
Profile-guided Proactive Garbage Collection for Locality
Optimization

Wen-ke Chen, Sanjay Bhansali,

Trishul Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052

{wenkec, sanjaybh, trishulc}@microsoft.com

 Xiaofeng Gao, Weihaw Chuang
Dept. of Computer Science and Engineering

University of California at San Diego
La Jolla, CA 92093

{xgao,wchuang}@cs.ucsd.edu

ABSTRACT
Many applications written in garbage collected languages have
large dynamic working sets and poor data locality. We present a
new system for continuously improving program data locality at
run time with low overhead. Our system proactively reorganizes
the heap by leveraging the garbage collector and uses profile
information collected through a low-overhead mechanism to
guide the reorganization at run time. The key contributions
include making a case that garbage collection should be viewed as
a proactive technique for improving data locality by triggering
garbage collection for locality optimization independently of
normal garbage collection for space, combining page and cache
locality optimization in the same system, and demonstrating that
sampling provides sufficiently detailed data access information to
guide both page and cache locality optimization with low runtime
overhead. We present experimental results obtained by modifying
a commercial, state-of-the-art garbage collector to support our
claims. Independently triggering garbage collection for locality
optimization significantly improved optimizations benefits.
Combining page and cache locality optimizations in the same
system provided larger average execution time improvements
(17%) than either alone (page 8%, cache 7%). Finally, using
sampling limited profiling overhead to less than 3%, on average.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors – code generation,
memory management (garbage collectors), optimization, run-time
environments

General Terms

 Measurement, Performance, Experimentation.

Keywords

data locality, garbage collectors, cache optimization, page
optimization, memory optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’06, June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright 2006 ACM 1-59593-320-4/06/0006…$5.00.

1. INTRODUCTION
Many programs, especially those that manipulate pointer data
structures, are memory performance limited due to the growing
disparity between processor speeds and memory access times
[10]. Large, multi-level caches help hide some of the memory
access latency and translation look-aside buffers (TLBs) mitigate
the page translation costs. Unfortunately, caches and TLBs are
expensive and unlikely to grow at the same rate as application
workloads, especially on-chip caches. Perhaps most importantly,
these hardware mechanisms are often limited by poor program
data layout, which rarely takes full advantage of the multi-word
data transfer granularity that cache lines (64 – 128 bytes) and
pages (4 – 8K bytes) provide.

Two useful layout metrics are page and cache line density, which
indicate how well program elements are laid out and packed
together. Unfortunately, as Figure 1 indicates1, many programs
have poor page density. In addition, programs also have poor
cache line utilization, averaging around 30% [24]. This provides
an opportunity to make more efficient use of caches and TLBs by
packing contemporaneously accessed data elements together and
reducing a program’s page and cache footprint.

Newer mainstream languages such as C# and Java support
automatic memory management, which is implemented with a
garbage collector that, when necessary, automatically examines
the program heap and recycles space occupied by dead data for
use in subsequent allocations. To avoid heap fragmentation, many
garbage collectors either copy all live objects or compact the heap
by moving some live objects into the space freed up by dead data.
Garbage collectors maintain fairly elaborate infrastructure to
accomplish this task. Prior research has leveraged this
infrastructure to combine this object movement with intelligent
placement to optimize either program page or cache locality
[6,7,8,13,16,20,22].

This paper describes a locality optimizing system that leverages
the garbage collector with three key differences from earlier work.
First, it uses sampled profiles of data accesses to drive both page
and cache locality optimizations. Second, it proactively triggers

1 These numbers were obtained by running these applications

using a dynamic translator and logging all memory reads and
writes. References to stack pages were filtered out.

garbage collection for locality optimization rather than passively
performing locality optimization only when garbage collection is
invoked due to memory space constraints. In addition, it
implements an automatic online throttling scheme that limits
performance degradation for applications that do not benefit from
locality optimization. Finally, it combines page and cache locality
optimization in the same system.

 Placing contemporaneously accessed objects together at the page
and cache level requires accurate data access information. While
static analysis techniques continue to improve, they are still
unable to provide sufficiently detailed data access information for
this purpose, especially for large programs that manipulate pointer
data structures. Hence we monitor data accesses at run time and
use this information to guide data placement. Unfortunately, the
runtime overhead can sometimes be too high. To address this, we
use bursty tracing [2][5], which is a form of sampling that
captures fine-grain temporal data access information, to reduce
our profiling overhead to less than 3% on average, yet produce
sufficiently detailed data access profiles to guide locality
optimization. While previous research on using garbage collection
to improve cache locality in the Cecil system found profiling
without sampling had sufficiently low-overhead [6], our
experience with a commercial system indicates otherwise. While
several differences between the two systems makes comparison
difficult (different languages, SPARC (32 registers) Vs. x86 (only
8 registers)), a possible reason for this is our implementation
platform is a highly-tuned commercial system that is less tolerant
of instrumentation overhead than the Cecil research prototype.

Garbage collection is typically triggered in response to an
allocation request when the amount of free space falls below a
certain threshold. This can often coincide with a program phase
boundary especially if the new phase starts by allocating many
new objects. If locality optimization (LO) is passively combined
with garbage collection (GC), it would incorrectly place objects
that were contemporaneously accessed in the previous phase
together, possibly reducing program locality for the current phase.
To avoid this problem and to be able to continuously reorganize
the data layout in response to changes in data access patterns
caused by program phase behavior, we decouple LO from GC and
enable triggering LO independently of GC. We use metrics such
as cache and TLB miss rates obtained from hardware performance
counters as well as allocation behavior to trigger LO. In addition,
we have implemented an automatic online throttling scheme that
limits performance degradation for applications that do not benefit
from LO. Our results indicate that actively triggering LO
independently of GC provides significant performance benefits.

Application Pages touched
per interval

Average Page
Density

Web page renderer 1 600 7.7%
Web page renderer 2 588 6.5%
XamlParserTest 602 6.0%
Sat Solver 1703 28.0%
Compress 102 28.0%

(a) C# applications

Application Pages touched
per interval

Average Page
Density

Multimedia App 1 519 7.1%
Multimedia App 2 264 35.4%
Desktop App 1 368 7.3%
Desktop App 2 367 9.5%
Desktop App 3 315 13.2%

Internet App 478 11.2%
(b) C/C++ applications

Figure 1. Application page density (combination of Microsoft
and non-Microsoft applications). The density of a page =
numbers of unique bytes read/written on a page per interval /
size of page. An interval is chosen to be 106 references.

Our LO system addresses both page and cache locality. To
optimize page locality, object accesses are recorded by setting a
bit in the object header. In addition, to optimize cache locality we
record the object address in a fixed size circular object access
buffer. During LO, live objects that have their access bit set are
copied and placed contiguously according to a hierarchical
decomposition order [20] (called page locality placement herein),
which improves page locality, and for some of the applications we
studied, also improves cache locality. To specifically improve
cache locality, we use a similar scheme to that described in [6],
which uses the object address buffer information to place
contemporaneously accessed objects together (called cache
locality placement herein). Since the object address buffer is of
fixed size, it only contains a subset of objects that were accessed
since the last LO. Our LO combines page and cache locality
optimization by first performing the cache locality placement for
objects in the object address buffer followed by the page locality
placement for objects whose access bit was set but did not appear
in the object address buffer.

We implemented our LO system in the Common Language
Runtime v2.0 (CLR) of Microsoft’s .Net Framework. Our choice
of implementation platform and benchmarks was driven by our
goal of transferring this technology to Microsoft’s commercial
platform. All of the applications we used for benchmarking are
written in C#; however, the results are applicable to any language
that targets MSIL (Microsoft Intermediate Language) binaries.

The main contributions of the paper are:

1) Decoupling LO from GC and demonstrating benefits of
triggering these independently. In addition, we
implemented an automatic online throttling scheme that
limits performance degradation for applications that do
not benefit from LO. We show that this technique
significantly improves average optimization benefits
due to improved mutator locality.

2) Combining cache and page locality optimizations in the
same system and demonstrating performance gains.
Earlier research either performed cache or page
optimization, but not both. For the C# applications we
studied, combining page and cache locality optimization
in the same system provides larger average

improvements (17%) than either alone (page 8%, cache
7%).

3) Demonstrating that sampling techniques can be used to
collect sufficiently detailed data access information to
guide cache and page locality optimizations with low
overhead (less than 3% on average).

4) Implementing and evaluating the system in a
commercial managed runtime system. We implemented
this in Version 2.0 of the Common Language Runtime
GC, which ships with Microsoft’s .NET Framework.

We believe that automatic locality optimization techniques such
as these are necessary for modern languages, such as C# and Java,
to approach and perhaps even surpass the performance of C/C++
programs.

The rest of the paper is organized as follows: Section 2 briefly
discusses related work. Section 3 describes the design and a few
implementation details of our technique. Section 4 contains
experimental evaluation of our approach using several C#
applications. Section 5 summarizes the main results and directions
for future work.

2. RELATED WORK
The idea that garbage collection could be used to improve a
program’s locality was proposed as early as in 1980 by White
[18]. Zorn speculated on the possibility of doing garbage
collection purely for program performance in [9]. Several
researchers have proposed ingenious traversal algorithms for
copying garbage collectors to improve the locality of references in
the collected heap [16] [20]. Wilson [20] proposed hierarchical
decomposition to group all structurally related objects together to
improve locality. We similarly group only recently accessed
objects for page locality optimization. Shuf et al [21] proposed a
new allocation scheme to improve locality by placing objects
based on the notion of prolific (frequently instantiated) types.
These approaches are based on static or offline profile
information, and the virtual machine or runtime involved is not
active in observing the dynamic data access sequence and
determining how objects should be placed in the heap. Thus the
layout derived may not reflect actual data access patterns, and
moreover, it is not possible to detect phase changes and react
accordingly.

Huang et al. [22] use a technique called online object reordering
(OOR) that uses sampling to identify hot methods, and from these
hot fields and their types. At garbage collection time, the GC
copies referents of hot fields together with their parent, guided by
the hot types. Their work is complementary to ours. Since their
work was done on a virtual machine with function profiling built
in and they sample hot methods rather than contemporaneous data
accesses, their overhead is low. However, they are limited to
coarse-grained profiling information about data accesses and in
the type of placement optimizations they can perform. In addition,
they perform their placement optimization during normal GC
traversal. We trigger locality optimization independent of normal
GC and show that this benefits performance. In addition, we
optimize separately for both cache and page locality in the same
system.

Courts described a dynamic approach in [8]. In his
implementation, memory is divided into regions based on

generation and activity. The GC copies inactive objects out of
active space based on object accesses in the training period before
each garbage collection. However, his implementation relied on
the transporter, a micro-coded system service, to bring the objects
from inactive space to active space when they are first accessed.
In his system, garbage collection is just a passive activity that is
triggered based on memory pressure.

Chilimbi and Larus proposed a scheme that uses online profiling
to construct an object affinity graph from observed accesses, and
then uses the GC to rearrange the objects for better cache locality
[6][7]. We use their scheme to optimize cache locality but
combine it with page locality optimization. We incur less runtime
overhead since we sample data accesses. Finally, we trigger LO
independently of GC while they perform cache optimization only
when GC is invoked due to memory pressure.

Adl-Tabatabai et al [1] insert prefetch instructions in JIT
compiled code and use GC’s placement ability to maintain the
distances of objects so that the prefetch is effective. They also use
hardware performance monitoring counters to collect cache miss
profiles to determine the prefetch sites. Our work is
complementary as we instrument the application to detect hot
objects and re-arrange these hot objects to improve their reference
locality instead of trying to prefetch objects that will be accessed
in the future. Our approach increases the spatial locality of
frequently accessed objects and consequently increases the
effectiveness of hardware prefetching.

Hertz et al [11] describe a technique that avoids paging by
integrating the garbage collector with the memory manager so the
GC can make informed decisions about evicting pages. That
approach is orthogonal to ours since they do not address the issue
of intra-page layout.

Our low overhead design relies on having cheap read barriers
proposed by others [3], but the implementation we describe is
quite different: the CLR implementation does not use null checks
but implicit traps to detect null dereferences, the object headers do
not have an extra to-pointer, and the heap implementation is quite
different (for object headers that cannot be moved and the objects
that are moved the to-space). Our compiler optimizations to
reduce the number of read barriers are similar.

3. DESIGN AND IMPLEMENTATION
Our approach relies on a generational garbage collector that
moves objects, and our prototype ties tightly with the CLR and
MSIL (Microsoft Intermediate Language), but is otherwise
agnostic of the implementation details of a virtual machine. In this
section, we first provide a high-level overview of the approach,
discussing various options and the rationale for our adopted
design, and then describe the engineering optimizations necessary
to provide a practical implementation.

Figure 2 provides an architectural overview of our design. A JIT
compiler takes an intermediate language representation (MSIL in
our case) and compiles it into machine code for a particular
architecture. We modify the JIT compiler to insert lightweight
instrumentation in the compiled code. The CLR provides a tool
called Ngen [25] that can compile modules ahead of time to
provide more optimized code and improve startup performance.
Our modifications to the compiler work seamlessly with Ngen, so
there is no extra startup penalty for using our approach. The
instrumented code marks objects that have been recently accessed

and records their address in a fixed size circular object access
buffer. We insert monitoring code in the CLR to gather certain
metrics while the application is running and use the collected data
and heuristics to trigger GC-for-locality, or Locality Optimization
(LO). During LO, we use the Chilimbi-Larus scheme for
combining cache locality optimization with GC. In addition, we
perform page locality optimization for the objects that are not
moved during cache locality optimization. To do this, we identify
objects that have been marked as recently accessed (hot) and co-
locate them according to their inherent structural relationship onto
pages separate from the rest of the heap. LO is triggered
independently of a normal GC, which occurs when the allocation
budget is about to be exceeded. To limit performance degradation
for applications with poor algorithmic locality, we throttle LO
when indicated.

Figure 2. Overview of architectural modifications to the CLR.

We first provide a brief review of the scheme used to optimize
cache locality [6]. Then, we discuss some of the key design issues,
design options that we considered, and our rationale for adopting
the current design.

3.1 Background: Cache Locality
Optimization

We record base object addresses in a fixed size circular buffer.
During Locality Optimization (LO), these objects are processed to
construct an object affinity graph. The object affinity graph
includes edges between objects that are contemporaneously
accessed, where objects accessed up to 3 unique accesses apart are
considered contemporaneous. Graph edges are weighted to
indicate how often the objects have been accessed together. The
garbage collector performs a weighted DFS traversal of this object
affinity graph and marks objects for copying to a temporary buffer
in the order they are visited. Since these objects may include some
garbage (though prior work indicates that the amount is miniscule
[6]), they are removed when the objects are physically copied in a
later phase of the same garbage collection. The object affinity
graph is not maintained across LOs but is created from scratch at
each LO. Further details are in [6]. Our page locality
optimization, which is described in the next few sections, copies

objects to the end of this temporary buffer used by cache
optimization.

3.2 Low-overhead Data Access Profiling
Since the instrumentation for cache locality is virtually identical
to that described in [6], we focus on the instrumentation needed
for page locality optimization and discuss our use of sampling to
reduce profiling overhead.

3.2.1 Instrumentation for Page Locality
Optimization
For page locality, we do not need to determine precise temporal
affinity between data elements. We record objects that are
frequently accessed during a time interval; these objects are
considered hot and we group them during optimization according
to their inherent structural relationship into a set of pages in a
separate section of the heap. A counter is used to decide which
objects are hot.

We use the JIT compiler to insert read barriers for certain critical
instructions that access heap data. The read barrier code consists
of a single call instruction to a helper routine which updates the
counter if necessary. Write barriers are automatically generated by
the compiler to support the generational GC, and we simply
modify those to insert a conditional update of the counter.

The key engineering decisions we had to make were:

• Implementation of the counter
• Implementation of the read barrier
• Optimizing the instrumentation

We considered two ways to implement the object reference
counter: embed it in the object or implement it as a separate table.
Our current implementation uses a 1-bit counter that is embedded
in the object. The CLR already has a four-byte object header for
each object that is used for various purposes (e.g. to implement a
lightweight lock or to store a hash code for the object). We
modified this layout to steal one bit for our purposes. Although
this reduces the number of bits available for other purposes, we
feel that this is a good performance tradeoff. The main impact of
stealing the bit is reducing the number of objects whose hash can
be stored in the object header (from 27 to 26 bits) and reducing
the number of concurrent threads that can be supported with
lightweight locks. When the bits overflow they are repurposed to
index into a table that points to larger object headers.

The read barrier code is shown in Figure 3.

 test dword ptr[rg-4], OBJECT_ACCESSED_BIT

 jnz Bit_set

 lock or dword ptr[rg-4], OBJECT_ACCESSED_BIT; atomic update

Bit_set :

 ret
Figure 3. Profiling code used to mark accessed objects for page
locality optimization. rg is the register that holds the object address.
The object header is at offset -4 from the start of the object.
OBJECT_ACCESSED_BIT is a bit mask used to set a single bit in the
object header.

We use an interlocked operation to set the bit since the object
header could be concurrently modified by other threads on an
SMP machine. The interlocked operation is expensive on x86

JIT Compiler

or NGen

Machine
Code

Gen 2
Heap

Gen 1
Heap

Gen 0
Heap

Garbage
Collector Monitor

1

4

1. Instrument object
referencing
instructions

2. Instrumented codes
mark/record
referenced objects

3. Modify GC algorithm
to improve locality

4. Invoking GC based on
events

3

2

MSIL code

Events

architectures (20-30 clock cycles). In addition, it dirties a cache
line during a read operation that could hurt scalability of
applications on multi-processors. Therefore we implement a
conditional read barrier instead of an unconditional one even
though it bloats the read barrier code quite a bit. To minimize
code bloat we do not inline the read barrier but implement it as a
helper routine (one for each register). 2

Algorithms used for optimizing access barriers can be directly
applied here to further reduce the number of read barriers, and
hence, the amount of code bloat. The read barrier used here is
different from typical access (read or write) barriers in that we do
not need to insert a call to it at every access point, because it does
not affect the correctness of the generated code. This allows us to
perform more aggressive optimizations. In our prototype
implementation, we use common sub-expression elimination
(CSE) to optimize away redundant calls to the read barrier
routines. Furthermore, since occurrences of exceptions are rare,
no profiling calls are inserted into exception handling code.
Similarly, we also ignore constructors that are not inlined.

One policy decision we had to make was when to reset the
counter. Because of our decision to embed the counter in the
object, we cannot clear the bit without a scan over the whole heap,
which is expensive. The only natural opportunity for clearing the
counter is when we do a GC. We experimented with a few
different schemes and found that the simple strategy of clearing
the counter every time we encounter a hot object during a GC (no
matter whether for locality or for space) works well for objects in
lower generations (generation 0 and 1). For higher generations
(generation 2 in CLR) this does not work as well because those
generations are collected infrequently and the reference bit gets
stale over time. In our prototype, since the collector does need to
check generation 2 objects that contain cross-generation pointers,
we use this opportunity to clear the counters embedded in them,
which alleviates the problem to some extent. An alternative would
be to store the counters in a card table, which would make
clearing the counters relatively cheap.

3.2.2 Sampling Data Accesses
The page locality instrumentation model described above has low
overhead and is enough to speed up some benchmarks that we
describe later. But there are several scenarios where dynamic heap
reorganization does not help improve the performance of an
application, e.g., if the dataset is small enough to fit in the
available memory or the algorithm has poor locality. For such
applications the cost of the read barrier can be very high (in some
cases degrading the application by as much as 40%). In addition,
the overhead of the instrumentation needed by our cache locality
optimization is high.

To further reduce the instrumentation overhead, we use a
simplified version of bursty tracing [2][5]: if a method is
instrumented with a read barrier, we generate a second copy of the
method without the read barrier. The prolog of each copy of the
same method is extended to perform a check and control transfer
to either the instrumented or the non-instrumented version of the
method. Back edges are not modified in our simplified
implementation. Surprisingly, this simplification does not reduce
the effectiveness of this approach on the benchmarks we

2 The code bloat is < 3% for the applications we studied.

examined (except for some synthetic ones that have long-running
loops); the reason is that modern software practices and object-
oriented programming languages usually result in many more
smaller functions than larger ones, where deeply nested loops are
rare. As a further optimization, the two copies are placed in
separate code heaps.

There are two parameters to control the sampling: how long each
burst should last and how often sampling should be triggered. By
tuning these two parameters, we can obtain useful profile
information at a reasonably low profiling overhead. Our
experiments show that with this bursty tracing scheme, we can
limit pure profiling overhead to less than 5% - the cost of doing
the check in the prolog.

3.3 Combining Page and Cache Locality
Optimization
The CLR GC implements a variation of generational mark-
compact garbage collection. It divides the small object heap into
three generations, and moves live objects into older generations in
their allocation order when triggered [15]. We modified the
implementation so that GC can be independently triggered either
for space or for locality optimization. However, when GC is
triggered, unless the policy says it is for space only, it will attempt
to do both at the same time, with one exception: when it is
triggered to collect only Generation 0 objects, locality
optimization will not be applied. The rationale for not doing heap
reorganization for locality optimization during a generation 0
collection for space is that most of those generation 0 objects,
being recently allocated, are already hot and in the cache or
working set, and are unlikely to benefit much from locality
improvements. In addition, many of these objects are likely to die
shortly. During a GC for locality we identify all objects that a)
have their address entered in the circular object access buffer
(cache locality optimization) b) were marked as hot since the
previous locality collection (page locality optimization) and c)
belong to a generation not older than the generation being
collected. Only these objects are candidates for locality
optimization.

After all the candidate objects having been identified, the locality
optimization needs to decide how they should be laid out and
where to put the hot objects on the GC heap. To simplify our
implementation, we do the layout using two copying phases for
the hot objects. First, we perform cache optimization by copying
contemporaneously accessed objects to a temporary buffer. Next,
we perform page optimization by copying and appending heap
objects marked as hot into this same buffer according to a
hierarchical decomposition order based on their inherent
structural relationship [20]. This can also yield some cache
locality benefits along with page locality. The original locations
are marked free and reclaimed by the collector. The well-
rearranged aggregation of hot objects is then placed back at the
younger end of the heap (either Generation 1 or Generation 0).

 We considered other schemes that could avoid the double
copying (e.g. by reserving a designated section of the heap), but
discarded them because of several complications (e.g. CLR
supports the notion of pinned objects) in the implementation. We
also considered other layout schemes that did not mix objects
from different generations, but finally decided to use our current
scheme for the following reasons: (1) we are guaranteed to have

enough space at the younger end to accommodate all the hot
objects; (2) we don’t want to promote objects prematurely,
because it is more expensive to collect an older generation than a
younger one; and (3) some longer-lived objects tend to die right
after being reused, and demoting will accelerate the reclamation
of the space occupied by these objects. In general blindly
demoting many objects is not good, but we do this selectively for
hot objects (which comprise a small fraction of the heap).

We also make sure that it does not create too many cross-
generational pointers because that will make it more expensive to
collect younger generations, which usually happens more
frequently. We compute the number of cross-generation pointers
that will be created before finalizing our optimization and back-
off if this exceeds a predetermined threshold. (In our prototype we
use 6,000 which worked well.)

3.4 Triggering LO independently of GC
Garbage collection can often coincide with a program phase
boundary especially if the new phase starts by allocating lots of
new objects. Passively combining locality optimization (LO) with
garbage collection (GC), as is traditionally done, would
incorrectly place objects that were contemporaneously accessed in
the previous phase together, possibly reducing program locality
for the current phase. To avoid this problem and to be able to
continuously reorganize the data layout in response to changes in
data access patterns caused by program phase behavior, we
decouple LO from GC and enable triggering LO independently of
GC.

One challenging aspect is to automatically determine conditions
for triggering GC for locality (LO) as well as conditions for
determining when to back off, e.g. when the optimization is not
working as well as anticipated. We have implemented and
experimented with several different strategies for both. For
triggering LO we tried the following options:

a) Use hardware performance counters, e.g., do LO when the
rate of DTLB and L2 cache misses increases by certain
amount.3

b) Use rates of object allocation, e.g., do LO when there is a
significant drop in allocation rate as it likely indicates that
the application is done “setting up” the new phase.

We also tried combinations of these heuristics. One drawback
with using hardware performance counters is that they are not
virtualized to a process on many current generation machines (e.g.
Intel’s x86 family of machines) and so the numbers could be
skewed by other applications running on the system. We found
that the rate of object allocation is a reliable measure for
triggering LOs. We experimented with several heuristics and the
one listed below provided the best experimental results across our
application test suite (see Section 4.3.2 for details). We use
allocation rate as the primary trigger for heap re-organization for
locality and additionally consult the DTLB and/or L2 cache miss
rate when the allocation rate remains relatively stable: if the
allocation rate drops by more than 12.5%, do a Generation 1 LO
collection, if it drops by more than 50% do a Generation 2 LO

3 We wrote a kernel-mode driver that allowed the hardware

performance counters to be read by the application on demand.

collection; otherwise, if either the DTLB or L2 cache miss rate
(computed from data read from the hardware performance
counters) increases by 6.25% / 25% do a Generation 1 /
Generation 2 LO collection; otherwise, LO will be done along
with GCs triggered for space.

We currently use a simple scheme for backing off and throttling
LO when locality optimization appears ineffective. If neither
DTLB nor L2 cache miss rates have improved by 5% over their
historical value immediately following a LO, for two successive
LOs, we disable LO for the next few GCs. The number of GCs for
which LO is disabled starts at 2 and is exponentially increased
until LO improves DTLB or L2 cache misses by at least 5%, at
which time it is reset to 2. This simple scheme worked well in
practice as discussed in Section 4.

4. EVALUATION
This section presents and analyzes the results from experiments
done with our prototype implementation.

4.1 Experimental Platform
As mentioned earlier, our prototype is based upon version 2.0 of
the commercial CLR implementation on the Windows XP
operating system. We did not modify the CLR GC’s heap
allocation budgets, its policy for determining when to grow the
heap, and the algorithms used to determine the sizes of the various
generations since those policies have been highly tuned and are
very complicated to modify [15]. In addition, our goal was to
investigate the impact of LO on a well-tuned GC. We performed
experiments on several machines with different memory, cache
size, and processor speed configurations. Unsurprisingly, we
found that our locality optimization works much better on
machines with smaller L2 cache and memory. However, we
believe that for real-world scenarios where performance matters,
machines will be configured to have adequate memory and large
L2 caches. Hence, results reported below were obtained on a
machine with the following configuration:

CPU: Pentium 4, 2.8 GHz
DTLB: 64 entries
L2 cache: 1MB, 8-way, 128-byte cache line
RAM: 1GB

4.2 Benchmarks
Due to the lack of widely available benchmarks for the .NET
framework, we obtained six large applications written in C# that
are used internally at Microsoft4. These C# applications, which we
obtained from our colleagues, are briefly described in Table 1.
The number in parenthesis in the Original Time column is the
percentage of execution time spent in garbage collection.

4.3 Performance results and analysis
We performed three sets of experiments. First, we measured the
profiling overhead of gathering data access information for our
optimizations. Next, we evaluated the benefits of triggering LO
independently of GC. Finally, we measured the benefits of our
page and cache locality optimization.

4 Two of these applications have been made externally available at

http://research.microsoft.com/~zorn/benchmarks/

Table 1: C# Benchmark Descriptions.

Name Description Input

Orig.
Time

in secs
(%

time in
GC)

Xaml-
Parser-
Test

Reads from an XAML
(extensible application
markup language, based on
XML) file three times to
measure the performance of
different components of the
parser.

11,000-level
deeply nested
node 100.0

(0.2%)

SAT-
Solver

SAT solver in C# ported
from a C++
implementation.

Problem
instance with
24,640 3,250-
variable
CNFs

138.0

(0.4%)

Max Analyzes and builds a
dependency relationship
among a set of modules
specified in an XML file.

3338- module
input 97.7

(26%)

GenIBC Computes optimal object
layout from profile data.

A 55 MB xml
file

6.5
(27%)

Fugue .NET protocol checker that
checks managed API usage
rules

A 2MB
compiled
.NET
assembly

79.9
(10.3

%)

Lcsc A C# front-end that
generates MSIL code

A 125K LOC
C# file

42.6
(9.1%)

4.3.1 Profiling Overhead
As mentioned in Section 3, we applied several static
optimizations, such as CSE, to reduce the number of instrumented
data access sites. These cut down the number of data accesses that
require instrumentation by a factor of two on average. In addition,
the worst case code bloat due to instrumentation was less than
3%.

We investigated several sampling rates to pick one that provides a
good tradeoff between overhead and profile accuracy. Figure 3
illustrates the overhead results. Since we use bursty tracing, we
can vary both the overall sampling rate and the burst length. We
evaluated a wide range of values for both parameters but only
report results for sampling rates of 0.1%, 0.05%, 0.01% and burst
lengths of 100 and 1000 units (where each unit is 64K clock
cycles) as these significantly outperformed the rest in terms of
overall optimization benefits. Higher sampling rates introduced
larger overheads that our optimizations were often not able to
overcome and lower rates degraded the performance impact of our
optimizations. Similarly, larger burst lengths increased overhead
without improving optimization benefit and shorter bursts
negatively affected cache locality optimization. All subsequent
experiments use a sampling rate of 0.05% with a burst length of
100. This sampling rate not only resulted in profiling overheads
that were less than 3% on average, but produced sufficiently
accurate profiles to drive the optimizations as reported in the
following sections. While prior research has indicated that bursty

tracing provides low-overhead with good profile accuracy for Java
and C/C++ applications [2, 5], we wanted to ensure that our
variant of bursty tracing performed as well for C# applications.

0

1

2

3

4

5

6

7

8

9

10

XAMLP
ar

se
rT

es
t

SATSolve
r

Max

GenIB
C

Fug
ue

Lc
sc

Ave
ra

ge

%
 O

ve
rh

ea
d

0.1%, 100

0.1%, 1000

0.05%, 100

0.05%,1000

0.01%,100

0.01%,1000

Figure 3: Evaluating different sampling rates and burst
lengths.

Figure 4 indicates the overall impact of these techniques on
profiling overhead. Always On (Page) represents the overhead of
profiling for page locality with static optimization but no
sampling and Always On (Page + Cache) represents the profiling
overhead of gathering data for page and cache locality

0

10

20

30

40

50

60

70

XAMLPars
erT

es
t

SATSolve
r

Max

GenIB
C

Fugu
e

Lcs
c

Ave
rag

e

%
 O

ve
rh

ea
d

Always On (Page) Always On (Page + Cache) Sampling (Page + Cache)

 Figure 4: Profiling overhead for C# applications.

optimization. As the data indicates, sampling is essential for
reducing profiling overhead in our system. For our C#
applications, profiling overhead is less than 3% on average.

4.3.2 Triggering LO independently of GC

The next set of experiments indicates the benefit of separating
locality optimization (LO) from GC and triggering them
independently (Pro-active LO). Triggering LO independently of
GC increases the total number of GCs performed since it does not
passively wait for memory budget pressure to invoke GC. In
addition, it changes when GC is performed.

-30

-20

-10

0

10

20

30

40

50

60

70

XAM
LP

ars
erT

est

SATSolv
er

M
ax

GenIB
C

Fugu
e

Lc
sc

Ave
ra

ge

%
 E

xe
cu

ti
o

n
 t

im
e

im
p

ro
ve

m
en

t

Allocation Rate

DTLB+L2cache miss rate

Allocation rate + DTLB+L2cache miss rate

Allocation rate + DTLB+L2cache miss rate + throttling

Figure 5: Comparison of different LO triggering policies.

We evaluated several different schemes for triggering LO
independently of GC and show results for “best-in-class” variants
in Figure 5. The allocation rate policy triggers a Generation 1 LO
collection, if the allocation rate drops by more than 12.5%, and a
Gen 2 LO collection, if it drops by more than 50%. The
DTLB+L2cache miss rate policy triggers a Gen 1 LO collection
when either the DTLB or L2 cache miss rate increases by 6.25%,
and a Gen 2 LO collection, if either increases by 25%. The third
policy is a combination of these two as described in Section 3.4.
To summarize, it uses the allocation rate policy as the primary
trigger and uses DTLB, L2 cache measurements when the
allocation rate remains relatively stable. This combined policy
provides better execution time benefits than the individual
policies across all our C# applications as indicated in Figure 5.
The final bar in Figure 5 indicates the impact of combining this
triggering policy with our scheme for LO throttling (as described
in Section 3.4). LO throttling does not decrease the benefits of
our optimizations for any of the benchmarks. It is effective at
reducing the performance degradation of GenIBC from -12% to -
7%. In addition, it slightly increases our optimization benefit for
Fugue by turning off LO for a brief period during its execution.
All subsequent experiments use this triggering policy for LO
(combined + throttling).

To ensure that the benefits do not arise from merely doing these
additional GC at different times, we measured the effect of
triggering Pro-active LO, but disabling the locality optimizations.
We term this Pro-active GC and its impact is reported in Figure 6.
As the figure indicates, it provides no execution time
improvement and slows down a few of the programs by a small
amount. The next bar in Figure 6 measures the traditional
technique of combining LO with GC as done in prior research.
Comparing this against Proactive LO (LO triggered independently
of GC that uses the combined triggering policy with throttling as
described above), indicates that in the cases where LO is effective,
triggering it independently of GC provides large additional
benefits. On average, for our set of C# applications Proactive LO
improves execution time by 17% as opposed to almost no average
improvement from traditional-style LO due to the slowdown this
incurs for Max and GenIBC. If we ignore those two applications,
Proactive LO improves performance by 27% whereas traditional
LO provides 16% improvement. These results indicate that
triggering LO independent of GC is effective. In addition, our LO

throttling scheme limits performance degradation for programs
with little algorithmic locality to just the profiling overhead.

-40

-20

0

20

40

60

80

XAM
LP

ar
se

rT
est

SATSolv
er

M
ax

Gen
IB

C

Fug
ue

Lc
sc

Ave
ra

ge

%
 E

xe
cu

ti
o

n
 t

im
e

im
p

ro
ve

m
en

t

Pro-active GC LO (Page + Cache) with GC Pro-active LO (Page + Cache)

Figure 6: Benefits of triggering LO independently of GC.

4.3.3 Analysis of Pro-active LO Benefits
Finally, we performed experiments to separate out the locality
benefits provided by page and cache optimizations. In addition,
we measured locality metrics such as page density, data TLB
misses, and L2 cache misses to validate that the observed
execution time benefits arise from locality optimization.

Figure 7 indicates the execution time performance benefits of
Proactive LO. The first bar represents the case where only page
locality optimization is enabled. For the second bar, both cache
and page locality optimizations are turned on. Page locality
optimization produced improvements in XAMLParserTest and
SATSolver and slowed down Fugue and Lcsc by a small amount.
Overall, it improved execution time of our C# applications by 8%
on average with a maximum improvement of 56% for
XAMLParserTest. Combining this with cache locality produced
additional improvements for SATSolver, Fugue and Lcsc for an
overall average execution time improvement of 17%.

-10

0

10

20

30

40

50

60

XAM
LPar

se
rT

es
t

SATSolv
er

M
ax

Gen
IB

C

Fug
ue

Lc
sc

Ave
ra

ge

%
 E

xe
cu

ti
o

n
 t

im
e

im
p

ro
ve

m
en

t

Pro-active LO (Page) Pro-active LO (Page + Cache)

Figure 7: Page and Cache LO benefits for C# applications.

The results indicate the benefits of a system that combines page
and cache locality optimizations. For some applications, page
locality optimization is effective while others benefit most from
cache locality optimizations. In addition, SATSolver benefits
from both optimizations.

Table 2: Time spent in GC as a percentage of overall time.

Application Base
(%)

Pro-active LO
(Page) (%)

Pro-active LO
(Page+Cache)
(%)

XamlParserTest 0.15 1 1.21

SAT solver 0.35 0.74 0.86

Max 26.0 26.7 26.9

GenIBC 27.0 27.5 27.6

Fugue 10.3 17.1 19.7

Lcsc 9.1 16.3 18.5

Table 2, which shows the fraction of execution time spent in the
GC for different configurations, indicates that the execution time
improvements arise solely from mutator speedup. The optimized
configurations spend more time in GC to perform the locality
optimizations, but these more than pay for themselves when
effective.

Finally, Figure 8 shows the % reduction in page working set, data
TLB misses, L2 cache misses, and % improvement in page
density, for the Proactive LO (Page + Cache) configuration. All
applications that benefit from our optimization incur a lower
number of data TLB or L2 cache misses. For applications where

-10

0
10

20
30

40
50

60
70

80
90

100

XAMLP
ar

se
rT

es
t

SATSolve
r

Max

GenIB
C

Fugu
e

Lc
sc

Ave
ra

ge

% Working set reduction % Page density improvement

% DTLB miss reduction % L2 cache miss reduction

Figure 8: Locality Improvements for C# applications.

page locality optimization is effective (XAMLParserTest and
SATSolver), the page density improves (by 196% for
XAMLParserTest) and data TLB misses are reduced. For SAT
solver, page working set increases slightly because the
optimization involves many more GCs, each of which needs to
scan portions or the whole heap, and these metrics do not exclude
accesses made by the garbage collector. Applications that benefit
from cache locality optimizations, such as SATSolver, Fugue, and
Lcsc, show significant reductions in L2 cache misses (12—53%).
XAMLParserTest is interesting in that the page locality
optimization provides significant cache benefits as well. These
numbers validate that locality optimizations are responsible for
mutator speedups.

5. CONCLUSIONS
We have described an online profile-guided proactive approach to
improve data locality in garbage collected systems. Our results
show that it is beneficial to view the garbage collector as an
explicit locality improvement mechanism rather than just a
scavenger that is only invoked when the allocation budget is about
to be exceeded.

We have shown that sampling can provide sufficiently detailed
profile information to guide both page and cache locality
optimization. Triggering LO independently of GC provides
significant performance improvements over the traditional
technique of performing LO with normal GC. Finally, combining
page and cache locality optimizations in the same system provides
larger benefits that either alone. These techniques improve the
performance of the C# applications we studied by reducing both
DTLB and L2 cache misses.

We are currently investigating further techniques for reducing the
overhead of gathering profile data. A promising approach is to
detect program phase changes [17][23]to guide the triggers for
bursty sampling. We are also investigating the effects of different
object field layout schemes for hot objects.

ACKOWLEDGEMENTS
We are grateful to Patrick Dussud for answering several questions
pertaining to the CLR implementation. Hoi Vo and Hon Keat
Chan offered advice on the implementation. Pramod Joisha, Ben
Zorn, and the anonymous referees provided valuable feedback on
earlier drafts of this paper.

REFERENCES
[1] Adl-Tabatabai, A., Hudson, R., Serrano, M., Subramoney, S.

“Prefetch Injection Based on Hardware Monitoring and
Object Matadata.” In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’04), 2004, 267—276.

[2] Arnold, M. and Ryder, B. “A Framework for Reducing the
Cost of Instrumented Code.” In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’01), 2001, 168—179.

[3] Bacon, D.F., Cheng, Perry, Rajan V.T. “A Real-time
Garbage Collector with Low Overhead and Consistent
Utilization” In Principles of Programming Languages (POPL
’03), 2003.

[4] Cheney, C. “A Non-recursive List Compacting Algorithm.”
Communications of the ACM, 13(11), November 1970,
677—678.

[5] Hirzel, M. and Chilimbi, T. “Bursty Tracing: A Framework
for Low-Overhead Temporal Profiling.” In 4th ACM
Workshop on Feedback-Directed and Dynamic Optimization
’01 (FDDO), 2001, 117—126.

[6] Chilimbi, T. and Larus, J. “Using Generational Garbage
Collection to implement Cache-conscious Data placement.”
In Proceedings of the 1st International Symposium on
Memory Management, October 1998, 37—48.

[7] Chilimbi, T., and Larus, J. “Cache-conscious Structure
Definition.” In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and
Implementation (PLDI ’99), 1999, 1—12.

[8] Courts, R. “Improving Locality of Reference in a Garbage-
Collecting Memory Management System.” Communications
of the ACM, 31(9), September 1988, 1128—1138.

[9] Zorn, B. The Effect of Garbage Collection on Cache
Performance, Technical Report CU-CS-528-91, Department
of Computer Science, University of Colorado at Boulder,
1991.

[10] Hennessy, J. and Patterson, D. Computer Architecture: A
Quantitative Approach. Morgan Kaufman, San Mateo, CA.
3rd edition, 2002.

[11] Hertz, M., Feng, Y., and Berger, E. D. “Garbage Collection
without Paging” In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI ’05), 2005.

[12] Inagaki, T., Onodera, T., Komastu, H., and Nakatani, T.
“Stride Prefecthing by Dynamically Inspecting Objects.” In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’03), 2003, 269—277.

[13] Lam, M., Wilson, P., and Moher, T. “Object Type Directed
Garbage Collection to Improve Locality.” In Proceedings of
the International Workshop on Memory Management, 1992,
404—425.

[14] Hirzel, M., Diwan, A. and Hertz, M. “Connectivity-based
Garbage Collection.” In Proceedings of the 18th annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ‘03), 2003, 359 – 373.

[15] Richter, J. “Garbage Collection: Automatic Memory
Management in the Microsoft .NET Framework (Part I and
II).” MSDN Magazine, 2000,
http://msdn.microsoft.com/msdnmag/issues/1100/GCI/ and
http://msdn.microsoft.com/msdnmag/issues/1200/GCI2/.

[16] Moon, D. “Garbage Collection in a Large LISP System.” In
Proceedings of the 1984 ACM Symposium on LISP and
Functional Programming, August 1984, 235 – 246.

[17] Nagpurkar, P., Krintz, C., and Sherwood, T. Phase-aware
Remote Profiling, Technical report UCSB 2004-21,
Department of Computer Science, University of California at
Santa Barbara, 2004.

[18] White, J. “Address/Memory Management for a Gigantic
LISP Environment or, GC Considered Harmful.” In
Proceedings of the 1980 ACM Conference on LISP and
Functional Programming, 1980, 119 – 127.

[19] Wilson, P. “Uniprocessor Garbage Collection Techniques.”
In Proceedings of the International Workshop on Memory
Management, 1992, 1 – 42.

[20] Wilson, P., Lam, M., and Moher, T. “Effective Static-graph
Reorganization to Improve Locality in Garbage Collected
Systems.” In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI ’91), 1991, 177 – 191.

[21] Shuf, Y., Gupta, M., Franke, H., Appel, A., and Singh, J.
“Creating and Preserving Locality of Java Applications at
Allocation and Garbage Collection Times.” In Proceedings
of the 18th annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA ‘02), 2002, 13 – 25.

[22] Huang, X., Blackburn, S., McKinley, K., Moss, J., Wang, Z.,
and Cheng, P. “The Garbage Collection Advantage:
Improving Program Locality.” In Proceedings of the 18th
annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA ‘04), 2004, 29 – 80.

[23] Shen, X., Zhong, Y., and Ding, C. “Locality Phase
Prediction.” In Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’04), 2004, 165
– 176.

[24] Chilimbi, T. “Efficient Representations and Abstractions for
Quantifying and Exploiting Data Reference Locality.” In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’01), 2001, 191 – 202.

[25] Wilkes, R. “Ngen Revs up your performance with Powerful
New Features”, MSDN Magazine April 2005

