
REVERSIBLE FFT AND MDCT VIA MATRIX LIFTING

Jin Li

Microsoft Research, Communication, Collaboration and Signal Processing,

One Microsoft Way, Bld. 113, Redmond, WA, 98052.

Email: jinl@microsoft.com

ABSTRACT

Reversible transform not only converts integer input to integer

output, but also reconstructs the exact input from the output. It

is one of the key modules for lossless and progressive to lossless

media codecs. We have established [1] that the closer the re-

versible transform is to its float counter part, the better the com-

pression performance of the lossless and progressive to lossless

codecs that utilize the transform. In this work, a new design of

the reversible transform based on matrix lifting is proposed.

With matrix lifting, we can design transform that is reversible, is

close in transform value to its float counter part, and can be

computed via fast algorithms. A progressive-to-lossless embed-

ded audio codec employing the reversible MDCT with matrix

lifting is implemented. Superior results on lossless and lossy

audio compression are demonstrated.

1. INTRODUCTION

Reversible transform is a key module for lossless and progres-

sive-to-lossless media codecs. To develop a progressive to loss-

less audio codec from a conventional audio codec, such as a

MPEG-1 layer 3 (MP3) audio codec, the key is to swap the float

modified discrete cosine transform (MDCT1) module with a

reversible MDCT module, and then swap the entropy coding

module with a lossless embedded entropy coding module. Both

the reversible transform module and the lossless entropy coding

module establish one-to-one correspondence between their input

and output. Thus, from the compressed bitstream, the input au-

dio can be exactly reconstructed.

An ideal reversible transform possesses the following character-

istics. 1) It transforms integer input to integer output. 2) The

integer input can be exactly reconstructed from the output. 3)

The data volume of the output is the same as the input. 4) The

forward and inverse transform can be computed efficiently, pref-

erably with a fast transform structure. 5) The integer transform

value should be as close as possible to the value of the float

transform that it is referred. The first two characteristics ensure

that the transform is indeed reversible. As long as the output is

preserved in the entropy coding stage, the input can be exactly

reconstructed from the inverse transform. The third character

requires that the reversible transform be designed with reference

to a normalized transform. It assures that the output be dense,

which can be efficiently entropy encoded without waste. The

forth character prefers a transform that can be implemented effi-

ciently. The fifth character sets out that the output difference

1 Sometimes, modulated lapped transform (MLT) is used, which

is essentially MDCT with alternative window and phase.

between the reversible transform and the float transform, which

is defined as the quantization noise of the reversible transform, is

as small as possible. The quantization noise is generated by the

rounding operation used in various stages of the reversible trans-

form, whose quantization noise has little correlation with the

input and the output. We can thus consider the output of the

reversible transform be the sum of a float transform plus a ran-

dom, uncorrelated quantization noise. Since the random quanti-

zation noise cannot be compressed efficiently, the smaller the

quantization noise, the fewer the bits are needed to encode the

output (thus lead to better lossless performance). The quantiza-

tion noise also creates a noise floor in the output of the reversi-

ble transform, which reduces the audio quality in the progres-

sive-to-lossless stage as well. It is shown in [1] that the reduction

of quantization noise improves both the lossless and progressive-

to-lossless compression performance.

Traditionally, a reversible transform is derived from its reference

float transform by converting each and every basic module, often

a rotation, into a corresponding reversible module, i.e., a re-

versible rotation. We notice that a float rotation can be imple-

mented via a 3-step lifting operations as:

−
⋅⋅

−
=

−

10
sin

1cos
1

1sin

01

10
sin

1cos
1

cossin

sincos
θ

θ

θθ
θ

θθ
θθ . (1)

The rotation becomes reversible by using roundings in each

lifting step:

[]
[]
[]+=

+=′
+=

'':2step

:1step

:0step

0

1

0

xczy

zcyx

ycxz
, (2)

where c0=(cos -1)/sin and c1=sin are lifting parameters, [x] is

the rounding operation. An improved reversible rotation with

smaller quantization noise has been proposed in [1], where three

new factorizations of the rotation have been proposed:

−−
⋅⋅

−−

−
=

−

10
cos

1sin
1

1cos

01

10
cos

1sin
1

01

10

cossin

sincos
θ

θ

θθ
θ

θθ
θθ (3)

−
⋅⋅

−−
=

−
01

10

10
cos

1sin
1

1cos

01

10
cos

1sin
1

10

01

cossin

sincos
θ

θ

θθ
θ

θθ
θθ (4)

−

−−
⋅⋅

−−−
=

−
10

01

10
sin

1cos
1

1sin

01

10
sin

1cos
1

10

01

cossin

sincos
θ
θ

θθ
θ

θθ
θθ (5)

Equations (3)-(5) still use 3-step lifting, but with different lifting

parameters c0 and c1. By using factorization forms (1), (3), (4)

and (5) for rotation angles (-0.25 ,0.25), (-0.75 ,-0.25),

(0.25 ,0.75) and (0.75 ,1.25), the quantization noise of the

reversible rotation can be reduced.

An alternative method is to factor a large component of the float

transform into upper and lower unit triangular matrixes (UTM),

which are triangular matrixes with diagonal entry 1 or -1. It is

shown in [3] that an even sized real matrix T with determinant of

norm 1 can be factored into:

21ULPLT = , (6)

where P is a permutation matrix, L1 and L2 are lower UTMs, and

U is an upper UTM. Matrixes L1, L2 and U can be reversibly

implemented via lifting with N rounding operations, with N be-

ing the size of the matrix. The implementation of (6) leads to less

rounding operations for large transform matrix, and thus smaller

quantization error. Nevertheless, unlike a structured transform

such as FFT, there is usually no structure in matrix L1, L2 and U,

and thus there is no fast algorithm to compute multiplication by

matrix L1, L2 and U. The computational complexity of such

approach is thus high.

In this work, we propose a new approach of implementing the

reversible transform that we called matrix lifting. In stead of

using lifting on the scalar variables, matrix lifting applies a lift-

ing step as a float transform followed by a vector rounding. We

demonstrate that an entire transform, e.g., a fast Fourier trans-

form (FFT) or a large part of MDCT, may be reversibly imple-

mented via matrix lifting, with reduced rounding operations and

efficient fast transform.

The rest of the paper is organized as follows. The basic idea of

the matrix lifting is presented in Section 2. The implementation

of the reversible FFT and MDCT with matrix lifting is shown in

Section 3. Experimental results are shown in Section 4.

2. MATRIX LIFTING

Theory 1: Every non-singular even sized matrix S2N (real or

complex) of size 2Nx2N can be factored into :

,2N

NN

N

N

NN

N

N

NN

N

2N2N Q
ID

I

I

CI

I

B

IA

I
PS = (7)

where P2N and Q2N are permutation matrixes of size 2Nx2N, IN

is the identity matrix, AN, CN and DN are NxN matrixes, and BN

is a non-singular NxN matrix.

Proof: Since S2N is non-singular, there exists permutation ma-

trixes t

2N
P and t

2N
Q so that

,2N

2221

1211

2N2N Q
SS

SS
PS = (8)

with S12 being non-singular. Observing that:

,
)(−−

=
− −−

222111

1

1222

12

N11

1

12

N

2221

1211

SSSSS

S

ISS

I

SS

SS (9)

By taking determinant of S2N, and using the distributive property

of the determinant, we have

)det()det()det(122111

1

12222N SSSSSS −= − . (10)

The matrix
2111

1

1222 SSSS −− is thus non-singular as well. By as-

signing:

,)(1

211

−− −= SSSSU 1

1

1222N
 (11)

,)(1

1222NN SSIA −+−= (12)

,
1

12N NUSB
−= (13)

,NN UC = (14)

.11

1

12

1

NN SSUD
−− +−= (15)

We can easily verify that (7) holds, and BN is a non-singular.

Figure 1 Forward reversible transform via matrix lifting.

CN

[]

[]

Rev B
-1
N

[]

X

Y

X’

Y’

DNAN
P
t
2N Q

t
2N

Figure 2 Inverse reversible transform via matrix lifting.

Using equation (7), we can derive a reversible transform shown

in Figure 1. The input of the reversible transform is a size 2N

(for real transform) or 4N (for complex transform, as each com-

plex consists of an integer real part and an integer imaginary part

) integer vectors. After the permutation operation Q2N, it is split

into two size N (real) or size 2N (complex) integer vectors X and

Y, which are transformed through:

[]
[]

[]

,
1

+=
=

+=
+=

XAYY'

)(XrevBX'

YCXX

XDYY

N1

N

N1

N1

 (16)

where AN, CN and DN are float transforms, [x] represents a vec-

tor rounding operation. In Cartesian coordinate, [x] can be im-

plemented via rounding every element of x. “Rev BN” is a re-

versible transform derived from the non-singular transform BN.

Finally, another permutation P2N is applied on the resultant inte-

ger vectors X’ and Y’. Because each of the above operation can

be exactly reversed, the entire transform is reversible with the

inverse of the transform shown in Figure 2.

We call the operation in (16) as matrix lifting, because it bears

similarity to the lifting used in (2), except that the multiplication

operation now is a matrix multiplication, and the rounding op-

eration is a vector rounding. Note that our approach is different

from the approach of [3], where matrix S2N is factored into UTM

matrices, each row of which is still calculated via scalar lifting.

Using different permutation matrixes P2N and Q2N, we may fac-

tor the transform S2N into reversible transforms with different

lifting matrix AN, CN and DN and reversible core BN. The trick is

to select the permutation matrixes P2N and Q2N so that:

a) The reversible core BN is as simple as possible.

b) The computation complexity of transform AN, CN and

DN is as low as possible.

In the following, we derive the reversible transforms for FFT and

MDCT.

3. REVERSIBLE FFT AND MDCT

3.1. Reversible FFT via Matrix lifting
An N-point normalized fast Fourier transform (FFT) takes the

form:

[] Nj

NNji

ij

N eww
N

/2

1,,1,0,
,

1 π−
−= ==

LNF . (17)

In the following, we derive the reversible transform for a 2N-

point FFT F2N. Inspired by the radix-2 FFT algorithm, we first

apply permutation operation OE2N on the input, which separates

a 2N complex vector into a size-N complex vector of even in-

dexes, and a size-N vector of odd indexes. We now have:

,

)0,5.0(
2

1

2

1

)0,5.0(
2

1

2

1

2 2N

NNN

NNN

N OE

FF

FF

F

−
=

 (18)

where FN is the N-point FFT, and

() { }
1,,1,0

)(, −=
+=

Nj

j

Nwdiag
L

βαβαN
 (19)

is a diagonal matrix of N rotations. Its inverse takes the form:

() ().,,1 βαβα −=−
NN

 (20)

Setting P2N=I2N and Q2N=OE2N, matrix F2N can be factorized

into the matrix lifting form of (7), with:

()−+=

−=

−=−=
−−−=

.)0,5.0(2

,
2

1

,)0,5.0()0,5.0(

,)0,5.0(2

NN

T

NNN

T

NN

NNNNNN

NN

T

NN

FFID

FC

TFFB

IFA

 (21)

In (21), t

N
F is the inverse FFT, TN is a permutation matrix in the

form of:

=

1

1

1

N
NT

. (22)

The reversible core BN is a permutation TN followed by N rota-

tions ()0,5.0N
, which can be implemented via the multiple

factorization reversible rotation in (1)-(5). The float transform

AN consists of an inverse FFT, N rotations, and a vector addi-

tion2. Transform CN is an inverse FFT. The transform DN con-

sists of a forward FFT, an inverse FFT and N rotations. An N-

point reversible FFT (with 2N input integers, as each input is

complex with real and imaginary parts) can thus be implemented

via (21), with the computation complexity be four N/2-point

complex FFT, N float rotations, and N/2 reversible rotations. It

requires 4.5N roundings, with N roundings after each matrix

lifting AN, CN and DN, and 1.5N roundings for N/2 reversible

rotations in BN.

3.2. Reversible MDCT via Matrix lifting
An N-point MDCT transform takes in a length-2N signal, and

outputs N coefficients. It can be expressed as:

2N2NHMDCT , (23)

where

.12,,1,0
,1,,1,02

1

2

1
cos

2

−=
−=

+++=
Nj

Ni

N
ji

NN
L

L

π
2NMDCT

, (24)

 and { }
.12,,1,0

)(−== Nnnhdiag
L2NH . (25)

2 Scale by 2 can be rolled into either the FFT or the rotation

operations ΛN(α,β), with no additional complexity required.

MDCT2N is the MDCT matrix, h(n) is a window function. In

MPEG audio, the window function h(n) is:

()5.0
2

sin)(+= n
N

nh
π . (26)

According to [4], the MDCT transform in (23) can be calculated

via a type-IV discrete sine transform (DST) shown in Figure 33.

Figure 3 MDCT via type-IV DST.

The input signal is first grouped into pairs x(n) and x(N-n),

x(N+n) and x(2N-n). Each pair is then treats as a complex num-

ber and rotates according to an angle specified by h(n). We call

this the window rotation. The middle section of the signal is then

transformed by a type-IV DST with:

()()
1,,1,0,

5.05.0sin
2

−=

++=
Nji

ji
NN

L

π
NDSTIV

, (27)

A 2N-point type-IV DST can be further converted to an N-point

fractional-shifted FFT with = =0.25, as:

() ,2N

DST

N2N2N PQ0.25,0.25FPDSTIV
2N

= (28)

where:

[] −=
=

==
otherwise0

oddisand21

evenisand1

with, ,, ijNi

iji

pp jiji2NP
, (29)

,

1

1

1

1

= O
DST

2NQ

 (30)

After permutation operation
2NP and ,DST

2NQ each pair of signal is

converted to a complex number, and feed into the fractional-

shifted FFT FN(α,β) in the form of:

() [] ,
1

,
1,,1,0,

))((

−=
++=

Nji

ji

Nw
N

L

βαβαNF
 (31)

where α and β are shifting parameters. We may interpret each

complex multiplication of the fractional-shifted FFT as a 2x2

rotation matrix of (1).

Because

() () ()0,,, ααββα NNNN FF = , (32)

the fractional-shifted FFT can be implemented via pre-

rotation ()0,αN
, FFT FN and post-rotation ()αβ ,N

. By im-

plementing the pre- and post- rotations and window h(n) rota-

tions with reversible rotations (1)-(5), and implementing the

reversible FFT through Section 3.1, we may implement a re-

3 MDCT may be calculated via type-IV DCT, with alternative

window folding and no sign change. Type-IV DCT may be cal-

culated via an inverse fractional-shifted FFT of = =0.25.

versible MDCT. Implementing an N-point MDCT this way re-

quires 6.75N roundings.

Nevertheless, it is possible to implement the reversible MDCT

with less roundings, and with about the same computation com-

plexity. We observe that the fractional shifted FFT has the fol-

lowing properties:

Theory 2. Fractional-shifted FFT FN(α,β) is orthogonal.

Proof: The inner product of any two vectors of FN(α,β) is:

).(
11)()())(())((ikww
N

ww
N j

jik

N

ik

N

j

jk

N

ji

N −==⋅ −−+++++− δββαβα

 (33)

Corollary 2. The inverse fractional-shifted FFT is

() [] .
1

,
1,,1,0,

))((1

−=
++−− =

Nji

ji

Nw
N

L

αββα
N

F (34)

Thoery 3:

() () ()ααααααα ,,2,)(NNNN FFR −= , (35)

where RN(α) is a permutation matrix with only element (0,0) and

elements (i,N-i), i=1,…,N-1 are non-zero.

Proof: Let () []
1,,1,0,

),(−==
Nki

kir
LNNR , then:

).(
1

),(
)(

1

0

))(())(2())((kiWWWW
N

kir ki

N

N

j

kj

N

j

N

ji

N +== +
−

=

+++++ δααααααα
N

 (36)

To derive a reversible transform for the fractional-shifted FFT

with = =0.25, we again use the radix-2 FFT structure. Notic-

ing theory 3, we factor the fractional shifted FFT as follows:

,, 2N2N2N2N OESK)(F = (37)

with:

()()
()()−+

−+
=

ααβ
ααβ

β ,2/1

,2/1

2 N

N

2NK
W

, (38)

()
() −−

−
=

),(
2

1
),(,

2
1

2

1

),(
2

1
),(,

2
1

2

1

and

ααααα

ααααα

NNN

NNN

2N

FF

FF

S
. (39)

Substitute =0.25 and expanding fractional-shifted FFT via (32),

we factor the transform S2N into the matrix lifting form of (7),

with:

() ()

() ()
() ()() ()−+−=

−−=

−

=−=

−−−−=

.0,25.0125.0,5.0225.0,25.0

,5.0,25.025.0,25.0
2

1

,

1

)25.0(

,0,25.025.0,25.02

NNNN

N

T

NNN

N

NN

T

NNN

FFD

FC

RB

IFA

NN

N

T

j

j

N

 (40)

In (40), the reversible core BN is simply permutation, as multi-

plying by j is just swapping the real and imaginary part and

changing the sign of the imaginary part. Using (40), an N-point

MDCT can be implemented via N/2 reversible window rotations

of h(n), a reversible matrix lifting of S2N, and N/2 reversible

rotations of K2N. The total computational complexity is N re-

versible rotations, four N/4-point FFT, and 1.75N float rotations

used in (40). The implementation complexity is about double of

a float MDCT, which requires two N/4-point FFT, and 1.5N

float rotations. Altogether, the reversible MDCT requires 4.5N

roundings, with three 0.5N roundings after each matrix lifting of

(40), and 3N roundings for the N reversible rotations.

4. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed reversible MDCT,

we put the reversible MDCT module into a progressive to loss-

less embedded audio codec (PLEAC). We then compare the

following reversible MDCT implementations:

a) With matrix lifting described in Section 3.2.

b) With scalar 3-step lifting of [1].

All the other modules of the PLEAC codec are the same, and are

described in [1]. We first compare the output difference of the

reversible MDCT module versus that of a float MDCT module,

in terms of the mean square error (MSE), the mean absolute

difference (MAD) and the peak absolute difference (PAD). We

then compare the lossless compression ratio of the two codecs.

Finally, we compare the progressive coding performance, by

truncating the losslessly compressed bitstream to a lossy com-

pressed audio bitstream of 64, 32 and 16kbps, and measure the

decoding noise-mask-ratio (NMR) versus that of the original

audio waveform (the smaller the NMR, the better the quality of

the decoded audio). The test audio waveform is the MPEG-4

sound quality assessment materials (SQAM). The aggregated

comparison results are shown in Table 1.

Table 1 Comparison of different reversible MDCT modules.

Reversible MDCT Matrix

Lifting

Reversible

Rotations

MSE 0.48 1.78

MAD 0.53 1.04

PAD 11.86 18.32

Lossless compression ratio 2.88:1 2.77:1

Lossy NMR (64kbps) -2.18 -0.06

Lossy NMR (32kbps) 2.26 3.63

Lossy NMR (16kbps) 5.41 6.11

It is observed that with matrix lifting, the output of the reversible

MDCT becomes much closer to the float MDCT, with MSE

reduces by 73%. The improvement of the reversible MDCT also

results in better lossless and lossy compression performance, as

the lossless coding rate is reduced by 4%, and the lossy decoding

NMR is increased by an average of 1.4dB. As a benchmark, the

Monkey’s Audio, the current state-of-the-art in lossless audio

compression, compresses the test audio with a compression ratio

of 2.93:1. PLEAC is thus within 2% of the lossless performance

of the Monkey’s Audio. Yet, the compressed bitstream of

PLEAC can be flexibly and continuously scaled.

5. ACKNOWLEDGEMENTS

The author wishes to acknowledge H. S. Malvar and J. D. Johns-

ton, for their insightful comments and discussions.

6. REFERENCES

[1] J. Li, “A progressive to lossless embedded audio coder

(PLEAC) with reversible modulated lapped transform”, in Proc.

of ICASSP '03, Vol. 5, pp. 413-416, Hong Kong, China.

[2] R. Geiger, J. Herre, J. Koller, and K. Brandenburg,

“IntMDCT - A link between perceptual and lossless audio cod-

ing,” in Proc. of ICASSP 2002, Orlando, 2002.

[3] J. Wang, J. Sun and S. Yu, “1-D and 2-D transforms from

integers to integers”, in Proc. of ICASSP’03, Hong Kong, China.

[4] H. S. Malvar, “Lapped transform for efficient trans-

form/subband coding”, IEEE Trans. On ASSP, vol. 38, no. 6,

Jun. 1990, pp. 969-978.

	footer1:

