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Fig. 1. Compact Rectangular Euler Diagram(left) and Euler Diagram with Duplications(right)

Abstract—In many common data analysis scenarios the data elements are logically grouped into sets. Venn and Euler style diagrams
are a common visual representation of such set membership where the data elements are represented by labels or glyphs and sets are
indicated by boundaries surrounding their members. Generating such diagrams automatically such that set regions do not intersect
unless the corresponding sets have a non-empty intersection is a difficult problem. Further, it may be impossible in some cases if
regions are required to be continuous and convex. Several approaches exist to draw such set regions using more complex shapes,
however, the resulting diagrams can be difficult to interpret. In this paper we present two novel approaches for simplifying a complex
collection of intersecting sets into a strict hierarchy that can be more easily automatically arranged and drawn (Figure 1). In the first
approach, we use compact rectangular shapes for drawing each set, attempting to improve the readability of the set intersections. In
the second approach, we avoid drawing intersecting set regions by duplicating elements belonging to multiple sets. We compared
both of our techniques to the traditional non-convex region technique using five readability tasks. Our results show that the compact
rectangular shapes technique was often preferred by experimental subjects even though the use of duplications dramatically improves
the accuracy and performance time for most of our tasks. In addition to general set representation our techniques are also applicable
to visualization of networks with intersecting clusters of nodes.

Index Terms—Information Visualization, Euler diagrams, Set Visualization, Graph Visualization

1 INTRODUCTION

Grouping data elements in sets (or clusters) is a common task in many
analysis scenarios. For example, when analyzing documents, lin-
guists often group words into semantic categories and topics. Simi-
larly, when analyzing social networks, sociologists group people into
communities and study their relationships. There is a wide range of
techniques to compute sets (or clusters) based on similarity data [22].
The topic of this paper is visual representations of data elements such
that their set membership is shown by region boundaries. When sets
intersect in complex ways, this type of representation becomes a chal-
lenging problem in information visualization.

The common visual representation of sets are Venn and Euler style
diagrams [14]. Venn diagrams represent all sets and their possible
intersections with overlapping elliptical shapes. Euler diagrams are a
relaxation of Venn diagrams in which the shapes corresponding to sets
are not required to overlap if their corresponding intersection is empty.
We identify two main challenges when drawing Euler diagrams:
1) Complexity of set regions. Gestalt theory [27] suggests that con-
vexity of regions plays a key role in perception [23] and in our ability

• Nathalie Riche is with Microsoft Research, E-mail: nath@microsoft.com.
• Tim Dwyer is with Microsoft Corp., E-mail: timdwyer@microsoft.com.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online
24 October 2010; mailed on 16 October 2010.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

to complete shapes when partially occluded [28]. In addition, a few
experimental results show that Euler Diagrams with convex shapes are
more effective [3]. However, it can be a difficult challenge to draw Eu-
ler diagrams using convex set regions such that there are no overlaps
between regions where the corresponding sets have an empty intersec-
tion [33].

2) Drawing data elements. Most work on drawing Euler diagrams
focuses on classifying the sets in a particular dataset as drawable un-
der constraints such as elliptical or convex regions [6]. Such work is
rarely concerned with the problem of ensuring that sufficient space is
provided inside the regions to show item labels or glyphs. Although
there are applications (for example in biology) where only the sets
themselves and their intersections need be shown [24], visually repre-
senting the data elements belonging to the sets is important in more
general information visualization applications. For example, when
analyzing communities in social networks or when studying articles
grouped by keywords, it is important to identify which elements are in
multiple sets.

Recent work in Information Visualization has attempted to address
the challenge of drawing both sets and data elements. Simonetto et
al. [31] describe how to automatically generate drawings with sets
represented as non-convex regions as well as placing labelled ele-
ments inside these regions automatically. They demonstrate how their
technique can draw previously undrawable Euler Diagrams. A sec-
ond article from Collins et al. [7] presents a technique to generate
set boundaries given a fixed layout of their elements. This technique
can recompute boundaries around items involved in the same set effi-



ciently enough for interactive scenarios. While these techniques repre-
sent strong advances in the field, both of them can lead to non-convex
and/or discontinuous shapes when many sets intersect in intricate ways
(Figure 2). The use of color and texture [31] may help to convey the
continuity of a given set region up to a limited number of different sets
but the readability of such diagrams has not been well studied.

In this paper, we present two novel approaches to drawing set di-
agrams with labelled elements which break complex set intersections
into a strict hierarchy that can be easily drawn with convex shapes
(Figure 1). The intersections are then represented with additional
links. These techniques leverage automatic constraint-based layout
techniques to keep the links short and to produce readable, rectangular
set and sub-set regions that are strictly non-overlapping except in the
case of complete inclusion. Both techniques produce diagrams that
are topologically Euler-like, but offer different approaches to simpli-
fying the drawing of intersecting regions. The first approach: Com-
pact Rectangular Euler Diagram (ComED), involves splitting regions
involved in intersections and then folding them back together into a
strict containment hierarchy with links between the split regions to
show that they are connected. Our second technique: Euler Diagram
with Duplications (DupED), takes inspiration from the Semantic Sub-
strate technique [30] for placing the nodes of graphs with a group-
ing defined by the semantics of the application using non-overlapping
rectangular regions. In DupED we avoid drawing intersecting sets
by duplicating elements belonging to multiple sets. Duplicated ele-
ments have the same label and are connected by a link to indicate that
they represent the same element [18]. We automatically arrange both
ComED and DupED using a constraint-based graph-layout technique.
Both techniques are therefore easily applied to the drawing of complex
clustered-graphs, for example, see Figure 3.

To evaluate the readability of each technique, we ran two controlled
experiments using five tasks testing the subjects’ ability to quickly and
accurately interpret the diagram. In the remainder of this article we
describe previous work in set visualization, describe each of our tech-
niques in more depth and present the controlled experiments we per-
formed. We conclude by discussing the results of the study and the
potential and limitations of each technique.

2 RELATED WORK

Set representations are used in many different fields; for example, to
teach and demonstrate logic and set theory in schools [16], to ana-
lyze communities in social network analysis [29], to present results
by topics in information retrieval [32], or to study groups of genes in
bioinformatics [24]. While each field may have its unique terminol-
ogy, in this article we use the generic term set as the logical group of
elements and the term set region to designate its visual representation.

2.1 Representing sets
The most common set representations are called Venn and Euler di-
agrams. Venn diagrams represent all possible combinations of sets
regardless of whether a given set intersection contains elements. Eu-
ler diagrams have the additional constraint that set regions should not
overlap if the intersection of those sets is empty. There are multiple
precise definitions of Venn and Euler diagrams [14, 4, 21, 33] varying
in their definition of the shapes allowed for the set regions [13] or the
definition of their undrawable instances.

Consequently, many algorithms exist to draw different types of
euler diagrams and datasets that meet the different requirements for
drawability, for an overview see Chow [6]. Particularly, a number of
systems have been developed representing sets with convex set regions
such as VennMaster [24], DrawEuler, DrawVenn and VennCircles [5].
However, these applications draw only particular subsets of Euler and
Venn diagrams subject to fairly strict limitations (e.g. planarity of the
Euler Dual).

Recently, Simonetto et al. [31] proposed a more generic method
to represent a larger subset of Euler diagrams, drawing a number of
previously impossible cases and scaling to larger and more complex
set combinations. However, when a large number of sets intersect and
many intersections are empty, the set regions have complex shapes and

Fig. 2. Complex arrangement of sets in [31] and BubbleSets [7]. Note
that the first method provides strict containment only for point-size ele-
ments, not textual or graphical labels; the second works with an existing
placement and does not try to separate element boundaries to avoid
intersections between set regions.

Fig. 3. A small (artificial) social network with primary “friend relations”
represented as simple links and overlaid with intersecting set regions
(representing, for example, affiliations) rendered using the ComEDtech-
nique.

an intricate arrangement making the diagrams difficult to interpret, e.g.
Figure 2. In these cases, fundamental set operations such as comparing
the number of elements of two sets or assessing their intersection may
still be very difficult to perform. To our knowledge, there are very few
empirical studies focused on the readability of Euler Diagrams. One
study [3] evaluated how the smoothness of the line contour, the sizes of
the set regions and the closeness of contours affect the complexity of
set regions and the readability of diagrams. These preliminary results
did not clearly show the impact of these factors and it is not clear how
these factors were controlled.

We opt for another approach and consider the complexity of set
regions as a primary factor impacting readability. We formed this hy-
pothesis from empirical results in Gestalt psychology [27] showing
that convexity of regions plays a key role in how we perceive shapes
as being part of the foreground or the background [23] and how it im-
pacts our ability to complete shapes [28] when partially occluded. In
other words, we believe that readability of Euler Diagrams is impacted
when it is difficult to guess what the shape of the set region is (due to
occlusion or ambiguity of overlapping regions). Coloring regions and
applying textures as presented in [31] may help the user perceive the
distinct set regions but unfortunately these solutions do not scale very
well to large numbers of sets particularly when they are highly inter-
secting. In this paper, we present two algorithms to simplify the rep-
resentation of set regions. To evaluate these techniques, we propose
a method to control the level of complexity of set arrangements (see
Section 6.1).

2.2 Representing sets and their elements
Because Euler diagrams are difficult to draw and to read when many
sets intersect, alternative representations have been developed such as
ConSet [25] and ComVis [15]. These representations are very effec-
tive when the primary focus of users is to analyze relations between
sets without reading individual data elements. However, in many cases
visualizing both sets and their elements is important. Visualizing ele-



ments adds an extra layer of complexity as intersecting regions must
be large enough to contain the glyphs or labels representing those el-
ements. For example, when analyzing multi-dimensional data with
Scatterdice [12], identifying sets of elements sharing common prop-
erties is the main task, but elements have a fixed spatial layout in-
duced by the scatterplot representation, highly constraining the draw-
ing of sets. Other examples include maps or timeline representations
in which set regions have to be represented as more or less complex
shapes surrounding their members [7].

A related application is clustered graph visualization where the pri-
mary relations to be visualized are binary connections between ele-
ments while clusters (sets) are a second type of relationship that needs
to be overlaid and, ideally, also considered in the layout of the diagram.
See, for example, our rendering of such a graph in Figure 3. In these
cases, sets are often overlayed on the graph representation, for exam-
ple [9, 17]. In these representations, the problem of overlapping sets is
rarely addressed. Eades et al. [11] proposed solutions to handle hier-
archical sets, avoiding the case where a given element (node) belongs
to multiple unrelated sets. Similarly, semantic substrates [30] demon-
strates how laying out nodes according to their data attributes can help
analysts discover insights about the data. However, this representation
does not handle elements belonging to multiple sets, a common fact in
real-world data.

A few techniques have used the duplication of elements to deal with
overlapping sets. For example, Melancon et al. [26] duplicated ele-
ments to transform a direct acyclic graph into a hierarchical tree, rep-
resented it using treemaps [2]. Abello et al. [1] generate a clustering
over a graph using biconnected components in order to provide se-
mantic zoom navigation. They use duplication of articulation nodes
(nodes that appear in multiple biconnected components) in order to
obtain a strict hierarchy. Henry et al. [18] explored the use of duplica-
tions in NodeTrix, a hybrid of node-link and matrix representions for
visualizing clustered graphs [19]. Generalizing the use of duplications
in Euler diagrams and evaluating the readability of this representation
compared to non-convex Euler diagrams has not been performed.

3 TWO SIMPLE MODELS FOR COMPLEX SET INTERSECTIONS

Assessing the readability of Euler diagrams and identifying the fac-
tors that make them easy or difficult to interpret is a challenging prob-
lem [3]. Previous studies [3] suggested that factors such as smoothness
of the boundaries or size of the set regions may affect the readabil-
ity. Based on our empirical observations and results from the Gestalt
theory [28], we believe that set intersections and complexity of the
set regions are more likely to affect the readability of a diagram. In
particular, we identify the following visual artefacts: (1) the number
of intersecting shapes and how their boundaries intersect or overlap;
(2) the complexity and predictability of the set regions (for instance a
convex-hull is simple and predictable). In this section, we present two
models that aim at improving these two readability issues.

3.1 Compact Rectangular Euler Diagram (ComED)

The basic idea of ComED is to split sets with intersections to produce a
strict hierarchy which can be easily drawn with non-overlapping con-
vex shapes (groups) and then to link up the split regions with lines.
We argue that this technique minimizes the intersection of set regions’
boundaries; i.e. non-intersecting group shapes cannot overlap, only the
narrow links between them. Further, it guarantees that an element will
be drawn strictly inside only those group boundaries corresponding
to the sets to which it belongs. Figure 5(b) shows a simple (though
highly intersecting) example to which we will refer again. We lay out
the resulting diagram using constraint-based force-directed layout as
described in section 5. Note that the term group is used to refer to
the internal nodes in the hierarchy (the rectangular boundaries in our
drawings).

The algorithm for producing the strict hierarchy for a given set of
intersecting sets could be thought of as a breadth-first traversal of the
set-intersection graph. The difficulty lies in choosing the starting node
for the traversal and for each pair of intersecting sets choosing which

Fig. 4. Figure 5(b) is produced according to the above algorithm as
follows. First we sort the 4 sets and assign labels as shown in the left
table. We then produce the list of lists of set labels for each element,
sorted lexically, as shown on the right. We process this list to construct
the hierarchy of groups and connect the groups with edges to produce
the final ComED. Note that the lexical ordering of the sets also gives us
the Z-ordering used for drawing set boundaries in the final drawing.

(a) ComED construction. (b) ComED final layout.

(c) DupED construction. (d) DupED final layout.

Fig. 5. Simple example of ComED and DupED representing the same
dataset. Figures (a) and (c) show the underlying graph and arrows mark
a subset of the constraints used to prevent overlap in the final layouts in
figures (b) and (d), respectively.

to split. Algorithm 1 is easily implemented without requiring an ex-
plicit computation of the intersection graph or traversal. Rather, it uses
simple lexical sorting of set labels to apply a greedy heuristic which
tends to split smaller sets in order to keep larger sets intact.

Table 3.1 shows the sorted lists constructed by Algorithm 1 to pro-
duce Figure 5(b). Note that processing sets in order from largest to
smallest is a heuristic and does not guarantee the least number of
edges in the resulting diagram. Producing a ComED with as few edges
as possible may be a difficult optimization problem and possibly NP-
hard. In practice the method above seems to produce reasonable draw-
ings and runs in O(nm logm) time for datasets with n items and m sets.
Further analysis of this algorithm and the difficulty of finding optimal
solutions is beyond the scope of this paper.

3.2 Euler Diagram with Duplications (DupED)

The principle of DupED is to avoid drawing any intersecting set re-
gions and represent set regions with a simple rectangle. Though a
more fitted hull could be easily drawn we find rectangles give a clean
aesthetic. Overlapping set regions are allowed only in the case of a
strict subset. Elements belonging to a single set are placed inside each
set region. When a data element belongs to multiple sets, it is dupli-
cated in each of the set regions. Figure 5(d) shows the DupED drawing
of the sets shown in Figure 5(b). Algorithmically, finding nodes with



Algorithm 1 Compact Rectangular Euler Diagram
Given a set of sets, assign a unique integer label to each set such that the
labels increase as sets decrease in size (count of elements)
for each element do

Construct a list of labels for all sets of which the element is a member
end for
Sort each list such that the labels increase monotonically
Sort the list of lists of set labels lexically
Construct a group for the first label in the first list
for each remaining label in the first list do

Construct a group such that the group corresponding to each label is
nested inside the previous group

Add the first item as a child of the inner-most group
end for
for each remaining list of set labels do

Construct groups for each of the sets in the list that differ from those in
the previously processed list (nested as before)

Add the item as a child of the inner-most group
end for
Connect with an edge all groups with the same label

multiple set parentage and choosing to duplicate them (if the entire set
is not fully contained by the parent) is trivial.

4 REALIZING THE MODELS

4.1 Link representation
In ComED we introduce links between all pairs of groups represent-
ing a single set and in DupED we introduce links between all pairs of
duplicated elements. These links constitute an additional visual cue
that the different graphical objects represent a unique element. Previ-
ous experiments [18] showed that these links were helpful even in the
context of graph visualization, when other types of links are present.

Showing n(n− 1)/2 links between all pairs of groups or elements
can lead to a lot of clutter. As a result of our readability experiments,
we decided to bundle links together to reduce clutter and better convey
the unity of the sets. We used a simple technique to replace the mul-
tiple links with a single filled path centered on the barycenter of the
connected groups or elements. To create the smooth contour, we draw
lines from the barycenter to the center of each set and perpendicular
segments to these inside each group. Splines are then computed using
these construction lines. Figure 6 shows the details of generating the
bundle shape with splines.

4.2 Layout
Both the ComED and DupED models provide methods for decompos-
ing intersecting sets of items into a strict tree-like nesting hierarchy.
Given such a hierarchy arranging the sets of items such that the hulls
around the decomposed set-structures are strictly non-overlapping is

(a) Link bundle construction. (b) Union of element or
group shapes with bun-
dle path.

Fig. 6. The link-bundling technique used to connect split-groups or du-
plicated elements.

a much more approachable problem. There is more than one layout
method that could be applied to achieve a reasonable drawing. For
example, treemaps are a simple and popular way of representing such
hierarchies. However, we use a constraint-based layout method [8]
that has two advantages over simple treemap arrangement. First, in
the initial layout, links between split groups or duplicated elements
are kept as short as possible. Second, it provides a strong guarantee
that rectangular group and node boundaries can never overlap except
when a node is a child of a group and that this will be achieved with as
little displacement as possible from the underlying majorization-based
layout.

Our layout method for ComED and DupED is illustrated in Fig-
ure 5. First, we build a graph containing a node for each element and a
node for each group. We then introduce edges from each group node to
its member elements. Then, we add edges linking duplicated elements
and duplicated groups as described above. An initial unconstrained
majorization layout is then applied to this graph to unfold it, reducing
crossings while keeping nodes well separated. Next, we generate sep-
aration constraints through a scan-line based method as described by
Dwyer et al. [10] to preserve containment within rectangular groups
and to prevent overlap between the rectangular boundaries where there
is no containment relationship. The dotted arrows in Figures 5(a) and
5(c) show a subset of these constraints. Finally, we apply majorization-
based layout subject to these constraints to minimize edge lengths
while at the same time prevent unwanted overlaps. Full C++ imple-
mentation of both the constraint generator and constraint-based layout
methods is available from http://adaptagrams.sf.net.

5 INTERACTION

Interactions are demonstrated in the companion video of this pa-
per available at http://research.microsoft.com/˜nath/
EulerDiagrams.

5.1 Interactive layout and set creation
Since the non-overlap/containment constraints are generated dynami-
cally, the integrity of our ComED and DupED drawings is preserved
even during interactive manipulation or editing of the groups and ele-
ments in the diagram.

In addition, the simplicity of our models allows interactive creation
of sets. We implemented standard lasso selection to allow users to
create sets interactively. ComED and DupED are recomputed after
each set creation and the layout is automatically adjusted fast enough
to provide responsive interaction on reasonably large diagrams (with
hundreds of elements). From initial empirical tests, both techniques
provide sufficiently stable configurations, in the sense that the arrange-
ment of the existing set regions do not vary dramatically when adding
new sets.

5.2 Interactive hybrid creation
DupED provides an extreme case of the use of duplications. Indeed,
our current algorithm replaces all intersecting set regions (except when
totally contained) by duplicated elements. However, we believe that in
many cases, the most readable diagram is a hybrid version: some of
the set regions replaced by duplicating elements while others still con-
tained in overlapping regions. Then, identifying the right hybrid con-
figuration and building it automatically becomes a challenging prob-
lem, out of scope of this paper. However, Figure 7 presents a simple
technique allowing users to interactively create hybrid representations.
This interaction technique can help disambiguating complex intersect-
ing set regions by “untangling” them, smoothly transforming the inter-
section in a set of duplicated elements (see also the companion video).

6 EXPERIMENTS

The two simple models presented both have advantages and draw-
backs. ComED is a compact representation, designed to improve the
readability of conventional “bubble-like” Euler diagrams. DupED is
far less compact as it induces more elements (the duplicates) and in-
troduces a layer of complexity: the additional links to mark duplica-
tions. Its advantages are that DupED produces a unique structure for



Fig. 7. Untangling sets interactively. From the initial configuration, the
user drags the purple set to better understand how it intersects with
others. As he drags the set, the areas of intersection are reduced until
the elements have to be duplicated in both sets. The final configuration
shows that the purple set shares one element with the blue set, one
element with the green set and one with both the red and orange sets.

any given set input (there are multiple ways to draw overlapping set
regions with ComED or other Euler diagrams) and rectangular set re-
gions that are entirely disjoint.

To assess the readability of both techniques, we performed a first
controlled experiment using 5 readability tasks measuring how users
can perform general overview tasks (e.g. counting the overall num-
ber of sets) and more detailed tasks (e.g. assessing the number of
elements in a given intersection). During this first experiment, we
were surprised that our participants had difficulties learning ComED.
Thus, we were curious to study how ComED performed compared to
more conventional Euler diagram representations. For this reason, we
performed a second controlled experiment comparing three different
techniques: ComED, DupED and manually drawn Euler Diagrams.

6.1 Generating Euler diagrams of different difficulties
Generally, Euler diagrams increase in complexity as the number of sets
participating in intersections increases until they can only be drawn
with complex or discontinuous set regions. To control these properties
and thus generate Euler diagrams with similar difficulties, we use the
structure of corresponding Euler duals [6] to gauge complexity.

Euler dual: The Euler dual for a particular instance of intersecting
sets is fairly straightforward. A vertex is defined for each topological
region in the Euler diagram, i.e. a vertex for each non-empty inter-
section between two or more sets and also a vertex for any set with
elements not found in any other set. An edge is defined in the graph
between two vertices if the sets associated with each vertex differ by
only one set. Figure 8 shows examples of Euler duals and their asso-
ciated diagrams.

Controlling the difficulty: The number of intersections and the
number of sets involved in them can be controlled via the generation
of the vertices of the dual graph. For example, Figure 8(a) presents
Euler duals with a vertex with 3 letters (left) and one with 4 letters
(right) generating respectively a 3-set and a 4-set intersection (Fig-
ure 8(b)). The complexity of the set regions in a given Euler diagram
can be controlled via the generation of the edges of the Euler dual.
While a missing edge in the Euler dual may affect the convexity and
regularity of set regions; disconnecting the Euler dual (i.e. breaking
the dual in several connected components) ensures that set regions are
discontinuous, introducing more complex set boundaries. Figure 8(a)
illustrates the effect of breaking the dual in three connected compo-
nents as well as the resulting diagrams (Figure 8(b)).

6.2 Method
Our first experiment compared performance of Compact Rectangu-
lar Euler Diagram (ComED) and Euler Diagram with Duplications
(DupED). Our second experiment included Hand-Drawn Euler Dia-
gram (DrawnED). For both, we used a within-subject design:

(Exp1) 2 Vis x 4 Diff x 5 Tasks x 3 repetitions.
(Exp2) 3 Vis x 4 Diff x 5 Tasks x 2 repetitions.
We used the same procedure for both experiments. We counter-

balanced the order of the visualizations. The order of the tasks was
fixed and we randomized the order of the datasets to avoid any mem-
orization effect. Participants received training before each visualiza-
tion. For each task, participants clicked on a button to indicate that

(a) Euler duals. Left has a vertex with 3 letters at most. Right has a
vertex with 4 letters and 3 connected components.

(b) Corresponding Euler diagrams. Left is easy with a single 3-set intersec-
tion and no discontinuous regions. Right is harder with a 4-set intersection
and two discontinuous regions (caused by empty intersections).

Fig. 8. Euler duals and their corresponding diagrams.

they had finished reading the description of the task and were ready
to begin, and pressed the space bar when they were done. The ap-
plication recorded accuracy and completion time. To keep the study
a reasonable length, we limited each task to a maximum of 40 sec.
After the experiment, we collected user preferences and comments us-
ing a questionnaire. The study lasted approximately 60 min including
training and post-experimental questionnaire.

Participants and Apparatus We recruited 18 participants, 9
for each experiment, screened to include people with general computer
experience, balanced for age and gender, and not color-blind. For Ex-
periment 1, 6 males and 3 females participated, with an age ranging
from 21 to 47. For Experiment 2, 5 males and 4 females participated,
with age ranging from 25 to 40. In both experiments, participants used
a 3.00 GHz dual-core PC with 4 GB of RAM, running Windows Vista,
and using 21” monitors at a resolution of 1600x1200.

Visualizations We used the algorithm described in the previous
section to create both the ComED and DupED diagrams. We did not
have link bundling for our studies (see Figure 9). This feature was
implemented a posteriori from our participants’ feedback.

For Experiment 2, we manually drew DrawnED using Powerpoint
and Photoshop. We used the layout of the elements created using
ComED and drew the corresponding set regions around these. We
iterated several tims and when drawing the set regions, we avoided
sharp angles, keeping the contour as regular as possible. Our goal was
to create shapes similar to the one created using BubbleSet [7]. We
were careful to make the shape boundaries as predictable as possible,
avoiding overlap of boundaries. However, creating such shapes is dif-
ficult when representing discontinuous set regions. Initially, we used
a transparent color for each set. However, since we felt it was very
difficult to distinguish these colors when multiple sets intersected, we
added a border with a solid non transparent color. Figure 9 shows
examples of DrawnED.

Datasets We controlled the number of sets, number of elements,
number of 2-set, 3-set and 4-set intersections as well as the number of
discontinuous set regions. In addition, for each difficulty, we had a
minimal instance (one element in each set and intersection) and one
with additional elements. The one with more elements was created to
evaluate the effect of multiple duplication links in DupED. For exper-
iment 2, we decided to stress all techniques. We raised the difficulty
to medium and difficult datasets. We also increased the number of
additional elements.



(a) Easy DrawnED (b) Medium DrawnED (c) Hard DrawnED (d) Hard ComED

Fig. 9. Example of the three dataset difficulties we used during the experiments. (d) shows ComED without bundling as tested in our experiment.

We created multiple instances of datasets to avoid memorization.
In Experiment 1, we had 3 instances of each of the 4 difficulties. In
Experiment 2, we reduced to 2 instances of each difficulty to keep
the experiment to a reasonable time. Table 1 lists the values we used
the generate the Euler duals and corresponding Euler diagrams per
difficulty. Figure 9 shows an example of each difficulty.

Exp1 sets elements 2-set 3-set 4-set disc.
(D1) Easy min. 4-5 ˜ 10 ˜ 3 3 0 1
(D2) Easy add. 4-5 ˜ 15 ˜ 3 3 0 1
(D3) Med min. 6-7 ˜ 15 ˜ 4 2 1 1
(D4) Med add. 6-7 ˜ 25 ˜ 4 2 1 1
Exp2
(D3) Med min. 6-7 ˜ 15 ˜ 4 2 1 1
(D4) Med add. 6-7 ˜ 35 ˜ 4 2 1 1
(D5) Hard min. 8-9 ˜ 25 ˜ 6 3 2 3
(D6) Hard add. 8-9 ˜ 45 ˜ 6 3 2 3

Table 1. Parameters used to generate Euler diagrams per difficulty.

Tasks We selected five readability tasks focusing on both sets
and elements. We attempted to capture both the overview of the dia-
gram and the readability of detailed portions such as set intersections.
For each task, participants had to select from multiple choices.
(SetCount) What is the total number of sets?
(SetComparison) Given A and B, which set contains more elements?
(SetIntersection) How many elements are in the intersection of A and
B.
(EltCount) What is the total number of elements?
(EltMembership) Which set(s) contain element 0?

6.3 Hypotheses
In both experiments, we hypothesized that DupED would outperform
the other techniques for tasks centered on sets (H1) as they provide
a simpler boundary for the sets. However, we believed that the other
techniques should outperform DupED for tasks centered on elements
(H2) since they do not introduce duplicated elements. We believed
that DupED would decrease in performance for the datasets with a
high number of duplicated elements (H3), duplication links causing
clutter and degrading the readability.

During experiment 1, we were surprised that the training for
ComED was much longer than for DupED. Many participants had
trouble identifying the sets and several commented on how hard it was
to understand. Thus, we formed the hypothesis that ComED may, in
fact, be significantly less readable than regular Euler diagrams with
non-convex hulls such as BubbleSets [7]. For this reason, we decided
to run a second experiment introducing a third visualization technique:
Hand-Drawn Euler Diagram (DrawnED). We hypothesized that partic-
ipants would prefer DrawnED since they are more familiar with it but
that ComED would outperform it (H4).

In addition, since several participants reported that it was easy to
only rely on the colors of the sets, we decided to raise the overall size
and difficulty of the datasets. Finally, we took advantage of this sec-
ond experiment to further explore the robustness of DupED by adding
more duplication links (from +50% additional elements to +100% ad-
ditional elements).

6.4 Results

In this section, we report the results of both experiments for each task.
Figure 10 contains the details of the ANOVA for experiment 2 as well
as the mean accuracy and time for each technique. Complete analysis
for both experiment is available in [20]. Table 11 presents a summary
of the results.

SetCount
Accuracy: Wilcoxon’s test and Friedman’s test do not reveal any

significant difference between Vis in both experiments. The accuracy
for all the techniques is affected by the difficulty of the datasets and
drops from 30% between experiment 1 and 2.

Time: ANOVA reveals a significant difference between techniques
in both experiments. Post-hoc comparison reveals that DupED is faster
than DrawnED, which is faster than ComED. DupED is about twice
faster than the other two techniques for this task. It also reveals that
DrawnED is about 20% faster than ComED.

Preference: Participants mostly preferred DupED for counting the
sets (16/18 for both experiments). In the second experiment, almost
all of the participants favored ComED over DrawnED, commenting
that it was difficult to differentiate colors in DrawnED, especially
when transparent and overlapping with each other. Several partici-
pants stated that “finding the set boundaries in there is a nightmare!”
and two of them mentionned that it was difficult to “predict where the
shape goes”.

SetComparison
Accuracy: Wilcoxon’s test and Friedman’s test reveal a signifi-

cant difference between techniques for both experiments (Wilcoxon
p < .01, Fiedman p < .001). DupED is more accurate than both other
techniques. There is no difference between ComED and DrawnED.
Results in experiment 1 shows that DupED is about 20% more accu-
rate than ComED for this task.

Time: ANOVA also reveals a significant difference in performance
time between techniques for both experiments. DupED is faster than
both other techniques. ANOVA reveals a significant difference be-
tween Diff as well as an interaction Diff x Vis. As the difficulty in-
creases, all techniques decrease in performances. DupED is particu-
larly affected when the number of duplicated elements increase.

Preference: Participants mostly preferred DupED for comparing
the number of elements of two sets (16/18 for both experiments). All
participants favored ComED over DrawnED for this task.



ANOVA exp 2 Vis Diff Visx Diff
F(2,16) F(3,24) F(6,48)

All tasks. 15.98*** 53.85*** 2.67*
SetCount. 67.66*** 10.82*** 0.8
SetComp. 48.16*** 24.58*** 3.64**
SetInter. 01.78 08.15** 3.92**
EltCount. 11.95*** 30.51*** 1.04
EltMember. 19.14*** 29.35*** 5.82***

***p < .001 **p < .01 *p < .05

Fig. 10. ANOVA and mean accuracy and time for the three techniques compared in experiment 2.

Task Accuracy Time Preference
SetCount DupED = ComED = DrawnED DupED < DrawnED < ComED DupED > ComED > DrawnED
SetComparison DupED > ComED = DrawnED DupED < DrawnED < ComED DupED > ComED > DrawnED
SetIntersection DupED > ComED = DrawnED DupED < ComED = DrawnED DupED >= ComED > DrawnED
EltCount ComED = DrawnED > DupED DrawnED < ComED < DupED ComED > DrawnED > DupED
EltMembership ComED = DrawnED = DupED DupED < ComED = DrawnED DupED >= ComED > DrawnED

Fig. 11. Table summary of the results.

SetIntersection
Accuracy: Wilcoxon’s test and Friedman’s test do not reveal any

significant difference between Vis in both experiments. In experiment
2, Friedman’s test reveals a significant difference in accuracy when
splitting the results by Diff. In the most difficult case (D6), Wilcoxon’s
test reveals that ComED is more accurate than both other techniques
(p < .05).

Time: ANOVA only reveals a significant difference for experiment
1, showing that DupED is faster than ComED. As Diff increases, all
techniques are affected. Splitting the results by Diff for experiment 2
reveals that DupED is strongly affected by the number of duplicated
elements. In the most difficult case, DupED is about 30% slower than
the two other techniques.

Preference: In experiment 1, participants were divided between
both techniques (4/9 preferred DupED, 2/9 preferred ComED, 3/9
ranked both techniques as equivalent). In experiment 2, participants
mostly preferred DupED to both other techniques (7/9). All partici-
pants favored ComED over DrawnED for this task.

EltCount
Accuracy:Wilcoxon’s test and Friedman’s test show a significant

difference between Vis in both experiments (Wilcoxon p < 0.01, Fried-
man p < .001). In experiment 1, ComED is about 20% more accurate
than DupED. In experiment 2, both ComED and DrawnED outperform
DupED. No difference is shown between ComED and DrawnED.

Time: ANOVA reveals a significant difference between Vis for both
experiments. In experiment 1, results show that ComED performs
faster than DupED. In experiment 2, post-hoc comparison shows that
both DrawnED and ComED perform twice faster than DupED and that
DrawnED is faster than ComED for this task. ANOVA also reveals
a significant interaction Diff x Vis in both experiment. As expected,
DupED is strongly affected when the number of duplicated elements
increase.

Preference: Participants uninamously disliked DupED for count-
ing the elements, many stating that the duplication links were an ex-
tra burden for this task. In experiment 2, 7/9 participants ranked
ComED above or equal to DrawnED despite the significant superior-
ity of DrawnED in completion time. When asked why they preferred
ComED for counting elements, participants explained that the over-
lapping shapes were distracting, one participant commenting that “it
was difficult to tune out the fuzzy shapes”.

EltMembership
Accuracy: Wilcoxon’s test and Friedman’s test do not reveal any

significant difference between techniques for both experiments.
Time: ANOVA reveals a significant difference between Vis for both

experiments. Contrary to our hypothesis, post-hoc comparison shows
that DupED is faster than both other techniques even when the num-
ber of duplicated elements is high. In experiment 2, results show that
DupED is about 40% faster than both other techniques. There is
no significant difference between DrawnED and ComED. However,
ANOVA reveals a significant interaction Vis x Diff. DupED is par-
ticularly affected when the number of duplicated elements increases
and DrawnED is strongly affected as the dataset difficulty increases.
For the most difficult dataset (D6), DupED performs twice as fast as
DrawnED.

Preference: In experiment 1, 7/9 participants preferred DupED to
ComED explaining that following the duplication links was easier than
counting the set boundaries. In experiment 2, in which the number
of duplicated elements significantly increased, participants were more
divided. 6/9 favored ComED and 3/9 favored DupED. They expressed
either their preference for containment: “I just look at the colors in
a single eye movelement from the element to the top of the screen”
or explained that following the duplication links was more efficient.
None of them preferred DrawnED.

7 DISCUSSION

Our results showed that DupED outperformed the other techniques for
two of the set tasks as we expected (H1). However, the cluttering
caused by the duplication links seems to have affected the SetInter-
section task (in which participants had to count the number of links
between two sets). As expected, ComED and DrawnED outperformed
DupED for counting elements but surprisingly not when identifying
the element membersip (H2).

Overall, we were surprised that the number of additional elements
did not impact more strongly on the overall performance of DupED
(H3), especially in experiment 2 as we raised the complexity signifi-
cantly. We observed, though, that this clutter impacted the preferences
as, contrary to our first experiment, very few participants mentioned
that DupED was “cleaner” or easier to read than the other techniques.

Surprisingly, ComED did not significantly outperform DrawnED
for SetIntersection and ElementMembership (H4). We believe that this
is due to the clutter caused by the links between split regions. This led
us to implement the link-bundling method described in section 4.1. In
addition, for ElementMembership, we observed several participants
counting the set colors instead of using the set containment. While
we briefly explained the strategy during the participant training, we
believe that ComED requires more practice.



Contrary to our expectations, ComED was unanimously preferred
over DrawnED and favored to DupED in several cases. Our par-
ticipants commented that ComED worked best for the most complex
cases, especially when the number of duplicated elements was high in
DupED and the set arrangement intricates with DrawnED. One par-
ticipant ranked ComED as his favorite technique for all conditions,
mentionning that it “worked” for him and that he could “tune his eyes
to see the sets in different layers by color”. However, his quantitative
results did not differ significantly from the others.

7.1 Limitations

The controlled experiments we performed suffer from a number of
limitations and should only be considered as an initial exploration of
the readability of set visualization techniques. First, as we imple-
mented link-bundling as a result of our studies, further experiments
are required to explore the impact of this feature. While we believe
that the bundling would not impact strongly the results for the small
datasets we tested, we feel it is an important feature to scale to larger
and more complex set arrangements (see Figure 13). Second, we high-
light the need to further compare the readability of set visualization
techniques such as weaving techniques and texture-based techniques.
Finally, in the following section, we give anecdotal evidence to show
how our techniques scale to complex set arrangements. However, fur-
ther controlled experiments with larger and more complex datasets are
required to formally assess the scalability of these techniques.

7.2 Scalability

While these experiments showed that DupED is an effective tech-
nique to show relatively simple set intersections, we believe ComED
is promising for larger and more complex diagrams. For DrawnED,
the complexity of the set intersections is the factor that cause the tech-
nique not to scale. As observed in the “complex” set arrangements of
our experiment, participants commented that ComED worked the best
for complex cases in which the transparent overlapping set regions of
DrawnED were “really indiscernible”.

The issue of scale is not one of algorithmic complexity: the algo-
rithms used to split groups (ComED) or duplicate elements (DupED)
and our layout method easily run in a few seconds for graphs with
thousands of nodes and hundreds of groups (detailed algorithmic anal-
ysis is beyond the scope of this paper). However, anecdotal evidence
suggests that ComED scales significantly better than DupED in terms
of visual complexity.

To further investigate the scalability of both ComED and DupED,
we visualized two larger datasets: Figure 12 shows the top 100 movies
and their 1174 actors (from IMDB); Figure 13 shows a tag cloud of the
top 200 words in the ten tragedies of Shakespeare. Figure 12 shows
that several thousands of elements may be easily visualized if the set
intersections are relatively simple. Figure 12 has only 61 nodes but
the complex intersections of the ten sets is really testing the limits
of readability of ComED and DupED is really no longer useful due
to the number of complex links between duplicated elements. How-
ever, we find the ComED result for such large and complex examples
compelling and already useful. A more sophisticated edge bundling
method that avoids unnecessary intersections would further improve
readability of such complex examples.

8 CONCLUSION AND FUTURE WORK

Our goal in this paper was to provide techniques to improve the read-
ability of Euler diagrams visualizing both sets and set elements. Many
applications rely on visualizing both sets and their elements: when
analyzing text it is important to visualize both the keywords and the
documents they are part of; when analyzing social networks, it is re-
quired to visualize people’s name and the communities they belong
too; or in more general applications such as exploring pictures, it may
be important to visualize both images and their topics.

We proposed two novel approaches. The first approach we pro-
posed (ComED) aims at simplifying the shapes of set regions by split-
ting set regions into compact rectangular shapes connected by links.

The intention is to make them more predictable and to limit intersec-
tions between boundaries. The second technique we presented entirely
avoided set intersections and, instead, duplicated elements in multiple
sets. Results of our studies show that both techniques are promising.
DupED was found to be more readable than ComED, but ComED was
preferred by many participants. Since ComED produces more com-
pact drawings, we believe that it scales better to diagrams with more
sets and elements as we briefly show in the previous section.

While our results did not show that ComED significantly outper-
formed Hand-Drawn Euler Diagram, ComED was unanimously pre-
ferred. In addition, we believe that the link bundling feature we imple-
mented based on study feedback improves the readability of ComED.
It would be interesting to study further how different types of bundling
techniques affect the readability. Many other refinements are possible,
to both the generation of ComED and DupED models and their vi-
sual representations. For example, rectangular group boundaries look
“tidy” and are well suited to our layout technique but we could easily
draw more fitted boundaries such as a smoothed convex hull.

These visualizations also invite more interaction. We are currently
planning to allow users to interactively manipulate the center of the
link bundle and to enable the interactive creation of more hybrids.
Since we identified advantages and disadvantages to both techniques,
hybridization seems to be a promising direction.
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