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ABSTRACT 

Reversible transform not only converts integer input to integer 

output, but also reconstructs the exact input from the output.  It 

is one of the key modules for lossless and progressive to lossless 

media codecs. We have established [1] that the closer the re-

versible transform is to its float counter part, the better the com-

pression performance of the lossless and progressive to lossless 

codecs that utilize the transform. In this work, a new design of 

the reversible transform based on matrix lifting is proposed. 

With matrix lifting, we can design transform that is reversible, is 

close in transform value to its float counter part, and can be 

computed via fast algorithms. A progressive-to-lossless embed-

ded audio codec employing the reversible MDCT with matrix 

lifting is implemented. Superior results on lossless and lossy 

audio compression are demonstrated.  

1. INTRODUCTION

Reversible transform is a key module for lossless and progres-

sive-to-lossless media codecs. To develop a progressive to loss-

less audio codec from a conventional audio codec, such as a 

MPEG-1 layer 3 (MP3) audio codec, the key is to swap the float 

modified discrete cosine transform (MDCT1) module with a 

reversible MDCT module, and then swap the entropy coding 

module with a lossless embedded entropy coding module. Both 

the reversible transform module and the lossless entropy coding 

module establish one-to-one correspondence between their input 

and output. Thus, from the compressed bitstream, the input au-

dio can be exactly reconstructed. 

An ideal reversible transform possesses the following character-

istics. 1) It transforms integer input to integer output. 2) The 

integer input can be exactly reconstructed from the output. 3) 

The data volume of the output is the same as the input. 4) The 

forward and inverse transform can be computed efficiently, pref-

erably with a fast transform structure. 5) The integer transform 

value should be as close as possible to the value of the float 

transform that it is referred. The first two characteristics ensure 

that the transform is indeed reversible. As long as the output is 

preserved in the entropy coding stage, the input can be exactly 

reconstructed from the inverse transform. The third character 

requires that the reversible transform be designed with reference 

to a normalized transform. It assures that the output be dense, 

which can be efficiently entropy encoded without waste. The 

forth character prefers a transform that can be implemented effi-

ciently. The fifth character sets out that the output difference 

1 Sometimes, modulated lapped transform (MLT) is used, which 

is essentially MDCT with alternative window and phase.  

between the reversible transform and the float transform, which 

is defined as the quantization noise of the reversible transform, is 

as small as possible.  The quantization noise is generated by the 

rounding operation used in various stages of the reversible trans-

form, whose quantization noise has little correlation with the 

input and the output. We can thus consider the output of the 

reversible transform be the sum of a float transform plus a ran-

dom, uncorrelated quantization noise. Since the random quanti-

zation noise cannot be compressed efficiently, the smaller the 

quantization noise, the fewer the bits are needed to encode the 

output (thus lead to better lossless performance). The quantiza-

tion noise also creates a noise floor in the output of the reversi-

ble transform, which reduces the audio quality in the progres-

sive-to-lossless stage as well. It is shown in [1] that the reduction 

of quantization noise improves both the lossless and progressive-

to-lossless compression performance.  

Traditionally, a reversible transform is derived from its reference 

float transform by converting each and every basic module, often 

a rotation, into a corresponding reversible module, i.e., a re-

versible rotation. We notice that a float rotation can be imple-

mented via a 3-step lifting operations as: 
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The rotation becomes reversible by using roundings in each 

lifting step: 
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where c0=(cos -1)/sin  and c1=sin  are lifting parameters, [x] is 

the rounding operation. An improved reversible rotation with 

smaller quantization noise has been proposed in [1], where three 

new factorizations of the rotation have been proposed: 
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Equations (3)-(5) still use 3-step lifting, but with different lifting 

parameters c0 and c1. By using factorization forms (1), (3),  (4) 

and (5) for rotation angles (-0.25 ,0.25 ), (-0.75 ,-0.25 ),

(0.25 ,0.75 ) and (0.75 ,1.25 ), the quantization noise of the 

reversible rotation can be reduced.  



An alternative method is to factor a large component of the float 

transform into upper and lower unit triangular matrixes (UTM), 

which are triangular matrixes with diagonal entry 1 or -1. It is 

shown in [3] that an even sized real matrix T with determinant of 

norm 1 can be factored into: 

21ULPLT = , (6) 

where P is a permutation matrix, L1 and L2 are lower UTMs, and 

U is an upper UTM. Matrixes L1, L2 and U can be reversibly 

implemented via lifting with N rounding operations, with N be-

ing the size of the matrix. The implementation of (6) leads to less 

rounding operations for large transform matrix, and thus smaller 

quantization error. Nevertheless, unlike a structured transform 

such as FFT, there is usually no structure in matrix L1, L2 and U,

and thus there is no fast algorithm to compute multiplication by 

matrix L1, L2 and U. The computational complexity of such 

approach is thus high.  

In this work, we propose a new approach of implementing the 

reversible transform that we called matrix lifting. In stead of 

using lifting on the scalar variables, matrix lifting applies a lift-

ing step as a float transform followed by a vector rounding. We 

demonstrate that an entire transform, e.g., a fast Fourier trans-

form (FFT) or a large part of MDCT, may be reversibly imple-

mented via matrix lifting, with reduced rounding operations and 

efficient fast transform.  

The rest of the paper is organized as follows. The basic idea of 

the matrix lifting is presented in Section 2. The implementation 

of the reversible FFT and MDCT with matrix lifting is shown in 

Section 3. Experimental results are shown in Section 4. 

2. MATRIX LIFTING 

Theory 1: Every non-singular even sized matrix S2N (real or 

complex) of size 2Nx2N can be factored into :  
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where P2N and Q2N are permutation matrixes of size 2Nx2N, IN

is the identity matrix, AN, CN and DN are NxN matrixes, and BN

is a non-singular NxN matrix.  

Proof: Since S2N is non-singular, there exists permutation ma-

trixes t

2N
P and t

2N
Q  so that  
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with S12 being non-singular. Observing that: 
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By taking determinant of S2N, and using the distributive property 

of the determinant, we have  
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The matrix 
2111

1

1222 SSSS −−  is thus non-singular as well. By as-

signing: 
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We can easily verify that (7) holds, and BN is a non-singular.  

Figure 1 Forward reversible transform via matrix lifting. 
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Figure 2 Inverse reversible transform via matrix lifting. 

Using equation (7), we can derive a reversible transform shown 

in Figure 1.  The input of the reversible transform is a size 2N 

(for real transform) or 4N (for complex transform, as each com-

plex consists of an integer real part and an integer imaginary part 

) integer vectors. After the permutation operation Q2N, it is split 

into two size N (real) or size 2N (complex) integer vectors X and 

Y, which are transformed through:  
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where AN, CN and DN are float transforms, [x] represents a vec-

tor rounding operation. In Cartesian coordinate, [x] can be im-

plemented via rounding every element of x. “Rev BN” is a re-

versible transform derived from the non-singular transform BN.

Finally, another permutation P2N is applied on the resultant inte-

ger vectors X’ and Y’. Because each of the above operation can 

be exactly reversed, the entire transform is reversible with the 

inverse of the transform shown in Figure 2.  

We call the operation in (16) as matrix lifting, because it bears 

similarity to the lifting used in (2), except that the multiplication 

operation now is a matrix multiplication, and the rounding op-

eration is a vector rounding. Note that our approach is different 

from the approach of [3], where matrix S2N is factored into UTM 

matrices, each row of which is still calculated via scalar lifting.  

Using different permutation matrixes P2N and Q2N, we may fac-

tor the transform S2N into reversible transforms with different 

lifting matrix AN, CN and DN and reversible core BN. The trick is 

to select the permutation matrixes P2N and Q2N so that:  

a) The reversible core BN is as simple as possible.  

b) The computation complexity of transform AN, CN and 

DN is as low as possible. 

In the following, we derive the reversible transforms for FFT and 

MDCT. 

3. REVERSIBLE FFT AND MDCT 

3.1. Reversible FFT via Matrix lifting 
An N-point normalized fast Fourier transform (FFT) takes the 

form: 
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In the following, we derive the reversible transform for a 2N-

point FFT F2N. Inspired by the radix-2 FFT algorithm, we first 

apply permutation operation OE2N on the input, which separates 

a 2N complex vector into a size-N complex vector of even in-

dexes, and a size-N vector of odd indexes. We now have: 

,

)0,5.0(
2

1

2

1

)0,5.0(
2

1

2

1

2 2N

NNN

NNN

N OE

FF

FF

F

−
=

 (18) 

where FN is the N-point FFT, and 
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is a diagonal matrix of N rotations. Its inverse takes the form: 
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Setting P2N=I2N and Q2N=OE2N, matrix F2N can be factorized 

into the matrix lifting form of (7), with: 
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In (21), t

N
F is the inverse FFT, TN is a permutation matrix in the 

form of: 

=

1

1

1

N
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. (22) 

The reversible core BN is a permutation TN followed by N rota-

tions ( )0,5.0N
, which can be implemented via the multiple 

factorization reversible rotation in (1)-(5). The float transform 

AN consists of an inverse FFT, N rotations, and a vector addi-

tion2. Transform CN is an inverse FFT. The transform DN con-

sists of a forward FFT, an inverse FFT and N rotations. An N-

point reversible FFT (with 2N input integers, as each input is 

complex with real and imaginary parts) can thus be implemented 

via (21), with the computation complexity be four N/2-point 

complex FFT, N float rotations, and N/2 reversible rotations. It 

requires 4.5N roundings, with N roundings after each matrix 

lifting AN, CN and DN, and 1.5N roundings for N/2 reversible 

rotations in BN.

3.2. Reversible MDCT via Matrix lifting 
An N-point MDCT transform takes in a length-2N signal, and 

outputs N coefficients. It can be expressed as: 
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2 Scale by 2 can be rolled into either the FFT or the rotation 

operations ΛN(α,β), with no additional complexity required. 

MDCT2N is the MDCT matrix, h(n) is a window function. In 

MPEG audio, the window function h(n) is:  
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According to [4], the MDCT transform in (23) can be calculated 

via a type-IV discrete sine transform (DST) shown in Figure 33.

Figure 3 MDCT via type-IV DST. 

The input signal is first grouped into pairs x(n) and x(N-n),

x(N+n) and x(2N-n). Each pair is then treats as a complex num-

ber and rotates according to an angle specified by h(n). We call 

this the window rotation. The middle section of the signal is then 

transformed by a type-IV DST with: 
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A 2N-point type-IV DST can be further converted to an N-point 

fractional-shifted FFT with = =0.25, as: 
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After permutation operation 
2NP  and ,DST

2NQ  each pair of signal is 

converted to a complex number, and feed into the fractional-

shifted FFT FN(α,β) in the form of: 
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where α and β are shifting parameters. We may interpret each 

complex multiplication of the fractional-shifted FFT as a 2x2 

rotation matrix of (1). 

Because 

( ) ( ) ( )0,,, ααββα NNNN FF = , (32) 

the fractional-shifted FFT can be implemented via pre-

rotation ( )0,αN
, FFT FN and post-rotation ( )αβ ,N

. By im-

plementing the pre- and post- rotations and window h(n) rota-

tions with reversible rotations (1)-(5), and implementing the 

reversible FFT through Section 3.1, we may implement a re-

3 MDCT may be calculated via type-IV DCT, with alternative 

window folding and no sign change. Type-IV DCT may be cal-

culated via an inverse fractional-shifted FFT of = =0.25.



versible MDCT. Implementing an N-point MDCT this way re-

quires 6.75N roundings. 

Nevertheless, it is possible to implement the reversible MDCT 

with less roundings, and with about the same computation com-

plexity. We observe that the fractional shifted FFT has the fol-

lowing properties: 

Theory 2. Fractional-shifted FFT FN(α,β) is orthogonal.  

Proof: The inner product of any two vectors of FN(α,β) is: 
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Corollary 2. The inverse fractional-shifted FFT is 
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Thoery 3: 
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where RN(α) is a permutation matrix with only element (0,0) and 

elements (i,N-i), i=1,…,N-1 are non-zero. 
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To derive a reversible transform for the fractional-shifted FFT 

with = =0.25, we again use the radix-2 FFT structure. Notic-

ing theory 3, we factor the fractional shifted FFT as follows: 
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Substitute =0.25 and expanding fractional-shifted FFT via (32), 

we factor the transform S2N into the matrix lifting form of (7), 

with: 
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In (40), the reversible core BN is simply permutation, as multi-

plying by j is just swapping the real and imaginary part and 

changing the sign of the imaginary part. Using (40), an N-point 

MDCT can be implemented via N/2 reversible window rotations 

of h(n), a reversible matrix lifting of S2N, and N/2 reversible 

rotations of K2N. The total computational complexity is N re-

versible rotations, four N/4-point FFT, and 1.75N float rotations 

used in (40). The implementation complexity is about double of 

a float MDCT, which requires two N/4-point FFT, and 1.5N 

float rotations. Altogether, the reversible MDCT requires 4.5N 

roundings, with three 0.5N roundings after each matrix lifting of 

(40), and 3N roundings for the N reversible rotations.  

4. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed reversible MDCT, 

we put the reversible MDCT module into a progressive to loss-

less embedded audio codec (PLEAC). We then compare the 

following reversible MDCT implementations: 

a) With matrix lifting described in Section 3.2. 

b) With scalar 3-step lifting of [1].  

All the other modules of the PLEAC codec are the same, and are 

described in [1]. We first compare the output difference of the 

reversible MDCT module versus that of a float MDCT module, 

in terms of the mean square error (MSE), the mean absolute 

difference (MAD) and the peak absolute difference (PAD). We 

then compare the lossless compression ratio of the two codecs. 

Finally, we compare the progressive coding performance, by 

truncating the losslessly compressed bitstream to a lossy com-

pressed audio bitstream of 64, 32 and 16kbps, and measure the 

decoding noise-mask-ratio (NMR) versus that of the original 

audio waveform (the smaller the NMR, the better the quality of 

the decoded audio). The test audio waveform is the MPEG-4 

sound quality assessment materials (SQAM). The aggregated 

comparison results are shown in Table 1. 

Table 1 Comparison of different reversible MDCT modules.  

Reversible MDCT  Matrix  

Lifting 

Reversible 

Rotations  

MSE 0.48 1.78 

MAD 0.53 1.04 

PAD 11.86 18.32 

Lossless compression ratio 2.88:1 2.77:1 

Lossy NMR (64kbps) -2.18 -0.06 

Lossy NMR (32kbps) 2.26 3.63 

Lossy NMR (16kbps) 5.41 6.11 

It is observed that with matrix lifting, the output of the reversible 

MDCT becomes much closer to the float MDCT, with MSE 

reduces by 73%. The improvement of the reversible MDCT also 

results in better lossless and lossy compression performance, as 

the lossless coding rate is reduced by 4%, and the lossy decoding 

NMR is increased by an average of 1.4dB. As a benchmark, the 

Monkey’s Audio, the current state-of-the-art in lossless audio 

compression, compresses the test audio with a compression ratio 

of 2.93:1. PLEAC is thus within 2% of the lossless performance 

of the Monkey’s Audio. Yet, the compressed bitstream of 

PLEAC can be flexibly and continuously scaled. 
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