
ABSTRACT
The memory system performance of many programs can be
improved by coallocating contemporaneously accessed heap
objects in the same cache block. We present a novel profile-based
analysis for producing such a layout. The analysis achieves cache-
conscious coallocation of a hot data stream H (i.e., a regular data
access pattern that frequently repeats) by isolating and combining
allocation sites of object instances that appear in H such that
intervening allocations coming from other sites are separated. The
coallocation solution produced by the analysis is enforced by an
automatic tool, cminstr, that redirects a program's heap allocations
to a run-time coallocation library comalloc. We also extend the
analysis to coallocation at object field granularity. The resulting
field coallocation solution generalizes common data restructuring
techniques, such as field reordering, object splitting, and object
merging, and allows their combination. Furthermore, it provides
insight into object restructuring by breaking down the coallocation
benefit on a per-technique basis, which provides the opportunity to
pick the "sweet spot" for each program. Experimental results using
a set of memory-performance-limited benchmarks, including a few
SPECInt2000 programs, and Microsoft VisualFoxPro, indicate that
programs possess significant coallocation opportunities. Automatic
object coallocation improves execution time by 13% on average in
the presence of hardware prefetching. Hand-implemented field
coallocation solutions for two of the benchmarks produced
additional improvements (12% and 22%) but the effort involved
suggests implementing an automated version for type-safe
languages, such as Java and C#.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors– code generation, optimization, run-time
environments.

General Terms Performance, Measurement.

Keywords hot data streams, data profiling, dynamic allocation,
memory layout, cache optimization, data locality.

1. INTRODUCTION
The rapidly growing processor-memory performance gap has made
effective cache memory utilization an important1determinant of
overall program performance. Traditionally, hardware solutions to
this problem include larger, more associative caches, non-blocking

caches, speculation, and out-of-order execution. However, power
considerations impose constraints on many of these techniques [9].
For example, larger caches reduce the number of cache misses but
increase the power cost of each cache access. Consequently, soft-
ware-based approaches to memory system performance optimiza-
tion offer an attractive alternative as programs can be transformed
to make more efficient use of the memory system, reducing mem-
ory power consumption as well as improving performance.

Memory and cache behavior studies of general-purpose programs
indicate that a small fraction of data objects (10%) are responsible
for most of the data references (90%) and cache misses (almost
90%) [3, 16]. This 90/10 rule makes these hot data objects attractive
targets for software-based cache locality optimizations. In addition,
recent research suggests that rearranging these hot data objects in
memory could produce potential cache miss rate reductions of up to
80% [3].

While many cache-conscious data placement techniques exist
[2,5,6,14,19,20], they suffer from two drawbacks. First, their place-
ment decisions are guided by object/field frequency or pairwise
affinity profiles, which are crude approximations of a program's
temporal data reference behavior. Next, their layout decisions are
determined by fairly ad-hoc heuristics. These can both be serious
limitations in the light of research that has shown that layouts
guided by inexact profiles can be far from optimal, and layout heu-
ristics cannot be both robust and effective (i.e., work consistently
well for a wide variety of programs) [15].

In contrast to many current cache-conscious data placement tech-
niques, our technique relies on more precise and detailed profile
information that is nevertheless cheap to collect [3,13], and rela-
tively stable across different program runs [4]. In addition, it uses
an efficient polynomial optimal-approximation algorithm to pro-
cess the profile information and produce a good data layout, rather
than rely on ad-hoc heuristics.

This paper builds on research that shows how to efficiently capture
accurate temporal data reference profiles [3]. Chilimbi's whole pro-
gram streams (WPS) is a compact yet complete representation of a
program's data reference behavior. This WPS representation explic-
itly encodes regular access patterns and permits efficient extraction
of hot data streams, which are sequences of consecutive data refer-
ences that frequently repeat in the same order. This paper's key
insight is that cache-conscious coallocation of a hot data stream, H,
can be achieved by isolating and combining allocation sites of H's
data members, such that intervening allocations coming from other
sites are separated. In more detail, coallocation is achieved through
several separate heap regions where objects that are consecutively
allocated in a region are placed contiguously. The analysis deter-
mines which allocation sites to direct to the same region to achieve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’06, June 11-14, 2006, Ottawa, Ontario, Canada.
Copyright  2006 ACM 1-59593-320-4/06/0006...$5.00.

1 Work done while author was an intern at Microsoft Research.

Cache-Conscious Coallocation of Hot Data Streams

Ran Shaham1

Amuse Toy & Game Development
12/7 Yoni Netanyahu, Haifa 31905

Givat Shmuel 54423, Israel
ran.shaham@gmail.com

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052
trishulc@microsoft.com

coallocation, and which allocation sites prevent coallocation and
must be isolated in a separate region. We deliberately focus only
on objects in hot data streams, since these typically incur most of
the cache misses [3,16].

Figure 1(a) shows an example data layout, where objects are small
and placed contiguously according to the program allocation order.
xi is allocated at allocation site X, and it is the i-th global allocation
request in the program. For example b1 is allocated in allocation
site B, and this is the first object allocation in the program. d2 is the
next allocation request in the program. This object is allocated in
allocation site D. Figure 1(b) shows a portion of a data reference
trace containing a hot data stream H=a3 b5c10, a regular reference
pattern that frequently repeats. Allocation sites A, B, C allocate
objects a3, b5, c10 respectively. Colocating these objects, which are
frequently accessed contemporaneously, can significantly reduce
cache misses, especially if H fits in a cache block. Even when it
does not, the resulting improvement in spatial locality can increase
the effectiveness of hardware prefetching.

We achieve this as shown in Figure 1(c) by isolating allocation
requests from sites A, B, C and separating allocation requests from
other sites (i.e., D, E). Though other objects allocated at sites A, B,
C are also placed in the same heap region as the hot data stream
objects, this is acceptable as our primary objective to colocate hot
data stream objects. Note that it is not always possible to colocate
hot data stream members in this fashion. For example, if a3d7a14 is
a hot data stream, intervening allocations of objects allocated at
allocation sites A, D (e.g., d4, a12) that cannot be separated, prevent
coallocation.

This paper describes a profile-based analysis tool, cmanal, that
produces a cache-conscious coallocation of heap objects that
participate in hot data streams. We show that optimal coallocation
can be reduced to the weighted set packing(WSP) problem, which
is known to be NP hard [7]. Hence, cmanal uses the best known
polynomial time approximation to the WSP problem [12] to arrive
at the object coallocation solution.

In addition, we present an instrumentation tool, cminstr, that
replaces a program's heap allocation requests with calls to a run-
time coallocation library, comalloc, to enforce the coallocation
solution layout. For example, cminstr would enforce the
coallocation solution in Figure 1 by replacing allocations at sites A,
B, C with calls to comalloc1, and allocations at other sites
including D, E with calls to comalloc0 (each comalloci
manages a separate heap region where consecutively allocated
objects are colocated). We demonstrate average execution time
improvements of 13% using this technique.

Unfortunately, object coallocation cannot always be fully exploited
on older machines where cache blocks are often only 32 bytes,
though current-generation machines offer greater opportunities
(for e.g., the Pentium 4 and the Itanium have 128 byte L2 cache
blocks). However, hardware prefetching increases the effective
cache block size by fetching the next few sequential cache blocks
on a cache miss.

Previous work on cache-conscious data layout has addressed this
by rearranging objects at a field granularity using techniques such
as field reordering, hot/cold structure splitting and merging
structures [6,14,19,20]. Extending cmanal to analyze potential
coallocation at a field granularity produces significantly larger
cache miss rate reductions. Since coallocating fields is a
generalization of the combination of object field reordering,
splitting, and merging, this analysis permits estimating the
contribution of each individual technique to the field coallocation
solution. We show that restrictions on field rearrangements yield a
spectrum of coallocation solutions, which tradeoff ease of layout
enforcement with larger cache miss rate reductions. Promisingly,
in several cases most of the benefits of the general solution
(arbitrary field rearrangement) can be achieved with a subset of the
field restructuring techniques. Hand-implemented field
coallocation solutions for two of the benchmarks produced
additional improvements (12% and 22%) but the effort involved
suggests implementing an automated version for type-safe
languages, such as Java and C#.

The paper's main contributions include:

• A novel and efficient profile-based analysis for cache-con-
scious coallocation of hot heap objects that are contemporane-
ously accessed (Section 2).

• An extended analysis for coallocation at field granularity,
which generalizes field reordering, structure splitting, and
structure merging(Section 3).

• An automatic implementation of object coallocation and a
semi-automatic implementation of field coallocation that
shows that programs have significant coallocation opportuni-
ties and that can be exploited to produce execution time
improvements (Section 4 and Section 5).

1.1 Related Work
Seidl and Zorn allocated heap objects in four pre-defined memory
regions based on their summary reference characteristics [17].
Rubin et al., used a search-based learning technique to classify
heap objects according to runtime characteristics such as allocation
calling context, object size, etc., and allocate objects in separate
heap regions based on this classification [16]. Both these tech-
niques improve virtual memory performance by increasing page

Figure 1. Coallocating a hot data stream.

b1 d2 a3 d4 b5 e6 d7 d8 d9 c10 c11 a12 d13 a14 b15 ...
(a) Original Layout (xi is allocated at allocation site X and is the program’s i-th allocation)

...b1e6a3b5c10d4a3b5c10d8e6a3d7a14a3b5c10d9...

(b) An access trace that contains a hot data stream H = a3b5c10

area for allocation sites {A, B, C}

area for other allocation sites

b1 a3 b5 c10 c11 a12 a14 b15 ...

d2 d4 e6 d7 d8 d9 d13

(c) Coallocating hot data stream H = a3b5c10

utilization but have little, if any, impact on cache performance.
ccmalloc is a cache-conscious heap allocator that uses program-
mer annotations to allocate contemporaneously accessed data
objects in the same cache block [5]. We would like to achieve such
cache-conscious coallocation automatically using the hot data
stream profile. Guyer and McKinley used static analysis to deter-
mine object connectivity and used the garbage collector to colocate
objects [10]. We have similar goals but use an efficient approxima-
tion algorithm in place of heuristics to guide data layout. Huang et
al. use profile information to modify the garbage collector traversal
order to improve locality [11]. Calder et al. applied placement
techniques developed for instruction caches to data [2]. They use a
compiler-directed approach that creates an address placement for
stack variables, globals, and heap objects in order to reduce data
cache misses. Their technique uses the temporal relationship graph
(TRG) [8], shows significant gains for stack objects and globals
but little improvement for heap objects. On the other hand, we
focus solely on heap objects, use the hot data stream profile, which
is more precise than the TRG since it does not depend on an arbi-
trary temporal reference window size, and demonstrate significant
data cache miss rate reductions for some programs. Zhong et al.
use whole-program reference affinity to perform field-level trans-
formations, such as structure splitting [20]. In addition to field-
level transformations, we perform automatic object coallocation
using hot data streams as our locality model. Lattner et al. use
compiler pool allocation to partition heap objects [21]. Their parti-
tioning is statically enforced by the compiler whereas we use hot
data stream profiles and an analysis to specifically improve cache
locality.

2. COALLOCATING OBJECTS
This section describes our algorithm for coallocating heap objects
that participate in hot data streams.We first briefly review hot data
streams construction and then discuss a simple model to estimate
the benefits of coallocation. Next, we describe when hot data
stream objects may be coallocated. Finally, we present a cache-
conscious object coallocation algorithm.

2.1 Hot Data Stream Sets
Chilimbi used a compression algorithm called Sequitur to
construct a compact context-free grammar representation of a data
reference trace, which can then be efficiently analyzed to detect
hot data streams (see [3] for details). A hot data stream is a
frequently repeated sequence of consecutive data references (in
other words, a frequent data access pattern). The ``heat'' of a data
stream is its length (number of stream references) multiplied by its
frequency. A minimal hot data stream is the minimal prefix
(exceeding length 1) of a hot data stream with a heat c or more.
The hot data stream analysis presented in [3] detects a set B of
non-overlapping minimal hot data streams such that references to
stream elements in B yields P% coverage of all trace references
(usually the analysis sets P=90%).

The size of hot data streams detected by the analysis is adjustable.
Based on our experimental results, we set the analysis to detect
minimal hot data stream that contain at least 2 and not more than
20 elements. While longer hot data streams offer more coallocation
opportunities, they also increase the computational cost of the
coallocation analysis. The analysis also computes the normalized
heat value for each hot data stream in B, such that a hot data stream
H with normalized heat value Hc covers Hc% of the reduced trace,
(i.e., H covers (P*Hc)% of the original trace).

For our purpose of coallocating hot data stream members
contiguously, the exact order of objects in a hot data stream makes
little difference as long the objects are in the same cache block, and
ignoring the order also provides more coallocation opportunities.
Hence, we reduce hot data streams to hot data stream sets, and our

Figure 2. Coallocation algorithm example.

ht stream coalloc-
atable
objects

mr coalloc-
ation set

w’

0.6 a3b5c10 a3, b5 1 {A,B} 0.6

a3, c10 1 {A,C} 0.6

b5, c10 1 {B,C} 0.6

a3, b5, c10 2 {A,B,C} 1.2

0.3 d4b15e6 b15, e6 1 {B,E} 0.3

d4, e6 1 {D,E} 0.3

0.1 d4e6a12a14 d4, e6 1 {D,E} 0.1

e6, a12 1

e6, a14 1

a12, a14 1 {A} 0.1

e6, a12, a14 2 {A,E} 0.2

coallocation set accumulated
miss reduction

normalized
miss reduction

{A,B} 0.6 0.29

{A,C} 0.6 0.29

{B,C} 0.6 0.29

{A,B,C} 1.2 0.57

{B,E} 0.3 0.14

{D,E} 0.4 0.19

{A,E} 0.2 0.1

{A} 0.1 0.05

(a) hot data streams with potential miss reduction

(b) accumulated and normalized coallocation set miss redn.

set packing miss reduction

1 {A,B,C},{D,E} 0.76

2 {A,B},{D,E},{C} 0.48

3 {A,C},{D,E},{B} 0.48

4 {A,C},{B,E},{D} 0.43

5 {A,E},{B,C},{D} 0.38

8 {A},{B,C},{D,E} 0.52

9 {A},{B,E},{C,D} 0.19

(c) possible weighted set packing

b1 a3 b5 c10 c11 ...a12 a14 b15

d2 d4 e6 d7 d8 ...d9 d13 ...

{A, B, C}

{D, E}

(d) coallocation layout for set packing (1)

analysis also ignores global and stack references.

2.2 Avoiding Cache Misses by Coallocation
Figure 1 shows a sequence of objects allocated by a program
during execution1. Now consider Figure 2, which is an elaboration
of Figure 1. Figure 2(a) reports the result of the hot data stream
analysis. The stream a3b5c10 covers 60% of the reduced trace,
stream d4b15e6 covers 30% of the reduced trace, and stream
e6d4a12a14 covers 10% of the reduced trace.

In the worst case (denoted by worst-case scenario), each stream
data access can result in a cache miss. Then, from Figure 2(a)
coallocating b5 and c10 could save one cache miss for every
occurrence of the stream a3b5 c10 if b5 and c10 fit in one cache
block, and coallocating a3, b5 and c10 saves two cache misses if
these fit in one cache block (shown in mr column).

For a more realistic estimate of cache miss reduction due to
coallocation, we compute the potential cache miss reduction for
two other layouts over the worst-case scenario, and then compare
these reductions with those obtained with our coallocation
solution: (i) the existing layout produced by the current heap
allocator (denoted by current layout), and (ii) the layout produced

if all objects are allocated contiguously according to allocation
order (denoted by allocation order). In this manner we compare
our solution against both current layout and allocation order.

2.3 Coallocatable Objects
Informally, members of a hot data stream H can be coallocated if
all intervening allocations between members of H come from
allocations sites other than the ones used to allocate members of H.
Even if all members of H cannot be coallocated it may be possible
to coallocate some of them; thus our algorithm (see Section 2.4)
considers coallocatable objects in a substream of a hot data stream
H.

Definition: Objects in H are said to be coallocatable if for every
program object xt ∉ H (where xt denotes an object that is allocated
at site X by the t-th global allocation request in the program):

 min(Talloc(H)) <= t <= max(Talloc(H)) implies X ∉ Salloc(H)

where, (i) H = {xj1
i1, ... , xjk

ik} is a set of k (unique) objects,

(ii)xjm
im denotes an objects allocated at allocation site Xjm by the

im-th allocation request of the program,

(iii) Salloc(H) = {Xj1, ... , Xjk} is the set of allocation sites for objects
in H, and

(iv)Talloc(H) = {i1, ... , ik} is the set of allocation request times for
the objects in H.

If objects in H are coallocatable, then they can be placed
contiguously in memory, if (i) allocation sites in Salloc(H) allocate
in a designated memory region M, (ii) Memory region M allocates
consecutive allocation requests contiguously, and (iii) objects
allocated at sites not in Salloc(H) are allocated in a separate
memory region.

In Figure 2(a) b5 and c10 (that come from allocation sites B and C,
respectively) are coallocatable since the intervening allocations
e6d7d8d9 come from other allocation sites ({D, E}). d4 and b15,
which are part of a hot data stream that covers 30% of the
reference trace (heat = 0.3) are not coallocatable since d7 (and also
d8, d9) is an intervening allocation from H that comes from D,
which allocates d4. We use coallocation set to denote the set of
allocation sites of coallocatable objects; thus {A, B, C} is the
coallocation set for coallocatable objects a3, b5, c10. Enforcing this
coallocation set saves two cache misses for every occurrence of the
hot data stream a3b5c10 according to the simple model presented in
Section 2.2.

2.4 Basic Algorithm
Figure 3 shows the algorithm for coallocating hot data streams.
Our goal is to find a coallocation strategy that maximizes cache
miss reduction. In a first phase, shown in Figure 4, for every hot
data stream, coallocation sets are computed along with the number
of cache misses avoided if the coallocation set is enforced. This
step involves an exponential exploration of all possible
coallocations. However, this is tractable since hot data streams are
usually small (and recall that we set the analysis to detect minimal
hot data stream with length at least 2 and not exceeding 20). For
example, in Figure 2(a) a3, b5 are coallocatable; this coallocation
will eliminate one cache miss, and the weighted miss reduction for
Salloc({a3, b5}) = {A, B} is 0.6. If several objects from the same
site are included in a stream care must be taken not to double count

1 Our current implementation "linearizes" the layout to the access
pattern and ignores both object and cache block size. This increas-
es spatial locality and the effectiveness of hardware prefetching.

Figure 3. Coallocation Algorithm.

// first phase (see Figure 4):
// compute cache miss reduction weights for coallocation sets.
// object coallocatable communicates the criteria for coallocating
// objects (in Section 3 we use computeWeight with different
// coallocatability definitions).
computeWeight (object coallocatable, w)

// second phase: compute approximate weighted set packing
// according to Halldorsson’s algorithm.
// H is the set of hot data streams.HWSP is a partition of Salloc(H)
// with approximate maximal cache miss reduction.
HWSP = WSP(S alloc (H), {<C,w(C)>|w(C) > 0})
Ro = ΣC∈HWSP w(C)
output HWSP

// third phase: compute cache miss reduction for a given layout,
// and then normalize weights.
for every H ∈ H

wtotal = w total + (|H| - 1) * heat(H)
// C is a set of coallocatable objects.
C = φ
loop a ∈ H according to layout order

if objects in C U a are contiguous
C = C U a

else
wl = w l + (|C| - 1) * heat(H)
C = {a}

Rl = w l /w total

// fourth phase: relate (sub)optimal coallocation and the given
// layout cache miss reduction numbers.
Rl

o = (R o - R l)/(1 - R l)

output R l
o

cache miss reductions. For example, e6, a12 and e6, a14 and e6, a12,
a14 are all coallocatable and come from the same coallocation set
{A, E}. To avoid double counting we use a polynomial algorithm
to find the maximal partition of coallocatable objects that come
from a coallocation set. Thus, in Figure 2(a) a weighted miss
reduction for coallocation set {A, E} only accounts for
coallocating e6, a12, a14. Finally, we accumulate the potential miss
reduction per coallocation set and then normalize it shown in
Figure 2(b).

In order to maximize the benefits of coallocation sets, in a second
phase, we compute a partition of the set of allocation sites, such
that cache miss reduction is maximized. The partition problem is
an instance of a known NP-hard problem, {weighted set packing
(WSP)} defined as follows: Given a set S of m base elements and a
collection C = {C1, C2, ... , Cn} of weighted subsets of S with a
weight function w, find a subcollection C' ⊆ C of disjoint sets of
maximum total weight

In our case, S is the set of hot allocation sites, i.e., the set of sites
allocating at least one object that participates in a hot data stream,
C is the set of coallocation sets, and w(Ci) is the normalized
potential cache miss reduction. According to [7] the best
approximation algorithm for the WSP problem is that of
Halldorsson [12]. For m = |C|, this algorithm approximates WSP to
within √ m of the optimal solution in time proportional to the time
it takes to sort the weights. Although the approximation algorithm
may yield poor results for large values of m, we show in Section 5
that this is not a significant problem for most of our benchmarks.
This is because: (i) the number of hot allocation sites m is small,
and (ii) Halldorsson algorithm is a greedy-style algorithm. Our

empirical results show that in most cases much of the cache miss
reduction benefit comes from a few disjoint coallocation sets; thus
even for a large m these coallocation sets will be selected by the
approximation algorithm, yielding most of the potential benefits.

In Figure 2(c) possible partitions of allocation sites are presented.
For {A,B,C},{D,E} we get 76% cache miss reduction over the
worst-case scenario. Applying Halldorsson's WSP algorithm
indeed yields this partition. Figure 2(d) presents the layout of
objects using the {A,B,C},{D,E} partition. Hot data stream
a3b5c10 is allocated contiguously, and d4e6 which participates in

two hot data streams is also colocated1. The result of the second
phase is an approximate coallocation solution (``WSP solution''),
and a number Ro reflecting cache miss reduction over a worst-case
scenario.

In a third phase, the potential cache miss reduction for the "current
layout" and "allocation order" layouts discussed previously are
computed and related to Ro. The resulting number Ro

l reflects the
expected cache miss reduction over a given layout. Since in our
example, Rl for both layouts is 0 as Rl is assumed to be the worst-
case layout, the benefits for coallocating {A,B,C},{D,E} are 76%
over both layouts.

3. COALLOCATING FIELDS
Object coallocation is most beneficial when the colocated objects
are smaller than a cache block, though next-cache-line hardware
prefetching provides benefits for larger objects as well. However,
even if colocated objects are smaller than a cache block,
coallocation at an object field granularity should produce larger
benefits.

Changing the trace abstraction level, so references are abstracted to
object field accesses rather than object accesses, permits applying
the object coallocation algorithm described previously to achieve
field coallocation. The resulting field coallocation solution
requires that fields of an object are independently allocated. While
such layouts (though not completely arbitrary field placement
without high cost) can be enforced with compiler support in
strongly typed languages such as Java, the implementation effort
and cost for enforcement in languages such as C is likely to be
prohibitive.

To address this, we express a field coallocation solution in terms of
common data restructuring techniques such as field reordering,
object splitting, and object merging. Such restrictions on field
rearrangements yield a spectrum of coallocation solutions, which
tradeoff ease of layout enforcement with larger cache miss rate
reduction. Promisingly, empirical results (see Section 5) show that
for our benchmarks, most of the benefits arise from a combination
of these restructuring techniques.

3.1 Split and Merge Field Coallocation
For field coallocation we assume (for the moment) that an
allocation request for an object with n fields, is split into n field
allocation requests coming from n different allocation sites, one for
each field. In addition, we assume independent allocation of fields
and fields of an object may be scattered in the heap. Figure 5(a)
shows an allocation site A allocating a 3-field object, and sites B, C
allocating 2-field objects. A1,A2,A3 are the corresponding field
allocation sites, which independently allocate the fields of A.

Figure 4. Computing weights for coallocation sets.

// get cache miss reduction for coallocation sets.
// H is the set of hot data streams.
// heat(H) gives the normalized heat of H.
// coallocatable expresses the coallocatability criteria.
computeWeight (coallocatable, w)
for H ∈ H

wtotal = w total + (|H| - 1) * heat(H)
// Compute weights for coallocation sets
// corresponding to subsets of H.
for H’ ⊆ H

if objects in H’ are coallocatable
w(H’) = (|H’| - 1)* heat(H)

else
w(H’) = 0

// attribute weights for coallocation sets avoiding double
// contributions, by computing the maximal
// partition contribution for a coallocation set
for each coallocation set C

P = {H i ’|H i ’, H j ’ ⊆ C ∧ w’(H i ’) > 0 ∧
Salloc (H i ’) = S alloc (H j ’) ∧
Hi ’ ⊆ H j ’ => w’(H j ’) = 0 }

w’(C) = ΣHi’ ∈P w’(H i ’)

// normalize weights.
for each coallocation set C

w(C) = w’(C)/w total

Σ
C'i C'∈()w C'i()

1 This layout also coallocated a12, a14 for ``free''. We could in prin-
ciple attribute this coallocation to {A,B,C} as well.

Figure 5(b) shows the layout of 4 objects allocated at A,B,C. In
Figure 5(c) the same layout is expressed at a field granularity,
where aij denotes the j-th field global allocation request in the
program allocated at field allocation site Ai (i-th field of an object
allocated at A). Thus, object a2 is allocated by three consecutive
field allocation requests coming from A1, A2, A3 allocating fields
a16, a27, a38 respectively.

With this abstraction, we can adapt the coallocation algorithm
presented in Section 2.4, with objects replaced by fields. Consider
the example in Figure 7, which assumes the allocation sites of
Figure 5(a). The two leftmost columns of Figure 7(a) show the
result of hot data stream analysis on a field access trace. The
stream a11 a33 a16 a38 covers 80% of the reduced trace, and the
stream a22 b14 c210 covers 20% of the reduced trace. The next four
columns show the computed weights for field coallocation sets.
This and the next step shown in Figure 7(b) for accumulating and
normalizing weights of field coallocation sets is exactly as
described in Section 2.2. The meaning of (R),(S),(M) is explained
later in Section 3.2. In Figure 7(d) s /\ m method indicates the
results of the general field coallocation solution. Since this solution
can be expressed in terms of splitting objects to independently
allocate their fields, together with merging fields of different
objects at different sites, we call it split and merge. For this
example, the split and merge solution is optimal. We use Rl

s/\m to
denote the potential cache miss reduction over a given layout
("current layout" or "current order").

This independent allocation of fields gives finer control over object
layout and our coallocation algorithm may find a larger number of
cache-conscious placement opportunities. However, this comes at
the cost of maintaining the program semantics with the
transformed layout, since for example, the compiler assumes that
fields of an object are placed contiguously (or at least not at
arbitrary locations).

3.2 Split or Merge Field Coallocation
This section presents an algorithm for coallocating fields by
limiting object restructuring to simple techniques, such as field
reordering, object splitting and object merging. The key restriction
is that an object can either be split, or it can be merged with other
objects, but it cannot participate in both. Thus, while the
coallocation algorithm considers coallocation opportunities at the
field granularity, the solution itself is enforceable at the object
allocation site level, eliminating the need to transform an object
allocation into multiple field allocations. Implementing the
resulting coallocation solution is much simpler, at the cost of some
lost opportunity for field coallocation.

Before presenting the algorithm we define some field coallocation
terms:

(i) fields in a hot data stream are said to be field reordering
coallocatable if field reordering suffices to guarantee coallocation
of these fields. For example, in Figure 7(a), a11,a33 are field
reordering coallocatable, since reordering the fields of A, placing
the first and the third field together, ensures coallocation. In Figure
7 benefits attainable by reordering are marked by (R).

(ii) fields in a hot data stream are said to be object split
coallocatable if object splitting (either with or without field
reordering) suffices to ensure coallocation of these fields. For
example, in Figure 7(a), a33,a38 are field split coallocatable, since
splitting the fields of A, while placing the third field of instances of
A contiguously ensures coallocation (see Section 4 for a practical
implementation of splitting an object as described). In Figure 7
benefits attainable by splitting an object are marked by (S).

(iii) fields in a hot data stream are said to be object merge
coallocatable if merging the types of the respective object
allocation sites (either with or without field reordering) ensures
coallocation of these fields. For example, in Figure 7(a), a22,b14
are object merge coallocatable, since merging the types allocated at
A and B, and reordering the fields to place the second field of A
together with the first field of B ensures coallocation (see Section 4
for a practical implementation of object merging). In Figure 7
benefits attainable by merging objects are marked by (M) .

We now describe our split or merge field coallocation algorithm.
First, we change the coallocation criteria in the first phase of the
basic algorithm (see Figure 4). Instead of requiring that objects in a
hot data stream H are coallocatable, we require that objects in H
are field reorder coallocatable, object split coallocatable, object
merge coallocatable, as shown in Figure 6 (first phase). Next, after
exploring simple placement opportunities at the level of field
allocation sites, we use the WSP approximation to compute the
benefit of using a simple placement technique at the object
allocation site level, as described in the second phase part of Figure
6. Split and also reorder techniques are not applicable to more than
one allocation site at a time (i.e., we do now allow combining
several allocation sites and then splitting them). Merge is
applicable only for two or more allocation sites that have not been
split. However, the algorithm includes the benefits of simple
reordering in the merge coallocation solution.

For example, the results of applying the different coallocation
definitions to the hot data streams is shown in Figure 7(a) and (b)
using (R), (S), (M) denoting field reorder benefits, object split
benefits and object merge benefits respectively. Then in Figure
7(c), we show the results of applying WSP at the level of object
allocation sites. For field reordering, only A has reordering
benefits, by placing its first and third fields together. For object
split, again only A has benefits by splitting objects coming from A
so the first and third fields of these objects are placed contiguously

Figure 5. Expressing layout at field granularity.

field 1

field 2

field 3

field 1

field 2

field 1

field 2

A1

A2

A3

A B1

B2

B C1
C2

C

(a) Allocation sites

(b) Original layout a1 b2 a3 c4 ...

(c) Field layout a11 a22 a33 b14 b25 a16 a27 a38 c19 c210 ...

(see Figure 7(e) for A's split layout). Finally, for merging objects,
several opportunities exist. Merging either A, B or A, C or B, C
gives 0.07 potential benefit, while merging A, B, C gives 0.14.

In Figure 6 (third phase part), the WSP approximation is once
again applied for every placement technique to approximate the
optimal disjoint subsets of object allocation sites, that are
candidates for layout changes1. We denote by Rr

l, Rs
l, Rm

l
reduction of cache misses over a given layout for field reorder
coallocation, object split coallocation and object merge
coallocation respectively.

The results over a worst-case layout and over the layout l shown in
Figure 5(c) are the same since Rl is 0. In Figure 7(d) r method
shows the WSP solution for field reordering coallocation. By

1 For object splitting and field reordering coallocation solutions
WSP is actually the identity function since all the coallocation
sets are of size 1, thus they are pairwise disjoint.

Figure 6. Field Coallocation Algorithm.

// first phase: compute normalized weights for field coallocation
// sets according to reorder, split, merge coallocation conditions.
// computeWeight is given in Figure 4.
computeWeight(field reorder coallocatable,w r)
computeWeight(object split coallocatable,w s)
computeWeight(object merge coallocatable,w m)

// second phase: approximate benefits for every placement
// technique at the granularity of object allocation sites.
// OBJ(Xi) gives the object allocation site for a given field
// allocation site, i.e., OBJ(Xi) = X.
// We also extend OBJ to sets of field allocation sites.
for each object coallocation set C^

if |C | = 1 // compute split + reorder benefits
CrWSP = WSP(C ,{<C,w r (C)>|OBJ(C)=C })

wr (C) = ΣC∈CrWSP w r (C)

wm(C) = w r (C)

CsWSP = WSP(C ,{<C,w s(C)>|OBJ(C)=C })

ws(C) = ΣC∈CsWSP w s(C)

wsVm(C) = max(w r (C), w s(C))

else // |C | > 1 merge candidates
CmWSP = WSP(C ,{<C,w m(C)>|OBJ(C)=C })

wm(C) = ΣC∈CmWSP w m(C)

wsVm(C) = w m(C)

// third phase: find field coallocation solutions and show potential
// benefit over a given layout.
// Rl is potential cache miss reduction for a given layout.

HrWSP = WSP(OBJ(S alloc (H)),{<C ,w r >|w r (C)>0})

Rl
r = (ΣC∈HrWSP w r - R l)/(1 - R l)

HsWSP = WSP(OBJ(S alloc (H)),{<C ,w s>|w s(C)>0})

Rl
s = (ΣC∈HsWSP w s - R l)/(1 - R l)

HmWSP = WSP(OBJ(S alloc (H)),{<C ,w m>|w m(C)>0})

Rl
m = (ΣC∈HmWSP w m - R l)/(1 - R l)

HsVmWSP=
WSP(OBJ(Salloc (H)),{<C ,w sVm>|w svm(C)>0})

Rl
sVm = (ΣC∈HsVmWSP w sVm - R l)/(1 - R l)

output R l
r ,R l

s ,R l
m ,R l

sVm

Figure 7. Coallocating Fields example.

ht strm coallocatable
objects

mr coalloc-
ation set

w’

0.8 H1 a11, a33 (R) 1 {A1,A3} 0.8

a16, a38 (R) 1 {A1,A3} 0.8

a33, a16 (S) 1

a11, a16 (S) 1 {A1} 0.8

a33, a38 (S) 1 {A3} 0.8

a11, a33, a16 (S) 2

a33, a16, a38 (S) 2

a11,a33,a16,a38(S) 3 {A1,A3} 2.4

0.2 H2 a22, b14 (M) 1 {A 2,B1} 0.2

a22, c210 (M) 1 {A 2,C2} 0.2

b14, c210 (M) 1 {B 1,C2} 0.2

a22, b14, c210 (M) 2 {A 2,B1,C

2}
0.4

(a) hot data streams: H1 = a11a33a16a38 H2 = a22b14c210

coallocation set accumulated
miss reduction

normalized
miss reduction

{A 1,A3}(S) 2.4 0.86
{A 1,A3}(R) 1.6 0.57

{A 1} (S) 0.8 0.29
{A 3} (S) 0.8 0.29

{A 2,B1} (M) 0.2 0.07
{A 2,C2} (M) 0.2 0.07
{B 1,C2} (M) 0.2 0.07

{A 2,B1,C2} (M) 0.4 0.14

(b) Normalized miss reduction

tech site(s) field set packing mr
r A {A 1,A3},{A 2} 0.57

s A {A 1,A3},{A 2} 0.86

m A, B {A 2,B1},{A 1,A3,B2} 0.07

m A, C {A2,C2},{A 1,A3,C1} 0.07

m B, C {B1,C2},{B 2,C1} 0.07

m A, B, C {A2,B1,C2},{A 1,A3,B2,C1} 0.14

(c) WSP for fields at object allocation

technique set packing miss red.
s/\m {A1,A3},{A 2,B1,C2},{B 2,C1} 1

r A 0.57
s A 0.86
m A, B, C 0.14

s\/m split A, merge B, C 0.93

(d) WSP field solutions

a11 a33 a16 a38 ...a22 a27

b14 c210 b25 c19 ...

{A split

{B, C} merge

...

(e) s\/m layout

simply reordering the fields of A (placing the first and third field as
shown in Figure 7(b)) we get 0.57 potential cache miss reduction.
WSP solution for s method shows that for splitting the objects at
allocation site A (placing the first and third field together as shown
in Figure 7(b)) we get 0.86 potential cache miss reduction. WSP
solution for m method shows that for merging A,B,C we get 0.14
potential cache miss reduction.

Finally, the algorithm computes a hybrid solution, split or merge,
where objects at an allocation site are either split, or participate in a
merge with objects from other object allocation sites, or fields of
these objects are just reordered. Thus, for every object coallocation
set, the algorithm computes the maximal benefit obtained either by
split, reorder or merge (denoted by ws\/m). Then applying WSP to
object coallocation sets with ws\/m (as shown in Figure 6, third
phase) gives the desired coallocation solution.

In Figure 7(d) s\/m method shows the WSP solution for split or
merge technique. Splitting A yields 0.86 potential cache miss
reduction, and merging B,C gives 0.07 more potential, for a total of
0.93. Figure 7(e) shows the layout obtained by applying split or
merge coallocation solution. The area between a16 a38 and a22 is
reserved for placing the first and third fields of further allocations
requests from site A.

We denote by Rl
s\/m the expected cache miss reduction of split or

merge over a given layout (either "allocation order" or "current
layout")We expect Rl

r <= Rl
s <= Rl

s\/m <= Rl
s/\m, and also Rl

r <=

Rl
m <= Rl

s\/m <= Rl
s/\m.

4. IMPLEMENTING COALLOCATION
cmanal produces the coallocation solution that is enforced by
cminstr, and a coallocation library, comalloc. cmanal uses
Sequitur to compress a reference trace, which can be obtained with
low-overhead using the technique described in [13]. It produces a
context-free grammar representation that is efficiently analyzed to
find hot data streams with their associated normalized heat value
(see Section 2.1). cmanal applies the coallocation algorithm
described in the previous sections to produce a collection of
coallocation sets. Currently the reference abstraction granularity
(object or field) is determined when the trace is produced, while
the allocation context abstraction level (i.e., just the allocation site,
or a calling context of some length l) is a tunable parameter.

cminstr is an instrumentation tool, based on a x86 binary-
editing tool called Vulcan [18]. cminstr enforces the
coallocation solution produced by cmanal by replacing the
program's original heap allocation calls with calls to our
coallocation library, comalloc. These comalloc calls are
implemented by an independent dynamically linked library
(comalloc.dll) that handles coallocation of objects or fields
as described in Section 4.1. Then, the instrumented program
running with comalloc.dll generates the coallocation solution
layout. Note that the instrumentation tool updates debugging
information in accordance with the modifications it makes to the
target binary, which allows standard debuggers to be used with the
optimized binary, if needed.

4.1 Comalloc Library
We enforce the coallocation solution by reserving a separate
memory region, Mi for each coallocation set, Ci. Consecutive
allocation requests from sites in the same coallocation set Ci, are
assigned consecutive addresses in Mi. Allocation sites not in any
coallocation set are assigned to heap region M0.

We use the heap layers infrastructure [1] to implement this
memory management policy. Heap layers permits managing
several separate heaps, where each heap is independently
managed, possibly with a different policy.

Each heap Mi is managed with comalloc functions, i.e, functions
of the form comalloci, allocating memory from the respective
heap (there is also support for realloc, calloc through corealloci,
and cocalloci, respectively). Heap layers provides an easy way to
set the characteristics and memory management of each heap,
simply by changing its type defined by a mixin of templates
providing different layers of heap functionality [1]; thus after
enforcing a coallocation solution each heap Mi can be tuned
independently.

In the current implementation, free operations are implemented by
recording the owner heap of every object in its header. This is done
by ensuring that every heap includes a ownerHeap layer as part
of its type. When calling a free, the actual freei is dispatched to
the owner heap of the object being freed. This ownership
information is stored separately from the object to avoid reducing
coallocation benefits. In addition, objects accesses are typically
much more frequent than free operations.

4.2 Split, Merge using Comalloc
We use instance interleaving to split an object [19]. Instance
interleaving splits object instances, such that frequently accessed
instance field are laid out contiguously in memory. This is done by
adding special padding fields to the object type definition and
allocating the objects using an instance interleaving library, ialloc
(described in [19]), which maintains the invariant of placing
frequently accessed fields of object instances contiguously. We
adapted the ialloc library to work with the heap layers
infrastructure; thus a iallocHeap layer is used to enforce
splitting an object.

Merging objects is done through combining the object type
definitions (i.e., the combined type contains all the fields of the
types being merged) and using a new heap layer mergeHeap for
allocations. If A, B, ... , K are merged, upon allocation requests
from these sites, mergeHeap determines whether a new object,
large enough to store the combined object type, should be
allocated, or if the last allocated combined object can be re-used to
satisfy the allocation request. Consider an example where A, B are
merged allocation sites, and allocation requests come from A, then
B and again from B. mergeHeap will first return a new object o
large enough to hold the combined type of A, B. The next
allocation request from B will be returned the address of o, so that
the B portion of o can be used. The third allocation request from B
will allocate a new combined object, since the last allocated
combined object was already used to satisfy the prior request from
B.

4.3 Limitations
Our current implementation lacks access to type information and
support for type manipulations. Thus, for example, field reordering
is done by manual source code modification. Moreover, our
instrumentation tool, cminstr relies on receiving the PC's of
malloc calls to be replaced by comalloc calls. However, type
manipulations affect the binary code, thus currently we have to
adjust the allocation site PC's listed in a field coallocation solution.
On the other hand, the object coallocation solution, which does not
require type manipulations, is enforced automatically. In addition,
splitting array elements is hard to enforce, since as noted in [19] it
requires changes in the pointer arithmetic around array

expressions. In principle, a compiler can employ such layout
assuming precise type information. We enforced array splitting
manually (according to the coallocation solution) in one
benchmark mcf to experiment with its benefits. For other
benchmarks, we ignore array splitting suggested by the
coallocation solution. Finally, the use of C benchmarks pose a
problem with respect to type manipulation. As reported in Section
5, sometimes field reordering can crash an application due to
hidden assumptions regarding structure layout. This problem is
eliminated in strongly-typed languages, such as C# or Java, and
techniques such as those described in [6][14] can be used to
automatically implement the field coallocation solutions.

5. EXPERIMENTAL EVALUATION

5.1 Experimental Methodology
We studied some memory-performance-limited programs that
include vpr, twolf, mcf, and perl, from the SPECint2000 suite,
boxsim, a graphics application that simulates spheres bouncing in a
box, and, VisualFoxPro, a Microsoft database application. The
program were instrumented with Microsoft's Vulcan tool to
produce a data reference trace along with heap allocation
information. The heap allocation information was used for trace
abstraction at a object or field granularity depending on the
experiment. We ran the SPECint2000 benchmarks on their test
input and small inputs for boxsim and VisualFoxPro to generate
traces for coallocation analysis. The traces were processed by
cmanal to produce object/field coallocation solutions, which
were enforced using cminstr and our comalloc allocation
library. All performance improvements are reported using the train
and ref inputs for the SPEC benchmarks and different larger inputs
for boxsim and VisualFoxPro. Measurements of cpu time and
hardware performance counters were carried out on a 2.8 Ghz
Pentium4 processor with 1 GB of memory and a 512KB L2 cache
running WindowsXP Professional. To minimize the effect of
different allocator policies on runtime, we use the same allocator
for allocating objects in the original benchmark and for allocating
objects not in a coallocation set in the optimized benchmark. The
results represent an average of five runs (variation was less than
3% across the runs).

5.2 Object Coallocation Results
Table 1 presents allocation sites characteristics of the benchmarks
and the coallocations solutions. hot sites column presents the
number of program allocation sites that allocate objects that
participate in hot data streams. The next 6 columns present the
number of sites participating in the corresponding coallocation
solution. For object coallocation, the results indicate significant
coallocation opportunity. Note that the number of hot allocation
sites in VisualFoxPro is an order of magnitude larger than the other
benchmarks, though the number of coallocation sets determined by
the analysis is comparable. Figure 8 shows potential cache miss
reduction numbers when coallocating at the granularity of object
addresses, where the base (i.e., no improvement) is 0%. We
experimented with using different allocation calling context

abstractions, such as abstracting an object address to a calling
context of length c leading to the allocation of that object, where
c=1,2,3, but noticed no difference. Hence we used an allocation
calling context of 1 for all subsequent experiments. For object-
oriented languages, such as C# or Java, that make heavy use of
container classes through standard libraries, the allocation calling
context will likely be quite useful for distinguishing between
different instances of these classes. In addition, our coallocation
solution gives potential reduction in cache misses with respect to
two alternative layouts, current layout and allocation order (see
Section 2.2), but we do not notice any significant differences
between these. Hence we compare only against current layout in
subsequent experiments. The analysis time to determine the
coallocation solutions from the access traces was reasonably low
with the worst case (computing the field coallocation solution for
VisualFoxPro) taking less than ten minutes.

Figure 8 indicates significant potential benefit for object level
cache-conscious coallocation across the benchmarks. However, in
vpr and mcf the potential cache miss reduction is attributed mainly
(more than 90% of it in mcf) to coallocating larger objects (120
bytes and larger). Nevertheless, as we will see, the optimized
placement still produces improvements in the presence of
hardware prefetching. In twolf we get negative numbers, since in
this case the WSP coallocation solution yields potential benefits
over worst-case scenario, which are less than the benefits of the
current layout over worst-case scenario. Our approximation
algorithm which is bounded to √|hot-allocation-sites| of the
optimal coallocation solution, is responsible for this. With the
exception of twolf, the potential cache miss reduction indicate a
probably un-achievable (approximate) best case bound for locality
improvement.

Figure 9 shows executing time benefits from running the programs
with optimized cache-conscious object coallocation layouts on two
larger inputs (both different from the input used to generate the
layout). In addition, we isolate the impact of hardware prefetching,
which prefetches the next few sequential cache lines on a cache

Benchmark hot sites object reorder merge split split or
merge

split and
merge

boxsim 24 16 14 17 21 23 24
twolf 27 24 7 15 13 19 19
vpr 19 14 6 10 6 10 10
mcf 4 2 1 1 3 3 2
perl 17 12 2 8 5 11 11

foxpro 272 12 184 42 227 238 256
Table 1: Coallocation solution in terms of allocation sites.

Figure 8. Potential cache miss reduction for obj. coallocation

-20

0

20

40

60

80

100

boxsim twolf vpr mcf perl foxpro Average

%
 P

o
te

n
ti

al
 c

ac
h

e
m

is
s

re
d

u
ct

io
n

 (
o

b
j)

w.r.t. allocation order layout w.r.t. original layout

miss, by disabling hardware prefetching for some experiments.
Note that the base unoptimized configuration being compared
against had hardware prefetching enabled.

The results in Figure 9 indicate that automatic object coallocation
(in the presence of hardware prefetching) improves execution time
by 13% on average for our set of benchmarks on their largest
inputs. Without hardware prefetching, this improvement drops to
5%. Thus, object coallocation successfully “linearizes” the layout,
improves its spatial locality, and consequently, makes hardware
prefetching more effective. For vpr and mcf in particular, hardware
prefetching is extremely effective as their coallocation solutions
include larger objects. Our technique’s effectiveness at improving
VisualFoxPro by 14% suggests it can scale to large programs. On
average the improvements are slightly larger on the program’s ref
inputs than on its train inputs. This is attributable to the difference
in size of the data sets, which increases the importance and benefits
of cache locality optimization.

5.3 Field Coallocation Results
Table 1 presents allocation sites characteristics of the field
coallocations solutions. More sophisticated coallocation
techniques create more coallocation opportunity. For example,
field reordering finds far less coallocation opportunities than split
or merge. The numbers for split and merge in terms of program
allocation sites are quite similar to split or merge numbers
indicating that much of the benefits of the general field
coallocation solution can be attained with a more restricted
solution, with VisualFoxPro being the sole exception.

For each benchmark we compare our 5 strategies for field
coallocation. Figure 10 shows the results. For boxsim, twolf, and
mcf, split or merge and split are comparable to split and merge.
However, since split and merge technique requires sophisticated
source transformations, we employ split to these benchmarks. In
perl, merge suffices to obtain the coallocation benefits. In vpr we
get negative numbers due to our approximation algorithm similar
to the case for object allocation in twolf. VisualFoxPro gets
maximum benefit from split and merge but split or merge in not
too far behind.

Our current framework lacks type information. Thus, some type
manipulation suggested by the coallocation solution may not be
feasible, or may be hard to employ. Other problem arise from the
fact that type changes are not always feasible in a non type-safe
environment. We encounter the following problems: (i) We assume
fields are up to 4-bytes long. Thus, reordering part of a 8-byte field
is not feasible. This could happen for fields of type double. This

happens in boxsim and twolf. (ii) Several allocation sites may be
associated with the same type. Thus, a coallocation algorithm
assuming distinct allocation sites allocate distinct types may
suggest conflicting type changes. In boxsim and twolf two
allocation sites allocating the same type are candidates for a merge
in a coallocation solution. (iii) splitting array elements is hard to
employ, since as noted in [19] it requires changes in the pointer
arithmetic around array expressions. Array splitting is suggested in
the coallocation solution for twolf, boxsim and mcf. We employed
array splitting only in mcf due to the large potential benefit. (iv)
finally, in a non type-safe environment there may be hidden
assumptions on the layout of a structure. In boxsim and twolf
arbitrary field reordering causes these benchmarks to crash.

Given these constraints, we only attempted implementing the field
coallocation by hand for boxsim, twolf, and mcf. In boxsim, a major
part of the field coallocation solution was not enforceable (e.g.,
type manipulation problems), thus we were only able to employ
one object split and field reordering to two types, obtaining only
around 7% of potential benefit. The benefits for mcf come from
splitting a hot array, and in twolf layout changes include mostly
splitting small objects (12-88bytes). Thus, for twolf and mcf the
potential and the actual cache miss improvement numbers are quite
similar. With these changes, boxsim shows no speedup due to our
problems enforcing the layout. In twolf we get a 22% speedup, and
the time spent in cache misses is reduced by around 27%. For mcf
we get a further 12% speedup (over object coallocation), reducing
time spent in cache misses by a further 20%. These numbers
indicate the potential benefit of field level coallocation. However,
the effort required to obtain them and the hit-and-miss process
involved suggests automatic implementation in a type-safe
language, such as Java or C#.

6. CONCLUSIONS
We present a novel profile-based analysis aimed at coallocating
contemporaneously accessed hot heap objects. The analysis
attempts to obtain cache-conscious coallocation of a hot data
stream H by isolating and combining allocation sites of H such that
intervening allocations coming from other sites are separated. Our
extended analysis aims for coallocation at object field granularity,
generalizing common restructuring techniques, such as field
reordering, object splitting, and merging. Our initial results
indicate that programs possess significant coallocation
opportunities. Automatic object coallocation produces average
execution time improvements of 13% in the presence of hardware
prefetching for the program’s largest inputs. Hand-implemented
field coallocation solutions for two of the benchmarks produced
additional improvements (12% and 22%) but the effort involved

Figure 9. Benefits of automatic object coallocation.

0

5

10

15

20

25

boxsim twolf vpr mcf perl foxpro Average

%
 E

xe
cu

ti
o

n
 t

im
e

im
p

ro
ve

m
en

t

Train+HW Pref disabled Train+HW Pref enabled

Ref+HW Pref disabled Ref+HW Pref enabled

Figure 10. Potential cache miss reduction for different field
coallocation strategies.

-40

-30

-20

-10

0

10

20

30

40

50

boxsim twolf vpr mcf perl foxpro Average

%
 P

o
te

n
ti

al
 c

ac
h

e
m

is
s

re
d

u
ct

io
n

 (
fi

el
d

)

reorder merge split split or merge split and merge

suggests implementing an automated version for type-safe
languages, such as Java and C#.

ACKNOWLEDGEMENTS
We are grateful to Jim Larus, Ben Zorn and the anonymous
referees for their comments on an earlier draft of this paper.

REFERENCES
[1] E. Berger, B. Zorn, and K. McKinley. “Composing high-performance

memory allocators.” In ACM SIGPLAN’01 Conference on Program-
ming Language Design and Implementation (PLDI), June 2001.

[2] B. Calder et. al. “Cache-conscious data placement.” In Proceedings of
the 8th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), Oct. 1998.

[3] T.M. Chilimbi. “Efficient Representations and Abstractions for Quanti-
fying and Exploiting Data Reference Locality.” In ACM SIGPLAN’01
Conference on Programming Language Design and Implementation
(PLDI), June 2001.

[4] T.M. Chilimbi. “On the stability of temporal data reference profiles.” In
International Conference on Parallel Architectures and Compilation
Techniques (PACT), Aug. 2001.

[5] T.M. Chilimbi, J.R. Larus, and M.D. Hill. “Cache-conscious structure
layout.” In ACM SIGPLAN’99 Conference on Programming Language
Design and Implementation (PLDI), May 1999.

[6] T.M. Chilimbi, J.R. Larus, and B. Davidson. “Cache-conscious structure
definition.” In ACM SIGPLAN’99 Conference on Programming Lan-
guage Design and Implementation (PLDI), May 1999.

[7] P. Crescenzi et al. “A compendium of NP optimization problems.”
ww.nada.kth.se/~viggo/problemlist/compendium.html

[8] N. Gloy et. al “Procedure placement using temporal ordering informa-
tion.” In Proceedings of the 30th Annual ACM/IEEE International Sym-
posium on Microarchitecture (MICRO), Dec. 1997.

[9] R. Gonzalez et al. “Energy dissipation in general-purpose microproces-
sors.” In IEEE Journal of Solid State Circuits, 31(9), Sept. 1996.

[10] S. Guyer and K. McKinley. “Finding your cronies: static analysis for
dynamic object colocation.” In Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), Oct. 2004.

[11] X. Huang et al. “The garbage collection advantage: Improving program
locality.” In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), Oct. 2004.

[12] M. M. Halldorsson. “Approximations of weighted independent set and
hereditary subset problems.” In Journal of Graph Algorithms and Ap-
plications, Vol. 4, 2000.

[13] M. Hirzel and T.M. Chilimbi. “Bursty Tracing: A Framework for Low-
Overhead Temporal Profiling.” In Workshop on Feedback Directed
and Dynamic Optimizations (FDDO), Dec. 2001.

[14] T. Kistler and M. Franz. “Automated data-member layout of heap ob-
jects to improve memory-hierarchy performance.” In Transactions on
Programming Languages and Systems (TOPLAS),volume 22, 2000.

[15] E. Petrank and D. Rawitz. “The hardness of cache-conscious data
placement.” In Proceedings of the ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL), Jan 2002.

[16]S. Rubin, R. Bodik, and T.M. Chilimbi. “An Efficient Profile-Analysis
Framework for Data-Layout Optimizations.” In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), Jan 2002.

[17] M. Seidl and B. Zorn. “Segregating heap objects by reference behavior
and lifetime.” In Proceedings of the 8th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), Oct 1998.

[18] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation
in a distributed environment. In MSR-TR-2001-50, 2001.

[19] D. Truong, F. Bodin, and A. Seznec. “Improving cache behavior of dy-
namically allocated data structures.” In International Conference on
Parallel Architectures and Compilation Techniques (PACT), 1998.

[20] Y. Zhong et al. “Array regrouping and structure splitting using whole-
program reference affinity.” In ACM SIGPLAN’04 Conference on Pro-
gramming Language Design and Implementation (PLDI), 2004.

[21] C. Lattner and V. Adve. “Automatic pool allocation: Improving perfor-
mance by controlling data structure layout in the heap.” In ACM SIG-
PLAN’05 Conference on Programming Language Design and
Implementation (PLDI), 2005.

