
VS3: SMT Solvers for Program Verification

Saurabh Srivastava1,?, Sumit Gulwani2, and Jeffrey S. Foster1

1 University of Maryland, College Park, {saurabhs,jfoster}@cs.umd.edu
2 Microsoft Research, Redmond, sumitg@microsoft.com

Abstract. We present VS3, a tool that automatically verifies complex
properties of programs and infers maximally weak preconditions and
maximally strong postconditions by leveraging the power of SMT solvers.
VS3 discovers program invariants with arbitrary, but prespecified, quan-
tification and logical structure. The user supplies VS3 with a set of pred-
icates and invariant templates. VS3 automatically finds instantiations of
the unknowns in the templates as subsets of the predicate set. We have
used VS3 to automatically verify ∀∃ properties of programs and to infer
worst case upper bounds and preconditions for functional correctness.

1 Introduction

There are two major hurdles in the widespread adoption of current verification
tools for program analysis. The first is their inability to express invariants with
the detailed logical structure (specifically, quantifiers and disjunctions) that is
required for almost all non-trivial programs. The second is the annotation bur-
den and effort required on the part of the programmer in reasoning formally
about inductive invariants. The sophisticated invariants required for most non-
trivial programs are hard for the programmer to come up with and impose a
significant annotation burden.

In this tools paper, we describe VS3 (Verification and Synthesis using SMT
Solvers), a tool that partly addresses the above mentioned limitations by lever-
aging the engineering advances made in constraint solving in the past decade.
VS3 takes as input a set of invariant templates and a set of candidate predi-
cates to populate the templates’ unknowns. VS3 then infers required program
invariants and, optionally, required maximally weak preconditions. By allowing
the invariants to have an arbitrary, but prespecified, logical structure, VS3 can
verify sophisticated (e.g., ∀ and ∀∃) properties of programs. Additionally, by
automatically inferring maximally weak preconditions, VS3 reduces the burden
on the programmer, both in coming up with difficult preconditions and in spec-
ifying them alongside the code. In the future, we plan to augment VS3 with
template inference and abstraction refinement to build a powerful system for
software verification with minimal user input.

We have used VS3 with great success to verify a wide array of difficult pro-
gram properties, such as the full functional correctness of standard implemen-
tations of all major sorting algorithms [1], and have additionally used it to infer
difficult preconditions for functional correctness. VS3 interfaces with off-the-shelf
? The work reported here was supported in part by NSF CCF-0430118 and was in

part done during an internship at Microsoft Research.



(a) BinarySearch(Array A, int e, int n)
1 low := 0; high := n− 1;
2 while (low ≤ high)
3 mid := d(low + high)/2e;
4 if (A[mid] < e)
5 low := mid + 1;
6 else if (A[mid] > e)
7 high := mid− 1;
8 else return true;

9 Assert (∀j : (0 ≤ j < n) ⇒ A[j] 6= e)
10 return false;

User Input:
Template: v1 ∧ (∀j : v2 ⇒ v3)

∧ (∀j : v4 ⇒ v5) ∧ (∀j : v6 ⇒ v7)
Predicate Set:
AllPreds({j, n, low, high}, {0}, {≤, <}) ∪
AllPreds({A[t] | t ∈ {j, j ± 1}} ∪ {e}, {0},

{≤, 6=})

Tool Output: “Precondition required”:
Precondition:
∀j : (0 ≤ j < n) ⇒ A[j] ≤ A[j + 1]
Loop Invariant:
0 ≤ low ∧ high < n
∀j : (low ≤ j ≤ high) ⇒ A[j] ≤ A[j + 1]
∀j : (0 ≤ j < low) ⇒ A[j] 6= e
∀j : (high < j < n) ⇒ A[j] 6= e

(b) SetInclusion(Array A, int n,
Array B, int m)

1 for (i = 0; i < n; i++)
2 exists := false;

3 for (j = 0; j < m; j++)
4 if (A[i] = B[j])
5 exists := true; break;

6 if (¬exists) return false;

7 Assert (∀y∃x : (0 ≤ y < n)
8 ⇒ (A[y] = B[x] ∧ 0 ≤ x < m))
9 return true;

User Input:
Template: v1 ∧ (∀y∃x : v2 ⇒ v3)

∧ (∀y∃x : v4 ⇒ v5)
Predicate Set:
AllPreds({x, y, i, j, m}, {0}, {≤, <}) ∪
AllPreds({exists}, {true, false}, {=}) ∪
AllPreds({A[t], B[t] | t ∈ {x, y}}, {0}, {=})

Tool Output: “Assertion valid”:
Outer loop invariant:
∀y∃x : 0≤y<i ⇒ (A[y]=B[x]∧0≤x<m)
Inner loop invariant:
j ≥ 0
∀y∃x : 0≤y<i ⇒ (A[y]=B[x]∧0≤x<m)
∀y∃x : (y = i ∧ exists = true)

⇒ (A[y] = B[x] ∧ 0 ≤ x < m)

Fig. 1. (a) VS3 computes the maximally weak precondition for correctness of binary
search (b) VS3 computes the ∀∃ invariants required to prove the correctness of a
program that checks set inclusion. (AllPreds(Z, C, R) denotes the set of predicates
{z op z′ | z, z′ ∈ Z ∪ C, op ∈ R}.)

SMT solvers for its core reasoning and provides a rich source for SMT benchmark
instances from the domain of verification and property inference of programs.

1.1 Motivating Examples and Tool Usage
We now illustrate the power of VS3 by considering two motivating examples.

Precondition Inference. Consider the program shown in Fig. 1(a), which imple-
ments a binary search for the element e in an array A. The functional specifica-
tion of the program is given as the assertion3 on Line 9, which essentially states
that if the procedure returns false, then A indeed does not contain e.
3 VS3 allows the user to specify assertions and assumptions with arbitrary logical

structure up to those expressible in the underlying SMT solver. Assumptions may
be required to model expressions not handled by the solver. For instance, in the
current system, the assignment on Line 3 is modeled as Assume(low ≤ mid ≤ high).



For this function, VS3 automatically infers the maximally weak precondition
for functional correctness, shown in Fig. 1(a), which is that the input array is
sorted. VS3 also infers the loop invariant, also shown in Fig. 1(a), encoding the
semantics of binary search (that the array elements between low and high are
sorted and those outside do not equal e).

In automatic CUTPOINT mode, VS3 searches for inductive program invariants
at loop headers. Alternatively, in some cases the invariants are simpler if inferred
at specific locations, which should form a valid cutset such that each cycle in
the CFG contains at least one location [2]. VS3 also supports a MANUAL mode
for user-specified cutsets.

The user also specifies a global invariant template and a global predicate set,
as shown. The template is used for invariants at each cutpoint and the predicate
set specifies the candidate predicates for the unknowns in the template. In prac-
tice, the user starts by guessing simple templates and predicates. If the analysis
fails then the user iteratively increases the sophistication of the templates and
predicates until VS3 finds a solution.

In practice, the logical structure (quantification and boolean connectives) of
the templates is easily derived from given program assertions and discovered
by iterative guessing. For instance, for BinarySearch we first tried a template
with one unquantified and one quantified conjunct, but VS3 failed to infer an
instantiation. We then iteratively increased the number of quantified conjuncts
until a solution was found. Also, typically we used a predicate set consisting
of inequality relations between relevant program and bound variables. In our
experience (over a large set of programs [1]), coming up with the templates and
predicate set is typically easy for the programmer.

Verification using invariants with arbitrary logical structure. Consider the pro-
gram shown in Fig. 1(b), which checks whether all elements of A are contained
in B. The loop invariant required contains ∀∃ quantification, which VS3 infers.
We do not know of any other tool that can automatically discover such invari-
ants. Note how the conjuncts in the invariant template in this case follow the
schematic of the given assertion and therefore are ∀∃-quantified. As before, we
discovered the appropriate number of conjuncts by iterative guessing.

2 Tool Architecture

VS3 uses Microsoft’s Phoenix compiler framework [3] as a front end parser for
ANSI-C programs and Z3 [4] to solve the SMT queries. Our implementation is
approximately 15K non-blank, non-comment lines of C# code.

The tool architecture is shown in Fig. 2. VS3 uses Phoenix to generate the
control flow graph (CFG) of the program. The CFG is then split into simple
paths using a cutset (either generated automatically with a cutpoint at each loop
header or specified by the user). The tool then generate a verification condition
(VC) corresponding to each simple path. For fixed-point computation the tool
provides two alternatives:



+

Preconditions

Postconditions

+

SMT
Solver

Invariants
Boolean

Constraints

Candidate
Solutions

SMT
Solver

SAT
Solver

Cut-set

Predicate Set

Templates

CFG VCs
Phoenix

C Program

VS3

Fig. 2. The VS3 tool. In addition to the ANSI-C program, the user provides the tem-
plates, the predicate sets, and optionally, a cutset. The tool provides the option of
choosing between an iterative and a constraint-based fixed-point computation.

Iterative Fixed-Point [1]. The iterative scheme performs a variant of a standard
dataflow analysis. It maintains a set of candidate solutions, and by using the SMT
solver to compute the best transformer it iteratively improves the candidates
until a solution is found. See [1] for details.

Constraint-based Fixed-Point [5, 1]. In the constraint-based scheme, a predicate
p at location l is identified by boolean indicator variables bp,l. For verification
condition vc, VS3 generates the minimal set of constraints over the indicator
variables that ensures that vc is satisfiable. These constraints are accumulated
and solved using a SAT solver that yields a fixed-point solution. See [1] for
details.

2.1 Solver Interface

Compensating for current limitations of SMT solvers The generic prim-
itives provided by SMT solvers are expressive but lacking in some aspects that
are needed for our application.4 We augment the solver by providing a wrapper
interface that preprocesses the SMT queries and adds hints for the solver.

Patterns for quantifier instantiation. The current state-of-art for reasoning over
quantified facts uses the now commonly known technique of E-matching [6]
for quantifier instantiation. E-matching uses patterns to match against ground
terms. Because individual SMT queries in our system are over simple quantified
terms, a simple heuristic to automatically generate patterns suffices: Given a
quantified fact with bound variables k̄ and bound boolean term F , VS3 recur-
sively parses F and returns valid patterns from F ’s subterms. A subterm f is a
valid pattern if it contains all the bound variables and at least one subterm of
f does not contain all the variables. For example, for the fact ∀k : k > 10 ⇒
A[k] < A[k+1], VS3 computes the set of patterns {{k > 10}, {A[k]}, {A[k+1]}},
and for ∀k : k ≥ 0 ∧ k < v ⇒ A[k] < min, VS3 computes the set {{k ≥ 0}, {k <
v}, {A[k] < min}}. This simple heuristic is potentially expensive, but allows for
automatic and, in practice, fast proofs or disproofs of the implication checks.
4 Our current implementation uses the Z3 solver, but the limitations we discuss here

apply to all state-of-the-art solvers, as far as we know.



Saturating inductive facts. SMT solvers have difficulty instantiating relevant
facts from inductive assumptions. For instance, in our experiments, we encoun-
tered assumptions of the form kn ≥ k0∧∀k : k ≥ k0 ⇒ A[k] ≤ A[k+1] from which
A[k0] ≤ A[kn +1] was needed for the proof. Z3 times out without finding a proof
or disproof of whether A[k0] ≤ A[kn+1] follows from the assumption. Notice that
the pattern k ≥ k0 will only allow the prover to instantiate A[kn] ≤ A[kn + 1]
from the ground fact, which does not suffice to prove A[k0] ≤ A[kn + 1].

VS3 therefore syntactically isolates inductive facts and saturates them. To
do this, it pattern matches quantified assumptions such as the above (consisting
of a base case in the antecedent and the induction step in the consequent of the
implication) and asserts the quantified inductive result. For example, for the case
above, the saturated fact consists of ∀k2, k1 : k2 ≥ k1 ≥ k0 ⇒ A[k1] ≤ A[k2 + 1].
Using the ground term kn ≥ k0, the tool can now instantiate A[k0] ≤ A[kn + 1].
This heuristic allows the tool to deal with inductive reasoning for particular
cases that arise in program analysis.

Explicit Skolemization for ∀∃. Z3 v1.0 does not correctly instantiate global
skolemization functions for existentials under a quantifier and so VS3 infers these
functions from the program5. An approach that suffices for all our benchmark
examples is to rename the skolemization functions at the endpoints of a verifica-
tion condition and to insert axioms relating the two functions. VS3 syntactically
infers the appropriate axioms over the skolem functions for the two specific cases
that we describe below.

VS3 can infer appropriate skolemization functions for the two cases of the
verification condition containing array updates and assumptions equating array
values. Suppose in the quantified formulae at the beginning and end of a simple
path, the skolemization functions are skl and skl′, respectively. For the case of
array updates, suppose that locations {l1, l2, . . . , ln} are overwritten with values
from locations {r1, r2, . . . , rn}. Then the tool introduces two axioms. The first
axiom states that the skolemization remains unchanged for locations that are
not modified (Eq. 1), and the second axiom defines the (local) changes to the
skolemization function for the array locations that are modified (Eq. 2):

∀y : (∧i(skl(y) 6= ri ∧ skl(y) 6= li)) ⇒ skl′(y) = skl(y) (1)∧
i∀y : skl(y) = ri ⇒ skl′(y) = li (2)

For the case of assumptions equating array values, VS3 asserts the corresponding
facts on skl′, e.g., if Assume(A[i] = B[j]) occurs and skl′ indexes the array B
then the tool adds the axiom skl′(i) = j.

Axiomatic support for additional theories Some program verification tasks
require support for non-standard expressions, e.g., reachability in linked-list or
tree data structures. SMT solvers, and in particular Z3, support the addition of
axioms to support these kind of predicates.
5 We are aware of work being pursued in the solving community that will eliminate this

restriction. Therefore in the future we will not need to infer skolemization functions.



There are two steps towards the verification of such programs. First, VS3

defines the semantics of field accesses and updates on record datatypes using
sel and upd. A field access s → f , is encoded as sel(f, s) and an update
s → f := e is encoded as upd(f, s, e). Second, VS3 asserts a set of axioms to
define the semantics of higher level predicates, such as reachability, in terms of
the constructs that appear in the program. Let x  y denote that y can be
reached by following pointers starting at x. Then for the case of reasoning about
singly linked lists connected through next fields, the tool augments the SMT
solver with the following reachability axioms:

∀x . x x Reflexivity
∀x, y, z . x y ∧ y  z ⇒ x z Transitivity

∀x . x 6= ⊥ ⇒ x (x → next) Step: Head
∀x, y . x y ⇒ x = y ∨ (x → next) y Step: Tail
∀x . ⊥ x ⇒ x = ⊥ End

Using these axioms the solver can, for instance, prove that head tail∧ tail 
n ∧ n 6= ⊥ ⇒ head (n → next).

3 Summary of Experiments and Conclusions

We have used VS3 to verify a wide variety of properties of programs manipulating
arrays. We have verified the full correctness of standard implementations of
five major sorting algorithms. Showing sortedness for these examples required ∀
invariants, and showing permutation required ∀∃ invariants (which have received
little previous attention [7, 8]).

Additionally, we have successfully used VS3 for inferring maximally weak
preconditions. We have derived maximally weak preconditions for functional
correctness and for proving worst case upper bounds for programs, e.g., inferring
the input that yields the worst case run of a sorting program. See [1] for details.

Our experiments with VS3 have demonstrated its promise for the verification
and inference of difficult program properties.

References

1. Srivastava, S., Gulwani, S.: Program verication using templates over predicate ab-
straction. In: PLDI. (2009)

2. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI. (2008) 281–292

3. Microsoft Research: Phoenix (2008) http://research.microsoft.com/Phoenix/.
4. de Moura, L., Bjørner, N.: Z3: Efficient SMT solver. In: TACAS’08. (2008)
5. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint based invariant inference

over predicate abstraction. In: VMCAI. (2009)
6. Moura, L., Bjørner, N.: Efficient E-matching for smt solvers. In: CADE-21. (2007)
7. Balaban, I., Fang, Y., Pnueli, A., Zuck, L.D.: IIV: An invisible invariant verifier.

In: CAV. (2005) 408–412
8. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a

theorem prover. In: FASE. (2009)


