Profile-guided Proactive Garbage Collection for Locality
Optimization

Wen-ke Chen, Sanjay Bhansali,

Trishul Chilimbi

Microsoft Research

One Microsoft Way
Redmond, WA 98052

{wenkec, sanjaybh, trishulc}@microsoft.com

ABSTRACT

Many applications written in garbage collected lzges have
large dynamic working sets and poor data localdg present a
new system for continuously improving program datzality at

run time with low overhead. Our system proactivedgrganizes
the heap by leveraging the garbage collector ares ysofile
information collected through a low-overhead medéranto

guide the reorganization at run time. The key dbations

include making a case that garbage collection shbelviewed as
a proactive technique for improving data locality tiggering

garbage collection for locality optimization indegently of
normal garbage collection for space, combining paigg cache
locality optimization in the same system, and destraing that
sampling provides sufficiently detailed data acdegsrmation to
guide both page and cache locality optimizatiorhwatwv runtime
overhead. We present experimental results obtdigadodifying

a commercial, state-of-the-art garbage collectorsupport our
claims. Independently triggering garbage collectfon locality

optimization significantly improved optimizations etrefits.
Combining page and cache locality optimizationstie same
system provided larger average execution time ingrents
(17%) than either alone (page 8%, cache 7%). Kinaising
sampling limited profiling overhead to less than,3% average.

Categories and Subject Descriptors

D.3.4 [Programming L anguages]: Processors €ode generation,
memory management (garbage collectors), optimiration-time
environments

General Terms
Measurement, Performance, Experimentation.
Keywords

data locality, garbage collectors, cache optimirati page
optimization, memory optimization

Permission to make digital or hard copies of all or part of Work for personal or
classroom use is granted without fee provided that copiesoamaade or distributed
for profit or commercial advantage and that copies beanthise and the full citation
on the first page. To copy otherwise, or republish, to posenmess or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI'06, June 11-14, 2006, Ottawa, Ontario, Canada.
Copyright 2006 ACM 1-59593-320-4/06/0006...$5.00.

Xiaofeng Gao, Weihaw Chuang

Dept. of Computer Science and Engineering
University of California at San Diego
La Jolla, CA 92093

{xgao,wchuang}@cs.ucsd.edu

1. INTRODUCTION

Many programs, especially those that manipulatentpoidata
structures, are memory performance limited dueh® growing
disparity between processor speeds and memory sadtess
[10]. Large, multi-level caches help hide some lné tmemory
access latency and translation look-aside buffEk8¢) mitigate
the page translation costs. Unfortunately, caches B.Bs are
expensive and unlikely to grow at the same rategsication
workloads, especially on-chip caches. Perhaps mgsbrtantly,
these hardware mechanisms are often limited by poogram
data layout, which rarely takes full advantage hef multi-word
data transfer granularity that cache lines (64 8 bgtes) and
pages (4 — 8K bytes) provide.

Two useful layout metrics are page and cache leresidly, which
indicate how well program elements are laid out gmadked
together. Unfortunately, as Figure 1 indicitemany programs
have poor page density. In addition, programs &lgee poor
cache line utilization, averaging around 30% [ZHjis provides
an opportunity to make more efficient use of cacied TLBs by
packing contemporaneously accessed data elemegathés and
reducing a program’s page and cache footprint.

Newer mainstream languages such as C# and Javeorsupp
automatic memory management, which is implementét &
garbage collector that, when necessary, automigtiexamines
the program heap and recycles space occupied ly diga for
use in subsequent allocations. To avoid heap fratatien, many
garbage collectors either copy all live objecte@mpact the heap
by moving some live objects into the space freethypdead data.
Garbage collectors maintain fairly elaborate irthiasture to
accomplish this task. Prior research has leveragei
infrastructure to combine this object movement wittelligent
placement to optimize either program page or cadoality
[6,7,8,13,16,20,22].

This paper describes a locality optimizing systémt teverages
the garbage collector with three key differencesnfiearlier work.
First, it uses sampled profiles of data accessekite both page
and cache locality optimizations. Second, it privaty triggers

! These numbers were obtained by running these capipins
using a dynamic translator and logging all memasds and
writes. References to stack pages were filtered out

garbage collection for locality optimization rathéan passively
performing locality optimization only when garbagallection is
invoked due to memory space constraints. In additid

implements an automatic online throttling schemat thimits

performance degradation for applications that dobemefit from
locality optimization. Finally, it combines pagedacache locality
optimization in the same system.

Placing contemporaneously accessed objects tagethiee page
and cache level requires accurate data accessnation. While
static analysis techniques continue to improvey thee still
unable to provide sufficiently detailed data acdefmrmation for
this purpose, especially for large programs thatimdate pointer
data structures. Hence we monitor data accesses dime and
use this information to guide data placement. Unfmately, the
runtime overhead can sometimes be too high. Toeaddhis, we
use bursty tracing [2][5], which is a form of sampl that
captures fine-grain temporal data access informatio reduce
our profiling overhead to less than 3% on average,produce
sufficiently detailed data access profiles to guitteality
optimization. While previous research on using ggebcollection
to improve cache locality in the Cecil system foupmafiling
without sampling had sufficiently low-overhead [6]our
experience with a commercial system indicates woiiser While
several differences between the two systems mabeparison
difficult (different languages, SPARC (32 regisjevs. x86 (only
8 registers)), a possible reason for this is ouplémentation
platform is a highly-tuned commercial system ttsalesss tolerant
of instrumentation overhead than the Cecil reseprototype.

Garbage collection is typically triggered in respento an
allocation request when the amount of free spalie lielow a
certain threshold. This can often coincide withragpbam phase
boundary especially if the new phase starts bycatiog many
new objects. If locality optimization (LO) is passly combined
with garbage collection (GC), it would incorrectiyace objects
that were contemporaneously accessed in the previhase

together, possibly reducing program locality fog tturrent phase.

To avoid this problem and to be able to continupusbrganize
the data layout in response to changes in datassquatterns
caused by program phase behavior, we decoupled® &C and
enable triggering LO independently of GC. We usérice such
as cache and TLB miss rates obtained from hardpenfermance
counters as well as allocation behavior to trigger In addition,
we have implemented an automatic online throttBogeme that
limits performance degradation for applicationg th@anot benefit
from LO. Our results indicate that actively trigger LO
independently of GC provides significant perfornabenefits.

poplcaion | PogE ouched | Ao
Web page renderer 1 600 7.7%
Web page renderer 3 588 6.5%
XamlParserTest 602 6.0%
Sat Solver 1703 28.0%
Compress 102 28.0%

(a) C# applications

Application | PR | ety
Multimedia App 1 519 7.1%
Multimedia App 2 264 35.4%
Desktop App 1 368 7.3%
Desktop App 2 367 9.5%
Desktop App 3 315 13.2%
Internet App 478 11.2%

(b) C/C++ applications

Figure 1. Application page density (combination of Microsoft
and non-Microsoft applications). The density of a page =
numbers of unique bytes read/written on a page per interval /
size of page. An interval is chosen to be 10° references.

Our LO system addresses both page and cache yocalit
optimize page locality, object accesses are recobyesetting a
bit in the object header. In addition, to optimeaehe locality we
record the object address in a fixed size circolaject access
buffer. During LO, live objects that have their ess bit set are
copied and placed contiguously according to a hibreal
decomposition order [20] (called page locality plment herein),
which improves page locality, and for some of thplizations we
studied, also improves cache locality. To spedificamprove
cache locality, we use a similar scheme to thatriteed in [6],
which uses the object address buffer information place
contemporaneously accessed objects together (catlrhe
locality placement herein). Since the object adsltesffer is of
fixed size, it only contains a subset of objects there accessed
since the last LO. Our LO combines page and caohality
optimization by first performing the cache localiiacement for
objects in the object address buffer followed by flage locality
placement for objects whose access bit was salibutot appear
in the object address buffer.

We implemented our LO system in the Common Language

Runtime v2.0 (CLR) of Microsoft's .Net FrameworkuOchoice
of implementation platform and benchmarks was driby our
goal of transferring this technology to Microsoftt®@mmercial
platform. All of the applications we used for benwrking are
written in C#; however, the results are applicablany language
that targets MSIL (Microsoft Intermediate Languabaries.

The main contributions of the paper are:

1) Decoupling LO from GC and demonstrating benefits of
triggering these independently. In addition, we
implemented an automatic online throttling schehat t
limits performance degradation for applicationst ttia
not benefit from LO. We show that this technique
significantly improves average optimization bersefit
due to improved mutator locality.

2) Combining cache and page locality optimizationshie

same system and demonstrating performance gains.
research either performed cache or page

Earlier
optimization, but not both. For the C# applications
studied, combining page and cache locality optitioma
in the same system provides larger

average

improvements (17%) than either alone (page 8%,each generation and activity. The GC copies inactiveeots out of

7%).

3) Demonstrating that sampling techniques can be teed
collect sufficiently detailed data access informatito
guide cache and page locality optimizations wittv lo
overhead (less than 3% on average).

4) Implementing and evaluating the system in

GC, which ships with Microsoft's .NET Framework.

We believe that automatic locality optimizationlemues such
as these are necessary for modern languages, s and Java,
to approach and perhaps even surpass the perfoenohr@/C++

programs.

The rest of the paper is organized as follows: iBec2 briefly
discusses related work. Section 3 describes thgrdesd a few
implementation details of our technique. Sectionc@htains
experimental evaluation of our approach using sgvel#
applications. Section 5 summarizes the main reaunltsdirections
for future work.

2. RELATED WORK

The idea that garbage collection could be usedntprave a
program’s locality was proposed as early as in 1Bg0VNhite
[18]. Zorn speculated on the possibility of doingrlzage
collection purely for program performance in [9]ew®ral
researchers have proposed ingenious traversal ithigsr for
copying garbage collectors to improve the locadityeferences in
the collected heap [16] [20]. Wilson [20] propodadrarchical
decomposition to group all structurally relatedeait$ together to
improve locality. We similarly group only recentlgccessed
objects for page locality optimization. Shuf ef{2l1] proposed a
new allocation scheme to improve locality by placiabjects
based on the notion of prolific (frequently insiated) types.
These approaches are based on static or offlindilgro
information, and the virtual machine or runtime oiwed is not
active in observing the dynamic data access sequemd
determining how objects should be placed in theph&aus the
layout derived may not reflect actual data accessems, and
moreover, it is not possible to detect phase clarsgel react
accordingly.

Huang et al. [22] use a technique called onlineecbijeordering
(OOR) that uses sampling to identify hot methodsl flom these
hot fields and their types. At garbage collectione, the GC
copies referents of hot fields together with thgrent, guided by
the hot types. Their work is complementary to o@iice their
work was done on a virtual machine with functiooffing built
in and they sample hot methods rather than conteanpous data
accesses, their overhead is low. However, theylianiged to
coarse-grained profiling information about dataesses and in
the type of placement optimizations they can penfdn addition,
they perform their placement optimization duringrmal GC
traversal. We trigger locality optimization indeplent of normal
GC and show that this benefits performance. In taddi we
optimize separately for both cache and page lgcalithe same
system.

Courts described a dynamic approach in [8].
implementation, memory is divided into regions fohsen

a
commercial managed runtime system. We implemented
this in Version 2.0 of the Common Language Runtime

In his

active space based on object accesses in thenggieriod before
each garbage collection. However, his implementatelied on
thetransporter a micro-coded system service, to bring the object
from inactive space to active space when they iest dccessed.
In his system, garbage collection is just a pasattévity that is
triggered based on memory pressure.

Chilimbi and Larus proposed a scheme that uses@mpliofiling
to construct an object affinity graph from obseresdesses, and
then uses the GC to rearrange the objects forrbetthe locality
[6][7]. We use their scheme to optimize cache libgabut
combine it with page locality optimization. We imdess runtime
overhead since we sample data accesses. Finallyrigger LO
independently of GC while they perform cache optation only
when GC is invoked due to memory pressure.

Adl-Tabatabai et al [1] insert prefetch instrucgonn JIT

compiled code and use GC's placement ability tontai the

distances of objects so that the prefetch is éflecThey also use
hardware performance monitoring counters to colieahe miss
profiles to determine the prefetch sites. Our work

complementary as we instrument the application ¢teat hot
objects and re-arrange these hot objects to imptimie reference
locality instead of trying to prefetch objects théll be accessed
in the future. Our approach increases the spatiehlity of

frequently accessed objects and consequently isesedhe
effectiveness of hardware prefetching.

Hertz et al [11] describe a technique that avoidgimy by
integrating the garbage collector with the memoanager so the
GC can make informed decisions about evicting padést
approach is orthogonal to ours since they do ndtess the issue
of intra-page layout.

Our low overhead design relies on having cheap temtiers
proposed by others [3], but the implementation wescdbe is
quite different: the CLR implementation does not usill checks
but implicit traps to detect null dereferences, db@ect headers do
not have an extra to-pointer, and the heap impléstien is quite
different (for object headers that cannot be mced the objects
that are moved the to-space). Our compiler optitiira to
reduce the number of read barriers are similar.

3. DESIGN AND IMPLEMENTATION

Our approach relies on a generational garbage ctotlethat

moves objects, and our prototype ties tightly wile CLR and
MSIL (Microsoft Intermediate Language), but is athise

agnostic of the implementation details of a virmchine. In this
section, we first provide a high-level overview tbe approach,
discussing various options and the rationale for adopted

design, and then describe the engineering optimizainecessary
to provide a practical implementation.

Figure 2 provides an architectural overview of design. A JIT
compiler takes an intermediate language represent@¥ISIL in

our case) and compiles it into machine code foradiqular
architecture. We modify the JIT compiler to inskghtweight

instrumentation in the compiled code. The CLR pdesi a tool
called Ngen [25] that can compile modules aheadiré to

provide more optimized code and improve startugoperance.
Our modifications to the compiler work seamlessithviNgen, so
there is no extra startup penalty for using ourraggh. The
instrumented code marks objects that have beentig@ecessed

and records their address in a fixed size circolsect access
buffer. We insert monitoring code in the CLR to hgat certain
metrics while the application is running and use¢bllected data
and heuristics to trigger GC-for-locality, or LoitglOptimization

(LO). During LO, we use the Chilimbi-Larus schemer f
combining cache locality optimization with GC. Iddition, we

perform page locality optimization for the objedtsit are not
moved during cache locality optimization. To dosthive identify

objects that have been marked as recently accésegdand co-
locate them according to their inherent structtekdtionship onto
pages separate from the rest of the heap. LO ¢ggeréd

independently of a normal GC, which occurs whenattecation

budget is about to be exceeded. To limit perforreadegradation
for applications with poor algorithmic locality, wiarottle LO

when indicated.

MSIL code

. Instrument object
referencing
instructions

. Instrumented codes
mark/record
referenced objects

. Modify GC algorithm
to improve locality
4. Invoking GC based ¢
events

Garbage
Collector

4 Event:
Monitor <—

Figure 2. Overview of architectural modificationsto the CLR.

We first provide a brief review of the scheme usedptimize

cache locality [6]. Then, we discuss some of thedesign issues,
design options that we considered, and our ratéofal adopting
the current design.

3.1 Background: Cache L ocality
Optimization

We record base object addresses in a fixed sizalair buffer.
During Locality Optimization (LO), these object®grocessed to
construct an object affinity graph. The object raffi graph
includes edges between objects that are contempaualy
accessed, where objects accessed up to 3 unigessasa@part are
considered contemporaneous. Graph edges are weidiote
indicate how often the objects have been accesgmther. The
garbage collector performs a weighted DFS traverftiis object
affinity graph and marks objects for copying temporary buffer
in the order they are visited. Since these objeetg include some
garbage (though prior work indicates that the amh@iminiscule
[6]), they are removed when the objects are phijgicapied in a
later phase of the same garbage collection. Thecoblgffinity
graph is not maintained across LOs but is creatad Ecratch at
each LO. Further details are in [6]. Our page libgal
optimization, which is described in the next fewetamns, copies

objects to the end of this temporary buffer used daghe
optimization.

3.2 Low-overhead Data Access Profiling

Since the instrumentation for cache locality iguaily identical
to that described in [6], we focus on the instrutagan needed
for page locality optimization and discuss our afsampling to
reduce profiling overhead.

3.2.1 Instrumentation for Page Locality
Optimization

For page locality, we do not need to determine ipeetemporal
affinity between data elements. We record objettat tare
frequently accessed during a time interval, thebgeats are
considered hot and we group them during optimimatiocording
to their inherent structural relationship into a eé pages in a
separate section of the heap. A counter is usatbtie which
objects are hot.

We use the JIT compiler to insert read barrierscétain critical

instructions that access heap data. The read bao@e consists
of a single call instruction to a helper routineiethupdates the
counter if necessary. Write barriers are automiatigenerated by
the compiler to support the generational GC, and simply

modify those to insert a conditional update of¢banter.

The key engineering decisions we had to make were:

e Implementation of the counter
e Implementation of the read barrier
e Optimizing the instrumentation

We considered two ways to implement the object resfee
counter: embed it in the object or implement ihaseparate table.
Our current implementation uses a 1-bit counter ithhambedded
in the object. The CLR already has a four-byte abfeader for
each object that is used for various purposes {e.gnplement a
lightweight lock or to store a hash code for thgeot). We
modified this layout to steal one bit for our pusps. Although
this reduces the number of bits available for ofnenposes, we
feel that this is a good performance tradeoff. ian impact of
stealing the bit is reducing the number of objedt®se hash can
be stored in the object header (from 27 to 26 kitg) reducing
the number of concurrent threads that can be stgypowith
lightweight locks. When the bits overflow they aepurposed to
index into a table that points to larger objectdeza.

The read barrier code is shown in Figure 3.

test dword ptrrg-4], OBJECT_ACCESSED_BIT

jnz Bit_set

lock or dword ptr[rg-4], OBJECT_ACCESSED_BIT,; atomic update
Bit_set :

ret
Figure 3. Profiling code used to mark accessed objects for page
locality optimization. rg is the register that holds the object address.
The object header is at offset -4 from the start of the object.
OBJECT_ACCESSED _BIT is a bit mask used to set a single bit in the
object header.

We use an interlocked operation to set the bitesithe object
header could be concurrently modified by other adeeon an
SMP machine. The interlocked operation is expensinex86

architectures (20-30 clock cycles). In additiondiitties a cache
line during a read operation that could hurt sdétgbof
applications on multi-processors. Therefore we énmnt a
conditional read barrier instead of an unconditiooae even
though it bloats the read barrier code quite a Bit. minimize
code bloat we do not inline the read barrier bytlément it as a
helper routine (one for each registér).

Algorithms used for optimizing access barriers ¢ directly
applied here to further reduce the number of readidys, and
hence, the amount of code bloat. The read barsed tnhere is
different from typical access (read or write) bersiin that we do
not need to insert a call to it at every accesatpbiecause it does
not affect the correctness of the generated coldis. dllows us to
perform more aggressive optimizations. In our pxgie
implementation, we use common sub-expression editicin
(CSE) to optimize away redundant calls to the réedrier
routines. Furthermore, since occurrences of exueptare rare,
no profiing calls are inserted into exception Hargl code.
Similarly, we also ignore constructors that areinbhed.

One policy decision we had to make was when totrése

counter. Because of our decision to embed the eount the

object, we cannot clear the bit without a scan ¢iwerwhole heap,
which is expensive. The only natural opportunity deearing the
counter is when we do a GC. We experimented witfeva

different schemes and found that the simple styatégclearing

the counter every time we encounter a hot objedhdwa GC (no
matter whether for locality or for space) works Met objects in

lower generations (generation 0 and 1). For highererations
(generation 2 in CLR) this does not work as welteaese those
generations are collected infrequently and thereefse bit gets
stale over time. In our prototype, since the cededoes need to
check generation 2 objects that contain cross-géoarpointers,
we use this opportunity to clear the counters embédn them,
which alleviates the problem to some extent. Aaraktive would
be to store the counters in a card table, which ldvouake

clearing the counters relatively cheap.

3.2.2 Sampling Data Accesses

The page locality instrumentation model describeova has low
overhead and is enough to speed up some benchhetksve

describe later. But there are several scenariosendymamic heap
reorganization does not help improve the perforraan€ an

application, e.g., if the dataset is small enoughfit in the

available memory or the algorithm has poor localfpr such
applications the cost of the read barrier can g kigh (in some
cases degrading the application by as much as 4@%yddition,

the overhead of the instrumentation needed by ache locality
optimization is high.

To further reduce the instrumentation overhead, wse a
simplified version of bursty tracing [2][5]: if a ethod is
instrumented with a read barrier, we generate amnskecopy of the
method without the read barrier. The prolog of eashy of the
same method is extended to perform a check andatdransfer
to either the instrumented or the non-instrumem@dion of the
method. Back edges are not modified in our singdifi
implementation. Surprisingly, this simplificatiomes not reduce
the effectiveness of this approach on the benchsnasie

2 The code bloat is < 3% for the applications welisi.

examined (except for some synthetic ones that lengrunning
loops); the reason is that modern software prastaoed object-
oriented programming languages usually result imymeore
smaller functions than larger ones, where deepiyetkeloops are
rare. As a further optimization, the two copies ptaced in
separate code heaps.

There are two parameters to control the sampliog long each
burst should last and how often sampling shouldriggered. By
tuning these two parameters, we can obtain usefofil@
information at a reasonably low profiling overheadOur
experiments show that with this bursty tracing sohewe can
limit pure profiling overhead to less than 5% - dwst of doing
the check in the prolog.

3.3 Combining Page and Cache Locality

Optimization

The CLR GC implements a variation of generationarkn
compact garbage collection. It divides the smajeabheap into
three generations, and moves live objects intorajdaerations in
their allocation order when triggered [15]. We nimdi the
implementation so that GC can be independentlgéred either
for space or for locality optimization. However, evh GC is
triggered, unless the policy says it is for spack,at will attempt
to do both at the same time, with one exceptionherwit is
triggered to collect only Generation 0 objects, aldg

optimization will not be applied. The rationale fost doing heap
reorganization for locality optimization during argeration 0
collection for space is that most of those genenaB objects,
being recently allocated, are already hot and i thche or
working set, and are unlikely to benefit much frdotality

improvements. In addition, many of these objectslikely to die
shortly. During a GC for locality we identify allbgects that a)
have their address entered in the circular objecess buffer
(cache locality optimization) b) were marked as boice the
previous locality collection (page locality optiration) and c)
belong to a generation not older than the generabeing
collected. Only these objects are candidates focaliky

optimization.

After all the candidate objects having been idesifthe locality
optimization needs to decide how they should bd it and
where to put the hot objects on the GC heap. Tldymour

implementation, we do the layout using two copypitses for
the hot objects. First, we perform cache optimizatdy copying
contemporaneously accessed objects to a tempoufigr.oNext,

we perform page optimization by copying and appegdieap
objects marked as hot into this same buffer acogrdbo a
hierarchical decomposition order based on their eieht
structural relationship [20]. This can also yieldn® cache
locality benefits along with page locality. The ginal locations
are marked free and reclaimed by the collector. Tiedl-

rearranged aggregation of hot objects is then gldaek at the
younger end of the heap (either Generation 1 oetion 0).

We considered other schemes that could avoid thebld
copying (e.g. by reserving a designated sectiothefheap), but
discarded them because of several complicationg. (ELR
supports the notion of pinned objects) in the im@atation. We
also considered other layout schemes that did rintabjects
from different generations, but finally decideduse our current
scheme for the following reasons: (1) we are guesthto have

enough space at the younger end to accommodatiealhot
objects; (2) we don't want to promote objects premgy,

because it is more expensive to collect an oldeegeion than a
younger one; and (3) some longer-lived objects tendie right
after being reused, and demoting will acceleratertétlamation
of the space occupied by these objects. In geneliadly

demoting many objects is not good, but we do taiscively for

hot objects (which comprise a small fraction of tieap).

We also make sure that it does not create too nwngs-

generational pointers because that will make itev@pensive to
collect younger generations, which usually happemere

frequently. We compute the number of cross-germrgointers
that will be created before finalizing our optintisa and back-
off if this exceeds a predetermined thresholdofin prototype we
use 6,000 which worked well.)

3.4 Triggering LO independently of GC

Garbage collection can often coincide with a progrphase
boundary especially if the new phase starts bycatlog lots of
new objects. Passively combining locality optimiaat(LO) with

garbage collection (GC), as is traditionally donepuld

incorrectly place objects that were contemporangaccessed in
the previous phase together, possibly reducingrprodocality
for the current phase. To avoid this problem anddoable to
continuously reorganize the data layout in respaasghanges in
data access patterns caused by program phase aehes

decouple LO from GC and enable triggering LO inaefamntly of
GC.

One challenging aspect is to automatically deteendanditions
for triggering GC for locality (LO) as well as cdtidns for
determining when to back off, e.g. when the optatian is not
working as well as anticipated. We have implementedi
experimented with several different strategies fwth. For
triggering LO we tried the following options:

a) Use hardware performance counters, e.g., do LO wihen
rate of DTLB and L2 cache misses increases by inerta
amount®

b) Use rates of object allocation, e.g., do LO whegrdghs a
significant drop in allocation rate as it likelydicates that
the application is done “setting up” the new phase.

We also tried combinations of these heuristics. @rmvback
with using hardware performance counters is thay thre not
virtualized to a process on many current generatianohines (e.g.
Intel's x86 family of machines) and so the numbeosild be
skewed by other applications running on the syst&ue found
that the rate of object allocation is a reliable amee for
triggering LOs. We experimented with several heizssand the
one listed below provided the best experimentalltescross our
application test suite (see Section 4.3.2 for @gtaWe use
allocation rate as the primary trigger for heapganization for
locality and additionally consult the DTLB and/o2 lcache miss
rate when the allocation rate remains relativelgblet if the
allocation rate drops by more than 12.5%, do a €é¢ioa 1 LO
collection, if it drops by more than 50% do a Gatien 2 LO

3 We wrote a kernel-mode driver that allowed thedhare
performance counters to be read by the applicatiodemand.

collection; otherwise, if either the DTLB or L2 ¢ec miss rate
(computed from data read from the hardware perfooma
counters) increases by 6.25% / 25% do a Generatioh
Generation 2 LO collection; otherwise, LO will berg along
with GCs triggered for space.

We currently use a simple scheme for backing off #ottling

LO when locality optimization appears ineffectivié. neither

DTLB nor L2 cache miss rates have improved by 5%r dleir

historical value immediately following a LO, for dwsuccessive
LOs, we disable LO for the next few GCs. The nunifesCs for

which LO is disabled starts at 2 and is expondptialcreased
until LO improves DTLB or L2 cache misses by atste®%, at
which time it is reset to 2. This simple scheme kedr well in

practice as discussed in Section 4.

4. EVALUATION
This section presents and analyzes the results &xqperiments
done with our prototype implementation.

4.1 Experimental Platform

As mentioned earlier, our prototype is based upension 2.0 of
the commercial CLR implementation on the Windows XP
operating system. We did not modify the CLR GC'safe
allocation budgets, its policy for determining whengrow the
heap, and the algorithms used to determine the sizihe various
generations since those policies have been highlgd and are
very complicated to modify [15]. In addition, oupa was to
investigate the impact of LO on a well-tuned GC. pégformed
experiments on several machines with different ngmoache
size, and processor speed configurations. Unsimglys we
found that our locality optimization works much teet on
machines with smaller L2 cache and memory. Howewves,
believe that for real-world scenarios where perfmoe matters,
machines will be configured to have adequate meraadlarge
L2 caches. Hence, results reported below were mddabn a
machine with the following configuration:

CPU: Pentium 4, 2.8 GHz

DTLB: 64 entries

L2 cache: 1MB, 8-way, 128-byte cache line
RAM: 1GB

4.2 Benchmarks

Due to the lack of widely available benchmarks foe .NET
framework, we obtained six large applications eritin C# that
are used internally at MicrosbffThese C# applications, which we
obtained from our colleagues, are briefly describedrable 1.
The number in parenthesis in the Original Time owiuis the
percentage of execution time spent in garbageatale

4.3 Performanceresultsand analysis

We performed three sets of experiments. First, veasured the
profiling overhead of gathering data access infdionafor our
optimizations. Next, we evaluated the benefitsrifgering LO
independently of GC. Finally, we measured the Heneff our
page and cache locality optimization.

4 Two of these applications have been made extgrawdlilable at
http://research.microsoft.com/~zorn/benchmarks/

Table 1: C# Benchmark Descriptions.

Orig.
Time
- in secs
Name Description Input %
time in
GC)
Xaml- Reads from an XAML| 11,000-level
Parser- | (extensible application deeply nesteg
Test markup language, based omode 100.0
XML) file three times to (0.2%)
measure the performance pf
different components of the
parser.
SAT- SAT solver in C# ported Problem
Solver from a C++| instance with| 138.0
implementation. 24,_640 3,250+ (0.4%)
variable
CNFs
Max Analyzes and builds §3338- module
dependency relationshipinput 97.7
among a set of modulgs (26%)
specified in an XML file.
GenIBC | Computes optimal obje¢tA 55 MB xml 6.5
layout from profile data. file (27%)
Fugue .NET protocol checker thatA 2MB 79.9
checks managed API usageompiled (10.3
rules .NET %)
assembly
Lcsc A C# front-end that A 125K LOC 42.6
generates MSIL code C# file (9.1%)

4.3.1 Profiling Overhead

As mentioned in Section 3, we applied several ctati
optimizations, such as CSE, to reduce the numbigistumented
data access sites. These cut down the numberafdaesses that
require instrumentation by a factor of two on agerdn addition,
the worst case code bloat due to instrumentatios lss than
3%.

We investigated several sampling rates to picktbaeprovides a
good tradeoff between overhead and profile accurk@yure 3
illustrates the overhead results. Since we usetyotracing, we
can vary both the overall sampling rate and thestblength. We
evaluated a wide range of values for both paramdiet only
report results for sampling rates of 0.1%, 0.05%1% and burst
lengths of 100 and 1000 units (where each unit4K @lock
cycles) as these significantly outperformed the nesterms of
overall optimization benefits. Higher sampling mtetroduced
larger overheads that our optimizations were ofteh able to
overcome and lower rates degraded the performamgact of our
optimizations. Similarly, larger burst lengths ieased overhead
without improving optimization benefit and shortdyursts
negatively affected cache locality optimization.| Albsequent
experiments use a sampling rate of 0.05% with atbength of
100. This sampling rate not only resulted in piradi overheads
that were less than 3% on average, but produceitisnofly
accurate profiles to drive the optimizations asoregg in the
following sections. While prior research has intkcathat bursty

tracing provides low-overhead with good profile @recy for Java
and C/C++ applications [2, 5], we wanted to enstina our
variant of bursty tracing performed as well for &3plications.

=
S)

9
8
7 0.1%, 100
3 6 H W 0.1%, 1000
2 - 00.05%, 100
@ 5
3 [T | [0.05%,1000
< 4 M 0.01%,100
3 3 0.01%,1000
2 -
0+ :
2 & O @ o @
&7 ~ NI A
& 5 i ¥
Q 2
N4
+§

Figure 3: Evaluating different sampling rates and burst
lengths.

Figure 4 indicates the overall impact of these néphes on
profiling overhead. Always On (Page) representsaverhead of
profiing for page locality with static optimizatio but no
sampling and Always On (Page + Cache) represeatgribfiling
overhead of gathering data for page and cache itpcal

0 Always On (Page) B Always On (Page + Cache) O Sampling (Page + Cache) ‘

70
60
50
40
30

20
o

% Overhead

Figure 4: Profiling overhead for C# applications.

optimization. As the data indicates, sampling iseesial for
reducing profiling overhead in our system. For oG#
applications, profiling overhead is less than 3%awverage.

4.3.2 Triggering LO independently of GC

The next set of experiments indicates the benéfiseparating
locality optimization (LO) from GC and triggeringhém
independently (Pro-active LO). Triggering LO indedently of
GC increases the total number of GCs performedesindoes not
passively wait for memory budget pressure to invé. In
addition, it changes when GC is performed.

@ Allocation Rate

@ DTLB+L2cache miss rate

O Allocation rate + DTLB+L2cache miss rate

O Allocation rate + DTLB+L2cache miss rate + throttling

20
N ﬂﬂ
o4
.10 N 2 2
& N N S 5 3
& = W . J &S N5 \;\Q}

Figure5: Comparison of different LO triggering policies.

% Execution time improvement

We evaluated several different schemes for triggeriO
independently of GC and show results for “bestlass” variants
in Figure 5. Thallocation ratepolicy triggers a Generation 1 LO
collection, if the allocation rate drops by morarhl2.5%, and a
Gen 2 LO collection, if it drops by more than 50%he
DTLB+L2cache miss rat@olicy triggers a Gen 1 LO collection
when either the DTLB or L2 cache miss rate incredse6.25%,
and a Gen 2 LO collection, if either increases %02 The third
policy is a combination of these two as describe&éction 3.4.
To summarize, it uses the allocation rate policythes primary
trigger and uses DTLB, L2 cache measurements whnen
allocation rate remains relatively stable. This bered policy
provides better execution time benefits than thedividual
policies across all our C# applications as inditate Figure 5.
The final bar in Figure 5 indicates the impact ofnbining this
triggering policy with our scheme for LO throttliigs described
in Section 3.4). LO throttling does not decredse henefits of
our optimizations for any of the benchmarks. Iteffective at
reducing the performance degradation of GenIBC frb8% to -
7%. In addition, it slightly increases our optintina benefit for
Fugue by turning off LO for a brief period durinig iexecution.
All subsequent experiments use this triggering gyolior LO
(combined + throttling).

To ensure that the benefits do not arise from metelng these
additional GC at different times, we measured tffece of
triggering Pro-active LO, but disabling the localitptimizations.
We term this Pro-active GC and its impact is regabith Figure 6.
As the figure indicates, it provides no executioimet
improvement and slows down a few of the programs lgmall
amount. The next bar in Figure 6 measures the tivadi
technique of combining LO with GC as done in priesearch.
Comparing this against Proactive LO (LO triggenedeipendently
of GC that uses the combined triggering policy wiilottling as
described above), indicates that in the cases wi@iis effective,
triggering it independently of GC provides largedigidnal
benefits. On average, for our set of C# applicatiBroactive LO
improves execution time by 17% as opposed to almostverage
improvement from traditional-style LO due to thevstlown this
incurs for Max and GenIBC. If we ignore those twaplcations,
Proactive LO improves performance by 27% whereadittonal
LO provides 16% improvement. These results indictitet
triggering LO independent of GC is effective. Irddibn, our LO

throttling scheme limits performance degradation foograms
with little algorithmic locality to just the profitg overhead.

‘I:I Pro-active GC m LO (Page + Cache) with GC O Pro-active LO (Page + Cache) ‘

80

60

% Execution time improvement

Figure 6: Benefits of triggering L O independently of GC.

4.3.3 Analysis of Pro-active LO Benefits

Finally, we performed experiments to separate bet lbcality
benefits provided by page and cache optimizatibomsaddition,
we measured locality metrics such as page denddta TLB
misses, and L2 cache misses to validate that theeredd
execution time benefits arise from locality optiatinn.

Figure 7 indicates the execution time performaneeefits of
Proactive LO. The first bar represents the caseravbaly page
locality optimization is enabled. For the second, leth cache
and page locality optimizations are turned on. Paumlity
optimization produced improvements in XAMLParsetTasd
SATSolver and slowed down Fugue and Lcsc by a samatlunt.
Overall, it improved execution time of our C# apptions by 8%
on average with a maximum improvement
XAMLParserTest. Combining this with cache localgyoduced
additional improvements for SATSolver, Fugue andd-for an
overall average execution time improvement of 17%.

‘I:I Pro-active LO (Page) m Pro-active LO (Page + Cache)‘

% Execution time improvement

Figure 7: Page and Cache L O benefitsfor C# applications.

The results indicate the benefits of a system toatbines page
and cache locality optimizations. For some appbeces, page
locality optimization is effective while others kit most from
cache locality optimizations. In addition, SATSalvbenefits
from both optimizations.

of 56% for

Table 2: Time spent in GC as a per centage of overall time.

Application Base Pro-active LO | Pro-active LO

(%) (Page) (%) (Page+Cache)
(%)

XamlParserTest | 0.15 1 1.21

SAT solver 0.35 0.74 0.86

Max 26.0 26.7 26.9

GenIBC 27.0 27.5 27.6

Fugue 10.3 17.1 19.7

Lesc 9.1 16.3 18.5

Table 2, which shows the fraction of execution tispent in the
GC for different configurations, indicates that #wecution time
improvements arise solely from mutator speedup. gptémized
configurations spend more time in GC to perform Ibeality
optimizations, but these more than pay for theneselwhen
effective.

Finally, Figure 8 shows the % reduction in pagekivay set, data
TLB misses, L2 cache misses, and % improvement d@gep
density, for the Proactive LO (Page + Cache) caméition. All
applications that benefit from our optimization unca lower
number of data TLB or L2 cache misses. For apptinatwhere

@ % Working set reduction
0% DTLB miss reduction

B % Page density improvement
0 % L2 cache miss reduction

Figure 8: Locality Improvementsfor C# applications.

page locality optimization is effective (XAMLPar3ast and
SATSolver), the page density
XAMLParserTest) and data TLB misses are reduced. ST

solver, page working set increases slightly becauke

optimization involves many more GCs, each of whigeds to
scan portions or the whole heap, and these metoig®ot exclude
accesses made by the garbage collector. Applicativet benefit
from cache locality optimizations, such as SATSnol¥#igue, and
Lcsc, show significant reductions in L2 cache nssde?2—53%).
XAMLParserTest is interesting in that the page libga
optimization provides significant cache benefitsvesdl. These
numbers validate that locality optimizations arspensible for
mutator speedups.

improves (by 196% for

5. CONCLUSIONS

We have described an online profile-guided proactipproach to
improve data locality in garbage collected systen@ur results
show that it is beneficial to view the garbage exibr as an
explicit locality improvement mechanism rather tharst a
scavenger that is only invoked when the allocatiodget is about
to be exceeded.

We have shown that sampling can provide sufficiedgtailed
profile information to guide both page and cachealiy
optimization. Triggering LO independently of GC pides
significant performance improvements over the tradal
technique of performing LO with normal GC. Finalgmbining
page and cache locality optimizations in the saystem provides
larger benefits that either alone. These techniqumgsove the
performance of the C# applications we studied lpeceng both
DTLB and L2 cache misses.

We are currently investigating further techniquassreducing the
overhead of gathering profile data. A promising rapih is to
detect program phase changes [17][23]to guide tiggetrs for
bursty sampling. We are also investigating thectffef different
object field layout schemes for hot objects.

ACKOWLEDGEMENTS

We are grateful to Patrick Dussud for answeringsgvquestions
pertaining to the CLR implementation. Hoi Vo andrHKeat
Chan offered advice on the implementation. Pramashd, Ben
Zorn, and the anonymous referees provided valuaelgback on
earlier drafts of this paper.

REFERENCES

[1] Adl-Tabatabai, A., Hudson, R., Serrano, M., Subnaeyp S.
“Prefetch Injection Based on Hardware Monitoringdan
Object Matadata.” InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI '04)2004, 267—276.

[2] Arnold, M. and Ryder, B. “A Framework for Reducitize
Cost of Instrumented Code.” IRroceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI '01p001,168—179

[3] Bacon, D.F., Cheng, Perry, Rajan V.T. “A Real-time
Garbage Collector with Low Overhead and Consistent
Utilization” In Principles of Programming Languag@&OPL
'03), 2003.

[4] Cheney, C. “A Non-recursive List Compacting Algbnt.”
Communications of the ACM13(11), November 1970,
677—678.

[5] Hirzel, M. and Chilimbi, T. “Bursty Tracing: A Fraework
for Low-Overhead Temporal Profiling.” In4" ACM
Workshop on Feedback-Directed and Dynamic Optirunat
'01 (FDDO), 2001, 117—126.

[6] Chilimbi, T. and Larus, J. “Using Generational Gaye
Collection to implement Cache-conscious Data pla#rh
In Proceedings of the 1st International Symposium on
Memory Managemen©ctober 1998, 37—48.

[7]1 Chilimbi, T.,
Definition.”

and Larus, J. “Cache-conscious Sttt
In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and
Implementation (PLDI '99)1999, 1—12.

Courts, R. “Improving Locality of Reference in arBage-
Collecting Memory Management Systen€dmmunications
of the ACM 31(9), September 1988, 1128—1138.

Zorn, B. The Effect of Garbage Collection on Cache
Performance Technical Report CU-CS-528-91, Department
of Computer Science, University of Colorado at Risu)
1991.

[10] Hennessy, J. and Patterson, ©omputer Architecture: A
Quantitative ApproachMorgan Kaufman, San Mateo, CA.
3 edition, 2002.

[11] Hertz, M., Feng, Y., and Berger, E. D. “Garbagel€xion
without Paging” In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI '05), 2005.

[12] Inagaki, T., Onodera, T., Komastu, H., and Nakatdni
“Stride Prefecthing by Dynamically Inspecting Oliget In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLD
'03), 2003, 269—277.

[13] Lam, M., Wilson, P., and Moher, T. “Object Type &ited
Garbage Collection to Improve Locality.” Proceedings of
the International Workshop on Memory Managemé&892,
404—425.

[14] Hirzel, M., Diwan, A. and Hertz, M. “Connectivityased
Garbage Collection.” InProceedings of the 18th annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ‘03)2003, 359 — 373.

[15] Richter, J. “Garbage Collection: Automatic Memory
Management in the Microsoft .NET Framework (Pasnt
11).” MSDN Magazing 2000,
http://msdn.microsoft.com/msdnmag/issues/1100/GCGihd
http://msdn.microsoft.com/msdnmag/issues/1200/GCI2/

[16] Moon, D. “Garbage Collection in a Large LISP System
Proceedings of the 1984 ACM Symposium on LISP and
Functional ProgrammingAugust 1984, 235 — 246.

(8]

9]

[17] Nagpurkar, P., Krintz, C., and Sherwood, Fhase-aware
Remote Profiling Technical report UCSB 2004-21,
Department of Computer Science, University of @atifa at
Santa Barbara, 2004.

[18] White, J. “Address/Memory Management for a Gigantic
LISP Environment or, GC Considered Harmful.” In
Proceedings of the 1980 ACM Conference on LISP and
Functional Programming1980, 119 — 127.

[19] Wilson, P. “Uniprocessor Garbage Collection Techewy”
In Proceedings of the International Workshop on Memory
Management1992, 1 — 42.

[20] Wilson, P., Lam, M., and Moher, T. “Effective Statiraph
Reorganization to Improve Locality in Garbage Caitbel
Systems.” InProceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI '91), 1991, 177 — 191.

[21] Shuf, Y., Gupta, M., Franke, H., Appel, A., and @in J.
“Creating and Preserving Locality of Java Applioas at
Allocation and Garbage Collection Times.” Rroceedings
of the 18th annual ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and
Applications (OOPSLA ‘022002, 13 — 25.

[22] Huang, X., Blackburn, S., McKinley, K., Moss, J.a#g, Z.,
and Cheng, P. “The Garbage Collection Advantage:
Improving Program Locality.” InProceedings of the 18th
annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ‘04)2004, 29 — 80.

[23] Shen, X., Zhong, Y., and Ding, C. “Locality Phase
Prediction.” In Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ZBD4, 165
- 176.

[24] Chilimbi, T. “Efficient Representations and Abstiaas for
Quantifying and Exploiting Data Reference Localityn
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLD
'01), 2001, 191 — 202.

[25] Wilkes, R. “Ngen Revs up your performance with Pdule
New Features”, MSDN Magazine April 2005

