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ABSTRACT 

An embedded audio coder (EAC) is proposed with compression 
performance rivals the best available non-scalable audio coder. 
The key technology that empowers the EAC with high perform-
ance is the implicit auditory masking. Unlike the common prac-
tice, where an auditory masking threshold is derived from the 
input audio signal, transmitted to the decoder and used to quantize 
(modify) the transform coefficients; the EAC integrates the audi-
tory masking process into the embedded entropy coding. The 
auditory masking threshold is derived from the encoded coeffi-
cients and used to change the order of coding. There is no need to 
store or send the auditory masking threshold in the EAC. By 
eliminating the overhead of the auditory mask, EAC greatly im-
proves the compression efficiency, especially at low bitrate. Ex-
tensive experimental results demonstrate that the EAC coder sub-
stantially outperforms existing scalable audio coders and audio 
compression standards (MP3 and MPEG-4), and rivals the best 
available commercial audio coder. Yet the EAC compressed bit-
stream is fully scalable, in term of the coding bitrate, number of 
audio channels and audio sampling rate. 
Keywords 
Audio compression, scalable, JND threshold, implicit auditory 
masking, entropy coding, sub-bitplane, bitstream assembler 

1. INTRODUCTION 
The availability of high performance audio codec brings digital 

music into reality, and revolutionizes our audio experiences. The 
most popular audio compression technology today is probably 
MP3[4], which stands for layer III of the MPEG-1 audio com-
pression standard. MP3 device is quickly replacing cassette and 
CD player as the choice for music playback; and swapping MP3 
compressed songs over the internet has become a national hobby 
for young college students. Developed in the early 1990s, MP3 
does not perform very well in terms of the compression efficiency. 
More advanced audio compression technologies have been pro-
posed later, such as the MPEG-4[5][11], Real™ and Windows 
Media Audio (WMA™). The later two are commercial audio 
coders developed by RealNetworks and Microsoft, respectively.  

Most existing audio coders optimize only on a single target 
compression ratio, striving to deliver the best perceptual audio 
quality given the length of the bitstream, or deliver the shortest 
length of the bitstream given a constraint on playback quality. 
However, such goal is far from enough, especially considering the 
unique characteristics of media (including audio) compression. 
Unlike data compression, where all content must be exactly pre-

served during the compression, media compression is elastic and 
tolerates distortion. It is always possible to compress the media a 
little more or a little less, with corresponding larger or smaller 
distortion. In fact, in many applications, it is difficult to foresee 
the exact compression ratio required at the time the media is com-
pressed. The ability to quickly change the compression ratio af-
terwards has important applications, and led to better user experi-
ence in media storage and transmission. For example, if the com-
pression ratio on the stored media is adjustable, the compressed 
media can be quickly tailored to meet the exact requirements of 
the customer. The storage device can use the highest possible 
compression ratio so long as all the compressed media fits in the 
device, and thus waste no storage space. When more media needs 
to be stored, the device can simply increase the compression ratio 
of the existing media, free up the storage space and squeeze in 
new content. The ability to quickly adjust the compression ratio is 
also very useful in the media communication/streaming scenery, 
where the server and the client may adjust the size of the com-
pressed media to match the instantaneous bandwidth and condi-
tion of the network, and thus reliably deliver the best possible 
media quality over network. 

Transcoding technologies have been developed to adjust the 
compression ratio of standard compressed bitstream, such as 
MP3. Comparing with decoding and then re-encoding the media, 
transcoding achieves modest computation saving by skipping part 
of the compression operations, mainly the inverse and forward 
transform and motion estimation (for video transcoding). Almost 
all existing transcoding techniques still need to perform the en-
tropy coding, therefore, the speed of the transcoding is not very 
fast, usually at least 25% of that of media encoding. 

The scalable/embedded media coders have attracted much at-
tention recently. Pioneered by Shapiro[12] in the work of the 
embedded zerotree wavelet (EZW) image coding, embedded 
coder has the attractive property that the high compression ratio 
bitstream (called application bitstream) is embedded in the low 
compression ratio bitstream (called master bitstream). The conver-
sion of compression ratio can thus be done very quickly by ex-
tracting the subset of the compressed bitstream that corresponds to 
the application bitstream from the master bitstream. In the case of 
embedded image compression, this operation can be further sim-
plified to truncate the existing bitstream. In the domain of image 
compression, it has been shown[13][10][14] that embedded cod-
ing can not only achieve flexible bitstream adjustment, but also 
obtain state-of-the-art compression performance and reasonable 
computation complexity. In fact, the most recent image compres-
sion standard – the JPEG-2000[7] is an embedded image coder. 
Inspired by the success in embedded image coding, a number of 
embedded audio[11][22][23][24] and video[15] compression 
algorithms have been developed. However, none achieves the 
popularity and success of the embedded image coding. A primary 
reason is that the existing scalable audio and video coders lag 
quite a bit behind the state-of-the-art in compression performance. 
There is thus a misconception that you have to pay for the scalable 
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functionality with compression performance, which renders the 
scalable audio and video coder unattractive.   

However, we believe that the misconception is not true. Just as 
the embedded image coder does not take off until highly efficient 
bitplane entropy coder is developed, highly efficient embedded 
audio (and video) coder needs unique technologies that suit its 
need for embedded coding. In this work, we have developed an 
embedded audio coder (EAC) with performance exceeds or 
matches that of the best available audio coders. The key technol-
ogy that empowers EAC with such high performance is the use of 
the implicit auditory masking. Unlike all existing audio coders 
and the existing embedded audio coding approaches, EAC does 
not send the auditory masking thresholds to the decoder. Instead, 
they are derived from already coded coefficients. Furthermore, 
rather than quantizing (changing) the audio coefficients according 
to the auditory masking thresholds, the masking thresholds con-
trol the order that the coefficients are encoded. The implicit audi-
tory masking approach has several advantages. By deriving the 
auditory masking thresholds from the coded coefficients, the 
overhead of sending the masking thresholds is eliminated. The 
audio compression efficiency can thus be substantially improved, 
especially at low bitrate. It is also feasible to adopt different psy-
choacoustic models at different stages (bitrate) of encoding, and 
improve the perceptual quality of the compressed audio over a 
wide range of bitrate. Moreover, the implicit auditory masking 
approach produces no error sensitive header. The bitstream is thus 
more robust to be transmitted over error prone channels, such as a 
wireless channel.  

The rest of the paper is organized as follows. The framework of 
the EAC coder is outlined in Section 2. Two most important mod-
ules of the EAC, the sub-bitplane entropy coder with implicit 
auditory masking and the bitstream assembler are examined in 
Section 3 and 4. Experimental results are shown in Section 5. And 
finally, we give a conclusion in Section 6. 

2. FRAMEWORK OF THE EMBEDDED 
AUDIO CODER (EAC) 
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Figure 1 Framework of the embedded audio coder 

The embedded audio coder (EAC) is a fully scalable generic 
waveform coder. There are three components of the EAC: an en-
coder that turns the input audio waveform into a compressed bit-
stream, a decoder that turns the compressed bitstream into a play-
back audio waveform, and a parser that extracts a subset of the 
master compressed bitstream to form an application bitstream with 
increased compression ratio, reduced sampling rate or reduced 
number of audio channels. The framework of the EAC encoder 
can be shown in Figure 1. The EAC decoder is simply the reverse. 

The input audio waveform first goes through a multiplexer 
(MUX). If the input audio is stereo, it is separated into L+R and 
L-R components, where L and R represent the waveform of the 

left and right audio channel, respectively. If the input audio is 
mono, the MUX simply passes through the audio. The MUX op-
eration ensures that the compressed bitstream can be scaled by 
audio channels, as the mono audio compressed bitstream can be 
obtained from the compressed stereo master bitstream by simply 
dropping the L-R components.  

The waveform of each audio component is then transformed by 
a modulated lapped transform (MLT)[16] with switching win-
dows. Assuming the input audio is sampled at 44.1kHz, the size 
of the MLT window is adaptively adjusted between 2048 and 256 
samples. The long window is used for homogeneous audio seg-
ments, while the short window is used for audio segments with 
large energy fluctuation to reduce the effect of pre-echoing. After 
the MLT transform, the coefficients are optionally split into a 
number of sections. A sample split is shown in Table 1, where the 
long and short windows are split into three sections of 0-0.25π, 
0.25-0.50π and 0.50-1.00π. Such section split enables the sam-
pling rate of the reconstructed audio to be at 11.025, 22.05 and 
44.1 kHz, respectively. In case the decoder does not have a 
speaker with high frequency response, or it wants to save the 
computation power, the section corresponding to the high fre-
quency coefficients can be dropped, while the remaining audio 
coefficients are inversely transformed by a MLT with a half (drop-
ping section 3) or a quarter of the window size (dropping section 
2 and 3). Using again our example, if the section 3 coefficients are 
not used, the decoded coefficients in section 1 and 2 can be in-
versed transformed by a MLT of window size 1024 and 128 for 
the long and short window, respectively; and result in a decoded 
audio waveform sampled at 22.05kHz (11.025kHz bandwidth). 
Such audio sampling rate reduction can be considered as passing 
the audio waveform through a low pass filter that first transforms 
the audio by MLT, throws away half the coefficients, and then 
inversely transforms the coefficients with MLT at half window 
size. The section split provides an effective means of sampling 
rate reduction of the compressed audio.  

Each section of the MLT transform coefficients is then entropy 
encoded into an embedded bitstream, which can be truncated and 
reassembled later. To improve the efficiency of the entropy coder, 
we group the MLT coefficients of a certain number of consecutive 
windows into a timeslot. In our experimental configuration, a 
timeslot consists of 16 long MLT windows or 128 short windows, 
though this number can be easily changed. A timeslot therefore 
consists of 32,768 samples, which is about 0.74 second if the 
input audio is sampled at 44.1kHz. The functionality of the en-
tropy coder is thus to convert the coefficients of a section of a 
timeslot into an embedded bitstream.   

Finally, a bitstream assemble module allocates the available 
coding bits among the timeslots, channels, and sections, and pro-
duces the final compressed bitstream. 

Among the EAC modules, the MUX and MLT modules are 
conventional. The entropy coding module employs a unique tech-
nology termed the implicit auditory masking, which enables the 
performance of the embedded audio coder to rival the state-of-the-
art generic audio coders. The bitstream assemble module ensures 
that the EAC compressed bitstream can be quickly reshaped to 
produce an application bitstream of different compression ratio, 
number of audio channels and audio sampling rate. Our discus-
sion in the following is hence focused on the entropy coding 
module and the bitstream assemble module. 



Table 1 MLT coefficient split. 
Window size Section 1  

(0-0.25π) 
Section 2  
(0.25-0.50π) 

Section 3  
(0.50-1.00π) 

2048 (long) 0-511 512-1027 1028-2047 
256 (short) 0-63 64-127 128-255 

3. SUB-BITPLANE ENTROPY CODER 
WITH IMPLICIT AUDITORY MASKING 

In this section, we discuss the motivation, framework and im-
plementation of the entropy coder with the implicit auditory 
masking that enables the high performance of the embedded audio 
coder (EAC). We first explain the human auditory system in Sec-
tion 3.1. The difference between the implicit and the conventional 
auditory masking is elaborated in Section 3.2. The basic bitplane 
entropy coder is discussed in Section 3.3. Implementation of the 
implicit auditory masking on top of the bitplane entropy coder is 
shown in Section 3.4. The speed up of the implicit auditory mask-
ing operation is explained in Section 3.5. 

3.1 Background – Human auditory masking 
Human ear does not respond equal to all frequency components. 

The auditory system can be roughly divided into 26 critical bands, 
each of which is a bandpass filter-bank with bandwidth in the 
order of 50 to 100Hz for signal below 500Hz, and up to 5000Hz 
for signal at high frequencies. Within each critical band, an audi-
tory masking threshold, which is also referred as the psychoacous-
tic masking threshold or the threshold of the just noticeable dis-
tortion (JND)[1], can be determined. Audio waveform with en-
ergy level below the threshold will not be audible.  

The auditory JND threshold is highly correlated to the spectral 
envelope of the signal. For different audio input waveforms, the 
auditory JND threshold level can be completely different. This is 
rather dissimilar to the JND threshold in the human visual system, 
where the masking of weak signal by the nearby strong signal 
occurs in a very short range, and the dominant visual sensitivity is 
the same for a certain frequency regardless of the input.  

Let the auditory JND threshold of a critical band k at time in-
stance i be THi,k. The JND threshold can be calculated as the 
maximum of a quite threshold and a masking threshold. The quite 
threshold TH_STk dictates the sensitivity of the auditory system 
for critical band k without the presence of any audio signal. It can 
be calculated through an equal loudness curve, such as the 
Fletcher-Munson curve [2] shown in Figure 2. According to the 
quite threshold, the sensitivity of the ear is nearly linear for a large 
range (1-8kHz), and drops dramatically before 500Hz and after 
10kHz .  

In the presence of input audio signal, the auditory JND thresh-
old is largely shaped by masking, which states that a low-level 
signal (the maskee) can be made inaudible by a simultaneously 
occurring strong signal (the masker) as long as the masker and the 
maskee are close enough to each other in time and frequency. The 
most basic form of the auditory masking is the simultaneous intra-
band masking, where the maskee and the masker are at the same 
time instance and within the same critical band. The intra-band 
masking threshold TH_INTRAi,k is directly proportional to the 
spectral envelope of the masker (its average energy) in the critical 
band of the same time instance AVEi,k, and can be expressed as: 
 TH_INTRAi,k (dB) = AVEi,k(dB) - Rfac,   (1) 
where Rfac is a constant offset value determined through psycho-
acoustic experiment. The masker also masks small signal in the 

neighbor critical bands. The level of such inter-band masking 
TH_INTERi,k can be formulated as: 
 TH_INTERi,k= max (THi,k-1 – Rhigh, THi,k+1 – Rlow), (2) 
where Rhigh and Rlow are the attenuation factor towards the high 
and low-frequency critical band, respectively. The higher fre-
quency coefficients are more easily masked; thus the attenuation 
Rhigh is smaller than Rlow. Combining the quite, intra- and inter- 
band auditory masking, the auditory masking threshold created by 
a strong audio signal identified as the “masker” can be illustrated 
in Figure 2, where the auditory JND threshold is shown as the 
dashed line. Any sound below the JND threshold, e.g., compres-
sion distortion, will not be audible by the human ears.   
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Figure 2 Auditory masking threshold. 

Strong masker can also mask weak signal in the immediate pro-
ceeding or following time interval. The effect is called temporal 
masking. The duration within which premasking applies is less 
than one tenth of that of the postmasking, which is in the order of 
50 to 200 ms. The temporal masking threshold TH_TIMEi,k can be 
calculated as: 
 TH_TIMEi,k= max( THi-1,k – Rpost, THi+1,k – Rpre), (3) 
where Rpre and Rpost are the attenuation factor for the proceeding 
and following time interval, respectively. A sample temporal 
masking generated by a masker can be shown in Figure 3. 

 
Figure 3 Temporal auditory masking 

The combined auditory JND threshold is the maximum among 
the quite threshold, the intra- and inter-band masking, and the 
masking of the neighborhood time instance: 
THi,k= max (TH_STk, TH_INTRAi,k, TH_INTERi,k, TH_TIMEi,k),
 (4) 
Calculation of the JND threshold requires the iteration of (2)-(4). 
Thus, if the input audio consists of several strong maskers, the 



combined JND threshold will be the maximum of the masking 
threshold generated by the individual masker. 

3.2 Auditory masking – regular versus the 
implicit approach 

By using the auditory masking, the audio coder may devote 
fewer bits to the coefficients that are less sensitive to the human 
ear, and more bits to the auditory sensitive coefficients; and thus 
improve the quality of the coded audio. Since the auditory JND 
threshold is strongly dependent on the input signal, in all existing 
psychoacoustic audio coders, the auditory masking operation is 
applied in the following way. It is the encoder that calculates the 
JND threshold based on the spectral envelope of the input audio 
waveform, which is then encoded as a part of the compressed 
bitstream and transmitted to the decoder. The encoder quantizes 
the transform coefficients with a step size proportional to the JND 
threshold. Therefore, the coefficients are quantized coarsely in the 
critical bands with a larger JND threshold, and are quantized 
finely in those with a smaller JND threshold. The approach can be 
illustrated with Figure 4. 
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Figure 4 Auditory masking in a traditional coder.  
Such approach may be fine for a non-scalable coder. However, 

using the same framework for scalable audio coders, as practiced 
by existing scalable audio coders such as [11][22][23][24], is not 
efficient. First, sending the auditory JND threshold consumes a 
non-trivial amount of bits, which can be as much as 10% of the 
total coded bits. Since the auditory masking module is applied 
before the entropy coding module, the JND threshold must be 
transmitted with the same precision regardless of the compression 
ratio. The JND threshold overhead thus eats significantly into the 
bit budget, especially if the compressed bitstream is later reshaped 
to a low bitrate. Second, as shown in Section 3.1, the JND thresh-
old is shaped by the energy distribution of the input audio, while 
the same energy distribution is revealed through the bitplane cod-
ing process of the entropy coder. As a result, the information is 
coded twice, which wastes the precious coding bits.   

In the embedded audio coder (EAC), we integrate the auditory 
masking module with the embedded entropy coding module. Once 
integrated, the auditory masking can be done in an entirely new 
way, with two unique features. First, we derive the auditory JND 
threshold from the spectral envelope of the partially encoded coef-
ficients, rather than the original coefficients. Second, we use the 
auditory JND threshold to determine the order that the audio coef-
ficients are encoded, rather than to change the coefficients (by 
quantizing them). We call the approach implicit auditory masking, 
because the auditory JND threshold is never transmitted to the 
decoder. 
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Figure 5 Process of the implicit auditory masking. 

The framework of the implicit auditory masking can be shown 
in Figure 5. Compared to Figure 4, the auditory masking opera-

tion is now integrated into the loop of the entropy coding module, 
and is performed as follows. We first set the initial auditory JND 
threshold, e.g., using the quite threshold. A portion of the trans-
form coefficients, e.g., the top bitplanes, is then encoded. After-
wards, an updated auditory JND threshold is calculated based on 
the spectral envelope of the partially coded transform coefficients. 
Since the decoder may derive the same auditory JND threshold 
from the same coded coefficients, the value of the auditory JND 
threshold needs not to be sent to the decoder. Using this implicitly 
calculated JND threshold, both the encoder and the decoder figure 
out which portion of the transform coefficients is encoded next. 
After the next portion of the coefficients has been encoded, the 
auditory JND threshold is updated again, which is then used to 
guide the coding order of the remaining portion of the coefficients. 
The process iterates among the operation of sending a portion of 
MLT coefficients, updating the JND threshold, and using the 
updated JND threshold to determine the portions to be sent next. 
It only stops when a certain end criterion has been met, e.g., all 
transform coefficients have been encoded, or a desired coding 
bitrate has reached, or a desired coding quality has reached.  

By deriving the auditory masking threshold implicitly from the 
partially coded coefficients, bits normally required for the audi-
tory JND threshold are saved. The saving can be especially large 
at low bitrate, or when the coding bitstream is later truncated to a 
lower bitrate. The implicit auditory masking may thus signifi-
cantly improve the compression efficiency, and enables the em-
bedded audio coder to gain an edge over the non scalable audio 
coder. Moreover, in all existing audio coders, the auditory JND 
threshold is carried as a header of the bitstream. The correspond-
ing rate-distortion (R-D) performance curve can be shown as the 
dashed curve in Figure 6. At first, the coding bits are for the audi-
tory JND threshold. Since just decoding the JND threshold with-
out any coded coefficients provides no valuable information, the 
R-D curve is at first flat, and then drops as the coding of the audi-
tory coefficients kicks in. In contrast, the R-D curve of the EAC 
coder with implicit auditory masking can be shown as the dashed 
dotted curve in Figure 6. Because the coding bits are used from 
the start for coefficient coding, the R-D curve is smoother, and 
drops right from the beginning. With no error sensitive header, the 
EAC compressed bitstream is less susceptible to the transmission 
error, and therefore offers better error protection in a noisy chan-
nel, such as in the wireless environment. The third advantage of 
the implicit auditory masking results from the fact that instead of 
coding the auditory insensitive coefficients coarsely, the EAC 
encodes them in a later stage. By using the auditory masking to 
govern the coding order, rather than the coding content, the qual-
ity of the compressed audio becomes less sensitive to the accuracy 
of the auditory JND threshold, as slight deviation in the threshold 
simply causes certain audio coefficients to be coded later. In Sec-
tion 3.5, this important observation enables the efficient imple-
mentation of the implicit auditory masking. D
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Figure 6 Rate-distortion of the traditional coder (dashed curve) vs. 

the EAC with implicit auditory masking (dashed doted curve). 



There are two key operations in the implicit auditory masking: 
determining the coding order and implicitly deriving the auditory 
JND threshold. Each operation may be performed on a different 
granularity level. For example, we can update the auditory JND 
threshold right after we encode one more bit of one transform 
coefficient; and then reorder the coefficient coding based on the 
newly updated JND threshold. However, such frequent update of 
the auditory JND threshold and coding order is computational 
intensive, and may not gain much coding efficiency if the reorder-
ing shuffles two units with roughly the same perceptual distortion 
improvement per coding bit spent. We thus group a number of 
bits of a set of transform coefficients into an embedded coding 
unit (ECU), which is the smallest unit in the reordering operation. 
We also determine an update interval which is the instance that 
the auditory JND threshold is recalculated. Because a slightly 
outdated auditory JND threshold only leads to a slight non-
optimal coding order of the ECUs, its impact on the compression 
performance is minimal. We may therefore choose to update the 
auditory JND threshold infrequently, thereby save the computa-
tion complexity.  The operation of the implicit auditory masking 
can be concluded in Figure 7. First, the initial auditory JND 
thresholds are calculated, e.g., by using the quite threshold. The 
bits of the audio coefficients are then separated into a number of 
ECUs. Using the initial threshold, the coding order of the ECU is 
determined, and a set of high priority ECUs are encoded. When 
the update interval is reached, the auditory JND threshold is re-
calculated by both the encoder and decode based on the coded 
ECUs. The updated threshold is then used to determine the coding 
order of the remaining ECUs. The process iterates until a certain 
end condition is met.  
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Figure 7 Implicit auditory masking operation. 
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Figure 8 Compression of a section into an embedded bitstream. 

Before the discussion of a specific implementation of the im-
plicit auditory masking, we first describe the entropy coder used 
in the EAC – the bitplane embedded entropy coder. The function-
ality of the entropy coding module can be illustrated in Figure 8. 
As mentioned in Section 2, the input audio waveform is MLT 
transformed. After the transform, a certain number of MLT win-
dows are grouped together to form a timeslot. The coefficients in 
the timeslot are then optionally divided into sections for sampling 
rate scalability. The job of the sub-bitplane entropy coding mod-
ule is thus to compress each section of the timeslot independently 
into an embedded bitstream, which may be truncated at a later 
stage.   

Since the human auditory masking is based on critical band, we 
further divide the MLT coefficients in each window into critical 
bands. Let i index the time instance, j index the frequency compo-
nent, and k index the critical band. Let xi,j be a coefficient at time 
instance i, frequency j, and si,k be a critical band k at time instance 
i.  

The embedded coder encodes the audio coefficient bit by bit. 
Let each audio coefficient be represented in the binary form as: 

[ ±bL-1 bL-2
…b0 ] 

where bL-1 is the most significant bit (MSB), and b0 is the least 
significant bit (LSB), ± is the sign of the coefficient. A group of 
bits of the same significance from different coefficients forms a 
bitplane. For example, bit bL-1 of all coefficients forms the most 
significant (L-1) bitplane. The principle of the embedded coding 
is to encode the coefficients bitplane by bitplane, first the most 
significant bitplane, then the second most significant bitplane, and 
so on. This way, if the output compressed bitstream is truncated, 
at least part of each coefficient can be decoded.   
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Figure 9 Embedded coding. 

All bits of the coefficients in a timeslot form a bit array. We 
show a sample bit array in Figure 9. Since the coefficient in the 
EAC is actually arranged in a 2D array indexed by the time in-
stance i and frequency j, the actual bit array is 3D. However, it is 
difficult to draw a 3D bit array, therefore, we show a slice of the 
bit array in 2D in Figure 9, which can be considered as a slice of 
the 3D bit array at a certain time instance. Note that the sign of the 
coefficient is also part of the bit array, as the ‘+’ and ‘-’ signs can 
be represented by 0 and 1, respectively. The bits in the bit array 
are statistically different. Let bM be a bit in a coefficient x which is 
to be encoded. If all more significant bits in the same coefficient x 
are ‘0’s, the coefficient x is said to be insignificant (because if the 
bitstream is terminated right after bit bM has been coded, coeffi-
cient x will be reconstructed as zero), and the current bit bM is to 
be encoded in the mode of significance identification. Otherwise, 
the coefficient is said to be significant, and the bit bM is to be 
encoded in the mode of refinement. We distinguish between sig-



nificance identification and refinement bits because the signifi-
cance identification bit has a very high probability of becoming 
‘0’, and the refinement bit is usually equally distributed between 
‘0’ and ‘1’. The sign of the coefficient only needs to be encoded 
immediately after the coefficient turns significant, i.e., a first non-
zero bit in the coefficient is encoded. For the bit array in Figure 9, 
the significance identification and the refinement bits are sepa-
rated by a solid bar. For a critical band si,k, we call it insignificant 
if all the coefficients in the critical band are insignificant. It be-
comes significant when at least one coefficient is significant.  

The significant identification bits, refinement bits and signs are 
not statistically equal even within their own category. Statistical 
analysis demonstrates that if a MLT coefficient xi,j is of large 
magnitude, its time and frequency neighbor coefficient may be of 
large magnitude as well. Moreover, its frequency harmonics (at 
double and/or triple frequency) may be of large magnitude too. To 
account for such statistical difference, we entropy encode the 
significant identification bits, refinement bits and signs with con-
text, each of which is a number derived from the already coded 
coefficients in the neighborhood of the current coefficient. Such 
technique is called context adaptive entropy coding, and is fre-
quently used in modern image/audio/video coding systems.  

We first describe the context for the refinement bits and signs 
because they are simpler. The context of the refinement coding 
bits depends on the significant statuses of the four immediate 
neighbor coefficients, which for coefficient xi,j are the coefficients 
with the same frequency but at the proceeding (xi-1,j) and follow-
ing (xi+1,j) time instance, and coefficients at the same time instance 
but with a lower (xi,j-1) and higher (xi,j+1) frequency, as shown in 
Figure 10. The refinement context is formed according to Table 2. 
If one of the four neighbor coefficients is unreachable as it falls 
out of the current timeslot or the current section, it is considered 
insignificant.  

Table 2 Context for the refinement bit. 
Context Description 
10 Current refinement bit is the first bit after significant 

identification and there is at least one significant 
coefficient in the immediate four neighbors 

11 Current refinement bit is the first bit after significant 
identification and there is no significant coefficient 
in the immediate four neighbors 

12 Current refinement bit is at least two bits away from 
significant identification. 

Table 3 Calculation of sign count. 
Sign 
count  

Description 

-1 Both coefficients are negative significant; or one is 
negative significant, and the other is insignificant.  

0 Both coefficients are insignificant; or one is positive 
significant, and the other is negative significant.  

1 Both coefficients are positive significant; or one is 
positive significant, and the other is insignificant. 

Table 4 Expected sign and context for sign coding. 
h -1 -1 -1 0 0 0 1 1 1 Sign 

count v -1 0 1 -1 0 1 -1 0 1 
Expected sign - - + - + + - + + 
Context 13 14 15 16 17 16 15 14 13

 

To determine the context for sign coding, we calculate a hori-
zontal sign count h and a vertical sign count v. We separate the 
four neighbor coefficients into two pairs, a horizontal pair (xi,j-1 
and xi,j+1) and a vertical pair (xi-1,j and xi+1,j). For each pair, the 
sign count is calculated according to Table 3. The expected sign 
and the context of sign coding can thus be further calculated ac-
cording to Table 4.  

The context for the refinement and sign coding are designed 
with reference to the context used in the JPEG 2000 standard [7], 
as we felt that the design suits our need. However, the significant 
identification context is specially tailored for audio coding. To 
calculate the context of the significant identification bit, we not 
only use the significant statuses of the four neighbor coefficients, 
but use the significant statuses of the half harmonics xi,j/2 (shown 
in Figure 10) and the MLT window size. The use of the half har-
monic frequency is due to the fact that most sound producing 
instruments produce harmonics of the base tone. Therefore, there 
is strong correlation among the coefficient and its harmonics. The 
context used for the significant identification can be found in 
Table 5. 
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Figure 10 Illustration of neighborhood coefficients. 

 
Table 5 Context for significant identification (S: significant, N: 

non-significant, *: arbitrary) 
Context MLT win-

dow size 
Significant status of coeffi-
cient 

  xi,j-1 xi-1,j xi+1,j xi,j/2 
0 2048 N N N N 
1 2048 * S * * 
2 2048 S N * * 
3 2048 N N S * 
4 2048 N N N S 
5 256 N N N N 
6 256 * S * * 
7 256 S N * * 
8 256 N N S * 
9 256 N N N S 

A total of 18 contexts are used for the embedded audio coeffi-
cient coding. Among them, there are 10 contexts for the signifi-
cance identification, 3 for refinement coding and 5 for sign coding.  

3.4 Implicit auditory masking and the sub-
bitplane entropy coder 

To apply the implicit auditory masking to the bitplane entropy 
coder, we need to determine the size of the embedded coding unit 



(ECU), how the ECUs are reordered, and the update interval of 
the auditory JND threshold.  

Since the human auditory system is based on the critical band, 
the ECU is formed by bits of the coefficients within the same 
critical band. We further divide bitplane in a critical band into 3 
sub-bitplanes: the predicted significance (PS), the refinement 
(REF), and the predicted insignificance (PN). The PS sub-bitplane 
consists of bits of coefficients that are insignificant but has at least 
one significant neighbor. The REF sub-bitplane consists of bits of 
coefficients that are already significant, i.e., in the refinement 
mode. The PN sub-bitplane consists of bits of coefficients that are 
insignificant with no significant neighbors. The sub-bitplane de-
sign is motivated by the author’s previous work on image coding 
[10] and the JPEG 2000 standard [7], which show that bits in 
different sub-bitplanes contribute different average distortion 
decrease per coding bits spent. For the sample bit-array in Figure 
9, we show the sub-bitplane types with different shades for the 
first three bitplanes of the bit array. The ECU of the EAC coder is 
thus a sub-bitplane of bits of a critical band. 

We mark the identity of the ECU by the critical band the ECU 
resides in and an ID that identifies the sub-bitplane. The ID is a 
fraction number; with the integer part be just the bitplane index, 
and the fraction part be assigned according to the sub-bitplane 
class. Currently, the PS, REF and PN sub-bitplanes are assigned 
with fraction value 0.875, 0.125 and 0.0, respectively. As an ex-
ample, the ID of the PS sub-bitplane of bitplane 7 is 7.875. The 
fraction value is designed with the consideration of the average 
rate-distortion contribution of each sub-bitplane class. Within 
each critical band, we always encode the ECUs according to the 
descending order of its ID. For a critical band with a total of L 
bitplanes, the first ECU to be encoded is the PN sub-bitplane of 
bitplane L-1 (ID: L-1.0), because all coefficients are insignificant 
at bitplane L-1. The next three sub-bitplanes to be encoded are the 
PS (ID:L-1.125), REF (ID:L-1.875) and PN (ID:L-2.0) sub-
bitplanes of bitplane L-2. Subsequently, the sub-bitplanes of bit-
plane L-3 are to be encoded.  

With the order of ECUs within a critical band already deter-
mined, the implicit auditory masking process only needs to deter-
mine the order of the ECUs among different critical bands. More 
conveniently, this can be done by determining the critical bands 
whose ECUs are next-in-line to be coded. We assign two impor-
tant properties to each critical band: an instantaneous JND thresh-
old and a progress indicator, both are updated during the embed-
ded coding process. The instantaneous JND thresholds are based 
on the partial reconstructed coefficient value of already coded 
ECUs, and the progress indicator records the ID of the next ECU 
to be encoded. It is the gap between the progress indicator and the 
instantaneous JND threshold that determines the coding order of 
ECUs. The coding process of the sub-bitplane entropy coder with 
implicit auditory masking can thus be described as follows: 
Step 1. Initialization. 

The maximum bitplane L of all coefficients is calculated. The 
progress indicators of all critical bands are set to the PN sub-
bitplane of bitplane L-1 (with ID: L-1). The initial instantaneous 
JND threshold of the critical band is set according to the quite 
threshold. We also mark all critical bands as insignificant.  
Step 2. Finding the critical bands whose ECUs are to be encoded 
next.  

For each critical band, we calculate a gap between its progress 
indicator and the instantaneous JND threshold. Since the progress 
indicator can be considered as a form of coding distortion meas-

urement; the gap is closely related to the level of the coding noise 
over the auditory JND threshold, in other words the noise-mask-
ratio (NMR). The largest gap among all critical bands is defined 
as the current gap. The value of the current gap can be negative, 
which simply means that the coefficients with signal energy level 
below the auditory JND threshold are encoded. Only the critical 
bands with the gap value the same as the current gap are chosen to 
be encoded in this iteration. Such process leads to the encoding of 
the critical bands with the largest instantaneous NMR level. It can 
be easily proven that the instantaneous JND threshold is mono-
tonically increasing and the progress indicator is monotonically 
decreasing. Therefore, the current gap shrinks in every iteration.  
Step 3. Critical band skipping  

If a chosen critical band is insignificant (not a single coefficient 
is significant), a status bit is encoded to indicate whether the criti-
cal band turns significant after the coding of the current bitplane. 
This is an optional step. However, it speeds up the coding / de-
coding operation significantly, as large area of zero-bits can be 
skipped with this step.  
Step 4. Encoding the sub-bitplane of the critical band 

We locate the sub-bitplane that is next-in-line to be coded for 
each critical band. For each bit in the sub-bitplane, its context is 
calculated according to section 3.3. The string of bit and context 
pairs are then compressed by a modern context adaptive entropy 
coder, such as the QM-coder used in the MPEG-4[5] or the adap-
tive Golomb coder developed in [9]. It is observed that the adap-
tive Golomb coder has about the same compression efficiency as 
the QM-coder, with roughly the same complexity. The two en-
tropy coders are interchangeable in the current EAC. 
Step 5. Moving the progress indicator. 

After the sub-bitplane is encoded, the progress indicator moves 
forward to the ID of the next sub-bitplane to be encoded.  
Step 6. Updating the instantaneous JND threshold.  

After all chosen critical bands have been encoded, the instanta-
neous JND thresholds of all critical bands are updated based upon 
the already coded ECUs.  
Step 7. Repeating steps 2-7.  

The steps 2-7 are repeated until a certain end criterion is 
reached, e.g., the desired coding bitrate/quality has been reached, 
or all bits in all coefficients have been encoded.  

3.5 Calculation of the instantaneous JND 
threshold 

Except step 6, all the above processing steps are either trivial in 
complexity, or can be found in a regular sub-bitplane entropy 
coder. The additional computation of the implicit auditory mask-
ing process is at the update of the instantaneous JND threshold by 
both the encoder and the decoder. In the following, we describe 
speed-up technologies that calculate the instantaneous JND 
threshold quickly. 

Since we need to calculate the gap between the progress indica-
tor and instantaneous JND threshold, both must be expressed in 
the same unit. We choose to represent the JND threshold in bit-
planes, which is related to the dB representation through:  
 TH(bitplane) = TH (dB)·log2(10)/20, (5) 

Examining equations (1)-(4), we observe that the auditory JND 
threshold consists of two parts, the quite threshold which is a 
constant, and the masking threshold which is determined by the 
coefficient energy of the current and neighbor critical bands. 
Among the masking thresholds, it is the intra-band masking 
threshold (1) that is directly related to the energy of the critical 



band. The inter-band masking (2) and temporal masking threshold 
(3) are then iteratively derived from the intra-band masking 
threshold.  

The instantaneous JND thresholds can thus be calculated as fol-
lows: 
Step 1. Calculating the energy of each critical band 

Since the auditory JND threshold needs to be synchronized be-
tween the encoder and the decoder, the energy of the partial re-
constructed coefficients is used instead of the energy of the real 
coefficients. An accurate energy calculation should be performed 
in the complex MLT domain. However, this requires additional 
computation of inverse MLT transform and forward complex 
MLT transform. We again observe that the auditory JND thresh-
old is used to reorder the coding in the EAC, therefore, the com-
pression performance is not so sensitive to the accuracy of the 
JND threshold. Besides, the error between the real and the com-
plex MLT coefficients tends to average out in a critical band. We 
therefore choose to use the energy of the MLT coefficients in the 
real domain, which is simply the mean square value of the recon-
structed coefficients in a critical band.  

To further speed up the calculation of the energy of the critical 
band, we introduce an adjusted energy value Ei,k for each critical 
band. The value of Ei,k is the total energy of the partial recon-
structed coefficients of the critical band si,k adjusted by the current 
bitplane, i.e., divided by 2M, where M is the current coding bit-
plane. The energy of the critical band is related to the adjusted 
energy value according to: 
 AVEi,k =   Ei,k ·4M /sizeof(si,k) (6) 
where sizeof(si,k) is the number of coefficients in critical band si,k.  

The advantage of using the adjusted energy value Ei,k is that it 
can be calculated very quickly during the embedded coding proc-
ess. The value Ei,k is first initialized to zero. Then, during the cod-
ing process, whenever a coefficient turns significant in the PN and 
PS sub-bitplane pass, the adjust energy Ei,k is incremented by 1, 
because the partial reconstructed value of a newly significant co-
efficient is either +1 or -1 after adjusting by the current coding 
bitplane. For the refinement bit coding, the adjust energy Ei,k does 
not change if the refinement bit is ‘0’, and is incremented by a 
value of 2·[bL-1bL-2…bM]-1 if the refinement bit bM is ‘1’. The 
calculation of the adjusted energy is thus only an incremental 
operation per significant bit ‘1’ coded, and one shift and two addi-
tion operations per refinement bit ‘1’ coded. The energy value Ei,k 
is quadrupled (shifted by two bits) whenever an entire bitplane 
has been encoded, which reduce the current bitplane M by 1. 
Step 2. Calculating the intra-band masking threshold.  
Combing (1), (5) and (6), and using bitplane to express the audi-
tory JND threshold, we have: 
 [ ] kkiki CEMbitplaneINTRATH −+= ,4, log)(_ ,   (7) 
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where Ck is a constant of critical band k that can be pre-calculated. 
Calculation of (7) thus needs only one logarithmic and two addi-
tion operations per critical band. 
Step 3. Calculating the combined auditory JND threshold. 

The combined auditory JND threshold can be calculated 
through the iteration of equation (2)-(4), where large JND thresh-
old of high energy critical band propagates to the critical bands in 
the frequency or time neighborhood.  

Since the steps 2 and 3 only operate on a critical band basis, 
and are performed once every threshold update interval, the ma-

jority of the computation lies in the step 1. And even in the step 1, 
the added complexity is on average less than one arithmetic opera-
tion per coefficient, which is minor compared with the complexity 
of the entropy coder. It can thus be concluded that the implicit 
auditory masking operation can be performed very efficiently. 

4. BITSTREAM ASSEMBLER AND PARS-
ING 

After entropy coding, a bitstream assembler module distributes 
the available coding bits among audio channels, sections and 
timeslots, and puts together the EAC compressed bitstream. A 
companion file is also generated to hold the structure information 
of the EAC bitstream. The companion file is not necessary for the 
decoding of the audio waveform, but is used to assist the reshape 
of the EAC bitstream. The syntax of the EAC bitstream and the 
companion file can be shown in Figure 11 and Figure 12, respec-
tively.  
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Figure 11 EAC Bitstream syntax. 
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Figure 12 Companion file syntax. 

The compressed EAC bitstream is lead by a global header, 
which identifies the EAC bitstream and stores the global codec 
information such as the identity of the transform module, entropy 
coding module, etc. The global header is then followed by the 
compressed bitstreams of individual timeslot, which consists of 
the embedded bitstream of each section of each audio channel of 
that timeslot. The timeslot is again led by a header, which records 
the length of the compressed bitstream in the timeslot, and the 
length of the compressed bitstream of the individual section.  

Current implementation of the EAC bitstream assembler adopts 
a pretty simple bit allocation strategy. It assigns each timeslot with 
the same number of bits B, which can be calculated as: 
 B = R * T / S,  (9) 
where R is the desired coding bits per second, T is the number of 
audio samples per timeslot, and S is the audio sampling rate. The 
available bits in the timeslot are distributed among sections so that 
each section is truncated at approximately the same gap between 
the instantaneous JND threshold and the progress indicator. Since 
we have established in Section 3.4 that the gap is related to the 
noise-mask-ratio (NMR), each section is thus encoded to the ap-
proximate same NMR.  

The companion file records auxiliary information of the time-
slot. In the case of EAC, it records for each section of time slot a 
sequence of length-gap pair, where the gap is the difference be-
tween the instantaneous JND threshold and the progress indicator, 
and the length is the size of the compressed bitstream corresponds 
to the incremental gap value. Such information is used only for 
the quickly scaling the bitstream, and is not used in the decoding 
operation. We thus store the length-gap pair information in a com-
panion file that is separated from the compressed bitstream.  

At the time of scalable parsing, an EAC parser can be invoked 
to convert the EAC master bitstream and the associated compan-



ion file into an application bitstream of a different coding bitrate, 
numbers of audio channels, and audio sampling rate. If the com-
pressed audio is converted from stereo to mono, the compressed 
bitstream of the L-R channel is removed from the bitstream. If the 
compressed audio is switched into a lower sampling rate, the 
compressed bitstream of the sections corresponding to higher 
sampling rate is dropped. If the compressed audio is scaled to a 
lower bitrate, the EAC parser uses the length-gap pair of the com-
panion file to calculate a new gap value; and then truncates the 
embedded bitstream of each section accordingly. Since the pars-
ing is achieved by simply stitch segments of compressed bitstream 
together, it can be performed at a super fast speed.  

5. EXPERIMENTAL RESULTS 
To evaluate the performance of the embedded audio coder 

(EAC), we compare it against a number of existing audio coders. 
The benchmarks include two current audio coding standards - 
MP3[17] and MPEG-4[18]; two commercial coders - the Micro-
soft Windows Media Audio (WMA™) codec[20] and the Real™ 
audio codec[19]; and a scalable audio coder - WINSAC[22] . 
Please refer to the reference for the specific version of each codec 
used in the experiment1,2. The test audio waveform is the MPEG-4 
sound quality assessment materials (SQAM) downloaded from 
[8]. The original audio is in stereo and sampled at 44.1kHz.  

We test for both stereo and mono audio coding. The coding bi-
trates for stereo are 128, 96, 64, 48, 32 and 16 kbps (kilo bits per 
second). The coding bitrates for mono are 64, 48, 32, 24, 16 and 8 
kbps. We use the noise-mask-ratios (NMR)[3] to provide an ob-
jective quality evaluation of the compressed audio. The NMR is 
calculated using a 4096 convoluted window and complex MLT 
transform. It measures the level (in dB) of audio coding noise 
above the auditory JND threshold. The lower the NMR, the less 
that the coding noise is audible; and thus the better the quality of 
the reconstructed sound.  

Table 6. Average NMR of the comparison coders (Stereo) 
Coder 128kbps 96kbps 64kbps 48kbps 32kbps 16kbps
EAC -2.72 -0.96 1.17 2.64 4.75 6.72 
WMA 8.0 -2.94 -0.90 1.85 3.21 4.48 N/A 
Real 8.5 N/A N/A 4.11 4.95 5.51 N/A 
MP3 8.15 9.54 12.62 12.51 14.61 14.66 

Table 7. Average NMR of the coders (Mono). 
Coder 64kbps 48kbps 32kbps 24kbps 16kbps 8kbps 
EAC -3.79 -1.59 1.43 3.29 5.20 6.86 
WMA 8.0 N/A 0.25 2.94 N/A 5.94 8.87 
Real 8.5 3.10 3.89 4.70 5.81 N/A N/A 
MP3 8.04 9.17 12.75 12.83 15.25 14.72 
MPEG-4  3.33 4.59 5.75 6.44 6.86 7.54 
WINSAC 6.63 6.99 7.47 7.73 8.19 N/A 

                                                                 
1 The author acknowledges that there are multiple versions and 

parameter settings for each standard and commercial coder. The 
test is conducted using the one setting with the best compres-
sion performance. 

2 WINSAC does not support stereo audio coding. It should be 
scalable. However, in the experiment, we just directly encode to 
the target bitrate. At the time of the submission, the author is 
unable to get the MPEG-4 reference coder to work in the stereo 
and scalable BSAC mode. Therefore, only the result of the 
MPEG-4 TwinVQ coder (non-scalable) mode is provided, 
which should be better than that of the scalable BSAC mode.  

We comment only on the mono audio coding result. Neverthe-
less, the stereo NMR result is available in Table 6. We have also 
put all the encoded bitstream on the web [5]. The readers are en-
couraged to download the clips and make subjective judgment of 
the quality of each audio coder by themselves.  

All benchmark coders compress the audio waveform directly 
into the bitstream of the target bitrate. However, for the EAC, 
only one encoding operation is performed to convert the original 
audio waveform into a master compressed bitstream of the highest 
bitrate (128kbps for stereo and 64kbps for mono). The rest of the 
bitstream is parsed from the master bitstream through the EAC 
parser. Thus, we have already put the scalable functionality of the 
EAC coder on test.  

From Table 7, it is observed that the EAC coder outperforms 
today’s standard by a large margin. It outperforms MP3 by 
10.2dB and MPEG4 by 3.9dB. EAC also outperforms WMA by 
1.5dB, Real by 4.5dB, and WINSAC by 6.5dB. Therefore, in term 
of NMR, EAC performs superbly among all coders.  

We leave the subjective judgment of the codec quality to the 
readers, as all clips are available through the web [5]. We do ob-
serve that the subjective quality of the EAC coder is far superior 
to MP3, MPEG-4 and WINSAC. Since the existing scalable audio 
coders [11][22][23][24] (including WINSAC) claim at most 
matches the quality of MP3, EAC is superior to all of them. The 
subjective quality of EAC coded clip is as good as that of the Real 
and WMA, the two commercial coders. We also observe that at 
low bitrate, all the benchmark coders falls back to lower sampling 
rate (narrow bandwidth), because there are not enough bits to 
transmit all audio coefficients and the JND threshold. However, 
since the EAC coder does not need to send the auditory JND 
threshold, it has bits available for all coefficients and does not 
need the trick. Therefore, the EAC compressed clip sounds more 
rich (with more high frequency components) compared to the 
benchmark coders at lower bitrate.  

The compressed bitstream of EAC can be reshaped (scaled) to 
an application bitstream of lower bitrate, number of audio chan-
nels and audio sampling rate. On the web[5], we have provided 
samples that a 512kbps stereo master bitstream sampled at 
44.1kHz is reshaped to the application bitstreams of low bitrate 
(128, 96, 64, 48, 32, 16 and 8kbps), mono channel (with coding 
bitrate 64, 48, 32, 24, 16, 8 and 4kbps), and lower sampling rate 
(at 11.025kHz and 22.05kHz). As mentioned in Section 4, EAC 
uses a companion file to record the bitstream structure informa-
tion. For the test clips, the companion file is at 2.3kbps for the 
64kbps mono coding, and 4.4 kbps for the 128kbps stereo coding. 
It is about 3.4-3.6% in size with regard to the compressed bit-
stream it represents, which is not a big overhead. Note that the 
companion file is not required in the decoding operation. There-
fore, it does not need to be sent over the network, and can be de-
leted if further manipulation of the EAC bitstream is unnecessary. 
The EAC parsing operation can be performed in lightning speed. 
In fact, the parsing operation is too fast to be timed accurately on 
the test data set. In a more extended data set of 2616 seconds 
(more than 43 minutes) of compressed audio content, the EAC 
parser is able the reshape the entire dataset within 2 seconds (on a 
Pentium III 800Mhz computer). This is almost two magnitudes 
faster than any existing audio encoder / transcoder without the 
scalable coding technology.  

Using the EAC, we have further developed a portable music 
player that can holds virtually unlimited amount of compressed 
music. A running screen shot of the player can be seen in Figure 



13. During the operation, the user may choose to transfer com-
pressed audio from the host (PC) to the portable player, which has 
a limited amount of memory. Whenever the memory of the player 
is full and additional compressed music is still to be transferred to 
the player, the EAC parser is used to scale the bitstream already in 
the player and the bitstream to be transferred in. The player can 
thus dynamically trade the length of music it can hold versus the 
music compression ratio (playback quality). A streaming applica-
tion using the scalability of EAC is being developed by my col-
leagues Chou and Zabinsky[25]. Preliminary experiments also 
demonstrate superior performance compared with the streaming 
technologies today.  

 
Figure 13 Screen shot of a portable music player with EAC coder. 

6. CONCLUSIONS 
The embedded audio coder (EAC) pushes the state-of-the-art of 

the scalable audio compression. The compression performance of 
the EAC exceeds the existing scalable audio coders, outperforms 
the audio compression standards MP3 and MPEG-4, and rivals 
the commercial audio coders- Real™ and Windows Media Au-
dio™. It achieves the compression performance of the best avail-
able non-scalable audio coder, yet retains full bitstream scalabil-
ity. The EAC compressed bitstream can be reshaped 1000x faster 
than real-time in terms of compression ratio (coding bitrate), 
number of audio channels and audio sampling rate. The key tech-
nology that enables efficient embedded audio coding in EAC is 
the implicit auditory masking. By deriving the auditory JND 
threshold from coded coefficients, and reordering the coding of 
the coefficients according to the threshold, EAC eliminates a sub-
stantial fixed overhead, and thus greatly improve the compression 
performance. As a highly efficient embedded audio coder, EAC 
has widespread applications in audio storage and streaming.  
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