REVERSIBLE FFT AND MDCT VIA MATRIX LIFTING

Jin Li

Microsoft Research, Communication, Collaboration and Signal Processing,
One Microsoft Way, Bld. 113, Redmond, WA, 98052.
Email: jinl@microsoft.com

ABSTRACT

Reversible transform not only converts integer input to integer
output, but also reconstructs the exact input from the output. It
is one of the key modules for lossless and progressive to lossless
media codecs. We have established [1] that the closer the re-
versible transform is to its float counter part, the better the com-
pression performance of the lossless and progressive to lossless
codecs that utilize the transform. In this work, a new design of
the reversible transform based on matrix lifting is proposed.
With matrix lifting, we can design transform that is reversible, is
close in transform value to its float counter part, and can be
computed via fast algorithms. A progressive-to-lossless embed-
ded audio codec employing the reversible MDCT with matrix
lifting is implemented. Superior results on lossless and lossy
audio compression are demonstrated.

1. INTRODUCTION

Reversible transform is a key module for lossless and progres-
sive-to-lossless media codecs. To develop a progressive to loss-
less audio codec from a conventional audio codec, such as a
MPEG-1 layer 3 (MP3) audio codec, the key is to swap the float
modified discrete cosine transform (MDCT') module with a
reversible MDCT module, and then swap the entropy coding
module with a lossless embedded entropy coding module. Both
the reversible transform module and the lossless entropy coding
module establish one-to-one correspondence between their input
and output. Thus, from the compressed bitstream, the input au-
dio can be exactly reconstructed.

An ideal reversible transform possesses the following character-
istics. 1) It transforms integer input to integer output. 2) The
integer input can be exactly reconstructed from the output. 3)
The data volume of the output is the same as the input. 4) The
forward and inverse transform can be computed efficiently, pref-
erably with a fast transform structure. 5) The integer transform
value should be as close as possible to the value of the float
transform that it is referred. The first two characteristics ensure
that the transform is indeed reversible. As long as the output is
preserved in the entropy coding stage, the input can be exactly
reconstructed from the inverse transform. The third character
requires that the reversible transform be designed with reference
to a normalized transform. It assures that the output be dense,
which can be efficiently entropy encoded without waste. The
forth character prefers a transform that can be implemented effi-
ciently. The fifth character sets out that the output difference

! Sometimes, modulated lapped transform (MLT) is used, which
is essentially MDCT with alternative window and phase.

0-7803-8484-9/04/$20.00 ©2004 IEEE

IV -173

between the reversible transform and the float transform, which
is defined as the quantization noise of the reversible transform, is
as small as possible. The quantization noise is generated by the
rounding operation used in various stages of the reversible trans-
form, whose quantization noise has little correlation with the
input and the output. We can thus consider the output of the
reversible transform be the sum of a float transform plus a ran-
dom, uncorrelated quantization noise. Since the random quanti-
zation noise cannot be compressed efficiently, the smaller the
quantization noise, the fewer the bits are needed to encode the
output (thus lead to better lossless performance). The quantiza-
tion noise also creates a noise floor in the output of the reversi-
ble transform, which reduces the audio quality in the progres-
sive-to-lossless stage as well. It is shown in [1] that the reduction
of quantization noise improves both the lossless and progressive-
to-lossless compression performance.

Traditionally, a reversible transform is derived from its reference
float transform by converting each and every basic module, often
a rotation, into a corresponding reversible module, i.e., a re-
versible rotation. We notice that a float rotation can be imple-
mented via a 3-step lifting operations as:

cosf —sinf| |1 C‘L.a_l 1 0|1 7‘:05_9_1 . (D
Liné’ cos@}_ 0 8"1“9 {sina 1} 0 31r11€
The rotation becomes reversible by using roundings in each
lifting step:
stepO:z:x+[c0y] @)
stepl:x" =y +e,z] ’
step2:y'=z+ [cox']
where c;=(cosf-1)/siné and c;=sinf are lifting parameters, [x] is
the rounding operation. An improved reversible rotation with

smaller quantization noise has been proposed in [1], where three
new factorizations of the rotation have been proposed:

[cos@ —sin@ 10 1 —sind-1 1 011 —siné-11 (3)
|sin@ cos@ | |-1 0 0 00156' cosé 1]| 00139

[cos® —sing] [-1 0] sinf-1 1 0]|; siné-lry 4 4)
|sind cos@ o1 0 cols¢9 cosé 1], 0015'9 10

fcos@ —sing] [-1 0] —cosé-1 1 o]|; zeosf=1r o ®)
| sin@ cosﬁ}:[o 1}0 Sirllg {sina 1] 0 sirlu9 {0 —l}
Equations (3)-(5) still use 3-step lifting, but with different lifting
parameters ¢, and ¢;. By using factorization forms (1), (3), (4)
and (5) for rotation angles (-0.257,0.25x), (-0.757,-0.257),
(0.257,0.757) and (0.75x,1.257), the quantization noise of the
reversible rotation can be reduced.

ICASSP 2004

An alternative method is to factor a large component of the float
transform into upper and lower unit triangular matrixes (UTM),
which are triangular matrixes with diagonal entry 1 or -1. It is
shown in [3] that an even sized real matrix T with determinant of
norm 1 can be factored into:

T=PL,UL,, (6
where P is a permutation matrix, L; and L, are lower UTMs, and
U is an upper UTM. Matrixes L;, L, and U can be reversibly
implemented via lifting with N rounding operations, with N be-
ing the size of the matrix. The implementation of (6) leads to less
rounding operations for large transform matrix, and thus smaller
quantization error. Nevertheless, unlike a structured transform
such as FFT, there is usually no structure in matrix L;, L, and U,
and thus there is no fast algorithm to compute multiplication by
matrix L;, L, and U. The computational complexity of such
approach is thus high.

In this work, we propose a new approach of implementing the
reversible transform that we called matrix lifting. In stead of
using lifting on the scalar variables, matrix lifting applies a lift-
ing step as a float transform followed by a vector rounding. We
demonstrate that an entire transform, e.g., a fast Fourier trans-
form (FFT) or a large part of MDCT, may be reversibly imple-
mented via matrix lifting, with reduced rounding operations and
efficient fast transform.

The rest of the paper is organized as follows. The basic idea of
the matrix lifting is presented in Section 2. The implementation
of the reversible FFT and MDCT with matrix lifting is shown in
Section 3. Experimental results are shown in Section 4.

2. MATRIX LIFTING

Theory 1: Every non-singular even sized matrix S,y (real or
complex) of size 2Nx2N can be factored into :

ol P e
AN IN IN IN DN IN

where P,y and Q,y are permutation matrixes of size 2Nx2N, Iy
is the identity matrix, Ay, Cy and Dy are NxN matrixes, and By
is a non-singular NxN matrix.
Proof: Since S,y is non-singular, there exists permutation ma-
trixes P' and Q' so that

2N 2N

S S
S =P 1 12 ’ ®)
N zN{S21 S, Q.n

with Sy, being non-singular. Observing that:

|:Sn S12:||: Iy :|:|: S12:| 9
S21 Szz _S;lell IN _(Szzs;zlsn_sn) Szz

By taking determinant of S,n, and using the distributive property
of the determinant, we have
det(S,y) =det(S,S};S,; =S,) det(S,,) - (10)

The matrix S, 2S*‘

S, —S,, is thus non-singular as well. By as-

signing:
Uy = (SZZS;ZISII _S21)715 an
Ay =(-1y +Szz)s;zlr (12)
B, =S,UY, 13)
C.=U,, (14)
D, =-U," +S.8,,. 15)

We can easily verify that (7) holds, and By is a non-singular.

QZN PZN

Q'

Figure 2 Inverse reversible transform via matrix lifting.

Using equation (7), we can derive a reversible transform shown
in Figure 1. The input of the reversible transform is a size 2N
(for real transform) or 4N (for complex transform, as each com-
plex consists of an integer real part and an integer imaginary part
) integer vectors. After the permutation operation Q,y, it is split
into two size N (real) or size 2N (complex) integer vectors X and
Y, which are transformed through:

Y, =Y+[DX]
X, =X+[C,Y] (16)
X'=revB,(X,)
Y'=Y, +[AX]

where Ay, Cy and Dy are float transforms, [x] represents a vec-
tor rounding operation. In Cartesian coordinate, [x] can be im-
plemented via rounding every element of x. “Rev By” is a re-
versible transform derived from the non-singular transform By.
Finally, another permutation P,y is applied on the resultant inte-
ger vectors X’ and Y’. Because each of the above operation can
be exactly reversed, the entire transform is reversible with the
inverse of the transform shown in Figure 2.
We call the operation in (16) as matrix lifting, because it bears
similarity to the lifting used in (2), except that the multiplication
operation now is a matrix multiplication, and the rounding op-
eration is a vector rounding. Note that our approach is different
from the approach of [3], where matrix S,y is factored into UTM
matrices, each row of which is still calculated via scalar lifting.
Using different permutation matrixes P,y and Q,y, we may fac-
tor the transform S,y into reversible transforms with different
lifting matrix Ay, Cy and Dy and reversible core By. The trick is
to select the permutation matrixes P,y and Q,y so that:

a) The reversible core By is as simple as possible.

b) The computation complexity of transform Ay, Cy and

Dy is as low as possible.

In the following, we derive the reversible transforms for FFT and
MDCT.

3. REVERSIBLE FFT AND MDCT

3.1. Reversible FFT via Matrix lifting
An N-point normalized fast Fourier transform (FFT) takes the
form:

IV -174

F, L [w‘(wy =e /N 17

\/N by]i,/':o,l,---,N—l’ N
In the following, we derive the reversible transform for a 2N-
point FFT Fyn. Inspired by the radix-2 FFT algorithm, we first
apply permutation operation OE,y on the input, which separates
a 2N complex vector into a size-N complex vector of even in-
dexes, and a size-N vector of odd indexes. We now have:

1 1
—F, —=A\(0.50)F
. \/E N \/E N()N OF (18)
2N 1 1 2N

55 —ﬁAN(O.S,O)FN

where Fy is the N-point FFT, and

Ay (0(, :B) = diag{wfi(e (20,1, N—1 (19
is a diagonal matrix of N rotations. Its inverse takes the form:
A,_Vl (aaﬁ):AN(_ a’ﬂ) (20)

Setting P,n=I)n and Q,n=0E,y, matrix F,y can be factorized

into the matrix lifting form of (7), with:

Ay =—V2FIA((-0.50) - 14,
B, =—-A(0.50)F F, =-A,(0.50)Ty, 21)
1
Cc,=—+F],
N \/5 N
D, = (V2I, + FY A ((=0.50)F,.

In (21), F'is the inverse FFT, Ty is a permutation matrix in the

form of:
1

1]- (22)
Ty =

1

The reversible core By is a permutation Ty followed by N rota-
tions Ay (0. 5,0), which can be implemented via the multiple

factorization reversible rotation in (1)-(5). The float transform
Ay consists of an inverse FFT, N rotations, and a vector addi-
tion®. Transform Cy is an inverse FFT. The transform Dy con-
sists of a forward FFT, an inverse FFT and N rotations. An N-
point reversible FFT (with 2N input integers, as each input is
complex with real and imaginary parts) can thus be implemented
via (21), with the computation complexity be four N/2-point
complex FFT, N float rotations, and N/2 reversible rotations. It
requires 4.5N roundings, with N roundings after each matrix
lifting Ay, Cy and Dy, and 1.5N roundings for N/2 reversible
rotations in By.

3.2. Reversible MDCT via Matrix lifting
An N-point MDCT transform takes in a length-2N signal, and
outputs N coefficients. It can be expressed as:

MDCT,\H,, (23)
where
MDCT,, = \ﬁ cosl(i +lj(j+ M) . (24)
N N 2 2 i=0,1,--,N—1,
J=0,1,--2N-1.
and M,y = diag{h(n)},_q,...2v (25)

2 Scale by +/2 can be rolled into either the FFT or the rotation
operations An(a,B), with no additional complexity required.

MDCT,y is the MDCT matrix, 4(n) is a window function. In
MPEG audio, the window function /() is:

h(n) = sin%(n +0.5)- (26)

According to [4], the MDCT transform in (23) can be calculated
via a type-IV discrete sine transform (DST) shown in Figure 3°.

Xe Type-1V

Xs DST

JETETE]

Figure 3 MDCT via type-IV DST.

The input signal is first grouped into pairs x(7) and x(N-n),
x(N+n) and x(2N-n). Each pair is then treats as a complex num-
ber and rotates according to an angle specified by A(n). We call
this the window rotation. The middle section of the signal is then
transformed by a type-IV DST with:

DSTIV, = Ng Sin(%(i +0.5)(j+ O.S)H > @7

i,j=0,1,---,N—1
A 2N-point type-IV DST can be further converted to an N-point
fractional-shifted FFT with a=£=0.25, as:

DSTIV,, =P, F,(0.25,0.25)Q""P,, (28)
where:
1 i=jandi iseven
‘ e (29
Py = [pw.lwnh pi; =91 i=2N-jandi isodd
0 otherwise
1} (30)
1

QDST -
2N - d
1
1
After permutation operation p, and QD' each pair of signal is

converted to a complex number, and feed into the fractional-
shifted FFT Fy(af) in the form of:

1 i+a)(j+, 31
Rul@f)= b] D
where o and £ are shifting parameters. We may interpret each
complex multiplication of the fractional-shifted FFT as a 2x2
rotation matrix of (1).
Because
Fy (aaﬂ)zAN(ﬂ»a)FNAN(aso)’ (32)
the fractional-shifted FFT can be implemented via pre-
rotation Ay (0{,0), FFT Fy and post-rotation AN(ﬂ,g), By im-
plementing the pre- and post- rotations and window /(n) rota-

tions with reversible rotations (1)-(5), and implementing the
reversible FFT through Section 3.1, we may implement a re-

3 MDCT may be calculated via type-IV DCT, with alternative
window folding and no sign change. Type-IV DCT may be cal-
culated via an inverse fractional-shifted FFT of a=£=0.25.

IV -175

versible MDCT. Implementing an N-point MDCT this way re-
quires 6.75N roundings.

Nevertheless, it is possible to implement the reversible MDCT
with less roundings, and with about the same computation com-
plexity. We observe that the fractional shifted FFT has the fol-
lowing properties:

Theory 2. Fractional-shifted FFT Fy(af) is orthogonal.

Proof: The inner product of any two vectors of Fy(ef) is:

1 —(i+a)(j+, +(k+a)(j+ 1 —i —i)j -
N;WN() ﬂ)‘WN(k)(j+B) =waf)ﬁ;wxf)Jj =5(k—l).
(33)

Corollary 2. The inverse fractional-shifted FFT is
— 1 —(i+, jtor
FNI(OI’ﬁ):ﬁ[WN(o)][,j:(),],...,,v—l' (34)
Thoery 3:
Ry (@) =F (o, 0)A (-2, 0)F (o,) (3%)

where Ry(0) is a permutation matrix with only element (0,0) and
elements (i, N-i), i=1,,N-1 are non-zero.
Proof: Let R (a)= [”N (i,5)] > then:

i k=01, N
1 & : ; 20 ek ik
. (l,k) — NZW?\(/HM(/HZ)W{’ (1)(/+!Z)W7\([]+!1)(+a) _ W’f’ﬁ)aa(i +k)
j=0

(36)
To derive a reversible transform for the fractional-shifted FFT
with a=$=0.25, we again use the radix-2 FFT structure. Notic-
ing theory 3, we factor the fractional shifted FFT as follows:
Fyx(0.B) = K xS;nOE ., G7
with:
k. | A+p)2-a0) .(38)
2” WA+)/ 2-a,c)

J%AN(‘%’O’)FN(O"“) \%FN(OI’“) -(39)
EAN(—%,OI)FN(OI,(Z) "5 (@)

Substitute a=0.25 and expanding fractional-shifted FFT via (32),
we factor the transform S,y into the matrix lifting form of (7),
with:

and S, =

Ay =—V2A(-0250.25)FT A (-0250) -1,
-1
(40)
B, =-R (0.25)= r >
J
C. - 7% Ay (£0.25.025)FT A (0.25,0.5)

Dy = Ay(-0.25025)V2 +F7 A\ (-0.50.125))F A (0.25,0)

In (40), the reversible core By is simply permutation, as multi-
plying by j is just swapping the real and imaginary part and
changing the sign of the imaginary part. Using (40), an N-point
MDCT can be implemented via N/2 reversible window rotations
of h(n), a reversible matrix lifting of S,y, and N/2 reversible
rotations of Kjy. The total computational complexity is N re-
versible rotations, four N/4-point FFT, and 1.75N float rotations
used in (40). The implementation complexity is about double of
a float MDCT, which requires two N/4-point FFT, and 1.5N
float rotations. Altogether, the reversible MDCT requires 4.5N
roundings, with three 0.5N roundings after each matrix lifting of
(40), and 3N roundings for the N reversible rotations.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed reversible MDCT,
we put the reversible MDCT module into a progressive to loss-
less embedded audio codec (PLEAC). We then compare the
following reversible MDCT implementations:

a) With matrix lifting described in Section 3.2.

b) With scalar 3-step lifting of [1].

All the other modules of the PLEAC codec are the same, and are
described in [1]. We first compare the output difference of the
reversible MDCT module versus that of a float MDCT module,
in terms of the mean square error (MSE), the mean absolute
difference (MAD) and the peak absolute difference (PAD). We
then compare the lossless compression ratio of the two codecs.
Finally, we compare the progressive coding performance, by
truncating the losslessly compressed bitstream to a lossy com-
pressed audio bitstream of 64, 32 and 16kbps, and measure the
decoding noise-mask-ratio (NMR) versus that of the original
audio waveform (the smaller the NMR, the better the quality of
the decoded audio). The test audio waveform is the MPEG-4
sound quality assessment materials (SQAM). The aggregated
comparison results are shown in Table 1.

Table 1 Comparison of different reversible MDCT modules.

Reversible MDCT Matrix Reversible
Lifting Rotations
MSE 0.48 1.78
MAD 0.53 1.04
PAD 11.86 18.32
Lossless compression ratio 2.88:1 2.77:1
Lossy NMR (64kbps) -2.18 -0.06
Lossy NMR (32kbps) 2.26 3.63
Lossy NMR (16kbps) 5.41 6.11

It is observed that with matrix lifting, the output of the reversible
MDCT becomes much closer to the float MDCT, with MSE
reduces by 73%. The improvement of the reversible MDCT also
results in better lossless and lossy compression performance, as
the lossless coding rate is reduced by 4%, and the lossy decoding
NMR is increased by an average of 1.4dB. As a benchmark, the
Monkey’s Audio, the current state-of-the-art in lossless audio
compression, compresses the test audio with a compression ratio
0f 2.93:1. PLEAC is thus within 2% of the lossless performance
of the Monkey’s Audio. Yet, the compressed bitstream of
PLEAC can be flexibly and continuously scaled.

5. ACKNOWLEDGEMENTS

The author wishes to acknowledge H. S. Malvar and J. D. Johns-
ton, for their insightful comments and discussions.

6. REFERENCES

[17 J. Li, “A progressive to lossless embedded audio coder
(PLEAC) with reversible modulated lapped transform”, in Proc.
of ICASSP '03, Vol. 5, pp. 413-416, Hong Kong, China.

[2] R. Geiger, J. Herre, J. Koller, and K. Brandenburg,
“IntMDCT - A link between perceptual and lossless audio cod-
ing,” in Proc. of [CASSP 2002, Orlando, 2002.

[3] J. Wang, J. Sun and S. Yu, “1-D and 2-D transforms from
integers to integers”, in Proc. of ICASSP 03, Hong Kong, China.
[4] H. S. Malvar, “Lapped transform for efficient trans-
form/subband coding”, IEEE Trans. On ASSP, vol. 38, no. 6,
Jun. 1990, pp. 969-978.

IV -176

	footer1:

