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Abstract. This paper describes a precise numerical abstract domain for
use in timing analysis. The numerical abstract domain is parameterized
by a linear abstract domain and is constructed by means of two domain
lifting operations. One domain lifting operation is based on the principle
of expression abstraction (which involves defining a set of expressions and
specifying their semantics using a collection of directed inference rules)
and has a more general applicability. It lifts any given abstract domain
to include reasoning about a given set of expressions whose semantics
is abstracted using a set of axioms. The other domain lifting operation
incorporates disjunctive reasoning into a given linear relational abstract
domain via introduction of max expressions. We present experimental
results demonstrating the potential of the new numerical abstract do-
main to discover a wide variety of timing bounds (including polynomial,
disjunctive, logarithmic, exponential, etc.) for small C programs.

1 Introduction

The oldest trick for proving termination of loops has been that of finding a rank-
ing function [25]. A ranking function for a loop is a function (over loop variables)
whose value decreases in each loop iteration and is bounded below by some finite
quantity. Earlier work on proving termination of loops focused on synthesizing
linear ranking functions [11, 22]. However, not all programs have linear ranking
functions (e.g., Figure 1(a) and 2(a)). This led to more sophisticated propos-
als for proving termination like the principle of disjunctive well-foundedness of
ranking functions (which can handle Figure 1(a)), and work on a richer class of
ranking functions like lexicographic linear ranking functions [7] and polyranking
functions [8] (which can handle Figure 2(a)).

In contrast to this recent literature on multiple methodologies for proving
termination, we present a numerical abstract domain that can be used to uni-
formly prove the termination of a large class of programs (including the ones in
Figure 1 and Figure 2), and more importantly establish precise timing bounds,
a richer piece of information than simply establishing termination. Computing
timing bounds is much more useful than simply proving termination in several
settings such as embedded systems and performance critical software. The basic



Disjunction(int x0, y, z0)

x := x0; z := z0; i := 0;
while (x < y) do

i := i + 1;
if (z > x) {

x := x + 1;
else

z := z + 1;

Sequential(int n, m)

x := 0; i := 0;
while (x < n) do

i := i + 1;
x := x + 1;

while (x < m) do

i := i + 1;
x := x + 1;

Simple(int x0, n)
x := x0; i := 0;
while (x < n) do

i := i + 1;
x := x + 1;

(a) (b) (c)

Fig. 1. Examples that illustrate the importance of the max operator in our numerical
abstract domain for both representing timing bounds as well as computing the invari-
ants required to establish timing bounds. The examples have been instrumented with
the monitor variable i. For (a) (taken from [12] which uses disjunctive well-foundedness
to prove termination), our tool computes the bound max(0, y − x0) + max(0, y − z0) on
the monitor variable i after establishing the inductive loop invariant i = (x−x0)+(z−
z0) ∧ z ≤ max(z0, y) ∧ x ≤ max(x0, y). For (b), and (c) our tool computes the bounds
max(0, n, m) and max(0, n− x0) respectively on the monitor variable i.

idea of our methodology is to instrument the program with a monitor variable
that increases in each loop iteration and then establish bounds on the monitor
variable using abstract interpretation over a numerical abstract domain. Essen-
tially, we have instrumented a candidate ranking function −i inside the loop
since the value of −i always decreases and establishing an upper bound u on
i will imply a lower bound on −i, thereby making −i a ranking function and
implying termination, but more importantly yielding a timing bound of u.

One key feature of our numerical abstract domain is that it incorporates
(some level of) disjunctive reasoning by use of max operator (which returns the
largest of its arguments). This allows our abstract domain to naturally express
bounds for loops with complex control flow inside, as is the case for the program
in Figure 1(a). (Observe that even proving termination of this program is non-
trivial; one way to prove termination of this program is to use the principle of
disjunctive well-foundedness [23], which involves splitting the termination argu-
ment into multiple ranking functions corresponding to different branches in the
program.) However, it is important to note that the presence of max operator
in our abstract domain not only caters to handling loops with complex con-
trol structure, but it is equally important to express bounds for programs even
with simple loops (which entail linear ranking functions, a simpler termination
argument), like the ones in Figure 1(b) and (c).

Another key feature of our numerical abstract domain is that it incorporates
reasoning about other operators (like multiplication, exponentiation, logarithm,
square-root etc) whose semantics is specified using some set of inference rules.
This allows our abstract domain to naturally represent bounds for loops with
inherent non-linear behavior as is the case for the program in Figure 2(a). (Ob-
serve that even proving termination of this program is non-trivial; one way to
prove termination is to use lexicographic polyranking functions [7, 8].) However,



NonLinear(int y0, n)
assume(n > 0);
x := 0; y := y0;

i := 0;
while (x < n) do

i := i + 1;
y := y + 1;
x := x + y;

ModularMultiply(int n)
i := 0;
assume(n > 0);
for j = 1 to n

for k = 1 to n
i := i + 1;
...

ModularSquare(int n)
i := 0;
assume(n > 0);
for j = 1 to n

for k = 1 to j
i := i + 1;
...

(a) (b) (c)

Fig. 2. Examples that illustrate the importance of using non-linear operators like
multiplication and square root in our numerical abstract domain for both represent-
ing timing bounds as well as computing the invariants required to establish timing
bounds. The examples have been instrumented with the monitor variable i. For (a)
(taken from [6] which uses the principle of second-order differences to establish a lexi-
cographic polyranking function for proving termination), our tool computes the bound√

2n + max(0,−2y0) + 1 on the monitor variable i after establishing the inductive loop
invariant i = y − y0 ∧ y2 ≤ y2

0 + 2x. For (b) and (c), our tool computes the bound n2

and n(n + 1)/2 respectively on the monitor variable i.

it is important to note that the flexibility of using arbitrary expressions (from
a given set) allows our abstract domain to precisely represent precise bounds of
programs with simple termination arguments. For example, we can prove that
mergesort has a complexity of n log n and that Fibonacci has a complexity of
2n. It is important to note that our technique not only aims to find precise
computational complexity, but also precise constant factors. For example, it can
precisely establish the n2 complexity of the doubly nested loop used for mod-
ular multiplication and n(n + 1)/2 complexity of the doubly nested loop used
for modular squaring as shown in Figure 2(b) and (c). This difference was the
source of a real timing attack on implementations of RSA protocol [19].

Our numerical abstract domain is parameterized by a linear arithmetic nu-
merical domain like intervals, difference constraints, or polyhedron domain [13].
We present two domain lifting operations that extend the base linear arithmetic
domain to reason about the max operator and other operators whose semantics
is specified using a set of inference rules. One of the domain lifting operation
extends the linear arithmetic domain to represent linear relationships over vari-
ables as well as max-expressions (an expression of the form max(e1, . . . , en) where
ei’s are linear expressions). Another domain lifting operation lifts an abstract
domain to represent constraints not only over program variables, but also over
expressions from a given finite set of expressions S. The semantics of the opera-
tors used in constructing expressions in S is specified as a set of inference rules.
(Our abstract domain retains efficiency by treating these expressions just like
any other variable, while relying on the inference rules to achieve precision.) The
rationale behind this choice is that it is easy to specify or heuristically infer the
set of base expressions, but specifying linear combinations of those expressions
and specifying which subsets of those linear combinations should be grouped
under a max operator is a cumbersome process. Fortunately, the latter process



can be automated by means of a domain lifting operation that we describe in
this paper.

This paper has three main technical contributions:

– We introduce a domain constructor operation based on the notion of expres-
sion abstraction. Given a base abstract domain A and a set of expressions
S whose semantics is specified using a set of rewrite rules, we show how to
construct a more precise abstract domain AS (Section 3).

– We introduce another domain constructor operation for linear arithmetic
domains. Given a linear arithmetic abstract domain A, we show how to
construct a new arithmetic domain Ã that can represent linear relations
over max expressions (Section 4).

– Given a linear arithmetic domain A, and a set of expressions S, we use
our domain constructor operations to construct the numerical domain ÃS

(Section 5), and show how it can be used to compute precise bounds for a
wide variety of programs (Section 6). We discuss preliminary experimental
results in Section 7.

We start with a description of the operations that need to be supported by
an abstract domain for performing abstract interpretation in Section 2.

2 Preliminaries

An abstract domain A needs to be equipped with four operators (or transfer
functions), JoinA, WidenA, EliminateA, and PostPredicateA to enable (for-
ward) abstract interpretation over the flowchart nodes of a program.

The join operator JoinA for an abstract domain A takes two abstract el-
ements E1 and E2 and computes the least upper bound of E1 and E2 in the
abstract domain A. In other words JoinA(E1, E2) denotes the most precise el-
ement E in the abstract domain A such that E1 ⇒ E and E2 ⇒ E. The join
operator is used to obtain the abstract element after a join node by merging the
abstract elements before the join node.

The widen operator WidenA for an abstract domain A takes two abstract
elements E1 and E2 such that E1 ⇒ E2 and computes another element E such
that E2 ⇒ E. The sequence of widen operations converges in a bounded number
of steps, i.e., for any strictly increasing sequence E0, E1, . . . (such that Ei ⇒ Ei+1

for all i) , if we define E′
0 = E0, E′

1 = WidenA(E′
0, E1), E′

2 = WidenA(E′
1, E2), . . .,

then there exists i ≥ 0 such that E′
j = E′

i for all j > i.
The postpredicate operator PostPredicateA takes as input an abstract ele-

ment E′ and a predicate p and computes the most precise element E expressible
in the domain A such that E′ ∧ p ⇒ E (meaning that γ(E′)∩Sp ⊆ γ(E), where
Sp is the set of states that satisfy predicate p). The postpredicate operator is
used to incorporate the information provided by the predicate inside an assume
statement or a conditional guard.

The existential elimination operator EliminateA takes as input an abstract
element E′ and a variable x and computes the most precise element E expressible



in the domain A such that E′ ⇒ E and E does not refer to variable x. The
existential elimination operator is used to transform the abstract element E′

before an assignment statement x := e 3 to the element E as follows (assuming
that x does not occur in e 4): E = PostPredicateA(EliminateA(E′, x), x = e).

In Section 3 and Section 4 below, we show how to construct the transfer
functions for the richer abstract domains AS and Ã from the transfer functions
of the base abstract domain A.

3 Domain Lifting using Expression Abstraction

In this section, we introduce the notion of expression abstraction and use it to
define a more precise abstract domain given any base abstract domain.

The process of expression abstraction involves defining a set of expressions S
over program variables using some operators, and defining the abstract semantics
of those operators using a set of directed inference rules R. We additionally
assume that the set S is closed under sub-expressions. (See Section 5 for an
example of S and R.) For every expression e ∈ S, we introduce a fresh variable
denoted by Ze. The elements of the abstract domain AS represent the same kind
of constraints as the abstract domain A but over an extended set of variables
that includes Ze’s. The transfer functions for the abstract domain AS (defined
in Section 3.2) make use of the Saturate operator, which we define next.

3.1 The Saturate Operator

The saturate operator Saturate takes as input an abstract element E and a set of
expressions S and returns another abstract element E′ that contains constraints
from E as well as includes constraints over expressions from S obtained by
applying the rewrite rules that define the semantics of the expressions in S. The
pseudo-code for the saturate function is shown below.

Saturate(E, S) =

1 Eold := ⊥;
2 while (E 6≡ Eold) do

3 Eold := E;

4 foreach instantiation of an inference rule: P1 ⇒ P2

5 If E ⇒ P1, then E := PostPredicate(E, P2);
6 return E;

The for loop in Line 4 considers all instantiations of an inference rule P1 ⇒ P2

such that all terms that occur in both P1 and P2 are from the given set of
expressions S. If the set of inference rules R has the property that the number

3 Without loss of generality, we can assume that all assignment statements are of the
form x := e. Memory reads and writes can be modeled using select and update
expressions, without losing any precision.

4 Without loss of generality, we can assume that x does not occur inside e since an
arbitrary assignment x := e can be split into two assignments t := e; x := t with this
property, where t is a fresh variable.



of applications of the inference rules is bounded in any context (i.e., given any
context, the number of applications of the inference rules that yield a predicate
not implied by the context and other derived predicates is bounded), then the
while loop in Line 2 is terminating. If not, then we simply use the heuristic of
iterating a bounded number of times.

Example 1. Let A be the polyhedron abstract domain. Let R consist of the
following useful inference rule for reasoning about the product operator. The
rule multiplies both sides of an equality by some term u.

(
∑

i

aixi = a) ⇒ (
∑

i

aiZxiu = Zau)

Let S be the set of expressions {y2, y2
0 , yy0}. Let E1 be y = y0∧x = 0 and E2 be

y = y0 +1∧x = y0 +1. E1 and E2 denote (part of) the abstract elements at the
loop entry and at the loop back-edge after one loop iteration for the example in
Figure 2(a). Then,

Saturate(E1, S) = (y = y0 ∧ x = 0 ∧ Zy2 = Zyy0 ∧ Zyy0 = Zy2
0
)

Saturate(E2, S) = (y = y0 + 1 ∧ x = y0 + 1 ∧ Zyy0 = Zy2
0

+ y0 ∧ Zy2=Zyy0+y)

3.2 Transfer Functions

In this section, we describe how to construct the transfer functions for the ab-
stract domain AS using the transfer functions for the base domain A. The key
idea in the construction is to simply saturate the input abstract elements using
the Saturate algorithm (described in Section 3.1) and then apply the corre-
sponding transfer function from the base abstract domain.

– Join Operator.

JoinAS
(E1, E2) = JoinA(Saturate(E1, S), Saturate(E2, S))

Example 2. Let E1 and E2 be the abstract elements as in Example 1. Then,

JoinAS
(E1, E2) = (y0 ≤ y ≤ y0 + 1 ∧ Zy2 ≤ Zy2

0
+ 2x)

Observe that the above join operation gives us one of the desired inductive
invariants y2 ≤ y2

0 + 2x required for proving bounds in Figure 2(a). ut
– PostPredicate Operator.

PostPredicateAS
(E, p) = PostPredicateA(Saturate(E,S), p)

– Eliminate Operator.
The eliminate operator for the new domain AS involves saturating the input
abstract element and then eliminating not only the given variable x, but also
all the variables corresponding to expressions from S that involve x.

EliminateAS
(E, x) = EliminateA(Saturate(E,S), Vx)

where Vx = {x} ∪ {Ze | e ∈ S and change to x results in change to e}.
– Widen Operator.

WidenAS
(E1, E2) = WidenA(Saturate(E1, S), Saturate(E2, S))



4 Linear Domain Lifting using Max Operator

In this section, we define a domain lifting operation that takes a linear arithmetic
abstract domain A that represents linear constraints over some set of variables
V , and a subset U of V , and produces a domain Ã that can represent linear
constraints over V −U as allowed by A, but allowing for a richer constant term -
one that is constructed using linear combinations of max-linear expressions over
U . A max-linear expression over U is of the form max(e1, . . , en), where each ei is
some linear expression over U . For eg., if A is the difference constraints domain,
then the domain Ã can represent constraints like v1 − v2 ≤ max(u1, 2u2 + u3),
where v1, v2 ∈ V and u1, u2, u3 ∈ U .

The transfer functions for the abstract domain Ã (defined in Section 4.2)
make use of the Witness operator, which we define next.

4.1 Witness Coefficients

Lemma 1. (Farkas Lemma) Let e, ei be some linear arithmetic expressions

without the constant term. If
(

n∧
i=1

(ei ≤ 0)
)
⇒ e ≤ 0, then it must be the case

that there exist non-negative λ’s such that e ≡
n∑

i=1

λiei.

For an implication
(

n∧
i=1

(ei ≤ 0)
)
⇒ e ≤ 0, we define Witness(

n∧
i=1

(ei ≤ 0), e ≤ 0)

to be (λ1, . . . , λn). Note that there may exist multiple witnesses but any single
witness is sufficient for soundness of the transfer functions described below.

Example 3.

Witness(i ≤ 0 ∧ −x ≤ 0, i ≤ 0) = (1, 0)
Witness(i− x ≤ 0 ∧ x ≤ 0, i ≤ 0) = (1, 1)

4.2 Transfer Functions

In this section, we describe how to construct the transfer functions for the ab-
stract domain Ã using the transfer functions for the base domain A. The key
idea in the construction is to remove the constant and the part correspond-
ing to variables in U from each inequality in the input(s), and then apply the
corresponding transfer function from the base domain, and then add back an
appropriate symbolic max expression to each inequality in the result.



– Join Operator.
JoinÃ(E1, E2) =

1 Let E1 be
V

i

(ei ≤ fi) and let E2 be
V

i

(e′
i ≤ f ′

i);

(where ei, e
′
i are linear over V -U and fi, f

′
i are max-linear over U)

2 E := >; E′ := JoinA(
V

i

(ei ≤ 0),
V

i

(e′
i ≤ 0));

3 Foreach inequality e ≤ 0 ∈ E′,

4 (λi) := Witness(
V

i

(ei ≤ 0), e ≤ 0); (λ′
i) := Witness(

V

i

(e′
i ≤ 0), e ≤ 0);

5 f :=
P

i

λifi; f ′ :=
P

i

λ′
if

′
i;

6 f ′′ := ComputeMax(f, f ′);
7 if f ′′ 6= >, E := E ∧ (e ≤ f ′′);
8 return E;

The function ComputeMax(f, f ′) either returns > denoting that there are too
many arguments to the max function, or returns a possibly max function.

Example 4. Let V = {i, x, x0, n} and U = {x0, n}. Let E1 be i ≤ 0 ∧
−x ≤ −x0 and E2 be i − x ≤ −x0 ∧ x ≤ n. E1 and E2 denote (part of)
the abstract elements at the loop entry and at the loop back-edge after one
loop iteration for the example in Figure 1(c.) Then, using the result of the
witness functions from Example 3, we obtain

JoinÃ(E1, E2) = i ≤ max(0, n− x0)

Observe that the above join operation provides us with the invariant i ≤
max(0, n− x0) required for computing bounds in Figure 1(a). ut

– PostPredicate Operator.

PostPredicateÃ(E, p) = PostPredicateA(E, p)

– Eliminate Operator.
EliminateÃ(E, x) =

1 Let E be
V

i

(ei ≤ fi);

(where ei are linear over V − U and fi are max-linear over U)

2 E1 := EliminateA(
V

i

(ei ≤ 0)); E2 := >;

3 Foreach inequality e ≤ 0 ∈ E1:

4 (λi) := Witness(
V

i

(ei ≤ 0), e ≤ 0);

5 f :=
P

i

λifi;

6 E2 := E2 ∧ (e ≤ f);
7 return E2;

Note that we require the variables to be eliminated be from the set V − U .
This puts the restriction that the variables in set U are never modified in
the program.

Example 5. Let V = {i, x, x0, n} and U = {x0, n}. Let E be i− x ≤ −x0 ∧
x ≤ n. Consider computing EliminateÃ(E, x). Line 2 of the above algorithm
computes E1 as i ≤ 0. Using the witness (1, 1), we obtain the result i ≤
−x0 + n.



– Implication Operator.
ImpliesÃ(E1, E2) =

1 Let E1 be
V

i

ei ≤ fi and let E2 be
V

j

e′
j ≤ f ′

j;

(where ei, e
′
j are linear over V -U and fi, f

′
j are max-linear over U)

2 Let result := true;

3 Foreach inequality e′
j ≤ f ′

j ∈ E2:

4 (λi) := Witness(
V

i

ei ≤ 0, e′
j ≤ 0); f :=

P

i

λifi;

5 if not LessEq(f, f ′
j), result := false;

6 return result;

Let f = max(e1, . . . , en) and f ′ = max(e′1, . . . , e
′
n) be max-linear expressions.

LessEq(f, f ′) returns true iff for each ei there exists e′j such that ei ≤ e′j
is valid. For example LessEq(max(x, n), max(x + 1, n)) returns true, whereas
LessEq(max(x, n), max(x + 1, n− 1)) returns false.

– Widen Operator.
The widen operator WidenÃ(E1, E2) simply returns the conjunction of those
constraints from E1 that are also implied by E2.

5 A New Numerical Abstract Domain

In this section, we discuss the design choices made while applying the domain
lifting operators for obtaining the numerical abstract domain that we use for
timing analysis. We pick any linear relational abstract domain A and lift it us-
ing the domain lifting operation based on expression abstraction (as described
in Section 3). We use the operators multiplication (x × y), logarithm (dlog xe),
square-root (d

√
xe), and exponentiation (2x) to construct the set S of expres-

sions. The set S of expressions involving these operators can either be provided
by the programmer 5 (since they may have a better idea of what kinds of bounds
the program may entail) or it can be constructed automatically using some ini-
tial heuristic such as we can apply the unary operators (logarithm, square-root,
exponentiation) to all program variables once and then apply the only binary
operator (multiplication) to all pairs of resulting expressions. This will allow our
abstract domain to represent linear relationships over expressions like n × m,
ndlog me, etc. We use the following inference rules R to reason about these op-
erators. (These specific rules were chosen because they appear to capture the
reasoning required to compute bounds over the chosen set of non-linear opera-
tors for a large class of programs.) For simplicity, we overload the notation Zx

to denote x, if x is a program variable. (Recall that the notation Zx normally
denotes the special variable associated with an expression x ∈ S).

5 Note that we are not requiring the programmer to provide the exact bound. We are
simply requiring the programmer to provide the base expressions and the bounds
would be automatically computed by taking linear combinations of these expressions
and additionally the expressions obtained by applying max operator. Furthermore,
computation of bounds requires establishing the inductive invariants, which are usu-
ally much harder than the bound itself.



1. (Zx ≤ c) ⇒ (Z2x ≤ 2c)
2. (Zx ≤ Zy + c) ⇒ (Z2x ≤ 2c × Z2y )
3. (Zx ≤ c) ∧ (Zx > 0) ⇒ (Zdlog xe ≤ dlog ce)
4. (Zx ≤ c× Zy) ∧ (Zx > 0) ∧ (Zy > 0) ⇒ (Zdlog xe ≤ dlog ce+ Zdlog ye)
5. (

∑
i

aiZxi
≥ a) ∧ (Zy ≥ 0) ⇒ (

∑
i

aiZxiy ≥ ay)

6. (
∑
i

aiZxi
= a) ⇒ (

∑
i

aiZxiy = aZy)

7. true⇒ Z√
x2 = max(Zx,−Zx)

8. true⇒ Zx2 ≥ 0
9. (Zx2 ≤

∑
i

aiZxi
) ∧

∧
i

ai ≥ 0 ∧
∧
i

Zxi
≥ 0 ⇒ (Zx ≤

∑
i

√
aiZ√

xi
)

This rule is useful to compute an upper bound on a variable if an upper
bound has been computed on its square.

The application of the above rules requires querying the abstract domain for
constraints between a specific set of variables. These queries can be performed
by existential elimination of all variables other than the specific set of variables.

We then apply the domain construction discussed in Section 4 on the domain
AS obtained above to obtain the domain ÃS . For this purpose, we choose U to be
the set of the input variables since we are ultimately interested in finding bounds
with possibly max expressions over only the input variables. (Recall that U was
the set of variables over which the abstract domain computes max expressions.)

6 Timing Analysis

In this section, we consider the problem of computing upper bounds on the
time complexity of a program expressed as a function of the program inputs.
We assume that each atomic statement is annotated with the units of time that
it takes to execute. (To reduce cluttering in our examples, we assume that a
recursive procedure call instruction and a backward jump instruction takes unit
amount of time, while all other instructions take zero time. In other words, we
estimate a bound on the total number of loop iterations and total number of
recursive procedure call invocations).

Given a program P , we instrument the program with a monitor variable i
that keeps track of the time consumed by the program. The monitor variable i
is initialized to 0 at the beginning of the program, and is incremented by t units
after execution of any instruction that takes t units of time to execute.
Claim. Let u1, . . , un be the upper bounds on the instrumented monitor variable
i at different locations where i is incremented, expressed as a function of program
inputs. Then, max(0, u1, . . , un) denotes an upper bound on the timing complexity
of the program. 6

Note that we simply cannot compute an upper bound on the monitor variable
i at the end of the program to obtain an upper bound on the timing complexity
6 This assumes that the input variables are not modified in the program. (If they are,

then we can create their copies and modify them instead.)



Program Time (s) S Upper Bound

Disjunction (Fig1) 0.030 - max(0, y − x0) + max(0, y − z0)
Sequential (Fig1) 0.010 - max(0, n, m)

NonLinear (Fig2) 0.018 y2, y2
0 ,

√
n

√
2n + max(0,−2y0) + 1

ModularMultiply (Fig2) 0.105 jn, n2 n2

ModularSquare (Fig2) 0.098 j2, n2 n(n + 1)/2
Log 0.084 dlog ne, dlog xe dlog ne
Fibonacci 0.138 2n 2n

MergeSort 0.065 ndlog ne ndlog ne
p1 0.141 - 41
p2 0.022 - max(0, z0)
p3 0.215 dlog ie, dlog maxe, dlog sizee dlog sizee
p4 0.163 s2, bs, ts s2

p5 0.025 - m + 1
p6 0.031 - N

Table 1. Experimental Results: Column 4 describes the upper bounds computed by
our tool on the number of loop iterations and recursive procedure call invocations.
Column 3 gives the expression set used for computing the bounds shown in Column 4.

of the program. For example, consider a program with a non-terminating loop.
0 is a valid upper bound on i at the end of the loop (since at an unreachable
program location, any fact holds), but does not describe an upper bound on the
timing complexity of the program.

We compute upper bounds on the monitor variable i at different program
locations by performing abstract interpretation of the program over the numer-
ical domain ÃS described in Section 5, which provides us invariants at different
program locations. An appropriate upper bound on i at a program location π is
then obtained by considering the invariant I at π and existentially quantifying
out all variables except i and the input variables from I. We can use a similar
strategy for computing lower bounds on i. (An advantage of computing lower
bounds is that they can be used as a measure of precision of our analysis for
computing upper bounds.)

7 Experiments

We have implemented a prototype of our numerical abstract domain on top of
the Apron [1] numerical abstract domains library. We have used this abstract
domain in an abstract interpreter to bound the total number of loop iterations
and the total number of recursive procedure calls invocations in several C pro-
grams 7. Our abstract interpreter is implemented in ocaml and uses the CIL
infrastructure to parse input C programs. We summarize the results of running
our tool on a set of benchmarks in Table 1.

The programs p* are taken from some benchmarks (originally from Octa-
gon library distribution) presented in a paper that describes and compares some
state-of-the-art techniques for proving program termination[10]. Most of the re-
maining programs are presented in Section 1. Fibonacci and MergeSort are
7 Available at http://www.cfdvs.iitb.ac.in/∼bhargav/timing.html



recursive programs. Log uses a multiplicative counter for loop iteration. The
programs were analyzed using (cartesian-product) combination of polyhedra and
octagon abstract domains lifted with expression abstraction and interval domain
lifted with max operator.

For most of the programs shown in Table 1, the computed upper bounds are
precise (i.e., they match the lower bounds computed by our tool on the monitor
variable). These benchmarks include programs whose termination cannot be es-
tablished by simple linear ranking functions [22], but requires more sophisticated
techniques as in [23, 7, 8, 10]. This shows that not only our abstract domain is
precise enough to express exact upper bounds but also that the abstract op-
erations are precise enough to compute these bounds. The number of required
input expressions is relatively small and simple heuristics (like the one described
in Section 5) can be used to infer these automatically.

Our analyzer takes for each program a set of interesting expressions to track
during the analysis. Although currently we provide these expressions manually,
we intend to use some heuristics in the future to automatically infer these ex-
pressions.

8 Related Work

Inference-rule based reasoning has often been used for building efficient (but
incomplete) decision procedures for otherwise intractable logics [18, 4]. The idea
is to partially axiomatize the semantics of the underlying operators such that it
leads to efficient reasoning as well as is precise enough to capture the reasoning
required in the common case. In this paper, we show how to apply inference-
rule based reasoning in the context of abstract interpreters as opposed to simply
decision procedures. Secondly, we focus on a different domain, one that involves
numerical operators.

There has been work on extending linear arithmetic abstract domains to
also represent linear constraints over expressions constructed using uninterpreted
functions [9, 14]. In contrast, our domain constructor allows extension to expres-
sions with arbitrary operators (as opposed to only uninterpreted functions), but
represents linear constraints only over the given set of expressions.

There has been work on discovering restricted form of quadratic inequali-
ties [5], polynomial inequality invariants [2], and equality invariants [24, 21] of
bounded degree. In contrast, our domain lifting operation allows for discover-
ing arbitrary polynomial inequalities as well as non-polynomial inequalities in a
uniform setting, but over a given set of expressions.

[20] describes a technique based on solving recurrences for computing a
non-negative constant that represents the number of loop iterations required for
reaching a particular error state. In contrast, we produce symbolic bounds.

There is a large body of work on estimating worst case execution time
(WCET) in the embedded and real-time systems community [26, 15, 16, 3, 17].
The WCET research is more orthogonally focused on distinguishing between
the complexity of different codepaths and low-level modeling of architectural



features such as caches, branch prediction, instruction pipelines. For establish-
ing loop bounds, the WCET techniques either require user annotation, or use
simple techniques based on pattern matching or a simple interval analysis. In
contrast, we present a path-insensitive analysis, but one that automatically es-
timates precise (non-linear and disjunctive) bounds on loop iterations.

For example, the AiT-WCET tool uses combination of interval-based abstract
interpretation and pattern matching. Loop bound analysis of BoundT-WCET
tool is based on Presburger arithmetics. Both these are much less precise than
our abstract domain which is not only relational but can also represent non-
linear bounds. [15] describes an interval analysis based approach (as opposed
to our more precise relational linear analysis) for automatic computation of
loop bounds. However, it analyzes single-path executions of programs (i.e., using
input data corresponding to one execution). Hence, their bounds are in real
seconds, while our bounds are symbolic and functions of inputs. The analysis
described in [16] is aimed at synchronous programs and linear hybrid systems.
The only similarity is that they model delays in such programs using simple
counters. We also use counter instrumentation; however our abstract domain
construction allows us to compute disjunctive and non-linear bounds using a
base linear abstract domain. Bagnara and Zaccagnini describe how to solve a
class of recursive equations that are used to express complexity measures in
several systems [3]. However, the class of equations that they handle are far
apart from cost relations generated from real programs.

9 Conclusion

We have presented two domain lifting operations to make linear numerical ab-
stract domains more precise. Domain lifting via expression abstraction enables
computation of non-linear invariants. Domain lifting by max expressions pro-
vides a compact representation for disjunctive bounds. The importance of these
domain lifting operations is reflected by the fact that we have been able to auto-
matically compute precise timing bounds for several benchmark programs that
have recently been used by the state-of-the-art techniques for proving termina-
tion of programs.
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