Appearance-from-Motion Recovering Spatially Varying Surface Reflectance under Unknown Lighting

Yue Dong Guojun Chen Pieter Peers Jiawan Zhang Xin Tong

Microsoft Research Tianjin University College of William & Mary Tianjin University Microsoft Research Tianjin University

Reflectance acquisition methods

Controlled lighting

[Holroyd et al. 2010; Gardner et al. 2003; Tunwattanapong et al. 2013; Aittala et al. 2013]

Measure the lighting

[Hertzmann and Seitz 2003; Romeiro et al. 2008; Ren et al. 2011]

Homogeneous Simple reflectance model Unknown lighting

[Romeiro and Zickler 2010; Nishino et al. 2001; Haber et al. 2009]

Appearance from motion

Input:

- Video of rotating object under unknown natural illumination
- Known geometry

Output:

• Spatially varying surface reflectance

Key challenge

• Ambiguity between BRDF and lighting

Key challenge

• Ambiguity between BRDF and lighting

Key priors

- Priors for lighting and BRDFs
 - Sparse sharp edges in environmental lighting
 - Isotropic microfacet BRDF

Sparse sharp edges in the environment lighting

Isotropic monotonic reflectance

Our solution

• Estimate BRDF and lighting iteratively

Estimate lighting

Technical details

Models and assumptions

- Geometry
 - Known geometry and registration to the frames
- Lighting
 - Environment lighting (distant)
 - Stored in "cross" parameterization
 - Static environment
- Surface reflectance
 - Isotropic microfacet BRDF
 - NDF is 1D tabulated function
 - Monotonically decreasing function
 - Estimated for every surface pixel

$$\rho(\omega_i, \omega_o) = \frac{\rho_d}{\pi} + \rho_s f_s(\omega_i, \omega_o)$$

Measurement

• Temporal reflectance trace

Estimate BRDF

- Estimate BRDF for each pixel independently
 - Fix lighting from previous iteration
 - NDF recovery
 - Albedo recovery

NDF recovery

- Robust discontinuity detection [Xu and Jia 2010]
 - High contrast discontinuity
 - Compare to neighbors

Lighting

Shock filter* [Osher and Rudin 1990]

Selected edge

Reference

Albedo recovery

Lighting recovery

$$\operatorname{argmin}_{L} \sum_{t} \sum_{x} w_{x} ||I - \rho \otimes L||^{2} + \lambda || \nabla L||^{0.8}$$

- Fixed BRDF
- Constraints
 - Consistent lighting for all the frames
 - Sparsely of the gradient
- Solver
 - Stochastic deconvolution [Gregson et. al. 2013]
- Robustness weighting

Estimate lighting

- Weight the measurement based on
 - Confident in recovered BRDF : prefer robust estimated BRDF
 - Bandpass behavior of the BRDF : prefer shinny BRDF
 - Specular signal-to-noise ratio : prefer stronger specular BRDF

Estimate lighting

- Weight the measurement based on
 - Confident in recovered BRDF : prefer robust estimated BRDF
 - Bandpass behavior of the BRDF : prefer shinny BRDF
 - Specular signal-to-noise ratio : prefer stronger specular BRDF

Implementation

- Geometry
 - Scanned with Artec 3D scanner
 - Registration with ICP and optical flow
- Radiance
 - Canon EOS 5D Mark II, single exposure RAW
 - LDR video, assume gamma 2.2
- Performance
 - Capture image 300 1200 frames
 - 8 10 hours on Xeon E5-2690

Results

- Robust and good results for different kinds of real world materials
- Validation on MERL/MIT BRDF dataset

Results

- Robust and good results for different kinds of real world materials
- Validation on MERL/MIT BRDF dataset

Robustness - lighting

• Blurred light

Consistency with different lighting

Robustness - geometry

Robustness - motion

Conclusion

- Appearance from Motion
 - Recovering spatially varying isotropic surface reflectance
 - Unknown natural illumination
 - Supports a wide variety of materials
 - Simplify the appearance acquisition process
- Future works
 - Self-occlusions and inter-reflections
 - Joint recovery shape and appearance

Acknowledgements

- Reviewers for constructive feedback
- Funding agency
 - Pieter Peers was partially funded by NSF grants IIS-1217765, IIS-1350323, and a gift from Google
- Dataset
 - HDR probe by P. Debevec
 - MERL/MIT dataset by W. Matusik et. al.
 - Mitsuba renderer

Robustness

- Lighting
 - Contrast of the discontinuity
 - Smoothed light source
- Rotation
 - Every pixel cross discontinuity 2-4 rotation
- Geometry
 - Normal error < 2 degree
 - Registration error < 15 degree

Initialization

- NDF : trace expansion
- Specular coefficient : trace intersection
- Diffuse albedo compensation : clamping the lighting

Key challenge

• Ambiguity between lighting / BRDF

