
Policy-Carrying Data: A Privacy Abstraction for
Attaching Terms of Service to Mobile Data

Stefan Saroiu, Alec Wolman, Sharad Agarwal
Microsoft Research

Abstract: Despite decades of work on privacy-protecting sys-
tems, mobile user privacy remains at the mercy of cloud service
providers. This paper proposes a different approach – let users at-
tach Terms of Service (ToS) to their data before uploading it to the
cloud. We propose an abstraction, called policy-carrying data
(PCD), that lets users specify and attach ToS to their data. PCD
guarantees that cloud providers claim they are compliant with the
ToS policy before they are able to access the data. To offer this
guarantee, PCD relies on attribute-based encryption. We present
PCD’s semantics, its properties, and describe how PCD can be
added to JSON or REST. Our hope is that PCD opens a different
research path – designing privacy abstractions that provide legal
ammunition for mobile users against misuse of their data.

1. INTRODUCTION
Despite its importance, protecting the privacy of mobile users’

data stored in the cloud remains an elusive goal. The current land-
scape is very one-sided: cloud providers maintain control over how
users’ data is gathered, stored, managed, and used. On the other
side, users are given only two choices. One is to abandon using the
cloud and all apps’ functionality requiring access to private data
(e.g., GPS locations, users’ profiles, etc...). The other choice is to
lose control of their data and simply trust the cloud providers to
treat private data sensibly.

This lopsided situation is further exacerbated by the business
model of many cloud providers, where they partner with third-party
ad networks to generate revenue. Both cloud providers and their
partner ad networks have been shown to aggressively mine private
data in ways that erode the privacy of most mobile users [16, 20,
12]. Even worse, there is evidence that cloud providers are forced
by their local governments to further violate customers’ privacy in
the name of national security [14].

In response to this “privacy crisis”, systems and tools have been
developed to offer strong privacy protection for users’ cloud data,
such as information flow control [31, 7, 11], secure and trusted
operating systems [29, 6, 18, 17], secure hypervisors [28, 23, 26,
32], and novel anonymization and encryption schemes [30, 8, 9,
22, 21, 25]. Despite their high degree of technical sophistication,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMobile’15, February 12–13, 2015, Santa Fe, New Mexico, USA.
Copyright c© 2015 ACM 978-1-4503-3391-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2699343.2699357.

these tools have yet to empower users with control over their cloud
data.

This paper considers an alternative to building systems with
strong cloud privacy protections. We advocate a much simpler ap-
proach – let users attach terms of service (ToS) to their data before
it is uploaded to the cloud. Such a solution is similar to how valu-
able data is treated in other cases. For example, websites routinely
publish their ToS dictating how users must treat the websites’ data,
programmers attach licenses to their code before publishing it on-
line, applications ask users to click on a EULA before installation,
and DVD producers force viewers to watch a short “do not copy this
DVD” preview before any content is viewed. While these solutions
cannot actually prevent data from misuse, they are legally binding:
data owners can take legal action when a violation is detected. This
provides a much-needed re-leveling of the playing field because it
gives users additional leverage against cloud providers.

We believe that attaching terms of service to data is a problem
of technical nature that the research community can help solve.
We propose an abstraction, called policy-carrying data (PCD), that
helps to implement such privacy mechanisms. PCD binds a user’s
data to a policy that specifies the conditions under which data can
be used, and offers the following guarantee: the cloud provider
must explicitly opt-in to the user-specified policy before it can even
access the data. As a result, if policy violations are discovered, the
cloud provider cannot claim a lack of knowledge of user’s desired
policy associated with the data.

To offer this guarantee, PCD relies on encryption. While en-
cryption is typically used to protect data confidentiality, PCD uses
encryption in a different way: to force the decrypting party (i.e., the
cloud) to claim it is compliant with the policy attached to the data.
This is done using ciphertext-based attribute-based encryption (CP-
ABE), a form of encryption that can be loosely thought as “encrypt-
ing data with a policy”. To decrypt successfully, cloud providers
must construct a list of attributes compliant with the policy spec-
ification; if the attributes are not compliant, decryption fails. An
additional benefit of CP-ABE is that it allows policies to be speci-
fied in a human-readable form, such as XML.

While PCD does not guarantee that cloud providers do not abuse
private data, it provides one form of a customer-dictated “EULA”
listing the conditions under which data can be used. An exam-
ple policy indicates that a GPS reading can only be used once and
then must be deleted, or that it cannot be shared with any third-
party; another example indicates that photos can only be stored on
servers located inside the US. Cloud providers could choose to vi-
olate these policies. However, when policy violations are caught,
they are likely to be much costlier to cloud providers because the vi-
olations were done knowingly and deliberately. We believe that this
mechanism increases the likelihood that cloud providers will treat

Policy Specification

1

data_retention_limit = one time and

service_name = Bing maps and

anonymization_scheme = k-anonymity

2

data_retention_limit = one day and

is_BitLocker_present = true and

share_with_3rd_party = false

3
(data_location = EU and share_with_3rd_party = true) or

(data_location = US and share_with_3rd_party = false)

Table 1: Examples of more sophisticated policies.

their mobile users’ data according to their wishes. Cloud providers
may choose to offer degraded service to those users that specify
overly onerous ToS.

2. TOS-BASED POLICIES

2.1 Brief Background on ToS
Terms of Service (ToS) are a set of rules which one must agree

to abide by in order to use a service. Websites often define ToS to
state their users’ rights and responsibilities as well as the website’s
limitations of liability. ToS can be subject to change; whenever the
ToS change, websites must once again seek the consent from their
users [13].

ToS are often long and complicated. It is widely believed that
Web users often accept the websites’ ToS without understanding
them or even bothering to read them. ToS;DR [2] is a recent project
that aims at reviewing all websites’ ToS policies and rating them
according to a color-coding scheme. With their tools, whenever a
user encounters a new ToS, the user can immediately evaluate the
ToS’s restrictiveness by its color shade: solid green meaning “best
ToS” to solid red meaning “this ToS raises very serious concerns”.

Courts have overwhelmingly sided with enforcing online
ToS [19]. There are a few exceptions when courts ruled against
enforcing the ToS. The courts aimed to protect consumers from
certain clauses they considered unreasonable, such as onerous ar-
bitration clauses (i.e., in case of a dispute, the user agrees to settle
it only through the arbitration mechanism described by the ToS)
and forum selection clauses (i.e., any litigation resulting from the
contract will be initiated in a specific jurisdiction or court). These
clauses are not considered unreasonable when the plaintiff is a busi-
ness because courts presume that businesses are “sophisticated eco-
nomic entities” and know what they are doing when accessing an-
other company’s website.

2.2 Examples of Policies
Many ToS-based policies are possible. Some users would prefer

policies that are simple and easy to understand. Example of simple
policies that appeal to many users are:

1. When uploading a credit card number, a user may attach a policy
that restricts its use to a single transaction. With such a policy, the
cloud provider can use the credit card for a one-time charge, but is
not allowed to store the number for future transactions.

2. When uploading a personal photo to a social networking site,
a user may attach a policy forbidding any attempt to interpret the
photo’s content beyond simply rendering the photo, such as per-
forming face recognition or object detection on the photo.

3. When uploading personal health data to the cloud (e.g., a mo-
bile app that measures the user’s pulse, or any form of health care

Data Precision Use
Threat
Model

Location Retention

meta-data precise actual service
national
govnmt.

US one-time

contents k-anonymity improve service
foreign
govnmt.

Canada one day

password l-diversity targeted ads HDD theft EU one year

location t-closeness 3rd-party
memory
attacks

Asia
until accnt.
is closed

payment diff. privacy Caymans forever

Table 2: Taxonomy of attributes for PCD.

records), a user may attach a policy that forbids sharing with a
third-party, and requires data to always be stored in encrypted form.

4. When using a mobile payment application, a user may attach a
policy that forbids any form of customer profiling on the data.

Privacy-savvy users may define more sophisticated policies on
their data that go beyond these simple examples, and describe fea-
tures related to the software and hardware they require from cloud
providers. For example, policies can use the following types of
features:

1. Features related to data privacy. Examples are data retention
limits, the degree of data shareability (e.g., whether it can be shared
with 3rd parties), or the type of anonymization scheme required
(e.g., hashing, k-anonymity, differential privacy).

2. Software-related features. Examples are: encrypted file-
system (e.g., BitLocker), verified OSes (e.g., seL4 [18], Iron-
Clad [17]), or specific versions of software.

3. Physical/Hardware-related features. Examples are: geo-
graphic locations of data-centers, or the presence specialized hard-
ware such as a Trusted Platform Module (TPM) or a Hardware Se-
curity Module (HSM).

Table 1 shows a few examples of more sophisticated policies.
Each policy is a set of constraints linked by conjunction or disjunc-
tion operators. Each constraint tests a condition over an attribute
which can be a string or a number. The condition can be an equality
(e.g., attribute=value) or an inequality in case of numbers that span
a finite set. Examples of finite sets are the set of past released ver-
sion numbers for a piece of software, or the set of days of the week.
Unfortunately, the cryptography underlying our abstraction cannot
support infinite or uncountable sets. The set of natural numbers is
countably infinite, and the set of real numbers is uncountable.

2.3 Taxonomy for Constructing Policies
Our vision is that a common set of policies will become de-facto

standards that users will pick from when requesting protection for
their data. This is similar to how Creative Commons (a non-profit
organization) has defined a set of simple licenses for sharing con-
tent, or how ToS;DR has defined a color-coded scheme for inter-
preting EULAs.

Table 2 presents one taxonomy example as a starting point.
Broadly, users may apply the same policies to most of their meta-
data, such as call logs and web access logs, and a separate set of
policies to data contents, such as photographs and chat messages.
We expect users to treat a few data items differently – location,
credit card numbers, and passwords. Each data item may have mul-
tiple policies that allow different uses depending on the granularity
of the data.

3. MODEL AND SEMANTICS
The policy-carrying data (PCD) abstraction allows a mobile

user’s data to be bound to a user-defined policy. PCD offers two
primitives: encapsulate and descapsulate. Encapsulate is per-
formed by a user and takes as input the privacy-sensitive data and a
policy, and outputs ciphertext. The reverse operation, decapsulate,
is done by the cloud provider and takes as input the ciphertext. By
construction, the decryption keys correspond to the set of policies
the cloud provider claims it adheres to. Decapsulate decrypts prop-
erly if and only if the cloud provider claims it is compliant with the
policy specified at encapsulation time, during encryption.

3.1 Model
With our abstractions, each cloud provider has a configuration,

which is a set of human-readable attributes from a taxonomy of
attributes (a strawman example was presented in Table 2). This
configuration is published to a trusted provider, such as a certifi-
cate authority (CA). This is a one-time step; the CA generates a set
of credentials based on these configurations and passes them to the
cloud provider. PCD guarantees that the credentials can decapsu-
late only data whose policy is met by the configuration of the cloud
provider.

The explicit step of publishing the configuration offers assurance
because the cloud states to a third-party (i.e., the CA) a set of pri-
vacy measures. For example, the cloud can state that it never stores
credit card information, it does not perform face recognition, or that
it uses highly secure software and hardware to handle users’ data.

However, PCD also allows for the cloud provider to act as a CA.
This offers a weaker form of assurance because the cloud does not
have to reveal its configuration to a third-party. Section 4 will pro-
vide a more in-depth discussion of the separation between the cloud
provider and the CA.

3.2 PCD-based ToS
PCD lets users specify their own terms of service. The same

way how websites require their users to click “Agree” on the ToS,
PCD require websites to interpret their user’s policy to access and
use their data. We believe this requirement is sufficient to render
the policy attached to the data as legally binding. When violations
occur, customers (whether users or other businesses) can take the
website to court.

While customers have the option of constructing their own poli-
cies for the PCD abstraction, it also possible for a third-party (sim-
ilar to ToS;DR) to pre-construct a fixed set of policies and label
them, perhaps using a color-coding scheme. A green policy could
represent a case when the customer uses a non-restrictive policy
(e.g., the website can use the GPS location for showing ads), where
as a red policy a very restrictive policy (e.g., the website must dis-
card the GPS location as soon as the Web request is answered).

3.3 Trade-off: Policy Restrictiveness vs. Level
of Service

The question raised now is: “Why would a user choose any pol-
icy other than the most restrictive one so that the user’s privacy is
maximized?” While the user is free to select any policy, the service
provider may use policies to determine what quality of service to
offer their users. Depending on the service, the provider may have
a number of quality knobs that can be adjusted:

• auto policy discount
• location service accuracy
• search query accuracy
• freshness of web service data

• personalization features
• speech recognition accuracy
• online storage size

For example, if a user restricts their auto insurance company
from retaining GPS traces gathered from their phone, then the in-
surance company may not give the user certain policy discounts.
This enables a trade-off between the user’s need for privacy and the
insurance company’s need for risk mitigation. Similarly, an online
file storage service may offer less free storage capacity to a user
who restricts their data to be stored only in certain datacenter loca-
tions. This allows a trade-off between the user’s need for protection
(e.g, from certain governments) and the storage provider’s need for
limiting cost in expensive datacenter locations.

3.4 Bootstrapping PCD
One obstacle to deploying PCD is requiring cloud providers to

implement our abstraction. One possibility to help bootstrap our
system is via a proxy. This proxy could interpret the policies at-
tached to the users’ data and decide which cloud provider is best
suited with meeting this policy. Effectively, the proxy’s role is
to construct a set of attributes and values that correspond to each
cloud provider. While such a proxy could help speed the adoption
of PCD, its existence also raises privacy risks because it would be
exposed to all its users’ data.

4. CRYPTOGRAPHIC SUPPORT
PCD relies on Ciphertext Policy Attribute-Based Encryption

(CP-ABE), a type of public-key encryption in which data is en-
crypted using a policy, and the decryption keys is dependent on a
set of attributes. Decryption is possible only if the set of attributes
satisfies the policy. PCD relies on a certificate authority (CA). The
CA generates a master private key and a master public key. Encryp-
tion is done using the master public key and a user-specified policy.
A cloud provider must present a set of attributes to the CA. The CA
uses its master secret key to return the cloud provider’s decryption
key embedding the corresponding attributes. The decryption key
can be used successfully against all ciphertexts whose policies are
satisfied by the cloud provider’s set of attributes.

These are the steps to use CP-ABE in the content of policy-
carrying data:

1. CA generates public and private master keys, (MasterKpub
and MasterKpriv)

2. Cloud provider presents the set of attributes to the CA
(Attribprovider). CA uses private master key MasterKpriv
to generate a decryption key embedding these attributes
(K(Attribprovider)).

3. User encrypts data D with policy P and CA’s public master
key MasterKpub, producing ciphertext C. User uploads C

to provider.
4. Provider decrypts C using its decryption key

K(Attribprovider). If decryption is successful, provider’s
attributes match the user-specified policy P .

The separation between the CA and the cloud provider (i.e., the
principal attempting to decrypt) is crucial to the security of CP-
ABE because the CA must guard the secrecy of the secret master
key. However, in our case, CP-ABE is used only to guarantee that
the cloud provider interprets the user’s privacy policy. This guar-
antee can be met even when the cloud provider also acts as the CA.
To decrypt, the cloud provider must use the master secret key and
a set of attributes to generate a decryption key. This step is where

ciphertextpolicy

MasterKpub

ciphertextpolicy

Figure 1: CP-ABE: on the left, the CA is separate from the cloud provider; on the right, the CA and the cloud provider are the same.
(icons by Freepik [1]/CC BY 3.0.)

the PCD guarantee is met: the cloud provider must use a set of at-
tributes meeting the policy specification to generate a decryption
key capable of decrypting the ciphertext.

Figure 1 illustrates the two cases: on the left the CA is a separate
entity than the cloud provider, on the right the cloud provider and
the CA is the same entity. The case on the left is important to ensure
the security of CP-ABE. On the right, ABE is insecure because the
cloud provider is the CA, and thus possesses the master private key.

Both cases provide the PCD guarantee – the cloud provider must
generate a decryption key whose attributes match the policy, thus
having to interpret the policy. However, there is an additional im-
portant distinction. On the left, the cloud provider states its con-
figuration to a third-party, a step that can be independently veri-
fied. For example, an external audit could verify the configurations
claimed by a cloud provider; such an audit could be useful to settle
disputes. On the right, the cloud provider takes no external, inde-
pendently verifiable step to reveal its privacy configurations to a
third-party.

4.1 Why CP-ABE?
A legitimate question is why does PCD need to rely on a rela-

tively uncommon form of encryption (CP-ABE)? Why can’t PCD
use a more common cryptographic scheme, like RSA? To answer
these questions, we start by first describing a possible implementa-
tion of PCD using RSA and then list its drawbacks.

Mobile users can take their polices and the data to upload and
XOR them together. This XOR-ed blob (i.e., policy ⊕ data) could
be then encrypted with the cloud provider’s public key. The user
uploads both the ciphertext and the policy. The cloud provider must
use its RSA private key to obtain the XOR-ed blob, and then XOR
it with the policy to decrypt the data.

Encryption:RSA_pubkey(policy ⊕ data) (1)

Decryption:RSA_privkey(ciphertext)⊕ policy (2)

CP-ABE offers two advantages over traditional encryption.
First, CP-ABE offers policies with multiple clauses linked by con-
junctive and disjunctive operators. Traditional encryption does not
extend naturally to support policies with multiple “and” and “or”
operators. Second, although the cloud provider needs the user’s
policy to be able to decrypt, its use of the policy is mundane. The
cloud provider uses the policy as one of the inputs to the decryption
function without having to interpret it. It’s similar to how the cloud
provider uses other RSA decryption parameters, such as the type of
the padding scheme or the length of the key. In contrast, with ABE,
the cloud provider itself must generate the set of policies it adheres
to. Only after these policies are generated, the cloud provider can
obtain the decryption keys. With ABE, the cloud provider has no
choice but to claim it adheres to the right policy.

5. POSSIBLE IMPLEMENTATIONS
While there is no single standard on how web services are imple-

mented today, we believe that most Web frameworks are amenable
to adding the PCD abstraction to users’ data. This subsection
presents preliminary designs to adding PCD to two popular Web
standards: JSON [5] and REST [24].

JavaScript Object Notation (JSON). JSON is an open standard
that uses human-readable text to transmit data objects in a key-
value pair format. For example, a GPS location in JSON could be:

{
‘‘firstName’’: ‘‘Barack’’,
‘‘lastName’’: ‘‘Obama’’,
‘‘latitude’’: ‘‘38.8951N’’,
‘‘longitude’’: ‘‘77.0367W’’

}

Since PCD is human-readable, incorporating PCD into a JSON
protocol is trivial. For example, adding policy 1 from Table 1 to
this example would become:

{
‘‘firstName’’: ‘‘Barack’’,
‘‘lastName’’: ‘‘Obama’’,
‘‘lat’’: 0x53c5b77d34713801e61bd5a5b00a4aea,
‘‘long’’: 0xf38f927640da51fdacdb93243317b0de,
‘‘PCD’’: ‘‘data_retention_limit = one time

AND service_name = Bing Maps
AND anonymization_scheme = k-anonymity’’

}

Representational State Transfer (REST). In REST, data objects
are identified using URIs, such as http://example.com/
GPS. The common way to upload a value using REST is to issue
an HTTP PUT request to the URI. For example:

PUT /GPS/coordinates?firstName=Barack&\
lastName=Obama&\
lat=0x53c5b77d34713801e61bd5a5b00a4aea&\
long=0xf38f927640da51fdacdb93243317b0de \
HTTP/1.1

Host: www.example.com
X-PCD: data_retention_limit = one time

AND service_name = Bing Maps
AND anonymization_scheme = k-anonymity

Other Formats. For Web services that do not follow JSON or
REST, the PCD policy can be transmitted through a Web cookie.
The server must read the cookie and interpret the policy before de-
crypting the passed-in data objects.

http://example.com/GPS
http://example.com/GPS

6. ADDITIONAL USES
In recent years, sophisticated privacy tools have been developed

to control the amount of information disclosed to a website or a
third-party. However, the parameterization of these tools is often
under-specified or entirely under the control of the website. An ad-
ditional use of PCD, beyond just specifying the desired algorithm,
is to offer users a way to initialize the parameters (or the configura-
tion) of a website’s privacy tools. This section lists a set of privacy
tools, their configuration parameters, and how PCD can let users
define their input values.

k-Anonymity. k-Anonymity [30] maps sensitive data to a set of
identifiers in such a way that they are indistinguishable among k
individuals. The value of k is crucial to the privacy of this scheme
– a higher value of k offers stronger privacy. With PCD, different
users could choose different value of k for their data.

l-Diversity. l-Diversity [22] is an extension of k-Anonymity that
aggregates sensitive data into a set of equivalence classes, such
that sensitive data has diverse values within each class. l-Diversity
is stronger than k-Anonymity because it reduces the likelihood of
reversing the anonymization in case the sensitive data has a ho-
mogeneous distribution, or when the attacker has additional back-
ground knowledge about the data. As before, users could define the
l-diversity metric the website must apply to the data classes.

t-Closeness. t-Closeness [21] partitions the sensitive data into
equivalence classes in such a way that the distance between the
overall distribution of sensitive values and the distribution in each
class must be bounded by t. There are several metrics that measure
distance between distributions, and, with PCD, users can decide on
the metric.

Differential privacy (DP). DP [8, 9] provides an intuitive formal-
ization of privacy. Given a dataset and a query, DP measures how
much information is revealed by answering the query. Information
is revealed when an attacker who knows the query answer is more
likely to guess the existence of a data item in the dataset. Any query
answered on the dataset leaks some information, however certain
queries leak more information than others. The amount of privacy
loss is controlled by injecting noise in the query answer.

DP frameworks offer two knobs. First, a noise knob controls
how much “noise” data to inject in the query answer if set to high,
the query answer has low privacy loss, but it is also more inaccu-
rate, and vice-versa. Noise is generated dynamically for each query
answer; if the same query is repeated, the answer changes from one
run to another based on the random noise. The second parameter
is the privacy budget of the entire dataset. The privacy lost by each
query answer is deducted from this privacy budget. Once it reaches
zero, the system refuses to answer any additional queries on this
particular dataset. While we do not expect average Web users to
be able to parameterize a DP framework, PCD still allows users to
select DP configurations pre-defined by third-parties.

7. BRIEF PERFORMANCE EVALUATION
An area of concern is the performance of CP-ABE. To investi-

gate the suitability of CP-ABE as an abstraction mechanism, we
perform the following brief performance evaluation. We encrypt
a 1KB data item using different policies with increasing levels of
complexity. We vary the number of attributes in the policy from
one to ten and measure the performance of encrypt and decrypt of
CP-ABE.

Our setup uses an NVIDIA Jetson Tegra K1 platform equipped
with 2 GB of RAM and an 4-Plus-1 quad-core ARM Cortex A15

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

M
il

li
s
e

c
o

n
d

s

of Attributes

Figure 2: Performance of CP-ABE encryption and decryption.

CPU running at a maximum clock speed of 2.3 GHz. We use a
publicly-available implementation of CP-ABE found at http://
hms.isi.jhu.edu/acsc/cpabe/, and we repeat each ex-
periment 100 times and report the average. We checked that all
our experiments have low variance.

Figure 2 illustrates the performance of encrypt and decrypt as
a function of policy complexity. This Figure shows two findings.
First, the overhead of CP-ABE is not high; even with complex poli-
cies, CP-ABEs’ performance is measured in tens of milliseconds.
Second, decryption is quite fast (it is less expensive than encryp-
tion, a finding consistent with previously reported evaluations of
attribute-based encryption). Fast decryption indicates that cloud
providers need not worry about the performance overhead due to
PCD.

8. RELATED WORK
Our PCD abstraction is inspired by Excalibur [27], which offers

policy-sealed data, another abstraction for building trusted cloud
services. Like PCD, Excalibur uses CP-ABE to encrypt customer
data and bind it to a customer-chosen policy. However, unlike PCD,
Excalibur is primarily a security mechanism. Excalibur combines a
hypervisor, verified security protocols, and TPM-based attestation
to ensure that customer-encrypted data can only be decrypted on
cloud servers whose software and hardware configuration is com-
patible with the customer-specified policy. As a result, Excalibur
imposes a high barrier on the cloud-service infrastructure. In con-
trast, our goal with PCD is just to ensure that the cloud provider
explicitly opts-in to the customer policy – no heavy-weight enforce-
ment mechanisms are necessary.

Prior work [15] has proposed middleware for anonymizing user
location data along spatial or temporal dimensions. TaintDroid [10]
takes an altogether different approach – it traces the flow of private
user data through mobile app code to identify when it leaves a mo-
bile device. Similarly, PMP [3] detects when apps use private data.
It uses crowdsourcing to determine whether an app should have ac-
cess to that data, but does not address privacy once the data leaves
the app. Other work [20] has studied the economics of mobile app
advertising and presents a framework for dynamically obfuscating
user data to achieve a revenue target. All this work is complemen-
tary – PCD would enable users of these techniques to specify con-
ditions on what levels of anonymity and privacy they desire once
data has left the device and reached the cloud.

Privacy legal scholars have previously argued for a contractual
approach to online privacy [4]. Their argument stems from the lack
of consensus among people about how important privacy is. Cur-
rent legal efforts to protect privacy are not sensitive to the individ-
ual levels of privacy desired by an individual. A law offers too little
privacy for some, and too much for others. Instead, a contractual
solution is preferable, where individuals can enter separate con-
tracts that dictate their privacy needs. PCD offers a straightforward
mechanism for implementing a contractual approach to privacy.

http://hms.isi.jhu.edu/acsc/cpabe/
http://hms.isi.jhu.edu/acsc/cpabe/

9. CONCLUSIONS
This paper proposes policy-carrying data (PCD), a privacy ab-

straction for mobile services. With PCD, users construct a pol-
icy expressing how their private data must be treated by the cloud.
PCD guarantees that cloud providers claim to be compliant with
the specified policy before getting access to the data. This paper
describes how attribute-based encryption can be used to offer the
PCD abstraction. It also provides a strawman PCD design and tax-
onomy, and a preliminary performance evaluation. We hope that
PCD can offer an alternative approach to offering cloud services
with strong privacy guarantees.

10. REFERENCES
[1] Freepik. https://www.freepik.com, 2014.
[2] Terms of Service Didn’t Read. https://tosdr.org/,

2014.
[3] Y. Agarwal and M. Hall. ProtectMyPrivacy: Detecting and

Mitigating Privacy Leaks on iOS Devices Using
Crowdsourcing. In ACM MobiSys, 2013.

[4] S. Bibas. A Contractual Approach to Data Privacy. Faculty
Scholarship. Paper 1016, 1994.

[5] T. Bray. RFC 7159: The JavaScript Object Notation (JSON)
Data Interchange Format.
http://www.rfc-editor.org/info/rfc7159,
2014.

[6] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A.
Waldspurger, D. Boneh, J. Dwoskin, and D. R. Ports.
Overshadow: A virtualization-based approach to retrofitting
protection in commodity operating systems. In ASPLOS,
2008.

[7] S. Chong, J. Liu, and A. C. Myers. Sif: Enforcing
Confidentiality and Integrity in Web Applications. In
USENIX Security Conference, 2007.

[8] C. Dwork. Differential Privacy. In ICALP, 2006.
[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith.

Calibrating Noise to Sensitivity in Private Data Analysis. In
IACR Theory of Cryptography Conference, 2006.

[10] W. Enck, P. Gilbert, B. gon Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In USENIX OSDI, 2010.

[11] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C.
Mitchell, and A. Russo. Hails: Protecting Data Privacy in
Untrusted Web Applications. In USENIX OSDI, 2012.

[12] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy,
K. Papagiannaki, and P. Rodriguez. Follow the money:
Understanding economics of online aggregation and
advertising. In IMC, 2013.

[13] E. Goldman. How Zappos’ User Agreement Failed In Court
and Left Zappos Legally Naked. Forbes – http://www.
forbes.com/sites/ericgoldman/2012/10/10/
how-zappos-user-agreement-failed-in-court-
and-left-zappos-legally-naked/, 2012.

[14] G. Greendwald and E. MacAskill. Boundless Informant: the
NSA’s secret tool to track global surveillance data. The
Guardian – http:
//www.theguardian.com/world/2013/jun/08/
nsa-boundless-informant-global-datamining,
2013.

[15] M. Gruteser and D. Grunwald. Anonymous Usage of
Location-Based Services Through Spatial and Temporal
Cloaking. In ACM MobiSys, 2003.

[16] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy
in online advertising. In USENIX NSDI, 2011.

[17] C. Hawblitzel, J. Howell, J. Lorch, A. Narayan, B. Parno,
D. Zhang, and B. Zill. Ironclad Apps: End-to-End Security
via Automated Full-System Verification. In USENIX OSDI,
2014.

[18] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, M. Norrish,
R. Kolanski, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal Verification of an OS Kernel. In ACM SOSP, 2009.

[19] M. A. Lemley. Terms of Use. Minnesota Law Review, 91,
2006.

[20] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo.
Don’t kill my ads! balancing privacy in an ad-supported
mobile application market. In HotMobile, 2012.

[21] N. Li, T. Li, and S. Venkatasubramanian. t-Closeness:
Privacy beyond k-anonymity and l-diversity. In ICDE, 2007.

[22] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. l-Diversity: Privacy Beyond
k-Anonymity. In ICDE, 2007.

[23] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB Reduction and
Attestation. In IEEE Symposium on Security and Privacy,
2010.

[24] C. Pautasso, E. Wilde, and R. Alarcon. REST: Advanced
Research Topics and Practical Applications. Springer, 2014.

[25] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting Confidentiality with
Encrypted Query Processing. In ACM SOSP, 2011.

[26] H. Raj, D. Robinson, T. Tariq, P. England, S. Saroiu, and
A. Wolman. Credo: Trusted Computing for Guest VMs with
a Commodity Hypervisor. Technical Report
MSR-TR-2011-130, Microsoft Research, 2011.

[27] N. Santos, R. Rodrigues, K. Gummadi, and S. Saroiu.
Policy-Sealed Data: A New Abstraction for Building Trusted
Cloud Services. In USENIX Security Conference, 2012.

[28] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for
Commodity OSes. In ACM SOSP, 2007.

[29] A. Shieh, D. Williams, E. G. Sirer, and F. B. Schneider.
Nexus: a new operating system for trustworthy computing.
In ACM SOSP, 2005.

[30] L. Sweeney. k-Anonymity: A Model for Protecting Privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5), 2002.

[31] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers.
Untrusted Hosts and Confidentiality: Secure Program
Partitioning. In ACM SOSP, 2001.

[32] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization. In ACM SOSP, 2011.

https://www.freepik.com
https://tosdr.org/
http://www.rfc-editor.org/info/rfc7159
http://www.forbes.com/sites/ericgoldman/2012/10/10/how-zappos-user-agreement-failed-in-court-
http://www.forbes.com/sites/ericgoldman/2012/10/10/how-zappos-user-agreement-failed-in-court-
http://www.forbes.com/sites/ericgoldman/2012/10/10/how-zappos-user-agreement-failed-in-court-
and-left-zappos-legally-naked/
http://www.theguardian.com/world/2013/jun/08/nsa-boundless-informant-global-datamining
http://www.theguardian.com/world/2013/jun/08/nsa-boundless-informant-global-datamining
http://www.theguardian.com/world/2013/jun/08/nsa-boundless-informant-global-datamining

	Introduction
	ToS-based Policies
	Brief Background on ToS
	Examples of Policies
	Taxonomy for Constructing Policies

	Model and Semantics
	Model
	PCD-based ToS
	Trade-off: Policy Restrictiveness vs. Level of Service
	Bootstrapping PCD

	Cryptographic Support
	Why CP-ABE?

	Possible Implementations
	Additional Uses
	Brief Performance Evaluation
	Related Work
	Conclusions
	References

