighborhood time instance:
THi,k= max (TH_STk, TH_INTRAi,k, TH_INTERi,k, TH_TIMEi,k),
 (4)
Calculation of the JND threshold requires the iteration of (2)-(4).
Thus, if the input audio consists of several strong maskers, the

combined JND threshold will be the maximum of the masking
threshold generated by the individual masker.

3.2 Auditory masking – regular versus the
implicit approach

By using the auditory masking, the audio coder may devote
fewer bits to the coefficients that are less sensitive to the human
ear, and more bits to the auditory sensitive coefficients; and thus
improve the quality of the coded audio. Since the auditory JND
threshold is strongly dependent on the input signal, in all existing
psychoacoustic audio coders, the auditory masking operation is
applied in the following way. It is the encoder that calculates the
JND threshold based on the spectral envelope of the input audio
waveform, which is then encoded as a part of the compressed
bitstream and transmitted to the decoder. The encoder quantizes
the transform coefficients with a step size proportional to the JND
threshold. Therefore, the coefficients are quantized coarsely in the
critical bands with a larger JND threshold, and are quantized
finely in those with a smaller JND threshold. The approach can be
illustrated with Figure 4.

AUDIO
SIGNAL

CALCULATE
AUDITORY MASK

TRANSFORM QUANTIZATION ENTROPY
CODING

ENCODED AUDITORY MASK

CODING
BITSTREAM

AUDIO
SIGNAL

CALCULATE
AUDITORY MASK

TRANSFORM QUANTIZATION ENTROPY
CODING

ENCODED AUDITORY MASK

CODING
BITSTREAM

Figure 4 Auditory masking in a traditional coder.
Such approach may be fine for a non-scalable coder. However,

using the same framework for scalable audio coders, as practiced
by existing scalable audio coders such as [11][22][23][24], is not
efficient. First, sending the auditory JND threshold consumes a
non-trivial amount of bits, which can be as much as 10% of the
total coded bits. Since the auditory masking module is applied
before the entropy coding module, the JND threshold must be
transmitted with the same precision regardless of the compression
ratio. The JND threshold overhead thus eats significantly into the
bit budget, especially if the compressed bitstream is later reshaped
to a low bitrate. Second, as shown in Section 3.1, the JND thresh-
old is shaped by the energy distribution of the input audio, while
the same energy distribution is revealed through the bitplane cod-
ing process of the entropy coder. As a result, the information is
coded twice, which wastes the precious coding bits.

In the embedded audio coder (EAC), we integrate the auditory
masking module with the embedded entropy coding module. Once
integrated, the auditory masking can be done in an entirely new
way, with two unique features. First, we derive the auditory JND
threshold from the spectral envelope of the partially encoded coef-
ficients, rather than the original coefficients. Second, we use the
auditory JND threshold to determine the order that the audio coef-
ficients are encoded, rather than to change the coefficients (by
quantizing them). We call the approach implicit auditory masking,
because the auditory JND threshold is never transmitted to the
decoder.

AUDIO
SIGNAL TRANSFORM BITPLANE

CODING

CODING
ORDER

CODING
BITSTREAM

CALCULATE
AUDITORY MASKING

PARTIAL
COEFFICIENT

AUDIO
SIGNAL TRANSFORM BITPLANE

CODING

CODING
ORDER

CODING
BITSTREAM

CALCULATE
AUDITORY MASKING

PARTIAL
COEFFICIENT

Figure 5 Process of the implicit auditory masking.

The framework of the implicit auditory masking can be shown
in Figure 5. Compared to Figure 4, the auditory masking opera-

tion is now integrated into the loop of the entropy coding module,
and is performed as follows. We first set the initial auditory JND
threshold, e.g., using the quite threshold. A portion of the trans-
form coefficients, e.g., the top bitplanes, is then encoded. After-
wards, an updated auditory JND threshold is calculated based on
the spectral envelope of the partially coded transform coefficients.
Since the decoder may derive the same auditory JND threshold
from the same coded coefficients, the value of the auditory JND
threshold needs not to be sent to the decoder. Using this implicitly
calculated JND threshold, both the encoder and the decoder figure
out which portion of the transform coefficients is encoded next.
After the next portion of the coefficients has been encoded, the
auditory JND threshold is updated again, which is then used to
guide the coding order of the remaining portion of the coefficients.
The process iterates among the operation of sending a portion of
MLT coefficients, updating the JND threshold, and using the
updated JND threshold to determine the portions to be sent next.
It only stops when a certain end criterion has been met, e.g., all
transform coefficients have been encoded, or a desired coding
bitrate has reached, or a desired coding quality has reached.

By deriving the auditory masking threshold implicitly from the
partially coded coefficients, bits normally required for the audi-
tory JND threshold are saved. The saving can be especially large
at low bitrate, or when the coding bitstream is later truncated to a
lower bitrate. The implicit auditory masking may thus signifi-
cantly improve the compression efficiency, and enables the em-
bedded audio coder to gain an edge over the non scalable audio
coder. Moreover, in all existing audio coders, the auditory JND
threshold is carried as a header of the bitstream. The correspond-
ing rate-distortion (R-D) performance curve can be shown as the
dashed curve in Figure 6. At first, the coding bits are for the audi-
tory JND threshold. Since just decoding the JND threshold with-
out any coded coefficients provides no valuable information, the
R-D curve is at first flat, and then drops as the coding of the audi-
tory coefficients kicks in. In contrast, the R-D curve of the EAC
coder with implicit auditory masking can be shown as the dashed
dotted curve in Figure 6. Because the coding bits are used from
the start for coefficient coding, the R-D curve is smoother, and
drops right from the beginning. With no error sensitive header, the
EAC compressed bitstream is less susceptible to the transmission
error, and therefore offers better error protection in a noisy chan-
nel, such as in the wireless environment. The third advantage of
the implicit auditory masking results from the fact that instead of
coding the auditory insensitive coefficients coarsely, the EAC
encodes them in a later stage. By using the auditory masking to
govern the coding order, rather than the coding content, the qual-
ity of the compressed audio becomes less sensitive to the accuracy
of the auditory JND threshold, as slight deviation in the threshold
simply causes certain audio coefficients to be coded later. In Sec-
tion 3.5, this important observation enables the efficient imple-
mentation of the implicit auditory masking. D

ISTO
R

TIO
N

RATE

TRADITIONAL CODING

IMPLICIT AUDITORY
MASKING

D
ISTO

R
TIO

N

RATE

TRADITIONAL CODING

IMPLICIT AUDITORY
MASKING

Figure 6 Rate-distortion of the traditional coder (dashed curve) vs.

the EAC with implicit auditory masking (dashed doted curve).

There are two key operations in the implicit auditory masking:
determining the coding order and implicitly deriving the auditory
JND threshold. Each operation may be performed on a different
granularity level. For example, we can update the auditory JND
threshold right after we encode one more bit of one transform
coefficient; and then reorder the coefficient coding based on the
newly updated JND threshold. However, such frequent update of
the auditory JND threshold and coding order is computational
intensive, and may not gain much coding efficiency if the reorder-
ing shuffles two units with roughly the same perceptual distortion
improvement per coding bit spent. We thus group a number of
bits of a set of transform coefficients into an embedded coding
unit (ECU), which is the smallest unit in the reordering operation.
We also determine an update interval which is the instance that
the auditory JND threshold is recalculated. Because a slightly
outdated auditory JND threshold only leads to a slight non-
optimal coding order of the ECUs, its impact on the compression
performance is minimal. We may therefore choose to update the
auditory JND threshold infrequently, thereby save the computa-
tion complexity. The operation of the implicit auditory masking
can be concluded in Figure 7. First, the initial auditory JND
thresholds are calculated, e.g., by using the quite threshold. The
bits of the audio coefficients are then separated into a number of
ECUs. Using the initial threshold, the coding order of the ECU is
determined, and a set of high priority ECUs are encoded. When
the update interval is reached, the auditory JND threshold is re-
calculated by both the encoder and decode based on the coded
ECUs. The updated threshold is then used to determine the coding
order of the remaining ECUs. The process iterates until a certain
end condition is met.

SEPARATE BITS OF COEFFICIENTS
INTO EMBEDDED CODING UNITS (ECU)

DETERMINE THE CODING ORDER
OF THE ECU

ENCODE A NUMBER OF ECU

UPDATE THE AUDITORY
JND THRESHOLDS

INITIAL THRESHOLDS

SEPARATE BITS OF COEFFICIENTS
INTO EMBEDDED CODING UNITS (ECU)

DETERMINE THE CODING ORDER
OF THE ECU

ENCODE A NUMBER OF ECU

UPDATE THE AUDITORY
JND THRESHOLDS

INITIAL THRESHOLDS

Figure 7 Implicit auditory masking operation.

3.3 Bitplane entropy coder
SEC 3SEC 2SEC 1TIME

0
1
2
3
4
5
6
7
8

EMBEDDED BITSTREAM

SEC 3SEC 2SEC 1TIME

0
1
2
3
4
5
6
7
8

EMBEDDED BITSTREAM

Figure 8 Compression of a section into an embedded bitstream.

Before the discussion of a specific implementation of the im-
plicit auditory masking, we first describe the entropy coder used
in the EAC – the bitplane embedded entropy coder. The function-
ality of the entropy coding module can be illustrated in Figure 8.
As mentioned in Section 2, the input audio waveform is MLT
transformed. After the transform, a certain number of MLT win-
dows are grouped together to form a timeslot. The coefficients in
the timeslot are then optionally divided into sections for sampling
rate scalability. The job of the sub-bitplane entropy coding mod-
ule is thus to compress each section of the timeslot independently
into an embedded bitstream, which may be truncated at a later
stage.

Since the human auditory masking is based on critical band, we
further divide the MLT coefficients in each window into critical
bands. Let i index the time instance, j index the frequency compo-
nent, and k index the critical band. Let xi,j be a coefficient at time
instance i, frequency j, and si,k be a critical band k at time instance
i.

The embedded coder encodes the audio coefficient bit by bit.
Let each audio coefficient be represented in the binary form as:

[±bL-1 bL-2
…b0]

where bL-1 is the most significant bit (MSB), and b0 is the least
significant bit (LSB), ± is the sign of the coefficient. A group of
bits of the same significance from different coefficients forms a
bitplane. For example, bit bL-1 of all coefficients forms the most
significant (L-1) bitplane. The principle of the embedded coding
is to encode the coefficients bitplane by bitplane, first the most
significant bitplane, then the second most significant bitplane, and
so on. This way, if the output compressed bitstream is truncated,
at least part of each coefficient can be decoded.

0 1 0 1 1 0 10 1 +
1 0 0 1 0 1 0 -
0 0 1 0 1 0 1 +
0 0 0 1 1 1 0 +
0 0 0 0 1 0 0 -
0 0 1 0 0 1 0 -
0 0 0 0 1 0 0 +
0 0 0 0 0 0 1 -

SIGNb6 b5 b4 b3 b2 b1 b0

w0
w1
w2
w3
w4
w5
w6
w7

45
-74
21
14
-4

-18
4
-1

CRITICAL
BAND 1

CRITICAL
BAND 2

SIGNIFICANT
IDENTIFICATION

REFINEMENT

PREDICTED
INSIGNIFICANCE(PN)

PREDICTED
SIGNIFICANCE(PS)

REFINEMENT (REF)

0 1 0 1 1 0 10 1 +
1 0 0 1 0 1 0 -
0 0 1 0 1 0 1 +
0 0 0 1 1 1 0 +
0 0 0 0 1 0 0 -
0 0 1 0 0 1 0 -
0 0 0 0 1 0 0 +
0 0 0 0 0 0 1 -

SIGNb6 b5 b4 b3 b2 b1 b0

w0
w1
w2
w3
w4
w5
w6
w7

45
-74
21
14
-4

-18
4
-1

CRITICAL
BAND 1

CRITICAL
BAND 2

SIGNIFICANT
IDENTIFICATION

REFINEMENT

PREDICTED
INSIGNIFICANCE(PN)

PREDICTED
SIGNIFICANCE(PS)

REFINEMENT (REF)

Figure 9 Embedded coding.

All bits of the coefficients in a timeslot form a bit array. We
show a sample bit array in Figure 9. Since the coefficient in the
EAC is actually arranged in a 2D array indexed by the time in-
stance i and frequency j, the actual bit array is 3D. However, it is
difficult to draw a 3D bit array, therefore, we show a slice of the
bit array in 2D in Figure 9, which can be considered as a slice of
the 3D bit array at a certain time instance. Note that the sign of the
coefficient is also part of the bit array, as the ‘+’ and ‘-’ signs can
be represented by 0 and 1, respectively. The bits in the bit array
are statistically different. Let bM be a bit in a coefficient x which is
to be encoded. If all more significant bits in the same coefficient x
are ‘0’s, the coefficient x is said to be insignificant (because if the
bitstream is terminated right after bit bM has been coded, coeffi-
cient x will be reconstructed as zero), and the current bit bM is to
be encoded in the mode of significance identification. Otherwise,
the coefficient is said to be significant, and the bit bM is to be
encoded in the mode of refinement. We distinguish between sig-

nificance identification and refinement bits because the signifi-
cance identification bit has a very high probability of becoming
‘0’, and the refinement bit is usually equally distributed between
‘0’ and ‘1’. The sign of the coefficient only needs to be encoded
immediately after the coefficient turns significant, i.e., a first non-
zero bit in the coefficient is encoded. For the bit array in Figure 9,
the significance identification and the refinement bits are sepa-
rated by a solid bar. For a critical band si,k, we call it insignificant
if all the coefficients in the critical band are insignificant. It be-
comes significant when at least one coefficient is significant.

The significant identification bits, refinement bits and signs are
not statistically equal even within their own category. Statistical
analysis demonstrates that if a MLT coefficient xi,j is of large
magnitude, its time and frequency neighbor coefficient may be of
large magnitude as well. Moreover, its frequency harmonics (at
double and/or triple frequency) may be of large magnitude too. To
account for such statistical difference, we entropy encode the
significant identification bits, refinement bits and signs with con-
text, each of which is a number derived from the already coded
coefficients in the neighborhood of the current coefficient. Such
technique is called context adaptive entropy coding, and is fre-
quently used in modern image/audio/video coding systems.

We first describe the context for the refinement bits and signs
because they are simpler. The context of the refinement coding
bits depends on the significant statuses of the four immediate
neighbor coefficients, which for coefficient xi,j are the coefficients
with the same frequency but at the proceeding (xi-1,j) and follow-
ing (xi+1,j) time instance, and coefficients at the same time instance
but with a lower (xi,j-1) and higher (xi,j+1) frequency, as shown in
Figure 10. The refinement context is formed according to Table 2.
If one of the four neighbor coefficients is unreachable as it falls
out of the current timeslot or the current section, it is considered
insignificant.

Table 2 Context for the refinement bit.
Context Description
10 Current refinement bit is the first bit after significant

identification and there is at least one significant
coefficient in the immediate four neighbors

11 Current refinement bit is the first bit after significant
identification and there is no significant coefficient
in the immediate four neighbors

12 Current refinement bit is at least two bits away from
significant identification.

Table 3 Calculation of sign count.
Sign
count

Description

-1 Both coefficients are negative significant; or one is
negative significant, and the other is insignificant.

0 Both coefficients are insignificant; or one is positive
significant, and the other is negative significant.

1 Both coefficients are positive significant; or one is
positive significant, and the other is insignificant.

Table 4 Expected sign and context for sign coding.
h -1 -1 -1 0 0 0 1 1 1 Sign

count v -1 0 1 -1 0 1 -1 0 1
Expected sign - - + - + + - + +
Context 13 14 15 16 17 16 15 14 13

To determine the context for sign coding, we calculate a hori-
zontal sign count h and a vertical sign count v. We separate the
four neighbor coefficients into two pairs, a horizontal pair (xi,j-1
and xi,j+1) and a vertical pair (xi-1,j and xi+1,j). For each pair, the
sign count is calculated according to Table 3. The expected sign
and the context of sign coding can thus be further calculated ac-
cording to Table 4.

The context for the refinement and sign coding are designed
with reference to the context used in the JPEG 2000 standard [7],
as we felt that the design suits our need. However, the significant
identification context is specially tailored for audio coding. To
calculate the context of the significant identification bit, we not
only use the significant statuses of the four neighbor coefficients,
but use the significant statuses of the half harmonics xi,j/2 (shown
in Figure 10) and the MLT window size. The use of the half har-
monic frequency is due to the fact that most sound producing
instruments produce harmonics of the base tone. Therefore, there
is strong correlation among the coefficient and its harmonics. The
context used for the significant identification can be found in
Table 5.

TI
M

E
IN

ST
A

N
C

E
i

0

1

2

3

4

5

6

7

8

Xi,jXi,j-1

Xi-1,j

Xi+1,j

Xi,j/2

FREQUENCY j

Xi,j+1

TI
M

E
IN

ST
A

N
C

E
i

0

1

2

3

4

5

6

7

8

Xi,jXi,j-1

Xi-1,j

Xi+1,j

Xi,j/2

FREQUENCY j

Xi,j+1

Figure 10 Illustration of neighborhood coefficients.

Table 5 Context for significant identification (S: significant, N:

non-significant, *: arbitrary)
Context MLT win-

dow size
Significant status of coeffi-
cient

 xi,j-1 xi-1,j xi+1,j xi,j/2
0 2048 N N N N
1 2048 * S * *
2 2048 S N * *
3 2048 N N S *
4 2048 N N N S
5 256 N N N N
6 256 * S * *
7 256 S N * *
8 256 N N S *
9 256 N N N S

A total of 18 contexts are used for the embedded audio coeffi-
cient coding. Among them, there are 10 contexts for the signifi-
cance identification, 3 for refinement coding and 5 for sign coding.

3.4 Implicit auditory masking and the sub-
bitplane entropy coder

To apply the implicit auditory masking to the bitplane entropy
coder, we need to determine the size of the embedded coding unit

(ECU), how the ECUs are reordered, and the update interval of
the auditory JND threshold.

Since the human auditory system is based on the critical band,
the ECU is formed by bits of the coefficients within the same
critical band. We further divide bitplane in a critical band into 3
sub-bitplanes: the predicted significance (PS), the refinement
(REF), and the predicted insignificance (PN). The PS sub-bitplane
consists of bits of coefficients that are insignificant but has at least
one significant neighbor. The REF sub-bitplane consists of bits of
coefficients that are already significant, i.e., in the refinement
mode. The PN sub-bitplane consists of bits of coefficients that are
insignificant with no significant neighbors. The sub-bitplane de-
sign is motivated by the author’s previous work on image coding
[10] and the JPEG 2000 standard [7], which show that bits in
different sub-bitplanes contribute different average distortion
decrease per coding bits spent. For the sample bit-array in Figure
9, we show the sub-bitplane types with different shades for the
first three bitplanes of the bit array. The ECU of the EAC coder is
thus a sub-bitplane of bits of a critical band.

We mark the identity of the ECU by the critical band the ECU
resides in and an ID that identifies the sub-bitplane. The ID is a
fraction number; with the integer part be just the bitplane index,
and the fraction part be assigned according to the sub-bitplane
class. Currently, the PS, REF and PN sub-bitplanes are assigned
with fraction value 0.875, 0.125 and 0.0, respectively. As an ex-
ample, the ID of the PS sub-bitplane of bitplane 7 is 7.875. The
fraction value is designed with the consideration of the average
rate-distortion contribution of each sub-bitplane class. Within
each critical band, we always encode the ECUs according to the
descending order of its ID. For a critical band with a total of L
bitplanes, the first ECU to be encoded is the PN sub-bitplane of
bitplane L-1 (ID: L-1.0), because all coefficients are insignificant
at bitplane L-1. The next three sub-bitplanes to be encoded are the
PS (ID:L-1.125), REF (ID:L-1.875) and PN (ID:L-2.0) sub-
bitplanes of bitplane L-2. Subsequently, the sub-bitplanes of bit-
plane L-3 are to be encoded.

With the order of ECUs within a critical band already deter-
mined, the implicit auditory masking process only needs to deter-
mine the order of the ECUs among different critical bands. More
conveniently, this can be done by determining the critical bands
whose ECUs are next-in-line to be coded. We assign two impor-
tant properties to each critical band: an instantaneous JND thresh-
old and a progress indicator, both are updated during the embed-
ded coding process. The instantaneous JND thresholds are based
on the partial reconstructed coefficient value of already coded
ECUs, and the progress indicator records the ID of the next ECU
to be encoded. It is the gap between the progress indicator and the
instantaneous JND threshold that determines the coding order of
ECUs. The coding process of the sub-bitplane entropy coder with
implicit auditory masking can thus be described as follows:
Step 1. Initialization.

The maximum bitplane L of all coefficients is calculated. The
progress indicators of all critical bands are set to the PN sub-
bitplane of bitplane L-1 (with ID: L-1). The initial instantaneous
JND threshold of the critical band is set according to the quite
threshold. We also mark all critical bands as insignificant.
Step 2. Finding the critical bands whose ECUs are to be encoded
next.

For each critical band, we calculate a gap between its progress
indicator and the instantaneous JND threshold. Since the progress
indicator can be considered as a form of coding distortion meas-

urement; the gap is closely related to the level of the coding noise
over the auditory JND threshold, in other words the noise-mask-
ratio (NMR). The largest gap among all critical bands is defined
as the current gap. The value of the current gap can be negative,
which simply means that the coefficients with signal energy level
below the auditory JND threshold are encoded. Only the critical
bands with the gap value the same as the current gap are chosen to
be encoded in this iteration. Such process leads to the encoding of
the critical bands with the largest instantaneous NMR level. It can
be easily proven that the instantaneous JND threshold is mono-
tonically increasing and the progress indicator is monotonically
decreasing. Therefore, the current gap shrinks in every iteration.
Step 3. Critical band skipping

If a chosen critical band is insignificant (not a single coefficient
is significant), a status bit is encoded to indicate whether the criti-
cal band turns significant after the coding of the current bitplane.
This is an optional step. However, it speeds up the coding / de-
coding operation significantly, as large area of zero-bits can be
skipped with this step.
Step 4. Encoding the sub-bitplane of the critical band

We locate the sub-bitplane that is next-in-line to be coded for
each critical band. For each bit in the sub-bitplane, its context is
calculated according to section 3.3. The string of bit and context
pairs are then compressed by a modern context adaptive entropy
coder, such as the QM-coder used in the MPEG-4[5] or the adap-
tive Golomb coder developed in [9]. It is observed that the adap-
tive Golomb coder has about the same compression efficiency as
the QM-coder, with roughly the same complexity. The two en-
tropy coders are interchangeable in the current EAC.
Step 5. Moving the progress indicator.

After the sub-bitplane is encoded, the progress indicator moves
forward to the ID of the next sub-bitplane to be encoded.
Step 6. Updating the instantaneous JND threshold.

After all chosen critical bands have been encoded, the instanta-
neous JND thresholds of all critical bands are updated based upon
the already coded ECUs.
Step 7. Repeating steps 2-7.

The steps 2-7 are repeated until a certain end criterion is
reached, e.g., the desired coding bitrate/quality has been reached,
or all bits in all coefficients have been encoded.

3.5 Calculation of the instantaneous JND
threshold

Except step 6, all the above processing steps are either trivial in
complexity, or can be found in a regular sub-bitplane entropy
coder. The additional computation of the implicit auditory mask-
ing process is at the update of the instantaneous JND threshold by
both the encoder and the decoder. In the following, we describe
speed-up technologies that calculate the instantaneous JND
threshold quickly.

Since we need to calculate the gap between the progress indica-
tor and instantaneous JND threshold, both must be expressed in
the same unit. We choose to represent the JND threshold in bit-
planes, which is related to the dB representation through:
 TH(bitplane) = TH (dB)·log2(10)/20, (5)

Examining equations (1)-(4), we observe that the auditory JND
threshold consists of two parts, the quite threshold which is a
constant, and the masking threshold which is determined by the
coefficient energy of the current and neighbor critical bands.
Among the masking thresholds, it is the intra-band masking
threshold (1) that is directly related to the energy of the critical

band. The inter-band masking (2) and temporal masking threshold
(3) are then iteratively derived from the intra-band masking
threshold.

The instantaneous JND thresholds can thus be calculated as fol-
lows:
Step 1. Calculating the energy of each critical band

Since the auditory JND threshold needs to be synchronized be-
tween the encoder and the decoder, the energy of the partial re-
constructed coefficients is used instead of the energy of the real
coefficients. An accurate energy calculation should be performed
in the complex MLT domain. However, this requires additional
computation of inverse MLT transform and forward complex
MLT transform. We again observe that the auditory JND thresh-
old is used to reorder the coding in the EAC, therefore, the com-
pression performance is not so sensitive to the accuracy of the
JND threshold. Besides, the error between the real and the com-
plex MLT coefficients tends to average out in a critical band. We
therefore choose to use the energy of the MLT coefficients in the
real domain, which is simply the mean square value of the recon-
structed coefficients in a critical band.

To further speed up the calculation of the energy of the critical
band, we introduce an adjusted energy value Ei,k for each critical
band. The value of Ei,k is the total energy of the partial recon-
structed coefficients of the critical band si,k adjusted by the current
bitplane, i.e., divided by 2M, where M is the current coding bit-
plane. The energy of the critical band is related to the adjusted
energy value according to:
 AVEi,k = Ei,k ·4M /sizeof(si,k) (6)
where sizeof(si,k) is the number of coefficients in critical band si,k.

The advantage of using the adjusted energy value Ei,k is that it
can be calculated very quickly during the embedded coding proc-
ess. The value Ei,k is first initialized to zero. Then, during the cod-
ing process, whenever a coefficient turns significant in the PN and
PS sub-bitplane pass, the adjust energy Ei,k is incremented by 1,
because the partial reconstructed value of a newly significant co-
efficient is either +1 or -1 after adjusting by the current coding
bitplane. For the refinement bit coding, the adjust energy Ei,k does
not change if the refinement bit is ‘0’, and is incremented by a
value of 2·[bL-1bL-2…bM]-1 if the refinement bit bM is ‘1’. The
calculation of the adjusted energy is thus only an incremental
operation per significant bit ‘1’ coded, and one shift and two addi-
tion operations per refinement bit ‘1’ coded. The energy value Ei,k
is quadrupled (shifted by two bits) whenever an entire bitplane
has been encoded, which reduce the current bitplane M by 1.
Step 2. Calculating the intra-band masking threshold.
Combing (1), (5) and (6), and using bitplane to express the audi-
tory JND threshold, we have:
 [] kkiki CEMbitplaneINTRATH −+= ,4, log)(_ , (7)

()

20
10log)(log 2

,4 fackik RssizeofC +=
, (8)

where Ck is a constant of critical band k that can be pre-calculated.
Calculation of (7) thus needs only one logarithmic and two addi-
tion operations per critical band.
Step 3. Calculating the combined auditory JND threshold.

The combined auditory JND threshold can be calculated
through the iteration of equation (2)-(4), where large JND thresh-
old of high energy critical band propagates to the critical bands in
the frequency or time neighborhood.

Since the steps 2 and 3 only operate on a critical band basis,
and are performed once every threshold update interval, the ma-

jority of the computation lies in the step 1. And even in the step 1,
the added complexity is on average less than one arithmetic opera-
tion per coefficient, which is minor compared with the complexity
of the entropy coder. It can thus be concluded that the implicit
auditory masking operation can be performed very efficiently.

4. BITSTREAM ASSEMBLER AND PARS-
ING

After entropy coding, a bitstream assembler module distributes
the available coding bits among audio channels, sections and
timeslots, and puts together the EAC compressed bitstream. A
companion file is also generated to hold the structure information
of the EAC bitstream. The companion file is not necessary for the
decoding of the audio waveform, but is used to assist the reshape
of the EAC bitstream. The syntax of the EAC bitstream and the
companion file can be shown in Figure 11 and Figure 12, respec-
tively.

EA
C

H

EA
D

ER

TI
M

ES
LO

T
H

EA
D

ER

TI
M

ES
LO

T
H

EA
D

ER

EA
C

H

EA
D

ER

TI
M

ES
LO

T
H

EA
D

ER

TI
M

ES
LO

T
H

EA
D

ER

Figure 11 EAC Bitstream syntax.

C
O

M
PA

N
IO

N
H

EA
D

ER

TI
M

ES
LO

T
H

EA
D

ER

TI
M

ES
LO

T
H

EA
D

ER AUXILARY
INFORMATION

AUXILARY
INFORMATION

C
O

M
PA

N
IO

N
H

EA
D

ER

TI
M

ES
LO

T
H

EA
D

ER

TI
M

ES
LO

T
H

EA
D

ER AUXILARY
INFORMATION

AUXILARY
INFORMATION

Figure 12 Companion file syntax.

The compressed EAC bitstream is lead by a global header,
which identifies the EAC bitstream and stores the global codec
information such as the identity of the transform module, entropy
coding module, etc. The global header is then followed by the
compressed bitstreams of individual timeslot, which consists of
the embedded bitstream of each section of each audio channel of
that timeslot. The timeslot is again led by a header, which records
the length of the compressed bitstream in the timeslot, and the
length of the compressed bitstream of the individual section.

Current implementation of the EAC bitstream assembler adopts
a pretty simple bit allocation strategy. It assigns each timeslot with
the same number of bits B, which can be calculated as:
 B = R * T / S, (9)
where R is the desired coding bits per second, T is the number of
audio samples per timeslot, and S is the audio sampling rate. The
available bits in the timeslot are distributed among sections so that
each section is truncated at approximately the same gap between
the instantaneous JND threshold and the progress indicator. Since
we have established in Section 3.4 that the gap is related to the
noise-mask-ratio (NMR), each section is thus encoded to the ap-
proximate same NMR.

The companion file records auxiliary information of the time-
slot. In the case of EAC, it records for each section of time slot a
sequence of length-gap pair, where the gap is the difference be-
tween the instantaneous JND threshold and the progress indicator,
and the length is the size of the compressed bitstream corresponds
to the incremental gap value. Such information is used only for
the quickly scaling the bitstream, and is not used in the decoding
operation. We thus store the length-gap pair information in a com-
panion file that is separated from the compressed bitstream.

At the time of scalable parsing, an EAC parser can be invoked
to convert the EAC master bitstream and the associated compan-

ion file into an application bitstream of a different coding bitrate,
numbers of audio channels, and audio sampling rate. If the com-
pressed audio is converted from stereo to mono, the compressed
bitstream of the L-R channel is removed from the bitstream. If the
compressed audio is switched into a lower sampling rate, the
compressed bitstream of the sections corresponding to higher
sampling rate is dropped. If the compressed audio is scaled to a
lower bitrate, the EAC parser uses the length-gap pair of the com-
panion file to calculate a new gap value; and then truncates the
embedded bitstream of each section accordingly. Since the pars-
ing is achieved by simply stitch segments of compressed bitstream
together, it can be performed at a super fast speed.

5. EXPERIMENTAL RESULTS
To evaluate the performance of the embedded audio coder

(EAC), we compare it against a number of existing audio coders.
The benchmarks include two current audio coding standards -
MP3[17] and MPEG-4[18]; two commercial coders - the Micro-
soft Windows Media Audio (WMA™) codec[20] and the Real™
audio codec[19]; and a scalable audio coder - WINSAC[22] .
Please refer to the reference for the specific version of each codec
used in the experiment1,2. The test audio waveform is the MPEG-4
sound quality assessment materials (SQAM) downloaded from
[8]. The original audio is in stereo and sampled at 44.1kHz.

We test for both stereo and mono audio coding. The coding bi-
trates for stereo are 128, 96, 64, 48, 32 and 16 kbps (kilo bits per
second). The coding bitrates for mono are 64, 48, 32, 24, 16 and 8
kbps. We use the noise-mask-ratios (NMR)[3] to provide an ob-
jective quality evaluation of the compressed audio. The NMR is
calculated using a 4096 convoluted window and complex MLT
transform. It measures the level (in dB) of audio coding noise
above the auditory JND threshold. The lower the NMR, the less
that the coding noise is audible; and thus the better the quality of
the reconstructed sound.

Table 6. Average NMR of the comparison coders (Stereo)
Coder 128kbps 96kbps 64kbps 48kbps 32kbps 16kbps
EAC -2.72 -0.96 1.17 2.64 4.75 6.72
WMA 8.0 -2.94 -0.90 1.85 3.21 4.48 N/A
Real 8.5 N/A N/A 4.11 4.95 5.51 N/A
MP3 8.15 9.54 12.62 12.51 14.61 14.66

Table 7. Average NMR of the coders (Mono).
Coder 64kbps 48kbps 32kbps 24kbps 16kbps 8kbps
EAC -3.79 -1.59 1.43 3.29 5.20 6.86
WMA 8.0 N/A 0.25 2.94 N/A 5.94 8.87
Real 8.5 3.10 3.89 4.70 5.81 N/A N/A
MP3 8.04 9.17 12.75 12.83 15.25 14.72
MPEG-4 3.33 4.59 5.75 6.44 6.86 7.54
WINSAC 6.63 6.99 7.47 7.73 8.19 N/A

1 The author acknowledges that there are multiple versions and

parameter settings for each standard and commercial coder. The
test is conducted using the one setting with the best compres-
sion performance.

2 WINSAC does not support stereo audio coding. It should be
scalable. However, in the experiment, we just directly encode to
the target bitrate. At the time of the submission, the author is
unable to get the MPEG-4 reference coder to work in the stereo
and scalable BSAC mode. Therefore, only the result of the
MPEG-4 TwinVQ coder (non-scalable) mode is provided,
which should be better than that of the scalable BSAC mode.

We comment only on the mono audio coding result. Neverthe-
less, the stereo NMR result is available in Table 6. We have also
put all the encoded bitstream on the web [5]. The readers are en-
couraged to download the clips and make subjective judgment of
the quality of each audio coder by themselves.

All benchmark coders compress the audio waveform directly
into the bitstream of the target bitrate. However, for the EAC,
only one encoding operation is performed to convert the original
audio waveform into a master compressed bitstream of the highest
bitrate (128kbps for stereo and 64kbps for mono). The rest of the
bitstream is parsed from the master bitstream through the EAC
parser. Thus, we have already put the scalable functionality of the
EAC coder on test.

From Table 7, it is observed that the EAC coder outperforms
today’s standard by a large margin. It outperforms MP3 by
10.2dB and MPEG4 by 3.9dB. EAC also outperforms WMA by
1.5dB, Real by 4.5dB, and WINSAC by 6.5dB. Therefore, in term
of NMR, EAC performs superbly among all coders.

We leave the subjective judgment of the codec quality to the
readers, as all clips are available through the web [5]. We do ob-
serve that the subjective quality of the EAC coder is far superior
to MP3, MPEG-4 and WINSAC. Since the existing scalable audio
coders [11][22][23][24] (including WINSAC) claim at most
matches the quality of MP3, EAC is superior to all of them. The
subjective quality of EAC coded clip is as good as that of the Real
and WMA, the two commercial coders. We also observe that at
low bitrate, all the benchmark coders falls back to lower sampling
rate (narrow bandwidth), because there are not enough bits to
transmit all audio coefficients and the JND threshold. However,
since the EAC coder does not need to send the auditory JND
threshold, it has bits available for all coefficients and does not
need the trick. Therefore, the EAC compressed clip sounds more
rich (with more high frequency components) compared to the
benchmark coders at lower bitrate.

The compressed bitstream of EAC can be reshaped (scaled) to
an application bitstream of lower bitrate, number of audio chan-
nels and audio sampling rate. On the web[5], we have provided
samples that a 512kbps stereo master bitstream sampled at
44.1kHz is reshaped to the application bitstreams of low bitrate
(128, 96, 64, 48, 32, 16 and 8kbps), mono channel (with coding
bitrate 64, 48, 32, 24, 16, 8 and 4kbps), and lower sampling rate
(at 11.025kHz and 22.05kHz). As mentioned in Section 4, EAC
uses a companion file to record the bitstream structure informa-
tion. For the test clips, the companion file is at 2.3kbps for the
64kbps mono coding, and 4.4 kbps for the 128kbps stereo coding.
It is about 3.4-3.6% in size with regard to the compressed bit-
stream it represents, which is not a big overhead. Note that the
companion file is not required in the decoding operation. There-
fore, it does not need to be sent over the network, and can be de-
leted if further manipulation of the EAC bitstream is unnecessary.
The EAC parsing operation can be performed in lightning speed.
In fact, the parsing operation is too fast to be timed accurately on
the test data set. In a more extended data set of 2616 seconds
(more than 43 minutes) of compressed audio content, the EAC
parser is able the reshape the entire dataset within 2 seconds (on a
Pentium III 800Mhz computer). This is almost two magnitudes
faster than any existing audio encoder / transcoder without the
scalable coding technology.

Using the EAC, we have further developed a portable music
player that can holds virtually unlimited amount of compressed
music. A running screen shot of the player can be seen in Figure

13. During the operation, the user may choose to transfer com-
pressed audio from the host (PC) to the portable player, which has
a limited amount of memory. Whenever the memory of the player
is full and additional compressed music is still to be transferred to
the player, the EAC parser is used to scale the bitstream already in
the player and the bitstream to be transferred in. The player can
thus dynamically trade the length of music it can hold versus the
music compression ratio (playback quality). A streaming applica-
tion using the scalability of EAC is being developed by my col-
leagues Chou and Zabinsky[25]. Preliminary experiments also
demonstrate superior performance compared with the streaming
technologies today.

Figure 13 Screen shot of a portable music player with EAC coder.

6. CONCLUSIONS
The embedded audio coder (EAC) pushes the state-of-the-art of

the scalable audio compression. The compression performance of
the EAC exceeds the existing scalable audio coders, outperforms
the audio compression standards MP3 and MPEG-4, and rivals
the commercial audio coders- Real™ and Windows Media Au-
dio™. It achieves the compression performance of the best avail-
able non-scalable audio coder, yet retains full bitstream scalabil-
ity. The EAC compressed bitstream can be reshaped 1000x faster
than real-time in terms of compression ratio (coding bitrate),
number of audio channels and audio sampling rate. The key tech-
nology that enables efficient embedded audio coding in EAC is
the implicit auditory masking. By deriving the auditory JND
threshold from coded coefficients, and reordering the coding of
the coefficients according to the threshold, EAC eliminates a sub-
stantial fixed overhead, and thus greatly improve the compression
performance. As a highly efficient embedded audio coder, EAC
has widespread applications in audio storage and streaming.

7. REFERENCES
[1] N. S. Jayant, J. D. Johnson, and R. Safranek, “Signal com-

pression based on model of human perception”, Proc. of
IEEE, Vol. 81, No. 10, pp.1385-1422, 1993.

[2] B. Moore, An introduction to the psychology of hearing,
Academic Press, Feb. 1997.

[3] B. Beaton, et. al, “Objective perceptual measurement of au-
dio quality”, in Collected papers on digital audio bit-rate
reduction (N. Gilchrist and C. Crewin, eds.), pp.126-152,
Audio Engineering Society, 1996.

[4] P. Noll, “MPEG digital audio coding”, IEEE Signal Process-
ing Magazine, Sept. 2001, pp. 59-81.

[5] J. Li, “The embedded audio coder”,
http://research.microsoft.com/users/jinl/2001/eac/eac.htm.

[6] B. Grill, "MPEG-4 General Audio Coder," AES 17th Inter-
national Conf. on High-Quality Audio Coding, Firenze, Sep.
1999.

[7] JPEG 2000 Image Coding System, ISO/IEC IS 15444-1,
Dec. 2000.

[8] “Sound quality assessment material recordings for subjective
tests”,http://www.tnt.uni-
hannover.de/project/mpeg/audio/sqam/.

[9] H. S. Malvar, “Fast adaptive encoder for bi-level images”,
Proc. Of Data compression conferences, Snowbird, Utah,
Mar. 2001, pp. 253-262.

[10] J. Li and S. Lei, "An embedded still image coder with rate-
distortion optimization", IEEE Trans. On Image Processing,
Vol. 8, No. 7, pp. 913-924, Jul. 1999.

[11] S. R. Quackenbush, “Coding of natural audio in MPEG-4”,
1998 IEEE International Conference on Acoustics, Speech
and Signal Processing, Vol. 6, 1998, pp. 3797-3800.

[12] J.M Shapiro, “Embedded image coding using zerotrees of
wavelet coefficients”, IEEE Trans. On Signal Processing,
Vol.41 No. 12, pp. 3445-3462, Dec. 1993.

[13] A. Said, and W. A. Pearlman, “A new, fast, and efficient
image codec based on set partitioning in hierarchical trees”,
IEEE Trans. On Circuits and Systems for Video Technology,
Vol.6, No.3, pp. 243-250, June 1996.

[14] D. Taubman, “High performance scalable image compression
with EBCOT”, IEEE Trans. On Image Processing, Vol. 9,
No. 7, pp.1158-1170, July 2000.

[15] D. Taubman and A. Zakhor, “Multirate 3-D subband coding
of video”, IEEE Transactions on Image Processing, Vol. 3,
No. 5, pp. 572-588, Sept. 1994.

[16] H. S. Malvar, Signal Processing with Lapped Transforms,
Boston, MA: Artech House, 1992.

[17] “Fraunhofer IIS MPEG layer-3 encoder”,
http://www.iis.fhg.de/amm/techinf/layer3.

[18] “ISO/IEC 14496-5/FPDAM 1”, ISO/IEC
JTC1/SC29/WG11/N3309, Noordwijkerhout, Holland,
March 2000. (options: -m tf -c “-mp4ff -core_coder 10 -
mode 0”)

[19] “Real Producer® Basic 8.51”, http://www.realnetworks.com/
[20] “Windows Media Technologies 8.0”,

http://www.microsoft.com/windows/windowsmedia/
[21] B. Leslie, C. Dunn and M. Sandler, "Developments with a

Zero Tree Audio Codec," Proc. AES 17th International Conf.
‘High Quality Audio Coding’, Florence, pp. 251-257 (1999
Sep.).

[22] C. Dunn, “Winsac 1.0”,
http://www.scalatech.co.uk/download.htm

[23] A. Scheuble and Z. Xiong, “Scalable audio coding using the
nonuniform modulated complex lapped transform”, Proc.
2001 IEEE International Conference on Acoustics, Speech,
and Signal Processing, Volume. 5, pp. 3257-3260

[24] S. Ye, H. Ai, C. Kuo, “A progressive approach for perceptual
audio coding”, Proc. 2000 IEEE International Conference
on Multimedia and Expo, Volume. 2, pp. 815-818.

[25] P. Chou and Z. Miao, "Rate-distortion optimized streaming
of packetized media," submitted to IEEE Transactions on
Multimedia, February 2001.

