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ABSTRACT 
Many applications written in garbage collected languages have 
large dynamic working sets and poor data locality. We present a 
new system for continuously improving program data locality at 
run time with low overhead. Our system proactively reorganizes 
the heap by leveraging the garbage collector and uses profile 
information collected through a low-overhead mechanism to 
guide the reorganization at run time. The key contributions 
include making a case that garbage collection should be viewed as 
a proactive technique for improving data locality by triggering 
garbage collection for locality optimization independently of 
normal garbage collection for space, combining page and cache 
locality optimization in the same system, and demonstrating that 
sampling provides sufficiently detailed data access information to 
guide both page and cache locality optimization with low runtime 
overhead. We present experimental results obtained by modifying 
a commercial, state-of-the-art garbage collector to support our 
claims. Independently triggering garbage collection for locality 
optimization significantly improved optimizations benefits. 
Combining page and cache locality optimizations in the same 
system provided larger average execution time improvements 
(17%) than either alone (page 8%, cache 7%). Finally, using 
sampling limited profiling overhead to less than 3%, on average.  

Categories and Subject Descriptors     

D.3.4 [Programming Languages]: Processors – code generation, 
memory management (garbage collectors), optimization, run-time 
environments 

General Terms 

 Measurement, Performance, Experimentation. 

Keywords    

data locality, garbage collectors, cache optimization, page 
optimization, memory optimization 

      

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. To copy otherwise, or republish, to post on servers or to redistribute 
to lists, requires prior specific permission and/or a fee. 
PLDI’06, June 11–14, 2006, Ottawa, Ontario, Canada. 
Copyright 2006 ACM 1-59593-320-4/06/0006…$5.00. 
 

1. INTRODUCTION 
Many programs, especially those that manipulate pointer data 
structures, are memory performance limited due to the growing 
disparity between processor speeds and memory access times 
[10]. Large, multi-level caches help hide some of the memory 
access latency and translation look-aside buffers (TLBs) mitigate 
the page translation costs. Unfortunately, caches and TLBs are 
expensive and unlikely to grow at the same rate as application 
workloads, especially on-chip caches. Perhaps most importantly, 
these hardware mechanisms are often limited by poor program 
data layout, which rarely takes full advantage of the multi-word 
data transfer granularity that cache lines (64 – 128 bytes) and 
pages (4 – 8K bytes) provide.  

Two useful layout metrics are page and cache line density, which 
indicate how well program elements are laid out and packed 
together. Unfortunately, as Figure 1 indicates1, many programs 
have poor page density. In addition, programs also have poor 
cache line utilization, averaging around 30% [24]. This provides 
an opportunity to make more efficient use of caches and TLBs by 
packing contemporaneously accessed data elements together and 
reducing a program’s page and cache footprint.  

Newer mainstream languages such as C# and Java support 
automatic memory management, which is implemented with a 
garbage collector that, when necessary, automatically examines 
the program heap and recycles space occupied by dead data for 
use in subsequent allocations. To avoid heap fragmentation, many 
garbage collectors either copy all live objects or compact the heap 
by moving some live objects into the space freed up by dead data. 
Garbage collectors maintain fairly elaborate infrastructure to 
accomplish this task. Prior research has leveraged this 
infrastructure to combine this object movement with intelligent 
placement to optimize either program page or cache locality 
[6,7,8,13,16,20,22]. 

This paper describes a locality optimizing system that leverages 
the garbage collector with three key differences from earlier work. 
First, it uses sampled profiles of data accesses to drive both page 
and cache locality optimizations. Second, it proactively triggers 

                                                                 
1 These numbers were obtained by running these applications 

using a dynamic translator and logging all memory reads and 
writes. References to stack pages were filtered out. 



garbage collection for locality optimization rather than passively 
performing locality optimization only when garbage collection is 
invoked due to memory space constraints. In addition, it 
implements an automatic online throttling scheme that limits 
performance degradation for applications that do not benefit from 
locality optimization. Finally, it combines page and cache locality 
optimization in the same system. 

 Placing contemporaneously accessed objects together at the page 
and cache level requires accurate data access information. While 
static analysis techniques continue to improve, they are still 
unable to provide sufficiently detailed data access information for 
this purpose, especially for large programs that manipulate pointer 
data structures. Hence we monitor data accesses at run time and 
use this information to guide data placement. Unfortunately, the 
runtime overhead can sometimes be too high. To address this, we 
use bursty tracing [2][5], which is a form of sampling that 
captures fine-grain temporal data access information, to reduce 
our profiling overhead to less than 3% on average, yet produce 
sufficiently detailed data access profiles to guide locality 
optimization. While previous research on using garbage collection 
to improve cache locality in the Cecil system found profiling 
without sampling had sufficiently low-overhead [6], our 
experience with a commercial system indicates otherwise. While 
several differences between the two systems makes comparison 
difficult (different languages, SPARC (32 registers) Vs. x86 (only 
8 registers)), a possible reason for this is our implementation 
platform is a highly-tuned commercial system that is less tolerant 
of instrumentation overhead than the Cecil research prototype. 

Garbage collection is typically triggered in response to an 
allocation request when the amount of free space falls below a 
certain threshold. This can often coincide with a program phase 
boundary especially if the new phase starts by allocating many 
new objects. If locality optimization (LO) is passively combined 
with garbage collection (GC), it would incorrectly place objects 
that were contemporaneously accessed in the previous phase 
together, possibly reducing program locality for the current phase. 
To avoid this problem and to be able to continuously reorganize 
the data layout in response to changes in data access patterns 
caused by program phase behavior, we decouple LO from GC and 
enable triggering LO independently of GC. We use metrics such 
as cache and TLB miss rates obtained from hardware performance 
counters as well as allocation behavior to trigger LO.  In addition, 
we have implemented an automatic online throttling scheme that 
limits performance degradation for applications that do not benefit 
from LO. Our results indicate that actively triggering LO 
independently of GC provides significant performance benefits.  

Application Pages touched 
per interval 

Average Page 
Density 

Web page renderer 1 600 7.7% 
Web page renderer 2 588 6.5% 
XamlParserTest 602 6.0% 
Sat Solver 1703 28.0% 
Compress 102 28.0% 

(a) C# applications 

 

Application Pages touched 
per interval 

Average Page 
Density 

Multimedia App 1 519 7.1% 
Multimedia App 2 264 35.4% 
Desktop App 1 368 7.3% 
Desktop App 2 367 9.5% 
Desktop App 3 315 13.2% 

Internet App 478 11.2% 
(b) C/C++ applications 

Figure 1. Application page density (combination of Microsoft 
and non-Microsoft applications). The density of a page = 
numbers of unique bytes read/written on a page per interval / 
size of page. An interval is chosen to be 106 references.   

Our LO system addresses both page and cache locality. To 
optimize page locality, object accesses are recorded by setting a 
bit in the object header. In addition, to optimize cache locality we 
record the object address in a fixed size circular object access 
buffer. During LO, live objects that have their access bit set are 
copied and placed contiguously according to a hierarchical 
decomposition order [20] (called page locality placement herein), 
which improves page locality, and for some of the applications we 
studied, also improves cache locality. To specifically improve 
cache locality, we use a similar scheme to that described in [6], 
which uses the object address buffer information to place 
contemporaneously accessed objects together (called cache 
locality placement herein). Since the object address buffer is of 
fixed size, it only contains a subset of objects that were accessed 
since the last LO. Our LO combines page and cache locality 
optimization by first performing the cache locality placement for 
objects in the object address buffer followed by the page locality 
placement for objects whose access bit was set but did not appear 
in the object address buffer. 

We implemented our LO system in the Common Language 
Runtime v2.0 (CLR) of Microsoft’s .Net Framework. Our choice 
of implementation platform and benchmarks was driven by our 
goal of transferring this technology to Microsoft’s commercial 
platform. All of the applications we used for benchmarking are 
written in C#; however, the results are applicable to any language 
that targets MSIL (Microsoft Intermediate Language) binaries.  

The main contributions of the paper are:  

1) Decoupling LO from GC and demonstrating benefits of 
triggering these independently. In addition, we 
implemented an automatic online throttling scheme that 
limits performance degradation for applications that do 
not benefit from LO. We show that this technique 
significantly improves average optimization benefits 
due to improved mutator locality. 

2) Combining cache and page locality optimizations in the 
same system and demonstrating performance gains. 
Earlier research either performed cache or page 
optimization, but not both. For the C# applications we 
studied, combining page and cache locality optimization 
in the same system provides larger average 



improvements (17%) than either alone (page 8%, cache 
7%). 

3) Demonstrating that sampling techniques can be used to 
collect sufficiently detailed data access information to 
guide cache and page locality optimizations with low 
overhead (less than 3% on average). 

4) Implementing and evaluating the system in a 
commercial managed runtime system. We implemented 
this in Version 2.0 of the Common Language Runtime 
GC, which ships with Microsoft’s .NET Framework.  

We believe that automatic locality optimization techniques such 
as these are necessary for modern languages, such as C# and Java, 
to approach and perhaps even surpass the performance of C/C++ 
programs. 

The rest of the paper is organized as follows: Section 2 briefly 
discusses related work. Section 3 describes the design and a few 
implementation details of our technique. Section 4 contains 
experimental evaluation of our approach using several C# 
applications. Section 5 summarizes the main results and directions 
for future work.  

2. RELATED WORK 
The idea that garbage collection could be used to improve a 
program’s locality was proposed as early as in 1980 by White 
[18]. Zorn speculated on the possibility of doing garbage 
collection purely for program performance in [9]. Several 
researchers have proposed ingenious traversal algorithms for 
copying garbage collectors to improve the locality of references in 
the collected heap [16] [20].  Wilson [20] proposed hierarchical 
decomposition to group all structurally related objects together to 
improve locality. We similarly group only recently accessed 
objects for page locality optimization. Shuf et al [21] proposed a 
new allocation scheme to improve locality by placing objects 
based on the notion of prolific (frequently instantiated) types. 
These approaches are based on static or offline profile 
information, and the virtual machine or runtime involved is not 
active in observing the dynamic data access sequence and 
determining how objects should be placed in the heap. Thus the 
layout derived may not reflect actual data access patterns, and 
moreover, it is not possible to detect phase changes and react 
accordingly. 

Huang et al. [22] use a technique called online object reordering 
(OOR) that uses sampling to identify hot methods, and from these 
hot fields and their types.  At garbage collection time, the GC 
copies referents of hot fields together with their parent, guided by 
the hot types. Their work is complementary to ours. Since their 
work was done on a virtual machine with function profiling built 
in and they sample hot methods rather than contemporaneous data 
accesses, their overhead is low. However, they are limited to 
coarse-grained profiling information about data accesses and in 
the type of placement optimizations they can perform. In addition, 
they perform their placement optimization during normal GC 
traversal. We trigger locality optimization independent of normal 
GC and show that this benefits performance. In addition, we 
optimize separately for both cache and page locality in the same 
system.   

Courts described a dynamic approach in [8]. In his 
implementation, memory is divided into regions based on 

generation and activity. The GC copies inactive objects out of 
active space based on object accesses in the training period before 
each garbage collection. However, his implementation relied on 
the transporter, a micro-coded system service, to bring the objects 
from inactive space to active space when they are first accessed. 
In his system, garbage collection is just a passive activity that is 
triggered based on memory pressure.   

Chilimbi and Larus proposed a scheme that uses online profiling 
to construct an object affinity graph from observed accesses, and 
then uses the GC to rearrange the objects for better cache locality 
[6][7]. We use their scheme to optimize cache locality but 
combine it with page locality optimization. We incur less runtime 
overhead since we sample data accesses. Finally, we trigger LO 
independently of GC while they perform cache optimization only 
when GC is invoked due to memory pressure.  

Adl-Tabatabai et al [1] insert prefetch instructions in JIT 
compiled code and use GC’s placement ability to maintain the 
distances of objects so that the prefetch is effective. They also use 
hardware performance monitoring counters to collect cache miss 
profiles to determine the prefetch sites. Our work is 
complementary as we instrument the application to detect hot 
objects and re-arrange these hot objects to improve their reference 
locality instead of trying to prefetch objects that will be accessed 
in the future. Our approach increases the spatial locality of 
frequently accessed objects and consequently increases the 
effectiveness of hardware prefetching.  

Hertz et al [11] describe a technique that avoids paging by 
integrating the garbage collector with the memory manager so the 
GC can make informed decisions about evicting pages. That 
approach is orthogonal to ours since they do not address the issue 
of intra-page layout.  

Our low overhead design relies on having cheap read barriers 
proposed by others [3], but the implementation we describe is 
quite different: the CLR implementation does not use null checks 
but implicit traps to detect null dereferences, the object headers do 
not have an extra to-pointer, and the heap implementation is quite 
different (for object headers that cannot be moved and the objects 
that are moved the to-space). Our compiler optimizations to 
reduce the number of read barriers are similar.  

3. DESIGN AND IMPLEMENTATION 
Our approach relies on a generational garbage collector that 
moves objects, and our prototype ties tightly with the CLR and 
MSIL (Microsoft Intermediate Language), but is otherwise 
agnostic of the implementation details of a virtual machine. In this 
section, we first provide a high-level overview of the approach, 
discussing various options and the rationale for our adopted 
design, and then describe the engineering optimizations necessary 
to provide a practical implementation.   

Figure 2 provides an architectural overview of our design. A JIT 
compiler takes an intermediate language representation (MSIL in 
our case) and compiles it into machine code for a particular 
architecture. We modify the JIT compiler to insert lightweight 
instrumentation in the compiled code. The CLR provides a tool 
called Ngen [25] that can compile modules ahead of time to 
provide more optimized code and improve startup performance. 
Our modifications to the compiler work seamlessly with Ngen, so 
there is no extra startup penalty for using our approach. The 
instrumented code marks objects that have been recently accessed 



and records their address in a fixed size circular object access 
buffer. We insert monitoring code in the CLR to gather certain 
metrics while the application is running and use the collected data 
and heuristics to trigger GC-for-locality, or Locality Optimization 
(LO). During LO, we use the Chilimbi-Larus scheme for 
combining cache locality optimization with GC. In addition, we 
perform page locality optimization for the objects that are not 
moved during cache locality optimization. To do this, we identify 
objects that have been marked as recently accessed (hot) and co-
locate them according to their inherent structural relationship onto 
pages separate from the rest of the heap. LO is triggered 
independently of a normal GC, which occurs when the allocation 
budget is about to be exceeded. To limit performance degradation 
for applications with poor algorithmic locality, we throttle LO 
when indicated. 

 

Figure 2. Overview of architectural modifications to the CLR.  

  

We first provide a brief review of the scheme used to optimize 
cache locality [6]. Then, we discuss some of the key design issues, 
design options that we considered, and our rationale for adopting 
the current design.  

 

3.1 Background: Cache Locality 
Optimization 
 

We record base object addresses in a fixed size circular buffer. 
During Locality Optimization (LO), these objects are processed to 
construct an object affinity graph. The object affinity graph 
includes edges between objects that are contemporaneously 
accessed, where objects accessed up to 3 unique accesses apart are 
considered contemporaneous. Graph edges are weighted to 
indicate how often the objects have been accessed together. The 
garbage collector performs a weighted DFS traversal of this object 
affinity graph and marks objects for copying to a temporary buffer 
in the order they are visited. Since these objects may include some 
garbage (though prior work indicates that the amount is miniscule 
[6]), they are removed when the objects are physically copied in a 
later phase of the same garbage collection. The object affinity 
graph is not maintained across LOs but is created from scratch at 
each LO. Further details are in [6]. Our page locality 
optimization, which is described in the next few sections, copies 

objects to the end of this temporary buffer used by cache 
optimization.  

3.2 Low-overhead Data Access Profiling 
Since the instrumentation for cache locality is virtually identical 
to that described in [6], we focus on the instrumentation needed 
for page locality optimization and discuss our use of sampling to 
reduce profiling overhead. 

3.2.1 Instrumentation for Page Locality 
Optimization 
For page locality, we do not need to determine precise temporal 
affinity between data elements. We record objects that are 
frequently accessed during a time interval; these objects are 
considered hot and we group them during optimization according 
to their inherent structural relationship into a set of pages in a 
separate section of the heap. A counter is used to decide which 
objects are hot.  

We use the JIT compiler to insert read barriers for certain critical 
instructions that access heap data. The read barrier code consists 
of a single call instruction to a helper routine which updates the 
counter if necessary. Write barriers are automatically generated by 
the compiler to support the generational GC, and we simply 
modify those to insert a conditional update of the counter.  

The key engineering decisions we had to make were: 

• Implementation of the counter 
• Implementation of the read barrier 
• Optimizing the instrumentation  

 
We considered two ways to implement the object reference 
counter: embed it in the object or implement it as a separate table. 
Our current implementation uses a 1-bit counter that is embedded 
in the object. The CLR already has a four-byte object header for 
each object that is used for various purposes (e.g. to implement a 
lightweight lock or to store a hash code for the object). We 
modified this layout to steal one bit for our purposes. Although 
this reduces the number of bits available for other purposes, we 
feel that this is a good performance tradeoff. The main impact of 
stealing the bit is reducing the number of objects whose hash can 
be stored in the object header (from 27 to 26 bits) and reducing 
the number of concurrent threads that can be supported with 
lightweight locks. When the bits overflow they are repurposed to 
index into a table that points to larger object headers.  

The read barrier code is shown in Figure 3. 

 

    test       dword ptr[rg-4], OBJECT_ACCESSED_BIT 

    jnz        Bit_set 

    lock or  dword ptr[rg-4], OBJECT_ACCESSED_BIT;  atomic update 

Bit_set :  

    ret 
Figure 3. Profiling code used to mark accessed objects for page 
locality optimization. rg is the register that holds the object address. 
The object header is at offset -4 from the start of the object. 
OBJECT_ACCESSED_BIT is a bit mask used to set a single bit in the 
object header.  

We use an interlocked operation to set the bit since the object 
header could be concurrently modified by other threads on an 
SMP machine. The interlocked operation is expensive on x86 
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architectures (20-30 clock cycles). In addition, it dirties a cache 
line during a read operation that could hurt scalability of 
applications on multi-processors. Therefore we implement a 
conditional read barrier instead of an unconditional one even 
though it bloats the read barrier code quite a bit. To minimize 
code bloat we do not inline the read barrier but implement it as a 
helper routine (one for each register). 2 

Algorithms used for optimizing access barriers can be directly 
applied here to further reduce the number of read barriers, and 
hence, the amount of code bloat. The read barrier used here is 
different from typical access (read or write) barriers in that we do 
not need to insert a call to it at every access point, because it does 
not affect the correctness of the generated code. This allows us to 
perform more aggressive optimizations. In our prototype 
implementation, we use common sub-expression elimination 
(CSE) to optimize away redundant calls to the read barrier 
routines. Furthermore, since occurrences of exceptions are rare, 
no profiling calls are inserted into exception handling code. 
Similarly, we also ignore constructors that are not inlined.  

One policy decision we had to make was when to reset the 
counter. Because of our decision to embed the counter in the 
object, we cannot clear the bit without a scan over the whole heap, 
which is expensive. The only natural opportunity for clearing the 
counter is when we do a GC. We experimented with a few 
different schemes and found that the simple strategy of clearing 
the counter every time we encounter a hot object during a GC (no 
matter whether for locality or for space) works well for objects in 
lower generations (generation 0 and 1). For higher generations 
(generation 2 in CLR) this does not work as well because those 
generations are collected infrequently and the reference bit gets 
stale over time. In our prototype, since the collector does need to 
check generation 2 objects that contain cross-generation pointers, 
we use this opportunity to clear the counters embedded in them, 
which alleviates the problem to some extent. An alternative would 
be to store the counters in a card table, which would make 
clearing the counters relatively cheap.  

3.2.2 Sampling Data Accesses 
The page locality instrumentation model described above has low 
overhead and is enough to speed up some benchmarks that we 
describe later. But there are several scenarios where dynamic heap 
reorganization does not help improve the performance of an 
application, e.g., if the dataset is small enough to fit in the 
available memory or the algorithm has poor locality. For such 
applications the cost of the read barrier can be very high (in some 
cases degrading the application by as much as 40%). In addition, 
the overhead of the instrumentation needed by our cache locality 
optimization is high. 

To further reduce the instrumentation overhead, we use a 
simplified version of bursty tracing [2][5]: if a method is 
instrumented with a read barrier, we generate a second copy of the 
method without the read barrier. The prolog of each copy of the 
same method is extended to perform a check and control transfer 
to either the instrumented or the non-instrumented version of the 
method. Back edges are not modified in our simplified 
implementation. Surprisingly, this simplification does not reduce 
the effectiveness of this approach on the benchmarks we 

                                                                 
2 The code bloat is < 3% for the applications we studied. 

examined (except for some synthetic ones that have long-running 
loops); the reason is that modern software practices and object-
oriented programming languages usually result in many more 
smaller functions than larger ones, where deeply nested loops are 
rare. As a further optimization, the two copies are placed in 
separate code heaps.  

There are two parameters to control the sampling: how long each 
burst should last and how often sampling should be triggered. By 
tuning these two parameters, we can obtain useful profile 
information at a reasonably low profiling overhead.  Our 
experiments show that with this bursty tracing scheme, we can 
limit pure profiling overhead to less than 5% - the cost of doing 
the check in the prolog. 

3.3 Combining Page and Cache Locality 
Optimization 
The CLR GC implements a variation of generational mark-
compact garbage collection. It divides the small object heap into 
three generations, and moves live objects into older generations in 
their allocation order when triggered [15]. We modified the 
implementation so that GC can be independently triggered either 
for space or for locality optimization. However, when GC is 
triggered, unless the policy says it is for space only, it will attempt 
to do both at the same time, with one exception:  when it is 
triggered to collect only Generation 0 objects, locality 
optimization will not be applied. The rationale for not doing heap 
reorganization for locality optimization during a generation 0 
collection for space is that most of those generation 0 objects, 
being recently allocated, are already hot and in the cache or 
working set, and are unlikely to benefit much from locality 
improvements. In addition, many of these objects are likely to die 
shortly. During a GC for locality we identify all objects that a) 
have their address entered in the circular object access buffer 
(cache locality optimization) b) were marked as hot since the 
previous locality collection (page locality optimization) and c) 
belong to a generation not older than the generation being 
collected. Only these objects are candidates for locality 
optimization. 

After all the candidate objects having been identified, the locality 
optimization needs to decide how they should be laid out and 
where to put the hot objects on the GC heap. To simplify our 
implementation, we do the layout using two copying phases for 
the hot objects. First, we perform cache optimization by copying 
contemporaneously accessed objects to a temporary buffer. Next, 
we perform page optimization by copying and appending heap 
objects marked as hot into this same buffer according to a 
hierarchical decomposition order based on their inherent 
structural relationship [20]. This can also yield some cache 
locality benefits along with page locality. The original locations 
are marked free and reclaimed by the collector. The well-
rearranged aggregation of hot objects is then placed back at the 
younger end of the heap (either Generation 1 or Generation 0). 

 We considered other schemes that could avoid the double 
copying (e.g. by reserving a designated section of the heap), but 
discarded them because of several complications (e.g. CLR 
supports the notion of pinned objects) in the implementation.  We 
also considered other layout schemes that did not mix objects 
from different generations, but finally decided to use our current 
scheme for the following reasons: (1) we are guaranteed to have 



enough space at the younger end to accommodate all the hot 
objects; (2) we don’t want to promote objects prematurely, 
because it is more expensive to collect an older generation than a 
younger one; and (3) some longer-lived objects tend to die right 
after being reused, and demoting will accelerate the reclamation 
of the space occupied by these objects. In general blindly 
demoting many objects is not good, but we do this selectively for 
hot objects (which comprise a small fraction of the heap).  

We also make sure that it does not create too many cross-
generational pointers because that will make it more expensive to 
collect younger generations, which usually happens more 
frequently. We compute the number of cross-generation pointers 
that will be created before finalizing our optimization and back-
off if this exceeds a predetermined threshold. (In our prototype we 
use 6,000 which worked well.) 

3.4 Triggering LO independently of GC 
Garbage collection can often coincide with a program phase 
boundary especially if the new phase starts by allocating lots of 
new objects. Passively combining locality optimization (LO) with 
garbage collection (GC), as is traditionally done, would 
incorrectly place objects that were contemporaneously accessed in 
the previous phase together, possibly reducing program locality 
for the current phase. To avoid this problem and to be able to 
continuously reorganize the data layout in response to changes in 
data access patterns caused by program phase behavior, we 
decouple LO from GC and enable triggering LO independently of 
GC. 

One challenging aspect is to automatically determine conditions 
for triggering GC for locality (LO) as well as conditions for 
determining when to back off, e.g. when the optimization is not 
working as well as anticipated. We have implemented and 
experimented with several different strategies for both. For 
triggering LO we tried the following options: 

a) Use hardware performance counters, e.g., do LO when the 
rate of DTLB and L2 cache misses increases by certain 
amount.3 

b) Use rates of object allocation, e.g., do LO when there is a 
significant drop in allocation rate as it likely indicates that 
the application is done “setting up” the new phase.  

We also tried combinations of these heuristics. One drawback 
with using hardware performance counters is that they are not 
virtualized to a process on many current generation machines (e.g. 
Intel’s x86 family of machines) and so the numbers could be 
skewed by other applications running on the system.  We found 
that the rate of object allocation is a reliable measure for 
triggering LOs. We experimented with several heuristics and the 
one listed below provided the best experimental results across our 
application test suite (see Section 4.3.2 for details). We use 
allocation rate as the primary trigger for heap re-organization for 
locality and additionally consult the DTLB and/or L2 cache miss 
rate when the allocation rate remains relatively stable: if the 
allocation rate drops by more than 12.5%, do a Generation 1 LO 
collection, if it drops by more than 50% do a Generation 2 LO 

                                                                 
3 We wrote a kernel-mode driver that allowed the hardware 

performance counters to be read by the application on demand. 

 

collection; otherwise, if either the DTLB or L2 cache miss rate 
(computed from data read from the hardware performance 
counters) increases by 6.25% / 25% do a Generation 1 / 
Generation 2 LO collection; otherwise, LO will be done along 
with GCs triggered for space.  

We currently use a simple scheme for backing off and throttling 
LO when locality optimization appears ineffective. If neither 
DTLB nor L2 cache miss rates have improved by 5% over their 
historical value immediately following a LO, for two successive 
LOs, we disable LO for the next few GCs. The number of GCs for 
which LO is disabled starts at 2 and is exponentially increased 
until LO improves DTLB or L2 cache misses by at least 5%, at 
which time it is reset to 2. This simple scheme worked well in 
practice as discussed in Section 4. 

4. EVALUATION 
This section presents and analyzes the results from experiments 
done with our prototype implementation. 

4.1 Experimental Platform 
As mentioned earlier, our prototype is based upon version 2.0 of 
the commercial CLR implementation on the Windows XP 
operating system. We did not modify the CLR GC’s heap 
allocation budgets, its policy for determining when to grow the 
heap, and the algorithms used to determine the sizes of the various 
generations since those policies have been highly tuned and are 
very complicated to modify [15]. In addition, our goal was to 
investigate the impact of LO on a well-tuned GC. We performed 
experiments on several machines with different memory, cache 
size, and processor speed configurations. Unsurprisingly, we 
found that our locality optimization works much better on 
machines with smaller L2 cache and memory. However, we 
believe that for real-world scenarios where performance matters, 
machines will be configured to have adequate memory and large 
L2 caches. Hence, results reported below were obtained on a 
machine with the following configuration: 

CPU: Pentium 4, 2.8 GHz 
DTLB: 64 entries 
L2 cache: 1MB, 8-way, 128-byte cache line  
RAM: 1GB  

4.2 Benchmarks 
Due to the lack of widely available benchmarks for the .NET 
framework, we obtained six large applications written in C# that 
are used internally at Microsoft4. These C# applications, which we 
obtained from our colleagues, are briefly described in Table 1. 
The number in parenthesis in the Original Time column is the 
percentage of execution time spent in garbage collection. 

4.3 Performance results and analysis 
We performed three sets of experiments. First, we measured the 
profiling overhead of gathering data access information for our 
optimizations. Next, we evaluated the benefits of triggering LO 
independently of GC. Finally, we measured the benefits of our 
page and cache locality optimization. 

 

                                                                 
4 Two of these applications have been made externally available at 

http://research.microsoft.com/~zorn/benchmarks/ 



Table 1: C# Benchmark Descriptions. 

Name Description Input 

Orig. 
Time 

in secs 
(% 

time in 
GC) 

Xaml-
Parser-
Test 

Reads from an XAML  
(extensible application 
markup language,  based on 
XML) file three times to 
measure the performance of 
different components of the 
parser. 

11,000-level 
deeply nested 
node 100.0 

(0.2%)  

SAT-
Solver 

SAT solver in C# ported 
from a C++ 
implementation. 

Problem 
instance with 
24,640 3,250-
variable 
CNFs 

138.0 

(0.4%) 

Max Analyzes and builds a 
dependency relationship 
among a set of modules 
specified in an XML file. 

3338- module 
input 97.7 

(26%) 

GenIBC Computes optimal object 
layout from profile data. 

A 55 MB xml 
file 

6.5 
(27%) 

Fugue .NET protocol checker that 
checks managed API usage 
rules 

A 2MB  
compiled 
.NET 
assembly 

79.9 
(10.3

%) 

Lcsc A C# front-end that 
generates MSIL code 

A 125K LOC 
C# file 

42.6 
(9.1%) 

 

4.3.1 Profiling Overhead 
As mentioned in Section 3, we applied several static 
optimizations, such as CSE, to reduce the number of instrumented 
data access sites. These cut down the number of data accesses that 
require instrumentation by a factor of two on average. In addition, 
the worst case code bloat due to instrumentation was less than 
3%. 

We investigated several sampling rates to pick one that provides a 
good tradeoff between overhead and profile accuracy. Figure 3 
illustrates the overhead results. Since we use bursty tracing, we 
can vary both the overall sampling rate and the burst length. We 
evaluated a wide range of values for both parameters but only 
report results for sampling rates of 0.1%, 0.05%, 0.01% and burst 
lengths of 100 and 1000 units (where each unit is 64K clock 
cycles) as these significantly outperformed the rest in terms of 
overall optimization benefits. Higher sampling rates introduced 
larger overheads that our optimizations were often not able to 
overcome and lower rates degraded the performance impact of our 
optimizations. Similarly, larger burst lengths increased overhead 
without improving optimization benefit and shorter bursts 
negatively affected cache locality optimization. All subsequent 
experiments use a sampling rate of 0.05% with a burst length of 
100.  This sampling rate not only resulted in profiling overheads 
that were less than 3% on average, but produced sufficiently 
accurate profiles to drive the optimizations as reported in the 
following sections. While prior research has indicated that bursty 

tracing provides low-overhead with good profile accuracy for Java 
and C/C++ applications [2, 5], we wanted to ensure that our 
variant of bursty tracing performed as well for C# applications. 
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Figure 3: Evaluating different sampling rates and burst 
lengths. 

Figure 4 indicates the overall impact of these techniques on 
profiling overhead. Always On (Page) represents the overhead of 
profiling for page locality with static optimization but no 
sampling and Always On (Page + Cache) represents the profiling 
overhead of gathering data for page and cache locality  
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  Figure 4: Profiling overhead for C# applications. 

 

optimization. As the data indicates, sampling is essential for 
reducing profiling overhead in our system. For our C# 
applications, profiling overhead is less than 3% on average.  

4.3.2 Triggering LO independently of GC 
 

The next set of experiments indicates the benefit of separating 
locality optimization (LO) from GC and triggering them 
independently (Pro-active LO). Triggering LO independently of 
GC increases the total number of GCs performed since it does not 
passively wait for memory budget pressure to invoke GC. In 
addition, it changes when GC is performed.  
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Figure 5: Comparison of different LO triggering policies. 

 

We evaluated several different schemes for triggering LO 
independently of GC and show results for “best-in-class” variants 
in Figure 5. The allocation rate policy triggers a Generation 1 LO 
collection, if the allocation rate drops by more than 12.5%, and a 
Gen 2 LO collection, if it drops by more than 50%. The 
DTLB+L2cache miss rate policy triggers a Gen 1 LO collection 
when either the DTLB or L2 cache miss rate increases by 6.25%, 
and a Gen 2 LO collection, if either increases by 25%. The third 
policy is a combination of these two as described in Section 3.4. 
To summarize, it uses the allocation rate policy as the primary 
trigger and uses DTLB, L2 cache measurements when the 
allocation rate remains relatively stable. This combined policy 
provides better execution time benefits than the individual 
policies across all our C# applications as indicated in Figure 5. 
The final bar in Figure 5 indicates the impact of combining this 
triggering policy with our scheme for LO throttling (as described 
in Section 3.4).  LO throttling does not decrease the benefits of 
our optimizations for any of the benchmarks. It is effective at 
reducing the performance degradation of GenIBC from -12% to -
7%. In addition, it slightly increases our optimization benefit for 
Fugue by turning off LO for a brief period during its execution. 
All subsequent experiments use this triggering policy for LO 
(combined + throttling). 

To ensure that the benefits do not arise from merely doing these 
additional GC at different times, we measured the effect of 
triggering Pro-active LO, but disabling the locality optimizations. 
We term this Pro-active GC and its impact is reported in Figure 6. 
As the figure indicates, it provides no execution time 
improvement and slows down a few of the programs by a small 
amount. The next bar in Figure 6 measures the traditional 
technique of combining LO with GC as done in prior research. 
Comparing this against Proactive LO (LO triggered independently 
of GC that uses the combined triggering policy with throttling as 
described above), indicates that in the cases where LO is effective, 
triggering it independently of GC provides large additional 
benefits. On average, for our set of C# applications Proactive LO 
improves execution time by 17% as opposed to almost no average 
improvement from traditional-style LO due to the slowdown this 
incurs for Max and GenIBC. If we ignore those two applications, 
Proactive LO improves performance by 27% whereas traditional 
LO provides 16% improvement. These results indicate that 
triggering LO independent of GC is effective. In addition, our LO 

throttling scheme limits performance degradation for programs 
with little algorithmic locality to just the profiling overhead.   
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Figure 6: Benefits of triggering LO independently of GC. 

4.3.3 Analysis of Pro-active LO Benefits 
Finally, we performed experiments to separate out the locality 
benefits provided by page and cache optimizations. In addition, 
we measured locality metrics such as page density, data TLB 
misses, and L2 cache misses to validate that the observed 
execution time benefits arise from locality optimization.  

Figure 7 indicates the execution time performance benefits of 
Proactive LO. The first bar represents the case where only page 
locality optimization is enabled. For the second bar, both cache 
and page locality optimizations are turned on. Page locality 
optimization produced improvements in XAMLParserTest and 
SATSolver and slowed down Fugue and Lcsc by a small amount. 
Overall, it improved execution time of our C# applications by 8% 
on average with a maximum improvement of 56% for 
XAMLParserTest. Combining this with cache locality produced 
additional improvements for SATSolver, Fugue and Lcsc for an 
overall average execution time improvement of 17%.  
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Figure 7: Page and Cache LO benefits for C# applications. 

 

The results indicate the benefits of a system that combines page 
and cache locality optimizations. For some applications, page 
locality optimization is effective while others benefit most from 
cache locality optimizations. In addition, SATSolver benefits 
from both optimizations.  

 



Table 2: Time spent in GC as a percentage of overall time. 

Application Base 
(%) 

Pro-active LO 
(Page) (%) 

Pro-active LO 
(Page+Cache)  
(%) 

XamlParserTest 0.15  1  1.21  

SAT solver 0.35  0.74  0.86  

Max 26.0  26.7 26.9 

GenIBC 27.0  27.5 27.6 

Fugue 10.3 17.1 19.7 

Lcsc 9.1 16.3 18.5 

 

Table 2, which shows the fraction of execution time spent in the 
GC for different configurations, indicates that the execution time 
improvements arise solely from mutator speedup. The optimized 
configurations spend more time in GC to perform the locality 
optimizations, but these more than pay for themselves when 
effective.  

Finally, Figure 8 shows the % reduction in page working set, data 
TLB misses, L2 cache misses, and % improvement in page 
density, for the Proactive LO (Page + Cache) configuration. All 
applications that benefit from our optimization incur a lower 
number of data TLB or L2 cache misses. For applications where 
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Figure 8: Locality Improvements for C# applications. 

page locality optimization is effective (XAMLParserTest and 
SATSolver), the page density improves (by 196% for 
XAMLParserTest) and data TLB misses are reduced. For SAT 
solver, page working set increases slightly because the 
optimization involves many more GCs, each of which needs to 
scan portions or the whole heap, and these metrics do not exclude 
accesses made by the garbage collector. Applications that benefit 
from cache locality optimizations, such as SATSolver, Fugue, and 
Lcsc, show significant reductions in L2 cache misses (12—53%). 
XAMLParserTest is interesting in that the page locality 
optimization provides significant cache benefits as well. These 
numbers validate that locality optimizations are responsible for 
mutator speedups.  

5. CONCLUSIONS 
We have described an online profile-guided proactive approach to 
improve data locality in garbage collected systems.  Our results 
show that it is beneficial to view the garbage collector as an 
explicit locality improvement mechanism rather than just a 
scavenger that is only invoked when the allocation budget is about 
to be exceeded.  

We have shown that sampling can provide sufficiently detailed 
profile information to guide both page and cache locality 
optimization. Triggering LO independently of GC provides 
significant performance improvements over the traditional 
technique of performing LO with normal GC. Finally, combining 
page and cache locality optimizations in the same system provides 
larger benefits that either alone. These techniques improve the 
performance of the C# applications we studied by reducing both 
DTLB and L2 cache misses.   

We are currently investigating further techniques for reducing the 
overhead of gathering profile data. A promising approach is to 
detect program phase changes [17][23]to guide the triggers for 
bursty sampling. We are also investigating the effects of different 
object field layout schemes for hot objects. 
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