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Abstract

The understanding and characterization of various forms
of image degradation due to compression is important. The
most commonly used image distortion measure is the mean
squared error (MSE). However, the MSE value does not pro-
vide a good subjective performance measure, since it does
not take human perception into account. In this research, we
present a wavelet approach to measure the visual quality of
compressed images based on a psycho-visual human vision
model. Wavelet filter banks are shown to have a good space-
Sfrequency localization property and can be directly linked to
the Michelson contrast and compactly supported features.
Experiment results are provided to demonstrate the effec-
tiveness of the Haar wavelet.

1. Introduction

Various compression schemes have been used in lossy
image compression. Different schemes produce different
compression artifacts such as the blocking artifact for block-
based compression methods and the ringing artifact for
frequency-based compression methods. Although they be-
have quite differently in visual appearances, there were
very few subjective metrics proposed to measure the vi-
sual performances of compressed images. The most com-
monly used image distortion measure so far is still the mean
squared error (MSE) or peak signal-to-noise ratio (PSNR),
which computes the pixel-by-pixel difference between the
original and the compressed images. However, these objec-
tive metrics do not take human perception into account, and
do not provide a strong correlation of human visual experi-
ence.

To propose a subjective metric for image quality anal-
ysis, human perception models, which have been exten-
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sively studied in psychophysic science, should be incorpo-
rated. Some efforts have been made to incorporate Human
Visual System (HVS) models into subjective metrics in 70’s
and 80’s [5], [6], [9], [10]. However, the development of
HVS models back then was still immature such that these
models could not interpret human visual perception very
well. Recently, the development of new image compres-
sion techniques became much more faster then before, and
psychophysical researches also lead to more consistent HVS
models. New distortion measures were therefore proposed
with better prediction of image visual quality. Karunasek-
era [7] proposed a distortion measure for blocking artifacts,
while van den Branden Lambrecht [1], {13] proposed a more
complete model and extended its use to compressed video
sequences.

The major problem of the basic HVS model, however, is
that the bandpass filtering and localization property can not
be satisfied simultaneously according to the Principle of Un-
certainty. Although it was shown that Gabor filtering is the
optimal solution, it remained unspecified how the Gaussian
parameters of the Gabor envelope should be chosen. In ad-
dition, it is difficult to obtain the contrast from the frequency
responses of individual channels. In this paper, we proposed
a wavelet-based approach which solves both problems while
still possesses good space-frequency localization property.

This paper is organized as follows. In Section 2, we in-
troduce the use of Haar basis wavelets, our proposed HVS
model, and image quality assessment system. Experimen-
tal results are shown in Section 3, where the performance of
Haar wavelet filtering are shown in comparison with that of
the commonly-used Gabor filtering.

2. The HVS model and wavelet approach
2.1. The HVS model and compression artifacts
The visual mechanism of human beings concentrates on

light changes of the surroundings. Contrast, therefore, is
used to discriminate between objects or/and the background.



Numerous experiments have been conducted in the psy-
chophysics field based on human visual perception of con-
trasts. Experimental results showed that the human visual
system is comprised by many units, each of which is sen-
sitive to the contrast in certain frequency bands and func-
tioning independently. The overall visual perception of ob-
ject luminance or contrast is therefore the aggregate per-
formance of each cell’s frequency response [2]. Since hu-
man eyes cannot provide indefinite luminance resolution,
a contrast threshold can be found as a function of spatial
frequency via experiments, and the subthreshold (contrast
which is lower than the threshold) stimuli cannot be sensed
by human beings. (although they can be in certain circum-
stances, which will be described below as summation ef-
fect.) A typical contrast sensitivity (defined as the reciprocal
of the contrast) curve is shown in Fig. 1 {2], which shows
that the HVS has the highest luminance resolution around
3-10 cycles per degree.
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Figure 1. A typical contrast sensitivity curve
of human beings.

Based upon this frequency model, the visual perception
of compression artifacts is the direct result of band-limited
cell perception. When an image is compressed and then de-
compressed, the decompressed image will have a difference
frequency response than the original image as long as pixel
differences exist. Visual artifacts will be perceived as fre-
quency anomaly in certain regions of the decompressed im-
age. In detail, They can be interpreted with this localized
frequency model as follows:

o Overall smoothness
The overall smoothness, which appears as edge
smoothness or texture blur, is due to the loss of high
frequency components. It will be perceived as the
lack of high frequency components when compared
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with the original image.

Blocking effect

The blocking effect, which appears in all block-based
compression techniques, is due to the coarse quan-
tization of frequency components. It can be ob-
served as surface discontinuity (edge) at block bound-
aries. These edges are perceived as abnormal high
frequency components in the spectrum.

Ringing effect

The ringing artifact is observed as periodic pseudo-
edges around original edges. It is due to improper
truncation of high frequency components. 1t is natural
to interpret this artifact from the frequency viewpoint
since this artifact mainly happens in frequency-based
compression techniques.

Texture deviation

This artifact is observed as some granular noise or
“dirty window” in texture regions in model-based
or segmentation-based compression schemes. It is
due to the loss of fidelity of mid-frequency compo-
nents, and is perceived as frequency inconsistency in
textured regions. It can be expressed as frequency
anomaly in the compressed image.

The traditional objective error measures, such as PSNR,
mainly focused on the spatial domain pixel differences. The
perceptual error measures, however, put emphasis on fre-
quency domain mismatch between two images. Since the
HVS channels are also localized in the space domain, we ex-
pect objective error measures to provide prediction of the vi-
sual quality to a certain degree, but a good perceptual qual-
ity assessment system should take frequency domain factors
into account.

2.2. Wavelet approach

It is widely accepted that human spatial vision can be
represented by a localized multiple spatial frequency chan-
nel model descrbed above. Since the whole visual system
is synthesized by many spatial frequency selective chan-
nels each narrowly tuned to different locations of the vision
field and different frequency bands, we can decompose the
visual stimuli into their spatial frequency components and
examine individual channel responses. Unfortunately, the
commonly-used Fourier analysis is a global process, thus
the channel localization property cannot be justified. Al-
though it was shown that the Gabor function has the opti-
mal combination of frequency and spatial domain localiza-
tion, the Gaussian envelope parameters are left unspecified.
Furthermore, since Gabor filters are essentially still IIR fil-
ters, proper filter length has to be carefully chosen to keep
the localization property in both domains. In addition, the



HYVS is characterized by the contrast curve as a function of
spatial frequencies. The contrast C, defined by Michelson
as

C = Lma:t: - Lmin (1)
Lyar + Lin

where Ly,q. and L,,;, are the maximum and minimum lu-
minances of the waveform around the point of interest, can-
not be directly obtained by Gabor filtering process. Peli [11]
tried to redefine the contrast in Fourier domain by dividing
the lowpass band response by the highpass band response
using cosine filters, but neither can this new definition be di-
rected linked to (1).

On the other hand, wavelet approaches were also proved
to have good space-frequency localization property. The
passbands are well defined, and many compactly supported
wavelets are available. Another advantage of wavelet trans-
form is that the wavelet packets can successively decompose
the signal to any band of required bandwidth. Furthermore,
with Haar wavelet, whose base scale filter coefficients are
given as

1
1 — W n=—1,0,
holn] { 0  otherwise @
A =
\/51 n=0,
hi[n] = -7 n=-1, 3
0 otherwise,

it is easily seen that the contrast C' in (1) can be represented
by the responses at the ¢ scale or resolution:

Ci=~+ C))

where H; and L; are lowpass and highpass responses of the
it band, respectively. With (4), we can define the con-
trast of any pixel on the image at arbitrary resolution. Mul-
tiresolution analysis also facilitate us to deal with the retinal
inhomogeneity phenomenon, which describes that the fre-
quency resolution of foveal and peripheral vision decreases
with increasing eccentricity from the fixation point [3], [8].
Dyadic wavelet transforim provides a good tool for this anal-
ysis since it is shown that each visual frequency channel
has the bandwidth of about 1 octave [11], and the equal-
sensitivity neighborhood radius is inversely proportional to
the spatial frequency [3].

2.3. Proposed image quality assessment system

With this wavelet approach, the proposed HVS model is
described as follows:

1. Suprathreshold contrast perception model
Visible artifact occurs when the contrast of the artifact

exceeds the threshold. The suprathreshold perception
model consists of three stages [4]:

(2)

A linear spatial filter with gain G:

r = GC, where C is the actual contrast.

(b) A static, nonlinear transducer:

©

R =(r—mr)",

where rq is the response of the contrast thresh-
old.
A linear normalization stage:
R/
R p—

- )
Rn orm

where where Ry, ,rm, is Obtained by introducing
a normalized contrast into the first two stages
in order to consider the contrast constancy phe-
nomenon.

2. Subthreshold summation effect

Spatial summation theory showed that the neighbor-
ing frequency channels contribute to the total contrast
threshold. Therefore, a subthreshold contrast may
still produce a small response if there exist other exci-
tory stimuli in nearby frequency channels. This effect
can be modeled as a contrast threshold Cr decrease

[8]:

N 5
Cr = (Z [G:m'l“) ) (%)
i=0

where C7; is the contrast sensitivity threshold of the
ith closest channel, N is the total neighboring chan-
nels affecting the perception of the target channel,
Cro represents the original contrast without summa-
tion, and s;’s are the exponential component to be de-
termined.

3. Suprathreshold masking effect

Another inter-channel interaction is the masking ef-

fect.

The visibility of a signal at some frequency

could be impaired by the presence of other stim-
uli in nearby frequency channels. One well-known
example in compressed image artifact analysis is
that the blocking artifact of block-based compression
schemes, which consists high-frequency edge com-
ponents, is less visible in the mid-to-high-frequency-
based texture regions. This effect could be modeled
as a exponential function of both their frequency and
contrast differences [1], [12}]:
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Cr = Cro (Z
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where Cp;, Crg, N have the same definition as in the
subthreshold summation case, and C; and f; are the
actual contrast and spatial frequency of the i closest
channel, respectively. m1 ;’s and m; ;’s are the coef-
ficients to be determined.

The system block diagram is shown in Fig. 2. First the
contrast sensitivity threshold C'r¢ in each band is adjusted
by the summation and masking effects. The Cpy’s will be
then fed into the suprathreshold perception model to com-
pute the suprathreshold (i.e. perceived) contrast response.
The perceptual distortion D(, j) at pixel (2, j) of the im-
age is then the weighted sum of frequency mismatch in each
band &:

D(i,5) = Y aklRo(i, §) — Re(i, §)If O
k

where R, and R, are the perceived contrast responses of the
original and compressed images, respectively. The total dis-
tortion will be the sum of distortion of each pixel in the im-
age.

3. Experimental results

We applied the Haar wavelet family (Eqns. (2) (3)) to
contrast sensitivity experiments. The experiments were
conducted on a 17” Silicon Graphics GDM-17E11 color
graphic display. The luminance range of the display was ad-
justed from O to 80 cd/m? (candela/squared meter) using a
Photoresearch spectroradiometer. 256 discrete gray scales
were presented during the experiments. The curve of lumi-
nance versus gray scale is shown in Fig. 3. This curve was
used to compute the actual contrast in the experiments.

Both Gabor and Haar filtered patches were used in the ex-
periments. The spatial frequency range of the test patches
is from 0.069 to 19.2 cycles per degree, which covers vir-
tually the whole frequency band we would sense from dig-
ital images. The result is shown in Fig. 4, where the sen-
sitivity threshold, which is defined as the reciprocal of the
contrast threshold, was plotted as a function of spatial fre-
quency. The closeness of these two curves showed that Haar
filtering has comparable performance to that of Gabor filter-
ing, and demonstrated that the Haar filters can be used in the
quality assessment system.

Subsequent experiments to determine the system param-
eters are currently under way.

941

Original Compressed
Image Image
Wavelet Wavelet
Decomposition Decomposition
Summation Summation
Effect Effect
C
T,s v i C Ts
Masking Masking
Effect Effect
C T’m v v C T:m
Suprathreshold Suprathreshold
Computation Computation

R0L> ?@RC

Figure 2. Block Diagram of the proposed qual-
ity measurement system.

4, Conclusion

In this work, we proposed a wavelet approach to model
human visual system. This approach has the advantage of
space-frequency localization, ability to compute the contrast
at arbitrary resolution, and compactly supported filtering. It
was demonstrated in experiments that the performance of
Haar filtering is comparable to that of Gabor filtering. A in-
tegrated quality evaluation system was outlined and further
experiments will be conducted to show its quality evaluation
ability.
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Figure 3. Luminance versus gray level for the
display used in the experiments.
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Figure 4. Contrast sensitivity threshold of Ga-
bor and Haar filtering.
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