Cache-Conscious Coallocation of Hot Data Streams

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052
trishulc@microsoft.com

ABSTRACT

The memory system performance of many programs lwan
improved by coallocating contemporaneously acceskedp
objects in the same cache block. We present a mpyoéle-based
analysis for producing such a layout. The analgslseves cache-
conscious coallocation of a hot data strddri.e., a regular data
access pattern that frequently repeats) by isglaimd combining
allocation sites of object instances that appeaHirsuch that
intervening allocations coming from other sites separated. The
coallocation solution produced by the analysisrifoeed by an

Ran Shaham
Amuse Toy & Game Development
12/7 Yoni Netanyahu, Haifa 31905
Givat Shmuel 54423, Israel
ran.shaham@gmail.com

caches, speculation, and out-of-order executiorwever, power
considerations impose constraints on many of thed®ique49].
For example, larger caches reduce the number becatsses but
increase the power cost of each cache access. @mmhy, soft-
ware-based approaches to memory system perfornapioeiza-
tion offer an attractive alternative as programs ba transformed
to make more efficient use of the memory systemiyceng mem-
ory power consumption as well as improving perfaroea

Memory and cache behavior studies of general-perposgrams
indicate that a small fraction of data objects ()@¥e responsible

automatic toolcminstt that redirects a program's heap allocationsfor most of the data references (90%) and cachsemigalmost

to a run-time coallocation librargomalloc We also extend the
analysis to coallocation at object field granuiarithe resulting
field coallocation solution generalizes common da&structuring
techniques, such as field reordering, object amdittand object
merging, and allows their combination. Furthermateprovides
insight into object restructuring by breaking dothe coallocation
benefit on a per-technique basis, which providesagpportunity to
pick the "sweet spot" for each program. Experimergsults using
a set of memory-performance-limited benchmarkduiing a few
SPECInt2000 programs, and Microsoft VisualFoxPndjdate that
programs possess significant coallocation oppdiesiAutomatic
object coallocation improves execution time by 18%@average in
the presence of hardware prefetching. Hand-impléaderield
coallocation solutions for two of the benchmarksoduced
additional improvements (12% and 22%) but the éffiovolved
suggests implementing an automated version for -$gfe
languages, such as Java and C#.

Categories and Subject Descriptors D.3.4 [Programming
Language$: Processors-€ode generation, optimization, run-time
environments

General Terms Performance, Measurement.

Keywords hot data streams, data profiling, dynamic allaoati
memory layout, cache optimization, data locality.

1. INTRODUCTION
The rapidly growing processor-memory performange fygs made

effective cache memory utilization an importalgterminant of
overall program performance. Traditionally, hardevaplutions to
this problem include larger, more associative cachen-blocking

Permission to make digital or hard copies of all or part ofwhisk for personal o
classroom use is granted without fee provided that copies are detandistributec
for profit or commercial advantage and that copies bear thiserentid the full citatior
on the first page. To copy otherwise, or republish, to post on senvtrsedistribute
to lists, requires prior specific permission and/or a fee.

PLDI'06, June 11-14, 2006, Ottawa, Ontario, Canada.

Copyright© 2006 ACM 1-59593-320-4/06/0006...$5.00.

90%) [3, 16]. This 90/10 rule makes these hot dhjacts attractive
targets for software-based cache locality optindzet In addition,
recent research suggests that rearranging thesgatwibjects in
memory could produce potential cache miss rateatezhs of up to
80% [3].

While many cache-conscious data placement techsiceést
[2,5,6,14,19,20], they suffer from two drawbackisst: their place-
ment decisions are guided by object/field frequencypairwise
affinity profiles, which are crude approximations a program's
temporal data reference behavior. Next, their laymcisions are
determined by fairly ad-hoc heuristics. These cath e serious
limitations in the light of research that has shothat layouts
guided by inexact profiles can be far from optinsadd layout heu-
ristics cannot be both robust and effective (irk consistently
well for a wide variety of programs) [15].

In contrast to many current cache-conscious dateeptent tech-
nigues, our technique relies on more precise andgilee profile

information that is nevertheless cheap to coll&13], and rela-
tively stable across different program runs [4].abidition, it uses
an efficient polynomial optimal-approximation algbm to pro-

cess the profile information and produce a good éatout, rather
than rely on ad-hoc heuristics.

This paper builds on research that shows how toiefitly capture
accurate temporal data reference profiles [3]. i@hi's whole pro-
gram streams (WP33 a compact yet complete representation of a
program's data reference behavior. This WPS reptatsen explic-

itly encodes regular access patterns and pernfitseet extraction

of hot data streamswhich are sequences of consecutive data refer-
ences that frequently repeat in the same ordes phper's key
insight is that cache-conscious coallocation obtadata streant,

can be achieved by isolating and combining allocesites oH's
data members, such that intervening allocationsirmgffinom other
sites are separated. In more detail, coallocati@achieved through
several separate heap regions where objects thaasecutively
allocated in a region are placed contiguously. @&halysis deter-
mines which allocation sites to direct to the saeggon to achieve

1 Work done while author was an intern at MicrosasBarch.

(a) Original Layout (x; is allocated at allocation siteX and is the program’s i-th allocation)

‘ by ‘ dp ‘ a3 | dy | bs | €6 | d7 ‘ dg ‘ dy ‘010 ‘011 |312 |d13 |a14 | bys ‘ {
(b) An access trace that contains a hot data streakh = agbsCyq

| ---PresaghsCgdsagbscy odgesaatya 42absci oo |

(c) Coallocating hot data stream H = gbgCyg

| area for allocation sites {A, B, C} ‘ by | a3 | bs | C10| Cll‘ a12‘ a14‘ P15 ‘ |
| area for other allocation sites ‘ da ‘ dg | € | d7 | dg | do ‘ d13‘ ‘ ‘ | |

Figure 1. Coallocating a hot data stream.

coallocation, and which allocation sites preverdliozation and
must be isolated in a separate region. We deliblgrédcus only
on objects in hot data streams, since these typitadur most of
the cache missd8,16].

Figure 1(a)hows an example data layout, where objects art sma

and placed contiguously according to the progrdacation order.
X; is allocated at allocation si¥ and it is the-th global allocation
request in the program. For exampleis allocated in allocation
site B, and this is the first object allocation in thegram.d, is the
next allocation request in the program. This objedallocated in

allocation siteD. Figure 1(b) shows a portion of a data reference

trace containing a hot data strefdnas bsc,q, a regular reference
pattern that frequently repeats. Allocation sifesB, C allocate

objectsas, bs, ¢ respectively. Colocating these objects, which are

frequently accessed contemporaneously, can signtfic reduce
cache misses, especiallyHf fits in a cache block. Even when it
does not, the resulting improvement in spatiallibcaan increase
the effectiveness of hardware prefetching.

We achieve this as shown in Figure 1(c) by isotptatiocation

requests from site&, B, Cand separating allocation requests from

other sites (i.eD, E). Though other objects allocated at site®,
C are also placed in the same heap region as thddtatstream
objects, this is acceptable as our primary objedtivcolocate hot
data stream objects. Note that it is not alwaysiptesto colocate
hot data stream members in this fashion. For exanifig;d,a, 4 is

a hot data stream, intervening allocations of dbjedlocated at

allocation sited\, D (e.g.,dy, a;) that cannot be separated, prevent .

coallocation.

This paper describes a profile-based analysis toohnal , that
produces a cache-conscious coallocation of heapctsbjthat
participate in hot data streams. We show that agtooallocation
can be reduced to theeighted set packing(WSPBjoblem, which
is known to be NP hard [7]. Henaenanal uses the best known
polynomial time approximation to the WSP probler@][to arrive
at the object coallocation solution.

In addition, we present an instrumentation taotj nstr, that
replaces a program's heap allocation requestsaaith to a run-
time coallocation libraryconal | oc, to enforce the coallocation
solution layout. For example¢cm nstr would enforce the
coallocation solution in Figureldy replacing allocations at sit@s

B, C with calls toconal | oc4, and allocations at other sites
including D, E with calls tocomal | ocy (eachcomal | oc;
manages a separate heap region where consecuéiletated
objects are colocated). We demonstrate averageugoectime
improvements of 13% using this technique.

Unfortunately, object coallocation cannot alwayd$uily exploited
on older machines where cache blocks are often 82lpytes,
though current-generation machines offer greatguodpnities
(for e.g., the Pentium 4 and the Itanium have 1@ h2 cache
blocks). However, hardware prefetching increases dffective
cache block size by fetching the next few sequkotiehe blocks
on a cache miss.

Previous work on cache-conscious data layout heeeased this
by rearranging objects at a field granularity usiechniques such
as field reordering, hot/cold structure splittingida merging

structures [6,14,19,20]. Extendirggranal to analyze potential
coallocation at a field granularity produces sigaifitly larger

cache miss rate reductions. Since coallocatingddiels a
generalization of the combination of object fieldordering,

splitting, and merging, this analysis permits eating the

contribution of each individual technique to theldi coallocation
solution. We show that restrictions on field reag@aments yield a
spectrum of coallocation solutions, which tradezdte of layout
enforcement with larger cache miss rate reductiBnsmisingly,

in several cases most of the benefits of the gérsmtation

(arbitrary field rearrangement) can be achieveti wisubset of the
field restructuring techniques. Hand-implemented eldfi
coallocation solutions for two of the benchmarksoduced

additional improvements (12% and 22%) but the éfiovolved

suggests implementing an automated version for -$gbe

languages, such as Java and C#.

The paper's main contributions include:

A novel and efficient profile-based analysis fache-con-

scious coallocation of hot heap objects that argezoporane-

ously accessed (Section 2).

¢ An extended analysis for coallocation at field rgrarity,
which generalizes field reordering, structure $phf, and
structure merging(Section 3).

¢ An automatic implementation of object coallocatiand a

semi-automatic implementation of field coallocatighat

shows that programs have significant coallocatippostuni-

ties and that can be exploited to produce executio®

improvements (Section 4 and Section 5).

1.1 Related Work

Seidl and Zorn allocated heap objects in four gfneéd memory
regions based on their summary reference charstitsri[17].

Rubin et al., used a search-based learning techrtigclassify
heap objects according to runtime characteristich sis allocation
calling context, object size, etc., and allocatgects in separate
heap regions based on this classification [16].hBiiese tech-
nigues improve virtual memory performance by insieg page

utilization but have little, if any, impact on cactperformance.
ccmal | oc is a cache-conscious heap allocator that usesgimg
mer annotations to allocate contemporaneously aedeslata
objects in the same cache block [5]. We would fikachieve such
cache-conscious coallocation automatically using kot data
stream profile. Guyer and McKinley used static gsial to deter-
mine object connectivity and used the garbage ctolt¢o colocate
objects [10]. We have similar goals but use arcieffit approxima-
tion algorithm in place of heuristics to guide digout. Huang et
al. use profile information to modify the garbagdector traversal
order to improve locality [11]. Calder et al. ajguli placement
techniques developed for instruction caches to [@td hey use a
compiler-directed approach that creates an adghlesement for
stack variables, globals, and heap objects in daleeduce data
cache misses. Their technique uses the tempoagiorethip graph
(TRG) [8], shows significant gains for stack obgennd globals
but little improvement for heap objects. On theeothand, we
focus solely on heap objects, use the hot datarstpgofile, which
is more precise than the TRG since it does notritpe an arbi-
trary temporal reference window size, and demotessanificant
data cache miss rate reductions for some progrZhmng et al.
use whole-program reference affinity to perfornidfikevel trans-
formations, such as structure splitting [20]. Ird&idn to field-
level transformations, we perform automatic objeatllocation
using hot data streams as our locality model. keatet al. use
compiler pool allocation to partition heap objel@$]. Their parti-
tioning is statically enforced by the compiler wéas we use hot
data stream profiles and an analysis to specifidgaiprove cache
locality.

2. COALLOCATING OBJECTS

This section describes our algorithm for coallawgtheap objects
that participate in hot data streams.We first briefview hot data
streams construction and then discuss a simple Inodstimate
the benefits of coallocation. Next, we describe mvhmt data
stream objects may be coallocated. Finally, we gmesa cache-
conscious object coallocation algorithm.

2.1 Hot Data Stream Sets

Chilimbi used a compression algorithm called Seguito
construct a compact context-free grammar representaf a data
reference trace, which can then be efficiently ywed to detect
hot data streams (see [3] for details). A hot dgtteam is a
frequently repeated sequence of consecutive dé¢aenees (in
other words, a frequent data access pattern). Heat" of a data
stream is its length (number of stream referencesjiplied by its
frequency. A minimal hot data stream is the mininpagfix
(exceeding length) of a hot data stream with a heabr more.
The hot data stream analysigresented in [3] detects a $&tof
non-overlapping minimal hot data streams such rif@rences to
stream elements iB yields P% coverage of all trace references
(usually the analysis se®=90%).

The size of hot data streams detected by the dsadyadjustable.
Based on our experimental results, we set the aisatp detect
minimal hot data stream that contain at léaand not more than
20 elements. While longer hot data streams offer rmoedlocation
opportunities, they also increase the computatiamat of the
coallocation analysis. The analysis also computesnbrmalized
heat value for each hot data strearB,isuch that a hot data stream
H with normalized heat valud, coversH % of thereduced trace

(i.e.,H covers P*H)% of the original trace).

For our purpose of coallocating hot data stream bsem
contiguously, the exact order of objects in a taiadstream makes
little difference as long the objects are in thmsaache block, and
ignoring the order also provides more coallocatigportunities.
Hence, we reduce hot data streamisdbdata stream setand our

(a) hot data streams with potential miss reduction

ht stream coalloc- | mr coalloc- | w
atable ation set
objects

0.6 ahsC10 ag, bs 1 TABI |06
8, C1o 1 {AC} |06
bs, ¢10 1 {B.C} |06

ag, b, C1o 2 {ABC} |12

0.3 thb5e6 bis € 1 {B.E} 0.3
dg, & 1 {D.E} |03

0.1 | dyesainang dy, & 1 {D.E} |01
€6 12 1
€6 A1q 1
Q2 Qg 1 {A} 0.1

€ B2 A4 | 2 {AE} |02

(b) accumulated and normalized coallocation set nssredn.

coallocation set accumulated normalized
miss reduction | miss reduction

{A,B} 0.6 0.29
{A,C} 0.6 0.29
{B,C} 0.6 0.29
{A,B,C} 1.2 0.57
{B,E} 0.3 0.14
{D,E} 0.4 0.19
{AE} 0.2 0.1

{A} 0.1 0.05

(c) possible weighted set packing

set packing miss reductior

1 {A.B.CIL{D,E} 0.76

2 {A,B}{D,E},{C} 0.48

3 {A,C},{D,E},{B} 0.48

4 {A,C},{B,E},{D} 0.43

5 {A,E}{B,C},{D} 0.38

8 {A},{B,C},{D,E} 0.52

9 {A},{B,E},{C,D} 0.19

(d) coallocation layout for set packing (1)

{A, B, C} by | ag| bs | 10 Cr1|@17 @14 b1g
{D, E} dz| dyl € |d7 |dg [dg |dyg...

Figure 2. Coallocation algorithm example.

if all objects are allocated contiguously accordiogallocation
/I compute cache miss reduction weights for coalion sets. order (denoted byllocation orde). In this manner we compare

/1 object coallocatableommunicates the criteria for coallocatir ~ °UT Solution against botturrent layoutandallocation order
/I objects (in Section 3 we use computeWeight wifferent 2.3 Coallocatable Objects

I coallocata_blllty deflnmons). Informally, members of a hot data streétrcan be coallocated if
computeWeight (object coallocatable, w) all intervening allocations between memberstbfcome from
allocations sites other than the ones used toabamembers dfl.
Even if all members dfl cannot be coallocated it may be possible
to coallocate some of them; thus our algorithm (Seetion 2.4)
considers coallocatable objects in a substreamhot data stream

Il first phase (see Figure 4):

/I second phase: compute approximate weightedesiny
/I according to Halldorsson’s algorithm.
Il 3 is the set of hot data streafiigyspis a partition of o0

/I with approximate maximal cache miss reduction. H.
IHowsp= WSP(S aioc (30, {<C,w(C)>|w(C) > 0}) Definition: Obiects i 4 to beoall bl ©
Ry = ZcoswspW(C) efinition: Objects in H are said to beoallocatablef for every

program object x.7H (where xdenotes an object that is allocated

output 6
P wsP at site X by the t-th global allocation requestlie program):

/I third phase: compute cache miss reduction fiiven layout, Min(Tyi0c(H)) <= t <=maxXTyoc(H)) impliesX 7S 0c(H)
/l and then normalize weights.
for every H 0 x where, ()H = {xd%;, ... ¥, } is a set ok (unique) objects,
Wotal =W ot + (IH] - 1) * heat(H) .
/I C is a set of coallocatable objects. (ii)¥™,, denotes an objects allocated at allocationiteby the
C=19) inrth allocation request of the program,
loopa O H according to layout order
if objects in C U a are contiguous (ii)) Saoc(H) ={Xj1, X} is the set of allocation sites for objects
C=CUa inH, and
else) . L))
W =w | +(|C| - 1) * heat(H) (IV)Ta||90(H) = {i1, ..., it is the set of allocation request times for
Cc={a} the objects iH.
R =W | Wiog If objects in H are coallocatable, then they can be placed
contiguously in memory, if (i) allocation sites 8y,,.(H) allocate
I fourth phase: rglate (sub)pptimal coallocatiod &he given in a designated memory regidh (i) Memory regionM allocates
/layout cache miss reduction numbers. consecutive allocation requests contiguously, aiijl @bjects
R°=(R ,-R DI(L-R) allocated at sites not iBy,c(H) are allocated in a separate
output R | ° memory region.
Figure 3. Coallocation Algorithm. In Figure 2(a)os andc; (that come from allocation sit@&andC,
analysis also ignores global and stack references. respectively) are coallocatable since the interwgrallocations

egd;dgdg come from other allocation sitesO{ E}). d, andbys,
which are part of a hot data stream that cow&9%b of the
reference trace (heat = 0.3) are not coallocatibled; (and also
dg, dg) is an intervening allocation fro that comes fronD,
which allocatesd,. We usecoallocation seto denote the set of
allocation sites of coallocatable objects; thus 8, G is the
coallocation set for coallocatable objeaisbs, ¢,o. Enforcing this
coallocation set saves two cache misses for evamyrence of the
In the worst case (denoted kmorst-case scenarjpeach stream hot data strearaghsc;g according to the simple model presented in
data access can result in a cache miss. Then, Figore 2(a) Section 2.2.

coallocatingbs and c;g could save one cache miss for every 2.4 Basic Algorithm

occurrence of the streambg ¢, if bg andcyq fit in one cache ; . .

. . .. Figure 3shows the algorithm for coallocating hot data strea
block, and coallocatingg, by andc;q saves two cache misses it o goal is to find a coallocation strategy thatximazes cache
these fit in one cache block (showmim column). miss reduction. In a first phase, shown in Figuréo# every hot
For a more realistic estimate of cache miss rednctiue to ~ data stream, coallocation sets are computed aldthghre number
coallocation, we compute the potential cache mistuction for of cache misses avoided if the coallocation setni®rced. This
two other layouts over theorst-case scenarjand then compare ~ Step involves an exponential ~exploration of all giole
these reductions with those obtained with our ocalion coallocations. However, this is tractable sincedait streams are
solution: (i) the existing layout produced by therrent heap usually small (and recall that we set the analysietect minimal
allocator (denoted bgurrent layouy, and (ii) the layout produced ~ hot data stream with length at least 2 and notexkiog 20). For
example, in Figure 2(&93, bs are coallocatable; this coallocation
1 . — - will eliminate one cache miss, and the weightedsmesluction for

Our currentllmplementatlon. linearizes" the Iaytmt.he. access g (fas, b)) = {A, B} is 0.6. If several objects from the same
pattern and ignores both object and cache bloek $is increas- gjte are included in a stream care must be taketortouble count
es spatial locality and the effectiveness of hardvpasefetching.

2.2 Avoiding Cache Misses by Coallocation

Figure 1shows a sequence of objects allocated by a program
during executioh Now consider Figure 2, which is an elaboration
of Figure 1. Figure 2(ajeports the result of the hot data stream
analysis. The strearaghsc,o covers60% of the reduced trace,

stream d4b,s85 covers30% of the reduced trace, and stream
e504a1 5814 coversl0% of the reduced trace.

/I get cache miss reduction for coallocation sets.
Il 3Cis the set of hot data streams.
I/l heat(H) gives the normalized heat of H.
Il coallocatableexpresses the coallocatability criteria.
computeWeight (coallocatable, w)
forH O I
Wotal =W ot + (IH| - 1) * heat(H)
/I Compute weights for coallocation sets
/I corresponding to subsets of H.
forH OH
if objects in H’ are coallocatable
w(H’) = (JH'| - 1)* heat(H)
else
w(H)=0
/I attribute weights for coallocation sets avoiddayble
/I contributions, by computing the maximal
/I partition contribution for a coallocation set
for each coallocation set C

¢={H ;’|H;H ;7OCOwMH ;)>0 g

Saloc Hi)=S aioc (Hj) O
H' OHj"=>w({H ;)=0}
W(C) = ZygeW(H ;")

/I normalize weights.
for each coallocation set C

w(C) =wW'(C)w total

Figure 4. Computing weights for coallocation sets.

cache miss reductions. For examglg 8, andeg, a;4 andeg, a,,,
ay4 are all coallocatable and come from the same aeetion set
{A, E}. To avoid double counting we use a polynomaédorithm

to find the maximal partition of coallocatable dtife that come
from a coallocation set. Thus, in Figure 2(a) aghied miss
reduction for coallocation set {A, E} only accountsr f
coallocatingeg, &5, & 4. Finally, we accumulate the potential miss
reduction per coallocation set and then normalizehbwn in
Figure 2(b).

In order to maximize the benefits of coallocatietssin a second
phase, we compute a partition of the set of allonasites, such
that cache miss reduction is maximized. The partiproblem is
an instance of a known NP-hard problemwge{ghted set packing
(WSP)} defined as follows: Given a sebf m base elements and a
collectionC = {Cy, C,, ... , G} of weighted subsets & with a
weight functionw, find a subcollectiorC' O C of disjoint sets of
maximum total weight

>(c0c)y™(Ci)

In our caseSis the set of hot allocation sites, i.e., thedfetites
allocating at least one object that participatea hot data stream,
C is the set of coallocation sets, andG) is the normalized

potential cache miss reduction. According [é] the best
approximation algorithm for the WSP problem is that
Halldorssor{12]. Form = |C], this algorithm approximates WSP to
within v'm of the optimal solution in time proportional tcetime

it takes to sort the weights. Although the appration algorithm
may Yield poor results for large valuesnafwe show in Section 5
that this is not a significant problem for mostoafr benchmarks.
This is because: (i) the number of hot allocatitbessn is small,
and (ii) Halldorsson algorithm is a greedy-stylgaaithm. Our

empirical results show that in most cases muchefcache miss
reduction benefit comes from a few disjoint coadliben sets; thus
even for a largen these coallocation sets will be selected by the
approximation algorithm, yielding most of the pdtehbenefits.

In Figure 2(c) possible partitions of allocatiotesiare presented.
For {A,B,C},{D,E} we get 76% cache miss reduction ovhe
worst-case scenario. Applying Halldorsson's WSPorélym
indeed yields this partition. Figure 2(d) presetits layout of
objects using the {A,B,C},{D,E} partition. Hot data e&m
aghsCy g is allocated contiguously, ardjeg which participates in

two hot data streams is also colocatebhe result of the second
phase is an approximate coallocation solution (P\é8lution™),
and a numbeR, reflecting cache miss reduction over a worst-case

scenario.

In a third phase, the potential cache miss redadtiothe "current
layout" and "allocation order" layouts discusseévpusly are

computed and related ®,. The resulting numbeR,' reflects the
expected cache miss reduction over a given lay®uatce in our
example R for both layouts is 0 &g, is assumed to be the worst-
case layout, the benefits for coallocating {A,B,C},iD,are 76%
over both layouts.

3. COALLOCATING FIELDS

Object coallocation is most beneficial when theocated objects
are smaller than a cache block, though next-caceeHardware
prefetching provides benefits for larger objectsvadi. However,
even if colocated objects are smaller than a cablek,

coallocation at an object field granularity shoplidduce larger
benefits.

Changing the trace abstraction level, so refereameabstracted to
object field accesses rather than object accegeesits applying
the object coallocation algorithm described presipuo achieve
field coallocation. The resulting field coallocatiosolution
requires that fields of an object are independeadthcated. While
such layouts (though not completely arbitrary figlthcement
without high cost) can be enforced with compilepmurt in
strongly typed languages such as Java, the impletn@m effort
and cost for enforcement in languages such as liRely to be
prohibitive.

To address this, we express a field coallocatidutien in terms of
common data restructuring techniques such as fietddering,
object splitting, and object merging. Such reswuits on field
rearrangements yield a spectrum of coallocationt®wls, which
tradeoff ease of layout enforcement with largerheamiss rate
reduction. Promisingly, empirical results (see Becb) show that
for our benchmarks, most of the benefits arise feooombination
of these restructuring techniques.

3.1 Split and Merge Field Coallocation

For field coallocation we assume (for the momentattan
allocation request for an object withfields, is split inton field
allocation requests coming fromdifferent allocation sites, one for
each field. In addition, we assume independentatfion of fields
and fields of an object may be scattered in thephEBagyure 5(a)
shows an allocation siteallocating a 3-field object, and sitBsC
allocating 2-field objectsA,Ay,Ag are the corresponding field
allocation sites, which independently allocate fredds of A.

1 This layout also coallocated.,, al, for ““free". We could in prin-
ciple attribute this coallocation to {A,B,C} as well.

Figure 5(b) shows the layout of 4 objects allocaed,B,C In
Figure 5(c) the same layout is expressed at a fietshularity,
where aj; denotes thg-th field global allocation request in the
program allocated at field allocation shg(i-th field of an object
allocated atA). Thus, objecty, is allocated by three consecutive
field allocation requests coming frof, A, Ag allocating fields
alg, a%, a3 respectively.

With this abstraction, we can adapt the coallocatdgorithm
presented in Section 2.4, with objects replacefidigs. Consider
the example in Figure 7, which assumes the allogasites of
Figure 5(a). The two leftmost columns of Figure)7¢how the
result of hot data stream analysis on a field acdesce. The

streamal; a3; alg a3g covers 80% of the reduced trace, and the
streama2, b1, c2,5 covers 20% of the reduced trace. The next four

columns show the computed weights for field coatam sets.
This and the next step shown in Figure 7(b) fouaadating and
normalizing weights of field coallocation sets igaetly as
described in Section 2.2. The meaning of (R),(S)8vexplained
later in Section 3.2. In Figure 7(8)/A\ m method indicates the
results of the general field coallocation solutiBimce this solution
can be expressed in terms of splitting objectsntiependently
allocate their fields, together with merging field$ different
objects at different sites, we call split and merge For this

example, thesplit and mergesolution is optimal. We usE,S’\m to

denote the potential cache miss reduction overvangiayout
("current layout” or "current order").

This independent allocation of fields gives finentol over object
layout and our coallocation algorithm may find eyéxr number of
cache-conscious placement opportunities. Howelier,comes at
the cost of maintaining the program semantics witle
transformed layout, since for example, the compksumes that
fields of an object are placed contiguously (orlesst not at
arbitrary locations).

3.2 Split or Merge Field Coallocation

This section presents an algorithm for coallocatfieds by

limiting object restructuring to simple techniquesich as field
reordering, object splitting and object merginge ey restriction
is that an object can either be split, or it camsged with other
objects, but it cannot participate in both. Thushilev the

coallocation algorithm considers coallocation opyaities at the
field granularity, the solution itself is enforcéatat the object
allocation site level, eliminating the need to sfamm an object
allocation into multiple field allocations. Implemting the

resulting coallocation solution is much simplertte cost of some
lost opportunity for field coallocation.

Before presenting the algorithm we define somelfealallocation
terms:

(i) fields in a hot data stream are said to fledd reordering
coallocatableif field reordering suffices to guarantee coalkima
of these fields. For example, in Figure 7(a)y,a3; are field
reordering coallocatable, since reordering thelfiedf A, placing
the first and the third field together, ensuredlooation. In Figure
7 benefits attainable by reordering are marke)y

(ii) fields in a hot data stream are said to dkject split
coallocatable if object splitting (either with or without field
reordering) suffices to ensure coallocation of ¢héiglds. For
example, in Figure 7(a#33,a3; are field split coallocatable, since
splitting the fields ofA, while placing the third field of instances of
A contiguously ensures coallocation (see Sectior 4 practical
implementation of splitting an object as describdd)Figure 7
benefits attainable by splitting an object are redrky(S).

(iii) fields in a hot data stream are said to bleject merge
coallocatable if merging the types of the respective object
allocation sites (either with or without field relering) ensures
coallocation of these fields. For example Figure 7(a).a2,,bl,
are object merge coallocatable, since mergingythestallocated at
A andB, and reordering the fields to place the second fi¢ A
together with the first field dB ensures coallocation (see Section 4
for a practical implementation of object merging). Figure 7
benefits attainable by merging objects are marke@/t).

We now describe our split or merge field coallomatalgorithm.
First, we change the coallocation criteria in thistfphase of the
basic algorithm (see Figure 4). Instead of reqgithat objects in a
hot data strearhl are coallocatable, we require that object$lin
are field reorder coallocatable, object split aoeditable, object
merge coallocatable, as shown in Figure 6 (firstsef). Next, after
exploring simple placement opportunities at theelewf field
allocation sites, we use the WSP approximationampute the
benefit of using a simple placement technique & dhbject
allocation site level, as described in the secdrabe part of Figure
6. Split and also reorder techniques are not agigliicto more than
one allocation site at a time (i.e., we do now wallcombining
several allocation sites and then splitting theriv)erge is
applicable only for two or more allocation siteatthave not been
split. However, the algorithm includes the benefifs simple
reordering in the merge coallocation solution.

For example, the results of applying the differentllocation
definitions to the hot data streams is shown inufggrz(a) and (b)
using (R), (S), (M) denoting field reorder benefits, object split
benefits and object merge benefits respectivelenTm Figure
7(c), we show the results of applying WSP at thell®f object
allocation sites. For field reordering, onkx has reordering
benefits, by placing its first and third fields &tger. For object
split, again onlyA has benefits by splitting objects coming frém
so the first and third fields of these objectsgezed contiguously

(a) Allocation sites field 1 M1
A | field2 P2 B | field1 [Pt c field 1 C1
field 3 {3 field 2 B2 field 2 [©2
(b) Original layout ‘ & ‘ b ‘ 3B ‘ €4 |
(c) Field layout ‘ all‘ azz‘ a33,‘ b1, | b2s | a16| a27| a%‘ Clg‘ c214 ‘

Figure 5. Expressing layout at field granularity.

Il first phase: compute normalized weights fordfieballocation
I sets according to reorder, split, merge coatlonaconditions.
/I computeWeight is given in Figure 4.

computeWeight(field reorder coallocatable,w)
computeWeight(object split coallocatable,w s)
computeWeight(object merge coallocatable,w m

/I second phase: approximate benefits for everyephent

Il technique at the granularity of object allocatsites.

/I OBJ(X) gives the object allocation site for a givendiel

// allocation site, i.e., OBJ{X= X.

/I We also extend OBJ to sets of field allocatitess

for each object coallocation set C*

if[C "|=1 // compute split + reorder benefits

Gwsp=WSP(C {<C,w ((C)>|OBJ(C)=C })
W (C) = ZcoowspW(C)
W{C) =w (C)
Cswsp= WSP(C {<Cw 4(C)>|OBJ(C)=C })
Ws(C) = ZcaoswspWs(C)

Weyn(C) = max(w (C), w 5(C))

else //|C | >1 merge candidates
Chwss WSP(C {<C,w {C)>|OBJ(C)=C })
We{C) = ZcoomwsV n(C)
Weyr(C) =w {C)

Il third phase: find field coallocation solutionsdashow potential
/I benefit over a given layout.
II' R, is potential cache miss reduction for a given layo

Fwsp= WSP(OBJI(S o (I0).{<C ~w>|w (C)>0})
R"=(ZomwspW, -R)(1-R)
Fswsp= WSP(OBI(S o (90).{<C ~,ws>|w ¢(C)>0})

R®=(ZgmswspWs-R ()(1-R)
FmwseE WSP(OBJI(S 4o (90).{<C ~w lw {C)>0})

R™=(Zoommws®m-R)(1-R)

Hsvmwsp= B
WSP(OBJ(Salloc (SC))‘{<C W st>|W svm(c)>0})

R VM= (ZcmsvmwsWsym-R 1)(A-R)
OUtpUtR |r,R|S,R|m,R|Svm

Figure 6. Field Coallocation Algorithm.

(see Figure 7(e) fok's split layout). Finally, for merging objects,
several opportunities exist. Merging eitherBor A, Cor B, C
gives 0.07 potential benefit, while merging A, Bgies 0.14.

In Figure 6 (third phase part), the WSP approximat®mnce
again applied for every placement technique to @pprate the
optimal disjoint subsets of object allocation sitahat are
candidates for layout chandeswe denote byR, R, R"
reduction of cache misses over a given layout ield freorder
coallocation, object split coallocation and objecherge
coallocation respectively.

1 For object splitting and field reordering coallaoat solutions
WSP is actually the identity function since all tt@allocation
sets are of size 1, thus they are pairwise disjoint

The results over a worst-case layout and overayeutl shown in
Figure 5(c) are the same sinBgis 0. In Figure 7(dy method

shows the WSP solution for field reordering coadlimn. By
(a) hot data streams: H = ala3algads Hy = a%blsc2,g

ht | strm coallocatable | mr | coalloc- | W
objects ation set
0.8 Hy al, ax(R) 1 {ALAz} [08
alg, ax (R) 1 {ALA3} [0.8
a3, al(S) 1
al, al (S) 1 {A 0.8
a3, ax(S) 1 {A3} 0.8
al, a3, ak(S) 2
a3, als, ax(S) 2
al;,a3,alg,a3%(S) 3 {ALA3} | 24
02| H a2, b, (M) 1 | {A,B} [02
a2, c21 (M) T [{A,C} |02
by, c2;0(M) 1 | {B,C} |02
a2, bl, c2zogM) | 2 | {A,B,C| 04
b) Normalized miss reduction
coallocation set accumulated normalized
miss reduction | miss reduction
(A LASNS) 2.4 0.86
ALAIR) 16 0.57
{A3(S) 0.8 0.29
A0S 0.8 0.29
{A,,B} (M) 0.2 0.07
{A,,C} (M) 0.2 0.07
{B1.C} (M) 0.2 0.07
{A5BL.CY (M) 0.4 0.14
(c) WSP for fields at object allocation
tech site(s) field set packing mr
r A (A LALA D) 0.57
s A {A1LA3L{A 5} 0.86
m A B {ALBL{A 1L, A3BY) 0.07
m A, C {A,,CH{A 1.A3,C} 0.07
m B, C {B1.C}.{B »,C} 0.07
m | ABC {A5B1,.CH{A 1,A3B,.C]} 0.14
(d) WSP field solutions
technique set packing miss red.
Sl ALAFIA 2BLCHB 2C I
r A 0.57
s A 0.86
m A B, C 0.14
s\/m split A, merge B, C 0.93
(e) sVm layout
{A split aly a33|al6 a3 ‘ ‘322‘ a27|
{B,C}merge | P1ac210 b25Cly

Figure 7. Coallocating Fields example.

simply reordering the fields & (placing the first and third field as
shown in Figure 7(b)) we get 0.57 potential caclesmeduction.

WSP solution fors method shows that for splitting the objects at

allocation siteA (placing the first and third field together aswho
in Figure 7(b)) we get 0.86 potential cache miskiction. WSP
solution form method shows that for mergifgB,Cwe get 0.14
potential cache miss reduction.

Finally, the algorithm computes a hybrid solutigplit or merge
where objects at an allocation site are eithet,spliparticipate in a
merge with objects from other object allocatioresitor fields of
these objects are just reordered. Thus, for evigjgcbcoallocation
set, the algorithm computes the maximal benefitioled either by
split, reorder or merge (denoted Wy,). Then applying WSP to
object coallocation sets withg,,, (as shown in Figure 6, third
phase) gives the desired coallocation solution.

In Figure 7(d)sVm method shows the WSP solution for split or

merge technique. Splittind\ yields 0.86 potential cache miss
reduction, and merginB,C gives 0.07 more potential, for a total of
0.93. Figure 7(e) shows the layout obtained by yapglsplit or
mergecoallocation solution. The area betweslg a3 anda2; is
reserved for placing the first and third fieldsfofther allocations
requests from sité.

We denote b)R,SV”‘ the expected cache miss reductiorsplit or
mergeover a given layout (either "allocation order" "Gurrent
layout”)We expecR' <= RS <= R>VM<= RS\ and alsR <=
R|m<= Rlst<: Rls/\m_

4. IMPLEMENTING COALLOCATION

crmanal produces the coallocation solution that is enfdrbg
cminstr, and a coallocation librargomal | oc. cmanal uses
Sequitur to compress a reference trace, which earbtained with
low-overhead using the technique describefl8). It produces a
context-free grammar representation that is effityeanalyzed to
find hot data streams with their associated nomzedliheat value
(see Section 2.1)cnanal applies the coallocation algorithm
described in the previous sections to produce #eaan of
coallocation sets. Currently the reference abstnaagranularity
(object or field) is determined when the trace igdoiced, while
the allocation context abstraction level (i.e.1 jhe allocation site,
or a calling context of some lenghis a tunable parameter.

cmnstr is an instrumentation tool, based on a x86 binary-

editing tool called Vulcan [18].cmi nstr enforces the
coallocation solution produced bgmanal by replacing the
program's original heap allocation calls with calis our
coallocation library, comal | oc. These comalloc calls are
implemented by an independent dynamically linkebraliy

(comal | oc. dl |') that handles coallocation of objects or fields

as described in Section 4.1. Then, the instrumempi@gdram
running withcomal | oc. dl | generates the coallocation solution
layout. Note that the instrumentation tool updatiEbugging
information in accordance with the modificationsriakes to the
target binary, which allows standard debuggerstaded with the
optimized binary, if needed.

4.1 Comalloc Library

We enforce the coallocation solution by reservingseparate
memory region,M; for each coallocation se€;. Consecutive

allocation requests from sites in the same codilmeasetC;, are
assigned consecutive addresseMjnAllocation sites not in any
coallocation set are assigned to heap relylgn

We use theheap layersinfrastructure [1] to implement this
memory management policy. Heap layers permits magag
several separate heaps, where each heap is indeylgnd
managed, possibly with a different policy.

Each heap/; is managed witbomal | oc functions, i.e, functions
of the formcomal | oc;, allocating memory from the respective
heap (there is also support fiealloc, calloc throughcoreallog,
andcocallog, respectively). Heap layers provides an easy way t
set the characteristics and memory management af baap,
simply by changing its type defined by a mixin emplates
providing different layers of heap functionalifft]; thus after
enforcing a coallocation solution each helslp can be tuned
independently.

In the current implementation, free operationsian@emented by
recording the owner heap of every object in itsdeear his is done
by ensuring that every heap includesvaner Heap layer as part
of its type. When calling &r ee, the actuaf r ee; is dispatched to
the owner heap of the object being freed. This oship
information is stored separately from the objecavoid reducing
coallocation benefits. In addition, objects accesaee typically
much more frequent than free operations.

4.2 Split, Merge using Comalloc

We use instance interleaving to split an object].[18stance
interleaving splits object instances, such thafjdently accessed
instance field are laid out contiguously in memdtyis is done by
adding special padding fields to the object typéinid®n and
allocating the objects using an instance intertegwibrary, ialloc
(described in [19]), which maintains the invariawit placing
frequently accessed fields of object instancesigoaotsly. We
adapted the ialloc library to work with the heapyeles
infrastructure; thus da al | ocHeap layer is used to enforce
splitting an object.

Merging objects is done through combining the objgpe
definitions (i.e., the combined type contains hk fields of the
types being merged) and using a new heap legegeHeap for
allocations. IfA, B, ... , Kare merged, upon allocation requests
from these sitesyer geHeap determines whether a new object,
large enough to store the combined object typeuldhde
allocated, or if the last allocated combined obgest be re-used to
satisfy the allocation request. Consider an examwplereA, B are
merged allocation sites, and allocation requestsecfitomA, then

B and again fronB. mer geHeap will first return a new objeab
large enough to hold the combined type Af B. The next
allocation request frorB will be returned the address @f so that
the B portion ofo can be used. The third allocation request fBom
will allocate a new combined object, since the lalbcated
combined object was already used to satisfy ther peiquest from

4.3 Limitations

Our current implementation lacks access to typeriétion and
support for type manipulations. Thus, for examfiééd reordering
is done by manual source code modification. Moreoweir
instrumentation toolcm nstr relies on receiving the PC's of
mal | oc calls to be replaced byonal | oc calls. However, type
manipulations affect the binary code, thus curgemte have to
adjust the allocation site PC's listed in a fieddltocation solution.
On the other hand, the object coallocation solytidrich does not
require type manipulations, is enforced automdsicat addition,
splitting array elements is hard to enforce, sms@oted in [19] it
requires changes in the pointer arithmetic aroundaya

Benchmark| hot sites object reorde merge split split gr split and
merge merge
poxsim 24 16 14 17 21 23 24
twolf 27 24 7 15 13 19 19
vpr 19 14 6 10 6 10 10
mcf 4 2 1 1 3 3 2
perl 17 12 2 8 5 11 11
foxpro 272 12 184 42 227 238 256

Table 1: Coallocation solution in terms of allocatn sites.

expressions. In principle, a compiler can emploghsiayout
assuming precise type information. We enforcedyasglitting
manually (according to the coallocation solutiom) bne
benchmark mcf to experiment with its benefits. For other
benchmarks, we ignore array splitting suggested thg
coallocation solution. Finally, the use of C benehks pose a
problem with respect to type manipulation. As répadrin Section
5, sometimes field reordering can crash an appicatiue to
hidden assumptions regarding structure layout. Jinigblem is
eliminated in strongly-typed languages, such asoC#ava, and
techniques such as those described in [6][14] canuged to
automatically implement the field coallocation saos.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Methodology

We studied some memory-performance-limited progratmet

include vpr, twolf, mcf, and perl, from the SPEQDO0 suite,
boxsim, a graphics application that simulates sghbouncing in a
box, and, VisualFoxPro, a Microsoft database appbo. The

program were instrumented with Microsoft's Vulcamolt to

produce a data reference trace along with heapceaitm

information. The heap allocation information wadidor trace
abstraction at a object or field granularity depegdon the
experiment. We ran the SPECIint2000 benchmarks ein thst

input and small inputs for boxsim and VisualFoxBsogenerate
traces for coallocation analysis. The traces wexxgssed by
crmanal to produce object/field coallocation solutions, ieth
were enforced usingm nstr and ourconal | oc allocation

library. All performance improvements are repomtsihg the train
and ref inputs for the SPEC benchmarks and diffdegger inputs
for boxsim and VisualFoxPro. Measurements of cpoetiand
hardware performance counters were carried out @8aGhz

Pentium4 processor with 1 GB of memory and a 512RRache
running WindowsXP Professional. To minimize theeeff of

different allocator policies on runtime, we use Haene allocator
for allocating objects in the original benchmarlddar allocating
objects not in a coallocation set in the optimibetichmark. The
results represent an average of five runs (variatias less than
3% across the runs).

5.2 Object Coallocation Results

Table 1 presents allocation sites characterisfitkeobenchmarks
and the coallocations solutionkot sitescolumn presents the
number of program allocation sites that allocatgedb that
participate in hot data streams. The next 6 colupnesent the
number of sites participating in the correspondougllocation
solution. For object coallocation, the results @adié significant
coallocation opportunity. Note that the number of hllocation
sites in VisualFoxPro is an order of magnitudedatfan the other
benchmarks, though the number of coallocationdetermined by
the analysis is comparable. Figuresti®ws potential cache miss
reduction numbers when coallocating at the graitylaf object
addresses, where the base (i.e., no improvemenf¥is We
experimented with using different allocation cailincontext

abstractions, such as abstracting an object addeess calling
context of length ¢ leading to the allocation ddttiobject, where
c=1,2,3, but noticed no difference. Hence we usedlbcation
calling context of 1 for all subsequent experimefsr object-
oriented languages, such as C# or Java, that medkeytuse of
container classes through standard libraries, libeation calling
context will likely be quite useful for distinguisty between
different instances of these classes. In additium, coallocation
solution gives potential reduction in cache misséh respect to
two alternative layouts, current layout and allamatorder (see
Section 2.2), but we do not notice any significaifferences
between these. Hence we compare only against ¢uayout in
subsequent experiments. The analysis time to daterrthe
coallocation solutions from the access traces wasanably low
with the worst case (computing the field coalloatsolution for
VisualFoxPro) taking less than ten minutes.

Figure 8 indicates significant potential benefit fabject level
cache-conscious coallocation across the benchmiddugever, in
vpr andmcfthe potential cache miss reduction is attributedhiy
(more than 90% of it ifmcf to coallocating larger objects (120
bytes and larger). Nevertheless, as we will see, dptimized
placement still produces improvements in the preseif
hardware prefetching. ltwolf we get negative numbers, since in
this case the WSP coallocation solution yields e benefits
over worst-case scenario, which are less than éneflis of the
current layout over worst-case scenario. Our appraton
algorithm which is bounded to/|hot-allocation-siteg of the
optimal coallocation solution, is responsible fbist With the
exception of twolf, the potential cache miss reucindicate a
probably un-achievable (approximate) best case déamlocality
improvement.

Figure 9 shows executing time benefits from runrifrgprograms
with optimized cache-conscious object coallocalaymuts on two
larger inputs (both different from the input usedgenerate the
layout). In addition, we isolate the impact of haade prefetching,
which prefetches the next few sequential cacheslme a cache

‘Dw.r.t. allocation order layout mw.r.t. original layout ‘

[N
o
o

®
o
L

60

40 1

20 +

boxsim vpr mcf perl foxpro Average

% Potential cache miss reduction (obj)

-20

Figure 8. Potential cache miss reduction for objcoallocation

m Train+HW Pref disabled m Train+HW Pref enabled
O Ref+HW Pref disabled QO Ref+HW Pref enabled

25

20

15

10

i il

boxsim

% Execution time improvement

twolf vpr mcf perl foxpro Average

Figure 9. Benefits of automatic object coallocatim

miss, by disabling hardware prefetching for sompeexnents.
Note that the base unoptimized configuration bedognpared
against had hardware prefetching enabled.

The results in Figure 9 indicate that automatieobgoallocation
(in the presence of hardware prefetching) impr@sescution time

by 13% on average for our set of benchmarks orr thejest

inputs. Without hardware prefetching, this improesindrops to
5%. Thus, object coallocation successfully “lineas’ the layout,

improves its spatial locality, and consequentlykesahardware
prefetching more effective. For vpr and mcf in jgautar, hardware
prefetching is extremely effective as their coadlitan solutions

include larger objects. Our technique’s effectivenat improving

VisualFoxPro by 14% suggests it can scale to larggrams. On
average the improvements are slightly larger orptiogram’s ref

inputs than on its train inputs. This is attribuéato the difference
in size of the data sets, which increases the itapoe and benefits
of cache locality optimization.

5.3 Field Coallocation Results

Table 1 presents allocation sites characteristics of thed fi
coallocations solutions. More sophisticated coallion

techniques create more coallocation opportunity: &le,
field reordering finds far less coallocation oppaities tharsplit

or merge The numbers fosplit and mergen terms of program
allocation sites are quite similar teplit or merge numbers
indicating that much of the benefits of the genefild

coallocation solution can be attained with a moestricted
solution, with VisualFoxPro being the sole exceptio

For each benchmark we compare our 5 strategiesfiéda
coallocation. Figure 10 shows the results. Boxsim twolf, and
mcf, split or mergeand split are comparable teplit and merge
However, sincesplit and mergetechnique requires sophisticated
source transformations, we emplsplit to these benchmarks. In
perl, merge suffices to obtain the coallocation besefit vpr we
get negative numbers due to our approximation ahgorsimilar

to the case for object allocation imwolf. VisualFoxPro gets
maximum benefit fronsplit and mergebut split or mergein not
too far behind.

Our current framework lacks type information. Theeme type
manipulation suggested by the coallocation solutitay not be
feasible, or may be hard to employ. Other probleiseadrom the
fact that type changes are not always feasible moratype-safe
environment. We encounter the following problemjsi\e assume
fields are up to 4-bytes long. Thus, reordering pha 8-byte field
is not feasible. This could happen for fields gbeylouble This

mreorder mmerge Osplit Osplit or merge msplit and merge

50

40 4

30 4
20 +

10

boxsim twolf perl

10 J foxpro Average

-20
-30

% Potential cache miss reduction (field)

-40

Figure 10. Potential cache miss reduction for diffrent field
coallocation strategies.

happens irboxsimandtwolf. (ii) Several allocation sites may be
associated with the same type. Thus, a coallocadigorithm
assuming distinct allocation sites allocate distibgpes may
suggest conflicting type changes. boxsim and twolf two
allocation sites allocating the same type are ckatds for a merge
in a coallocation solution. (iii) splitting arrayeenents is hard to
employ, since as noted in [19] it requires charigethe pointer
arithmetic around array expressions. Array spiitimsuggested in
the coallocation solution fdwolf, boxsimandmcf We employed
array splitting only inmcf due to the large potential benefit. (iv)
finally, in a non type-safe environment there may thdden
assumptions on the layout of a structure.bbxsim and twolf
arbitrary field reordering causes these benchmarksash.

Given these constraints, we only attempted impleimgrthe field
coallocation by hand fdyoxsim twolf, andmcf In boxsim,a major
part of the field coallocation solution was not @okable (e.g.,
type manipulation problems), thus we were only a@blemploy
one object split and field reordering to two typebtaining only
around 7% of potential benefit. The benefits fiacf come from
splitting a hot array, and itwolf layout changes include mostly
splitting small objects (12-88bytes). Thus, faolf and mcf the
potential and the actual cache miss improvementeusnare quite
similar. With these changelsoxsimshows no speedup due to our
problems enforcing the layout. twolf we get a 22% speedup, and
the time spent in cache misses is reduced by ardu¥a Formcf
we get a further 12% speedup (over object coallmegtreducing
time spent in cache misses by a further 20%. Thesebers
indicate the potential benefit of field level caaihtion. However,
the effort required to obtain them and the hit-amds process
involved suggests automatic implementation in aeiggfe
language, such as Java or C#.

6. CONCLUSIONS

We present a novel profile-based analysis aimedoatiocating
contemporaneously accessed hot heap objects. Thé/san
attempts to obtain cache-conscious coallocatiora dfot data
strearmH by isolating and combining allocation sitedb$uch that
intervening allocations coming from other sites separated. Our
extended analysis aims for coallocation at objexdt fgranularity,
generalizing common restructuring techniques, sash field
reordering, object splitting, and merging. Our ialitresults
indicate that programs possess significant codilmca
opportunities. Automatic object coallocation proesicaverage
execution time improvements of 13% in the presafideardware
prefetching for the program’s largest inputs. Hamgiemented
field coallocation solutions for two of the benchrirsa produced
additional improvements (12% and 22%) but the éfiovolved

suggests implementing an automated version for -$gfe
languages, such as Java and C#.

ACKNOWLEDGEMENTS

We are grateful to Jim Larus, Ben Zorn and the gmmus
referees for their comments on an earlier drafhisf paper.

REFERENCES

[1] E. Berger, B. Zorn, and K. McKinley. “Composing high-peni@ance
memory allocators.” IANCM SIGPLAN’'01 Conference on Program-
ming Language Design and Implementation (PL.Dljne 2001.

[2] B. Calder et. al. “Cache-conscious data placemenfrbceedings of
the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPL@$)1998.

[3] T.M. Chilimbi. “Efficient Representations and Abstracts for Quanti-
fying and Exploiting Data Reference Locality.” ACM SIGPLAN’'01
Conference on Programming Language Design and Implementation
(PLDI), June 2001.

[4] T.M. Chilimbi. “On the stability of temporal data refaere profiles.” In
International Conference on Parallel Architectures and Compilation
Techniques (PACTAug. 2001.

[5] T.M. Chilimbi, J.R. Larus, and M.D. Hill. “Cache-consas structure
layout.” INACM SIGPLAN’99 Conference on Programming Language
Design and Implementation (PLDMay 1999.

[6] T.M. Chilimbi, J.R. Larus, and B. Davidson. “Cache-scious structure
definition.” In ACM SIGPLAN’99 Conference on Programming Lan-
guage Design and Implementation (PLIMay 1999.

[7] P. Crescenzi et al. “A compendium of NP optimization peoid.”
ww.nada.kth.se/~viggo/problemlist/compendium.html

[8] N. Gloy et. al “Procedure placement using temporal andeénforma-
tion.” In Proceedings of the 30th Annual ACM/IEEE International Sym-
posium on Microarchitecture (MICRQOPec. 1997.

[9] R. Gonzalez et al. “Energy dissipation in general-purposeomioces-
sors.” INIEEE Journal of Solid State Circuits, 31(®ept. 1996.

[10] S. Guyer and K. McKinley. “Finding your cronies: static analjsr
dynamic object colocation.” I®bject-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSIOK},. 2004.

[11] X. Huang et al. “The garbage collection advantage: Impgppiogram
locality.” In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA)Oct. 2004.

[12] M. M. Halldorsson. “Approximations of weighted independentseit
hereditary subset problems.” Journal of Graph Algorithms and Ap-
plications, Vol. 42000.

[13] M. Hirzel and T.M. Chilimbi. “Bursty Tracing: A Framek for Low-
Overhead Temporal Profiling.” Workshop on Feedback Directed
and Dynamic Optimizations (FDDQIpec. 2001.

[14] T. Kistler and M. Franz. “Automated data-member layafuteap ob-
jects to improve memory-hierarchy performance.Ttansactions on
Programming Languages and Systems (TOPA&)me 22, 2000.

[15] E. Petrank and D. Rawitz. “The hardness of cache-oonsciata
placement.” IrProceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POB&j 2002.

[16]S. Rubin, R. Bodik, and T.M. Chilimbi. “An Efficient Pite-Analysis
Framework for Data-Layout Optimizations.” Rroceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL)lan 2002.

[17] M. Seidl and B. Zorn. “Segregating heap objects by eefss behavior
and lifetime.” InProceedings of the 8th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOSYct 1998.

[18] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binarpsfarmation
in a distributed environment. MSR-TR-2001-5@001.

[19] D. Truong, F. Bodin, and A. Seznec. “Improving cache biehaf dy-
namically allocated data structures.”liternational Conference on
Parallel Architectures and Compilation Techniques (PAQ9R8.

[20] Y. Zhong et al. “Array regrouping and structure splittiraing whole-
program reference affinity.” IACM SIGPLAN’04 Conference on Pro-
gramming Language Design and Implementation (PL20D4.

[21] C. Lattner and V. Adve. “Automatic pool allocation: Iraping perfor-
mance by controlling data structure layout in the heapRQM SIG-
PLAN’05 Conference on Programming Language Design and
Implementation (PLDI)2005.

