
Published in “Static Analysis Symposium” (SAS), 2004, pages 212-227

A Polynomial-Time Algorithm for Global Value
Numbering

Sumit Gulwani and George C. Necula

University of California, Berkeley
{gulwani,necula}@cs.berkeley.edu

Abstract. We describe a polynomial-time algorithm for global value
numbering, which is the problem of discovering equivalences among pro-
gram sub-expressions. We treat all conditionals as non-deterministic and
all program operators as uninterpreted. We show that there are pro-
grams for which the set of all equivalences contains terms whose value
graph representation requires exponential size. Our algorithm discovers
all equivalences among terms of size at most s in time that grows linearly
with s. For global value numbering, it suffices to choose s to be the size
of the program. Earlier deterministic algorithms for the same problem
are either incomplete or take exponential time.

1 Introduction

Detecting equivalence of program sub-expressions has a variety of applications.
Compilers use this information to perform several important optimizations like
constant and copy propagation [13], common sub-expression elimination, in-
variant code motion [2,11], induction variable elimination, branch elimination,
branch fusion, and loop jamming [8]. Program verification tools use these equiv-
alences to discover loop invariants, and to verify program assertions. This in-
formation is also important for discovering equivalent computations in different
programs; this is useful for plagiarism detection tools and translation validation
tools [10,9], which compare a program with an optimized version in order to
check the correctness of the optimizer.

Checking equivalence of program expressions is an undecidable problem, even
when all conditionals are treated as non-deterministic. Most tools, including
compilers, attempt to only discover equivalences between expressions that are
computed using the same operator applied to equivalent operands. This form
of equivalence, where the operators are treated as uninterpreted functions, is
also called Herbrand equivalence [12]. The process of discovering such restricted
class of equivalences is often referred to as value numbering. Performing value
numbering in basic blocks is an easy problem; the challenge is in doing it globally
for a procedure body.

Existing deterministic algorithms for global value numbering are either too
expensive or imprecise. The precise algorithms are based on an early algorithm
by Kildall [7], which discovers equivalences by performing an abstract interpreta-
tion [3] over the lattice of Herbrand equivalences. Kildall’s algorithm discovers all

1

Herbrand equivalences in a function body but has exponential cost [12]. On the
other extreme, there are several polynomial-time algorithms that are complete
for basic blocks, but are imprecise in the presence of joins and loops in a program.
The popular partition refinement algorithm proposed by Alpern, Wegman, and
Zadeck (AWZ) [1] is particularly efficient, however at the price of being signifi-
cantly less precise than Kildall’s algorithm. The novel idea in AWZ algorithm is
to represent the values of variables after a join using a fresh selection function
φi, similar to the functions used in the static single assignment form [4], and to
treat the φi functions as additional uninterpreted functions. The AWZ algorithm
is incomplete because it treats φ functions as uninterpreted. In an attempt to
remedy this problem, Rüthing, Knoop and Steffen have proposed a polynomial-
time algorithm (RKS) [12] that alternately applies the AWZ algorithm and some
rewrite rules for normalization of terms involving φ functions, until the congru-
ence classes reach a fixed point. Their algorithm discovers more equivalences than
the AWZ algorithm, but remains incomplete. The AWZ and the RKS algorithm
both use a data structure called value graph [8], which encodes the abstract syn-
tax of program sub-expressions, and represents equivalences by merging nodes
that have been discovered to be referring to equivalent expressions. We discuss
these algorithms in more detail in Section 5. Recently, Gargi has proposed a set
of balanced algorithms that are efficient, but also incomplete [5].

Our algorithm is based on two novel observations. First, it is important to
make a distinction between “discovering all Herbrand equivalences” vs. “dis-
covering Herbrand equivalences among program sub-expressions”. The former
involves discovering Herbrand equivalences among all terms that can be con-
structed using program variables and uninterpreted functions in the program.
The latter refers to only those terms that occur syntactically in the program.
Finding all Herbrand equivalences is attractive not only to answer questions
about non-program terms, but it also allows a forwards dataflow or abstract
interpretation based algorithms (e.g. Kildall’s algorithm) to discover all equiva-
lences among program terms. This is because discovery of an equivalence between
program terms at some program point may require detecting equivalences among
non-program terms at a preceding program point. This distinction is important
because we show (in Section 4) that there is a family of acyclic programs for
which the set of all Herbrand equivalences requires an exponential sized (in the
size of the program) value graph representation. On the other hand, we also
show that Herbrand equivalences among program sub-expressions can always be
represented using a linear sized value graph. This implies that no algorithm that
uses value graphs to represent equivalences can discover all Herbrand equiva-
lences and have polynomial-time complexity at the same time. This observation
explains why existing polynomial-time algorithms for value numbering are in-
complete, even for acyclic programs. One of the reasons why Kildall’s algorithm
is exponential is that it discovers all Herbrand equivalences at each program
point.

The above observation not only sheds light on the incompleteness or expo-
nential complexity of the existing algorithms, but also motivates the design of

2

our algorithm. Our algorithm takes a parameter s and discovers all Herbrand
equivalences among terms of size at most s in time that grows linearly with s. For
the purpose of global value numbering, it is sufficient to set the parameter s to
N , where N is the size of the program, since the size of any program expression
is at most N .

The second observation is that the lattice of sets of Herbrand equivalences
has finite height k, where k is the number of program variables (we prove this in
Section 3.4). Therefore, an optimistic-style algorithm that performs an abstract
interpretation over the lattice of Herbrand equivalences will be able to handle
cyclic programs as precisely as it can handle acyclic programs, and will terminate
in at most k iterations. Without this observation, one can ensure the termination
of the algorithm in presence of loops by adding a degree of pessimism. This leads
to incompleteness in presence of loops, as is the case with the RKS algorithm [12].
Instead, our algorithm is based on abstract interpretation, similar to Kildall’s
algorithm, while using a more sophisticated join operation. We continue with
a description of the expression language on which the algorithm operates (in
Section 2), followed by a description of the algorithm itself in Section 3.

2 Language of Program Expressions

We consider a language in which the expressions occurring in assignments belong
to the following simple language of uninterpreted function terms (here x is one
of the variables, and c is one of the constants):

e ::= x | c | F (e1, e2)

For any expression e, we use the notation Variables(e) to denote the variables
that occur in expression e. We use size(e) to denote the number of occurrences
of function symbols in expression e (when expressed as a value graph). For
simplicity, we consider only one binary uninterpreted function F . Our results
can be extended easily to languages with any finite number of uninterpreted
functions of any constant arity. Alternatively, one can encode any finite number
of uninterpreted functions of constant arity by one binary function symbol with
only a constant factor increase in the size of the program.

3 The Global Value Numbering Algorithm

Our algorithm discovers the set of Herbrand equivalences at any program point
by performing an abstract interpretation over the lattice of Herbrand equiva-
lences. We pointed out in the introduction, and we argue further in Section 4,
that we cannot hope to have a complete and polynomial-time algorithm that
discovers all Herbrand equivalences implied by a program (using the standard
value graph based representations) because their representation is worst-case ex-
ponential in the size of the program. Thus, our algorithm takes a parameter s
(which is a positive integer) and discovers all equivalences of the form e1 = e2,

3

G’ = Assignment(G,x := e)

(a) Assignment Node

G

x := e
G2= G

(b) Conditional Node

G1= G
*

G

G = Join(G1, G2, s’)

G1

(c) Join Node

G2

Fig. 1. Flowchart nodes

where size(e1) ≤ s and size(e2) ≤ s. The algorithm uses a data structure called
Strong Equivalence DAG (described in Section 3.1) to represent the set of equiv-
alences at any program point. It updates the data structure across each flowchart
node as shown in Figure 1. The Assignment and Join functions are described
in Section 3.2 and Section 3.3 respectively.

3.1 Notation and Data Structure

Let T be the set of all program variables, k the total number of program variables,
and N the size of the program, measured in terms of the number of occurrences
of function symbol F in the program.

The algorithm represents the set of equivalences at any program point by a
data structure that we call Strong Equivalence DAG (SED). An SED is similar
to a value graph. It is a labeled directed acyclic graph whose nodes can be rep-
resented by tuples 〈V, t〉 where V is a (possibly empty) set of program variables
labeling the node, and t represents the type of node. The type t is either ⊥ or
c, indicating that the node has no successors, or F (n1, n2) indicating that the
node has two ordered successors n1 and n2.

In any SED G, for every variable x, there is exactly one node 〈V, t〉, denoted
by NodeG(x), such that x ∈ V . For every type t that is not ⊥, there is at most
one node with that type. We use the notation NodeG(c) to refer to the node
with type c. For any SED node n, we use the notation Vars(n) to denote the set
of variables labeling node n, and Type(n) to denote the type of node n. Every
node n in an SED represents the following set of terms Terms(n), which are all
known to be equivalent.

Terms(V,⊥) = V

Terms(V, c) = V ∪ {c}
Terms(V, F (n1, n2)) = V ∪ {F (e1, e2) | e1 ∈ Terms(n1), e2 ∈ Terms(n2)}

We use the notation G |= e1 = e2 to denote that G implies the equivalence
e1 = e2. The judgment G |= e1 = e2 is deduced as follows.

G |= F (e1, e2) = F (e′1, e
′
2) iff G |= e1 = e′1 and G |= e2 = e′2

G |= x = e iff e ∈ Terms(NodeG(x))

The algorithm starts with the following initial SED at the program start,
which implies only trivial equivalences.

G0 = {〈x,⊥〉 | x ∈ T}

4

x := 2; y := 2;

z := F(2,2);

x := 1; y := 1;

z := F(1,1);

T F
*

L1 L2

L3

u := F(F(x,y),x);

L4

Assert(u = F(z,x));

L0
<z, ⊥>

<x, ⊥><u, ⊥>

<y, ⊥>

G0

G1

<z, F>

<x,y,1><u,⊥>

G2

<z, F>

<x,y,2><u,⊥>

<z, F>

<x,y,⊥><u,⊥>

G3 = Join(G1,G2,5)

<u, F>

<z, F>

<x,y,⊥>
G4 = Assignment(G3, u := F(F(x,y),x))

Fig. 2. This figure shows a program and the execution of our algorithm on it.
Gi, shown in dotted box, represents the SED at program point Li.

In figures showing SEDs, we omit the set delimiters “{” and “}”, and rep-
resent a node 〈{x1, . . , xn}, t〉 as 〈x1, . . , xn, t〉. Figure 2 shows a program and
the SEDs computed by our algorithm at various points. As an example, note
that Terms(NodeG4(u)) = {u} ∪ {F (z, α) | α ∈ {x, y}} ∪ {F (F (α1, α2), α3) |
α1, α2, α3 ∈ {x, y}}. Hence, G4 |= u = F (z, x). Note that an SED represents
compactly a possibly-exponential number of equivalent terms.

3.2 The Assignment Operation

Let G be an SED that represents the Herbrand equivalences before an assignment
node x := e. The SED that represents the Herbrand equivalences after the
assignment node can be obtained by using the following algorithm. SED G4 in
Figure 2 shows an example of the Assignment operation.

1 Assignment(G, x := e) =
2 G′ := G;
3 let 〈V1, t1〉 = GetNode(G′, e) in
4 let 〈V2, t2〉 = NodeG′(x) in
5 if t1 6= t2 then G′ := G′ − {〈V1, t1〉, 〈V2, t2〉};
6 G′ := G′ ∪ {〈V1 ∪ {x}, t1〉, 〈V2 − {x}, t2〉};
7 return G′;

1 GetNode(G′, e) =
2 match e with
3 y: return NodeG′(y);
4 c: return NodeG′(c);
5 F (e1, e2): let n1 = GetNode(G′, e1) and n2 = GetNode(G′, e2) in
6 if 〈V, F (n1, n2)〉 ∈ G′ for some V , then return 〈V, F (n1, n2)〉;
7 else G′ := G′ ∪ 〈∅, F (n1, n2)〉; return 〈∅, F (n1, n2)〉;

5

GetNode(G′, e) returns a node n such that e ∈ Terms(n) (and in the process
possibly extends G′) in O(size(e)) time. Lines 5 and 6 in Assignment function
move variable x to node n to reflect the new equivalence x = e. Hence, the
following lemma holds.

Lemma 1 (Soundness and Completeness of Assignment Operation).
Let G′ = Assignment(G, x := e). Let e1 and e2 be two expressions. Let e′1 =
e1[e�x] and e′2 = e2[e�x]. Then, G′ |= e1 = e2 iff G |= e′1 = e′2.

3.3 The Join Operation

Let G1 and G2 be two SEDs. Let s′ be any positive integer. The following
function Join returns an SED G that represents all equivalences e1 = e2 such
that both G1 and G2 imply e1 = e2 and both size(e1) and size(e2) are at most
s′. In order to discover all equivalences among expressions of size at most s in
the program, we need to choose s′ = s + N × k (for reasons explained later in
Section 3.5). Figure 2 shows an example of the Join operation.

For any SED G, let ≺G denote a partial order on program variables such
that x ≺G y if y depends on x, or more precisely, if G |= y = F (e1, e2) such that
x ∈ Variables(F (e1, e2)).

1 Join(G1,G2,s′) =
2 for all nodes n1 ∈ G1 and n2 ∈ G2, memoize[n1, n2] := undefined;
3 G := ∅;
4 for each variable x ∈ T in the order ≺G1 do
5 counter := s′;
6 Intersect(NodeG1(x), NodeG2(x));
7 return G;

1 Intersect(〈V1, t1〉,〈V2, t2〉) =
2 let m = memoize(〈V1, t1〉, 〈V2, t2〉) in
3 if m 6= undefined then return m;
4 let t = if counter > 0 and t1 ≡ F (`1, r1) and t2 ≡ F (`2, r2) then
5 counter := counter − 1;
6 let ` = Intersect(`1,`2) in
7 let r = Intersect(r1,r2) in
8 if (` 6= 〈φ,⊥〉) and (r 6= 〈φ,⊥〉) then F (`, r) else ⊥
9 else if t1 = c and t2 = c for some c, then c

10 else ⊥ in
11 let V = V1 ∩ V2 in
12 if V 6= ∅ or t 6= ⊥ then G := G ∪ {〈V, t〉}
13 memoize[〈V1, t1〉, 〈V2, t2〉] := 〈V, t〉;
14 return 〈V, t〉

It is important for correctness of the algorithm that calls to the Intersect
function are memoized, as done explicitly in the above pseudo code, since oth-
erwise the counter variable will be decremented incorrectly. The use of counter

6

variable ensures that the call to Intersect function in Join terminates in O(s′)
time. The following proposition describes the property of Intersect function
that is required to prove the correctness of the Join function (Lemma 2).

Proposition 1. Let n1 = 〈V1, t1〉 and n2 = 〈V2, t2〉 be any nodes in SEDs G1

and G2 respectively. Let n = 〈V, t〉 = Intersect(n1, n2). Suppose that n 6=
〈∅,⊥〉; hence the function Intersect(n1, n2) adds the node n to G. Let α be the
value of the counter variable when Intersect(n1, n2) is first called. Then,

P1. Terms(n) ⊆ Terms(n1) ∩ Terms(n2).
P2. Terms(n) ⊇ {e | e ∈ Terms(n1), e ∈ Terms(n2), size(e) ≤ α}.

The proof of Proposition 1 is by induction on sum of height of nodes n1 and
n2 in G1 and G2 respectively. Claim P1 is easy since t = F (...) or c only if
both t1 and t2 are F (...) or c respectively (Lines 8 and 9), and V = V1 ∩ V2

(Line 11). The proof of claim P2 relies on bottom-up processing of one of the
SEDs, and memoization. Let e′ be one of the smallest expressions (in terms of
size) such that e′ ∈ Terms(n1) ∩ Terms(n2). If e′ is not a variable, then for
any variable y ∈ Variables(e′), the call Intersect(NodeG1(y),NodeG2(y)) has
already finished. The crucial observation now is that if size(e′) ≤ α, then the
set of recursive calls to Intersect are in 1-1 correspondence with the nodes of
expression e′, and e′ ∈ Terms(n).

Lemma 2 (Soundness and Completeness of Join Operation). Let G =
Join(G1, G2, s). If G |= e1 = e2, then G1 |= e1 = e2 and G2 |= e1 = e2. If
G1 |= e1 = e2 and G2 |= e1 = e2 such that size(e1) ≤ s and size(e2) ≤ s, then
G |= e1 = e2.

The proof of Lemma 2 follows from Proposition 1 and definition of |=.

3.4 Fixed Point Computation

The algorithm goes around loops in a program until a fixed point is reached. The
following theorem implies that the algorithm needs to execute each flowchart
node at most k times (assuming the standard worklist implementation [8]).

Theorem 1 (Fixed Point Theorem). The lattice of sets of Herbrand equiv-
alences (involving program variables) ordered by set inclusion has height at most
k where k is the number of program variables.

The proof of Theorem 1 follows easily from Lemma 3 stated and proved
below. Before stating Lemma 3, we first introduce some notation. Let 4 denote
any total ordering on all program variables. For notational convenience, we say
that for any variable x, and any expressions e1 and e2, x 4 F (e1, e2). For any
SED G, let IG be the set of variables x such that Type(NodeG(x)) = ⊥, and
x 4 y for all y ∈ Vars(NodeG(x)). IG is a maximal set of independent variables,
which occur at the leaves of G. In other words, equivalences denoted by an SED
G can be represented by a set of equivalences x = e, where Variables(e) ⊆ IG and

7

x 6∈ IG. This is because for any SED G, all equivalences e1 = e2 are consequences
of equivalences of the form x = e. For example, consider the program in Figure 2.
If u 4 x 4 y 4 z, then IG4 = {x}. Note that equivalences represented by G4 are
equivalent to the set of equivalences {y = x, z = F (x, x), u = F (F (x, x), x)}.

Lemma 3. Let G1 and G2 be two SEDs. If G2 is above G1 in the lattice (which is
to say that G1 represents a stronger set of equivalences than G2), then IG2 ⊃ IG1 .

Proof. We first make two useful observations. Let G be any SED. Then, (a)
G 6|= x = e such that x ∈ IG, e 4 x and e 6≡ x. (b) G 6|= e1 = e2 such that
Variables(e1) ⊆ IG, Variables(e2) ⊆ IG and e1 6≡ e2.

We first show that IG2 ⊇ IG1 . Suppose for the purpose of contradiction that
IG2 6⊇ IG1 . Then, G2 |= x = e for some variable x ∈ IG1 and expression e
such that e 4 x and e 6≡ x. Since G1 represents a stronger set of equivalences,
G1 |= x = e. But this is not possible because of observation (a) above.

We now show that IG2 ⊃ IG1 . Suppose for the purpose of contradiction that
IG2 = IG1 . Since G1 is stronger than G2, G1 |= x = e1 for some x ∈ T − IG1

and expression e1 such that Variables(e1) ⊆ IG1 and G2 6|= x = e1. Note that
x ∈ T − IG2 since IG2 = IG1 . Hence, there exists an expression e2 such that
G2 |= x = e2, where Variables(e2) ⊆ IG2 . Note that e1 6≡ e2 since G2 6|= x = e1

and G2 |= x = e2, Since G1 is stronger than G2, G1 |= x = e2 and hence
G1 |= e1 = e2. But this is not possible because of observation (b) above.

3.5 Correctness of the Algorithm

The correctness of the algorithm follows from Theorem 2 and Theorem 3.

Theorem 2 (Soundness Theorem). Let G be the SED computed by the al-
gorithm at some program point P after fixed point computation. If G |= e1 = e2,
then e1 = e2 holds at program point P .

The proof of Theorem 2 follows directly from the soundness of the assignment
operation (Lemma 1 in Section 3.2) and the soundness of the join operation
(Lemma 2 in Section 3.3).

Theorem 3 (Completeness Theorem). Let e1 = e2 be an equivalence that
holds at a program point P such that size(e1) ≤ s and size(e2) ≤ s. Let G be the
SED computed by the algorithm at program point P after fixed point computation.
Then, G |= e1 = e2.

The proof of Theorem 3 follows from an invariant maintained by the al-
gorithm at each program point. For purpose of describing this invariant, we
hypothetically extend the algorithm to maintain a set S of paths at each pro-
gram point (representing the set of all paths analyzed by the algorithm), and a
variable MaxSize (representing the size of the largest expression computed by
the program along any path in S) besides an SED. These are updated as shown
in Figure 3. The initial value of MaxSize is chosen to be 0. The initial set of
paths is chosen to be the singleton set containing an empty path. The algorithm
maintains the following invariant at each program point.

8

(a) Assignment Node

MaxSize = m
Paths = S

MaxSize = m+size(e)
Paths = {p;x:=e | p ∈ S}

x := e

MaxSize = m2
Paths = S2

MaxSize = max(m1,m2)
Paths = S1 ∪ S2

MaxSize = m1
Paths = S1

(c) Join Node(b) Conditional Node

MaxSize = m
Paths = S

MaxSize = m
Paths = S

MaxSize = m
Paths = S

*

Fig. 3. Flowchart nodes

Lemma 4. Let G be the SED, m be the value of variable MaxSize, and S be
the set of paths computed by the algorithm at some program point P . Suppose
e1 = e2 holds at program point P along all paths in S, size(e1) ≤ s′ − m and
size(e2) ≤ s′ −m. Then, G |= e1 = e2.

Lemma 4 can be easily proved by induction on the number of operations per-
formed by the algorithm.

Theorem 1 (the fixed point theorem) requires the algorithm to execute each
node at most k times. This implies that the value of the variable MaxSize at
any program point after the fixed point computation is at most N × k. Hence,
choosing s′ = s + N × k enables the algorithm to discover equivalences among
expressions of size s. The proof of Theorem 3 now follows easily from Lemma 4.

3.6 Complexity Analysis

Let j be the number of join points in the program. Let I be the maximum number
of iterations of any loop performed by the algorithm. (It follows from Theorem 1
that I is upper bounded by k; however, in practice, this may be a small constant).
One join operation Join(G1, G2, s

′) takes time O(k × s′) = O(k × (s + N × k)).
Hence, the total cost of all join operations is O(k × (s + N × k) × j × I). The
cost of all assignment operations is O(N × I). Hence, the total complexity of the
algorithm is dominated by the cost of the join operations (assuming j ≥ 1). For
global value numbering, the choice of s = N suffices, yielding a total complexity
of O(k2 × I ×N × j) = O(k3 ×N × j) for the algorithm.

4 Programs with Exponential Sized Value Graph
Representation for Sets of Herbrand Equivalences

Let m be any positive integer. In this section, we show that there is an acyclic
program Pm of size O(m2) such that any value graph representation of the set of
Herbrand equivalences that are true at the end of the program requires Θ(2m)
size. The program Pm is described in Section 4.2, and is shown in Figure 6. The
program Pm involves some non-trivial expressions. To describe these expressions,
and to prove that the set of Herbrand equivalences that are true at the end of
program Pm requires Θ(2m) size, we introduce some notation in Section 4.1.

Let n be the largest integer such that n ≤ m and n is a power of 2. Note
that n ≥ m

2 .

9

F

F

F

F F

R[0] R[1] R[2i-2] R[2i-1]

Depth = i

Depth = n-i

F

F F

C(S)B(i,R)

S[0] S[1] S[2n-2] S[2n-1]

Depth = log22n

A(i,r1,r2)

F

F

r1

F

F Depth = n-i

F

r2

Depth = i

F F

(c)(b)(a)

Fig. 4. Value graph representation of expressions A(i, r1, r2), B(i, R) and C(S).

4.1 Notation

In this section, we describe some special expressions, sets of expressions, and their
properties. For any integer i ∈ {1, . . , n} and expressions r1 and r2, let A(i, r1, r2)
denote the expression as shown in Figure 4(a). For any integer i ∈ {1, . . , n}
and sets of expressions r̃1 and r̃2, let Ã(i, r̃1, r̃2) denote the following set of
expressions:

Ã(i, r̃1, r̃2) = {A(i, r1, r2) | r1 ∈ r̃1, r2 ∈ r̃2}

For any integer i ∈ {1, . . , n} and an array R[0 . . . 2i−1] of expressions, let
B(i, R) denote the expression as shown in Figure 4(b). For any integer i ∈
{1, . . , n} and an array R̃[0 . . . 2i−1] of sets of expressions, let B̃(i, R̃) denote the
following set of expressions:

B̃(i, R̃) = {B(i, R) | ∀j ∈ {0, . . , 2i−1}, R[j] ∈ R̃[j]}

Using the definitions of Ã(i, r̃1, r̃2) and B̃(i, R̃), we can show that

Ã(i + 1, r̃1, r̃2) ∩ B̃(i, R̃) = B̃(i + 1, R̃′) (1)
R̃′[j] = R̃[j] ∩ r̃1, 0 ≤ j < 2i

R̃′[j] = R̃[j − 2i] ∩ r̃2, 2i ≤ j < 2i+1

Equation 1 is also illustrated diagrammatically in Figure 5. The point to
note is that if R̃[0], . . , R̃[2i−1] are all distinct sets of expressions, then the most
succinct value graph representation of B̃(i, R̃) is as shown in Figure 5(b). If r̃1

and r̃2 are such that for all 0 ≤ j1, j2 < 2i, the sets r̃1 ∩ R̃[j1], r̃2 ∩ R̃[j2] both
non-empty and distinct, then the most succinct value graph representation of
B̃(i, R̃)∩Ã(i+1, r̃1, r̃2) is as shown in Figure 5(c), whose representation is almost
double the size of B̃(i, R̃) (even though it has fewer elements!).

Note that Ã(1, r̃1, r̃2) = B̃(1, R̃) where R̃[1] = r̃1 and R̃[2] = r̃2. Hence, using
Equation 1, we can prove by induction on i that:

10

∩A(i+1,r1,r2)
~~

F

F

F

F

F F

r1
~ r2

~

B(i,R)
~

F

F

F F

Depth = n-i

R[0]~ R[2i-1]
~

R[1]~

F

B(i+1,R)
~ 0~=

(a) (b) (c)

F

Depth = n-(i+1)

F

R [0]0~ R [2i-1]0~
R [1]0~ R [2i]0~ R [2i+1-1]0~

F

F F

F

F F

~ ~

Fig. 5. Relationship between sets Ã(i+1, r̃1, r̃2) and B̃(i, R̃). Nodes immediately
below the horizontal dotted line are at the same depth n − (i + 1) from the
corresponding root nodes.

Proposition 2. For any i ∈ {1, . . , n}, let ri,1 and ri,2 be some sets of expres-
sions. For any integer j, let jn . . . j1 be the binary representation of j. Then,

n⋂
i=1

Ã(i, r̃i,1, r̃i,2) = B̃(n, R̃)

R̃[j] =
n⋂

i=1

r̃i,ji+1, 0 ≤ j < 2n

Our goal is to construct a program Pm such that it satisfies the equivalences
Ei = {z = e | e ∈ Ã(i, r̃i,1, r̃i,2) at the ith predecessor of some join point.
Note that after the join point it will satisfy the equivalences E = {z = e | e ∈
B̃(n, R̃)}, where B̃(n, R̃) is as defined in Proposition 2. The representation of E
would require size exponential in n if the sets r̃(i, 1) and r̃(i, 2) are such that for

each distinct choice of bits j1, . . , jn, the set
n⋂

i=1

r̃i,ji+1 is distinct and non-empty.

This can be easily accomplished if the program has 2n variables (by choosing sets
r̃(i, 1) and r̃(i, 2) to contain an appropriate subset of the 2n program variables

such that
n⋂

i=1

r̃i,ji+1 is a singleton set containing a distinct program variable). In

the rest of this section, we show how to accomplish this using just n program
variables (by choosing sets r̃(i, 1) and r̃(i, 2) to contain small terms constructed
from just n program variables).

For any array S[0 . . 2n−1] of expressions, let C(S) denote the expression as
shown in Figure 4(c). For any array S̃[0 . . 2n−1] of sets of expressions, let C̃(S̃)
denote the following set of expressions:

C̃(S̃) = {C(S) | ∀i ∈ {0, . . , 2n− 1}, S[i] ∈ S̃[i]}

11

For any integer i ∈ {1, . . , n}, b ∈ {1, 2}, let Si,b[0 . . 2n−1] be the following
array of expressions,

Si,b[j] = 1, if j = 2(i− 1) + b− 1
= 0, otherwise

For any integer i ∈ {1, . . , n}, b ∈ {1, 2}, let S̃i,b[0 . . 2n−1] be the following
array of sets of expressions,

S̃i,b[j] = {xi, 1}, if j = 2(i− 1) + b− 1
= {x1, . . , xi−1, xi+1, . . , xn, 0}, otherwise

For any integer j ∈ {0, . . , 2n−1}, let jn . . j1 be the binary representation of
j. Let Tj [0 . . 2n−1] be the following array of expressions:

Tj [2(`− 1) + j`] = x`, 0 ≤ ` < n

Tj [2(`− 1) + 1− j`] = 0, 0 ≤ ` < n

Using the definitions of C̃(S̃), S̃i,b and T̃j), we can prove the following propo-
sition.

Proposition 3. Let j ∈ {0, . . , 2n − 1}. Let jn . . j1 be the binary representation
of j. Then,

n⋂
i=1

C̃(S̃i,ji+1) = {C(Tj)}

Note that C̃(S̃i,b) are an appropriate choice for sets r̃i,b. The following proposi-
tion, which follows from Proposition 2 and Proposition 3, summarizes the inter-
esting property of these sets.

Proposition 4. For any i ∈ {1, . . , n}, Then,

n⋂
i=1

Ã(i, C̃(S̃i,1), C̃(S̃i,2)) = {B(n, R)}

R[j] = C(Tj), 0 ≤ j < 2n

4.2 The Program Pm

The program Pm, which contains an n-branch switch statement, is shown in
Figure 6. It consists of n + 1 local variables, z, x1, x2, . . , xn. The expressions ai

and b are defined below.

ai = A(i, C(Si,1), C(Si,2))
b = B(n, R)

R[j] = C(Tj), 0 ≤ j < 2n

12

y := 0; x1 := 0; x2 := 0; …..; xn := 0;

x1 := 1;
z := a1;

x2 := 1;
z := a2;

*

Assert (z = b);

xn := 1;
z := an;

L1 L2 Ln

Fig. 6. The program Pm. The expressions ai and b are defined in Section 4.2.

Note that for all i ∈ {1, . . , n}, size(ai) ≤ 6n. Thus, the size of program Pm

is O(n2) = O(m2). We now show that any value graph representation of the set
of equivalences that hold at the end of the program Pm requires Θ(2m) nodes.
First note that it is important to maintain only equivalences of the form x = e
where x is a variable and e an expression. (This also follows from the fact that
the SED data structure that we introduce in Section 3.1 can represent the set of
equivalences at any program point). The following theorem implies that there is
only one such equivalence, namely z = b, that holds at the end of program Pm.

Theorem 4. Let E denote the set of all Herbrand equivalences of the form x = e
that are true at the end of the program Pm. Then,

E = {z = b}

Proof. Let Ei denote the set of all Herbrand equivalences of the form x = e that
are true at point Li in the program Pm. Then it is not difficult to see that:

Ei = {z = e | e ∈ Ã(i, C̃(S̃i,1), C̃(S̃i,2))} ∪ {xi = 1} ∪ {xj = 0 | 1 ≤ j ≤ n, j 6= i}

Using Proposition 4 we get:

E =
n⋂

i=1

Ei = {z = e | e ∈
n⋂

i=1

Ã(i, C̃(S̃i,1), C̃(S̃i,2))}

= {z = e | e ∈ {b}} = {z = b}

Note that any value graph representation of expression b must have size
Θ(2n) since R[j1] 6= R[j2] for j1 6= j2. Hence, any value graph representation of
the equivalence z = b requires Θ(2n) = Θ(2m) nodes.

5 Related Work

Kildall’s Algorithm: Kildall’s algorithm [7] performs an abstract interpretation
over the lattice of sets of Herbrand equivalences. It represents the set of Herbrand
equivalences at each program point by means of a structured partition.

13

The join operation for two structured partitions π1 and π2 is defined to be
their intersection. Kildall’s algorithm is complete in the sense that if it termi-
nates, then the structured partition at any program point reflects all Herbrand
equivalences that are true at that point. However, the complexity of Kildall’s
algorithm is exponential. The number of elements in a partition, and the size of
each element in a partition can all be exponential in the number of join opera-
tions performed.

Alpern, Wegman and Zadeck’s (AWZ) Algorithm: The AWZ algorithm [1] works
on the value graph representation [8] of a program that has been converted to
SSA form. A value graph can be represented by a collection of nodes of the
form 〈V, t〉 where V is a set of variables, and the type t is either ⊥, a constant c
(indicating that the node has no successors), F (n1, n2) or φm(n1, n2) (indicating
that the node has two ordered successors n1 and n2). φm denotes the φ function
associated with the mth join point in the program. Our data structure SED can
be regarded as a special form of a value graph which is acyclic and has no φ-type
nodes. The main step in the AWZ algorithm is to use congruence partitioning
to merge some nodes of the value graph.

The AWZ algorithm cannot discover all equivalences among program terms.
This is because it treats φ functions as uninterpreted. The φ functions are an
abstraction of the if-then-else operator wherein the conditional in the if-then-
else expression is abstracted away, but the two possible values of the if-then-
else expression are retained. Hence, the φ functions satisfy the following two
equations.

∀e : φm(e, e) = e (2)
∀e1, e2, e3, e4 : φm(F (e1, e2), F (e3, e4)) = F (φm(e1, e3), φm(e2, e4)) (3)

Rüthing, Knoop and Steffen’s (RKS) Algorithm: Like the AWZ algorithm, the
RKS algorithm [12] also works on the value graph representation of a program
that has been converted to SSA form. It tries to capture the semantics of φ
functions by applying the following rewrite rules, which are based on equations
2 and 3, to convert program expressions into some normal form.

〈V, φm(n, n)〉 and n → 〈V ∪Vars(n), T ype(n)〉 (4)
〈V, φm(〈V1, F (n1, n2)〉, 〈V2, F (n3, n4)〉)〉 → 〈V, F (〈∅, φm(n1, n3)〉, 〈∅, φm(n2, n4)〉)〉(5)

Nodes on the left of the rewrite rules are replaced by the (new) node on the
right, and incoming edges to nodes on the left are made to point to the new
node. However, there is a precondition to applying the second rewriting rule.

P : ∀ nodes n ∈ succ∗({〈V1, F (n1, n2)〉, 〈V2, F (n3, n4)〉}),Vars(n) 6= ∅

The RKS algorithm assumes that all assignments are of the form x := F (y, z)
to make sure that for all original nodes n in the value graph, Vars(n) 6= ∅. This
precondition is necessary in arguing termination for this system of rewrite rules,

14

and proving the polynomial complexity bound. The RKS algorithm alternately
applies the AWZ algorithm and the two rewrite rules until the value graph
reaches a fixed point. Thus, the RKS algorithm discovers more equivalences
than the AWZ algorithm.

The RKS algorithm cannot discover all equivalences even in acyclic pro-
grams. This is because the precondition P can prevent two equal expressions
from reaching the same normal form. On the other hand lifting precondition
P may result in the creation of an exponential number of new nodes, and an
exponential number of applications of the rewrite rules. Such would be the case
when, for example, the RKS algorithm is applied to the program Pm described
in Section 4.

The RKS algorithm has another problem, which the authors have identified.
It fails to discover all equivalences in cyclic programs, even if the precondition
P is lifted. This is because the graph rewrite rules add a degree of pessimism to
the iteration process. While congruence partitioning is optimistic, it relies on the
result of the graph transformations which are pessimistic, as they are applied
outside of the fixed point iteration process.

Gulwani and Necula’s Randomized Algorithm: Recently, we gave a randomized
polynomial-time algorithm that discovers all Herbrand equivalences among pro-
gram terms [6]. This algorithm can also verify all Herbrand equivalences that
are true at any point in a program. However, there is a small probability (over
the choice of the random numbers chosen by the algorithm) that this algorithm
deduces false equivalences. This algorithm is based on the idea of random inter-
pretation, which involves performing abstract interpretation using randomized
data structures and algorithms.

6 Conclusion and Future Work

We have given a polynomial-time algorithm for global value numbering. We have
shown that there are programs for which the set of all equivalences contains
terms whose value graph representation requires exponential size. This justifies
the design of our algorithm, which discovers all equivalences among terms of size
at most s in time that grows linearly with s.

An interesting theoretical question is to figure if there exist representations
that may avoid the exponential lower bound for representing the set of all Her-
brand equivalences.

The next step is to perform experiments to compare the different algorithms
with regard to running time and number of equivalences discovered. Results of
our algorithm can also be used as a benchmark to estimate the incompleteness
of the existing algorithms.

An interesting direction of future work is to extend this algorithm to perform
precise inter-procedural value numbering. It would also be useful to extend the
algorithm to reason about some properties of program operators like commuta-
tivity, associativity or both.

15

Acknowledgments

This research was supported in part by the National Science Foundation Grants CCR-
9875171, CCR-0085949, CCR-0081588, CCR-0234689, CCR-0326577, CCR-00225610,
and gifts from Microsoft Research. The information presented here does not
necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred.

References

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables
in programs. In 15th Annual ACM Symposium on Principles of Programming
Languages, pages 1–11. ACM, 1988.

2. C. Click. Global code motion/global value numbering. In Proccedings of the ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementation,
pages 246–257, June 1995.

3. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th Annual
ACM Symposium on Principles of Programming Languages, pages 234–252, 1977.

4. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, Oct. 1990.

5. K. Gargi. A sparse algorithm for predicated global value numbering. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation, volume 37, 5, pages 45–56. ACM Press, June 17–19 2002.

6. S. Gulwani and G. C. Necula. Global value numbering using random interpretation.
In 31st Annual ACM Symposium on POPL. ACM, Jan. 2004.

7. G. A. Kildall. A unified approach to global program optimization. In 1st ACM
Symposium on Principles of Programming Language, pages 194–206, Oct. 1973.

8. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, 2000.

9. G. C. Necula. Translation validation for an optimizing compiler. In Proceedings
of the ACM SIGPLAN ’00 Conference on Programming Language Design and Im-
plementation, pages 83–94. ACM SIGPLAN, June 2000.

10. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In B. Steffen,
editor, Tools and Algorithms for Construction and Analysis of Systems, 4th Inter-
national Conference, volume LNCS 1384, pages 151–166. Springer, 1998.

11. B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redun-
dant computations. In 15th Annual ACM Symposium on Principles of Program-
ming Languages, pages 12–27. ACM, 1988.

12. O. Rüthing, J. Knoop, and B. Steffen. Detecting equalities of variables: Combining
efficiency with precision. In Static Analysis Symposium, volume 1694 of Lecture
Notes in Computer Science, pages 232–247. Springer, 1999.

13. M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems, 13(2):181–210, Apr.
1991.

16

	Introduction
	Language of Program Expressions
	The Global Value Numbering Algorithm
	Notation and Data Structure
	The Assignment Operation
	The Join Operation
	Fixed Point Computation
	Correctness of the Algorithm
	Complexity Analysis

	Programs with Exponential Sized Value Graph Representation for Sets of Herbrand Equivalences
	Notation
	The Program Pm

	Related Work
	Conclusion and Future Work

