
The Seamlessly Multiplexed Embedded Codec (SMEC)  
and Its Application in Image Coding 

Jin Li 
Microsoft Research, Communication, Collaboration and Signal Processing 

One Microsoft Way, Bld. 113, Redmond, WA 98052. 
Tel. (425) 703-8451 Email: jinl@microsoft.com 

 
ABSTRACT 

The landmark JPEG 2000 image compression standard offers 
not only superior compression performance, but also incredible 
flexibility. The compressed bitstream of JPEG 2000 can be flexi-
bly reorganized to another bitstream of different bitrate, resolu-
tion, and spatial region of interest (ROI) or a combination of any 
of the above. Such flexibility is achieved by multiplexing the 
compressed bitstream pieces of multiple code-blocks together into 
a combined bitstream, with the length of the code-block bitstream 
piece (LOCB) embedded in the combined bitstream. The LOCB 
serves both to reorganize the bitstream, and to decode the bit-
stream. It represents a significant overhead, especially since there 
is no correlation between the neighbor LOCBs. In this work, we 
introduce seamless multiplexing, and separate the information 
needed for the reorganization, i.e., the LOCB, from the com-
pressed bitstream itself by using the decoder pointer to multiplex 
the bitstream pieces. As a result, the compressed bitstream con-
sists of code-block bitstream pieces seamlessly concatenated to 
each other. With seamless multiplexing, only the compressed 
bitstream (without LOCB) needs to be delivered to the receiving 
client. It results in better compression performance and higher 
granularity of access. Another benefit of seamless multiplexing is 
that the relative coding orders of the code-blocks are preserved in 
the bitstream reorganization. As a result, the seamlessly multi-
plexed embedded codec (SMEC) may utilize the dependencies 
among the code-blocks in the coding, thus further boost the com-
pression performance. 

 
1. INTRODUCTION 

 
Pioneered by Shapiro [1], embedded coding has the attractive 

feature that a lower rate compressed bitstream is embedded in a 
higher rate compressed bitstream. The resultant compressed bit-
stream can thus be reorganized to any lower bitrate through sim-
ple truncation. Embedded coding is usually achieved by coding 
the transform coefficients bitplane-by-bitplane, first the most sig-
nificant bitplane, then the second most significant bitplane, and all 
the way to the least significant bitplane. If the compressed bit-
stream is later truncated, at least the first several most significant 
bits of all coefficients have been encoded. The compressed bit-
stream can thus be truncated at any point with a graceful tradeoff 
between the distortion and the coding rate.  

As a new state-of-the-art image compression standard, JPEG 
2000[4] offers both good compression performance and incredible 
flexibility. The compressed bitstream of the JPEG 2000 can not 
only be scaled in different bitrate, as in prior embedded image 
codecs such as EZW[1], SPIHT[2] and RDE[5], but also be 
scaled in resolution and spatial region of interest (ROI). The scal-
ability in multiple facets is the result of the embedded block cod-
ing with optimized truncation (EBCOT)[3]. In EBCOT/JPEG 
2000, an image is first divided into multiple code-blocks, each of 
which consists of a rectangular block of coefficients. Every code-

block is then independently encoded into an embedded code-
block bitstream, which is broken down into a number of code-
block bitstream pieces. The code-block bitstream pieces are then 
multiplexed together to form a combined bitstream of JPEG 2000.  

 

Code-block 1
bitstream

Code-block 2
bitstream . . . . . . Code-block n

bitstream
Packet 
header

Global
header Tile 1                     . . .Packet 1 Packet n Tile 2 

Packet
Code-block 1 len . . . . . . Code-block n len

 
Figure 1. Syntax of the JPEG 2000 bitstream. 

The syntax of the combined bitstream of EBCOT/JPEG 2000 
can be shown in Figure 1. The bitstream is led by a global header, 
which contains information about the entire compressed bitstream, 
such as the image/tile size, the wavelet transform used, etc.. The 
body of the combined bitstream consists of a number of tiles, each 
of which further consists of a number of packets. A packet in turn 
consists of a number of code-block bitstream pieces. The bit-
stream piece of the code-block is the smallest access and reorgani-
zation unit in EBCOT/JPEG 2000. The EBCOT/JPEG 2000 
packet is led by a packet header, and it is the length of the code-
block bitstream piece (LOCB) in the packet header that enables 
the combined bitstream to be scaled and decoded. To scale the 
EBCOT/JPEG 2000 compressed bitstream by bitrate, the code-
block bitstream pieces corresponding to the less significant bit-
planes are dropped. To scale the compressed bitstream by resolu-
tion and/or ROI, the bitstream pieces corresponding to the code-
blocks outside the desired resolution and/or ROI are dropped. 
Scalability in multiple facets is thus achieved. To decode the 
compressed bitstream, the bitstream is demultiplexed into the 
bitstream pieces with the aide of LOCB. After demultiplexing, the 
bitstream pieces of the same code-block are concatenated together 
to recover the bitstream of the code-block. The code-block bit-
stream is then fed into the code-block decoder to recover the 
transform coefficients. After all transform coefficients are recov-
ered, they are inversely transformed to recover the image.  

Apparently, the LOCB is an integral part of the compressed bit-
stream in EBCOT/JPEG 2000. It has to be delivered, even if the 
received bitstream is not further reorganized. It is an overhead 
paid for the scalability in multiple facets. The smaller the bit-
stream piece is, the more the overhead is in proportion to the 
compressed bitstream. To reduce the overhead, EBCOT/JPEG 
2000 uses larger code-blocks and/or fewer layers of bitrate scal-
ability. For example, the default code-block of JPEG 2000 is 
64x64. Because the code-block is located in a wavelet subband, 
the corresponding spatial ROI is much larger, e.g., 2048x2048 for 
a 5-level wavelet transform. Though larger code-blocks and fewer 
bitrate layers reduce the overhead caused by the LOCB, it leads to 
poor granularity of access, which diminishes one of the key bene-
fits of the scalability in multiple facets. Another shortcoming is 

0-7803-8554-3/04/$20.00 ©2004 IEEE. 1285



that the code-block has to be independently encoded and decoded. 
Thus, the dependencies between the cross-resolution code-blocks 
can not be explored, which also affects the compression perform-
ance.  

Is the LOCB absolutely necessary to demultiplex the combined 
bitstream? Our answer is NO. The traditional embedded coder, 
such as EZW[1], SPIHT[2] or RDE[5], do not embed any bit-
stream length information in the compressed bitstream. In this 
work, we show that in multiple facet embedded coding, the infor-
mation needed to reorganize the compressed bitstream, e.g., the 
LOCB, can be separated from the compressed bitstream itself. We 
call the technology as the seamlessly multiplexed embedded codec 
(SMEC), because the compressed bitstream now consists of code-
block bitstream pieces seamlessly concatenated to each other, with 
no LOCB. In contrast to EBCOT/JPEG 2000 bitstream, which can 
not be decoded without the LOCB, SMEC combined bitstream 
can be decoded by demultiplexing on the fly, during the code-
block entropy decoding stage. A separate companion file, which 
contains LOCB, is used to reorganize the SMEC compressed bit-
stream. Because the LOCB does not need to be sent to the receiv-
ing client, SMEC may allow much smaller granularity of access, 
and use much smaller bitstream pieces. By eliminating the LOCB 
from the compressed bitstream, SMEC boosts the effective com-
pression performance of the embedded codec. Another benefit is 
that the relative coding orders of the code-block bitstream pieces 
are preserved in the SMEC reorganization. Thus, SMEC is able to 
utilize the dependencies among the code-blocks, which may fur-
ther boost the compression performance.  

The rest of the paper is organized as follows. The SMEC bit-
stream syntax is examined in Section 2. The principle of decoding 
the SMEC multiplexed bitstream is explained in Section 3. We 
explain the operation flow of the SMEC encoder and decoder in 
Section 4. The experimental results are shown in Section 5. 

 
2. SEAMLESS MULTIPLEXING:  

BITSTREAM SYNTAX AND COMPANION FILE 
 

Code-block 1
bitstream

Code Block 2
bitstream . . . . . . Code Block n

bitstream
Packet 
header

Global
header Tile 1                     . . .Packet 1 Packet n Tile 2 . . .

PacketBitstream

 (a) 
 

Code-block 1 len . . . . . .

Companion
Header Tile 1 len                                . . .Packet 1 len Packet n len Tile 2 len  

Code-block n len
Companion file  

(b) 
Figure 2 Syntax of the SMEC (a) bitstream, (b) companion file.  

A major difference between the EBCOT/JPEG 2000 and the 
seamlessly multiplexed embedded codec (SMEC) is that the latter 
isolates the information needed for the bitstream reorganization, 
which includes the LOCB and the length of other components, 
and gathers them into a companion file. The syntax of the SMEC 
bitstream and the companion file can be shown in Figure 2. Com-
pared with Figure 1, the difference is evident: all information 
needed to reorganize the compressed bitstream, i.e., the length of 
the tile, the packet and the LOCB, is moved to the companion file 
in SMEC. The companion file is still needed to reorganize the 
compressed bitstream, such as to scale the compressed image 

bitstream into a bitstream of desired bitrate, resolution, and ROI. 
However, it is not used in the decoding process.  

At first sight, putting the reorganization information in the 
companion file does not seem to be much of a difference, as the 
encoder still generates about the same amount of information, and 
the parser still needs both the bitstream and the companion file. 
However, we point out the follows.  

First, the SMEC compressed bitstream itself is a bitrate scalable 
(i.e. embedded) bitstream, scaling by bitrate can be achieved by 
simply truncating the SMEC bitstream without the use of the com-
panion file.  

Second, since the SMEC bitstream is decodable, the companion 
file can be recovered from the compressed bitstream. The only 
role of the companion file is to facilitate bitstream reorganization 
in multiple facets. Moreover, the main applications of scaling by 
multiple facets are the Internet server-client applications, such as 
the Vmedia image browser[6], where the server may tailor the 
embedded compressed bitstream according to the network condi-
tion and the capacity of the client device, and then deliver the 
reorganized bitstream of desired bitrate, resolution, and ROI to the 
client device. In such applications, the master bitstream and the 
companion file are stored on the server, whose storage capacity is 
large. The information delivered to the client device is only the 
reorganized compressed bitstream, which in SMEC contains no 
information for further multi-aspect reorganization, such as the 
LOCB, etc.. As a result, the network bandwidth is more efficiently 
utilized, results in an actual improvement of the compression per-
formance. 

Third, in SMEC, the companion file itself can be tailored to the 
desired level of reorganization, without changing the compressed 
bitstream. Similar to EBCOT/JPEG 2000, the SMEC bitstream 
may be organized with multiple levels of hierarchies, from the 
code-block level to the packet level and further up to the tile level. 
The LOCB provides the possibility to access and reorganize the 
bitstream on a code-block basis, whereas the length of the packet 
and the length of the tile provide the access of the bitstream on a 
packet and tile basis, respectively. If certain level of reorganiza-
tion is not desired, the corresponding length information may be 
removed from the companion file. For example, if the code-block 
access is not required, we may remove the LOCBs in the compan-
ion file of Figure 2(b). The resultant companion file can still be 
used to reorganize the master bitstream on a packet and/or tile 
basis.  

 
3 SEAMLESS MULTIPLEXING PRINCIPLE:  

DEMULTIPLEXING ON THE FLY 
 

1st pass: MSB  bn

2nd pass:  bn-1

(n+1)th pass: LSB b0

Block 1

.

.

.

.

.

.

Block m

.

.

.

.

.

.

.  .  .  .  .  .

p1,n

p1,n-1

pm,n

pm,n-1

Block 1
Bitstream

Block m
Bitstream

Input Bitstream: p1,n .  .  .  .  .  . pm,n p1,n-1 .  .  .  .  .  .pm,n-1 .  .  .  .  .  .

 
Figure 3 Decoding of the seamlessly multiplexed bitstream. 

EBCOT/JPEG 2000 cannot separate the LOCB from the com-
bined bitstream because the LOCB is essential in the decoding 

1286



operation. Without the LOCB, the code-block bitstream cannot be 
extracted and decoded. How is this solved in SMEC? In the fol-
lowing, we show that by using the decoder pointer to separate the 
bitstream pieces of the code-block, SMEC can decode the com-
bined bitstream without first demultiplexing it. 

We examine a simplified SMEC decoder, for which the com-
bined bitstream is formed by concatenating the code-block bit-
stream pieces, with one bitstream piece corresponds to one bit-
plane of embedded coding. The combined bitstream is ordered 
first by bitplane, then by code-block index. The decoding of the 
combined bitstream can be shown in Figure 3. It is very similar to 
that of the embedded image decoder operating on the entire im-
age. The coefficients, which are grouped into m code-blocks, are 
decoded bitplane-by-bitplane, from the most significant bitplane 
to the least significant bitplane. In the beginning of decoding, m 
code-block decoders are initialized in parallel. We then feed the 
combined input bitstream to the decoder of the code-block 1, as if 
the entire bitstream is destined for the code-block 1. The decoder 
decodes the code-block 1 to the end of the most significant bit-
plane. During the process, a certain portion of the input bitstream 
is consumed. Let the decoder pointer of the code-block 1 mark the 
position of the input bitstream that is to be read next. The decoder 
pointer separates the input bitstream into two parts: the first part 
has already been read into the code-block 1 entropy decoder, the 
second part is what is left. We now redirect the remaining of the 
input bitstream to the decoder of the code-block 2, which again 
decodes the code-block to the end of the most significant bitplane. 
The bitstream is split again by the decoder pointer, with the re-
maining part fed to the code-block 3. The process repeats code-
block by code-block, and when the most significant bitplane of all 
code-blocks has been decoded, it moves to the second more sig-
nificant bitplane. This repeats until the entire combined bitstream 
has been fed to the entropy decoders of the code-blocks. By de-
multiplexing during the code-block decoding operation, SMEC 
avoids the operation of explicitly demultiplexing the combined 
bitstream. It is thus able to decode the combined bitstream without 
the aide of LOCB. 

 
4 SEAMLESS MULTIPLEXING:   

ENCODING AND DECODING OPERATION FLOW 
 

Set coding pass p=1

Encode code-block
to coding pass p

Record the position of the 
decoder pointer as Ri,p

p=p+1

Last coding pass?False

True

End

code-block i

 
Figure 4 Operation flow of the SMEC code-block encoder. 

The actual operation of SMEC is more complex than the sim-
plified framework described above. First, rather than operating on 
a bitplane basis, the code-block embedded entropy coder may 
operate on a sub-bitplane basis, as in EBCOT[3] or RDE[5], with 
each coding pass just encoding the bits of a partial set of coeffi-
cients. The rational is that using the already coded information, it 
is possible to classify the coefficients into sets of various rate-
distortion (R-D) characteristics. By encoding the sets of bits ac-
cording to the descend order of the R-D slope [5], we may further 
improve the R-D performance of the code-block coding. SMEC 
follows EBCOT/JPEG 2000 in coding each bitplane of coeffi-
cients with three passes (sub-bitplanes): first the insignificant 
coefficients with at least one significant neighbor, then the re-
finement coefficients, and finally the insignificant coefficients 
with no significant neighbors.  

 

Initialize index p(i)=1

Output code-block i bitstream 
piece from Ri,p(i)-1 to Ri,p(i)

p(i)=p(i)+1

Terminate?False
True

End

all code-block bitstreams
& decoder pointers

Find a code-block i
with the largest weight wi,p(i)

Figure 5 Operation flows of the SMEC multiplexer. 

In general, the SMEC code-block entropy coder is a multi-pass 
embedded coder. The operation flow of the SMEC code-block 
encoder can be shown in Figure 4. It is very similar to an 
EBCOT/JPEG 2000 code-block encoder. The only extra operation 
is that at the end of coding pass p of the code-block i, the position 
of the decoder pointer is recorded as Ri,p. The decoder pointer is 
recorded in the SMEC companion file in the form of LOCB, and 
is used by the multiplexer of the encoder to form the seamlessly 
multiplexed bitstream.  

The second issue in implementing an advanced SMEC codec is 
that the different code-blocks may not have the same number of 
coding passes. Moreover, the coding passes of different code-
blocks may not be on the same R-D curve, or contribute the same 
to the psycho-visual distortion. For the bitstream piece of the 
code-block i at pass p, we introduce the weight of the bitstream 
piece as wi,p, which is defined as the expected reduction of the 
psycho-visual distortion divided by the expected coding rate, i.e., 
the expected R-D slope of the bitstream piece.  

Instead of the actual R-D slope calculated from the bitstream 
piece that is used in the R-D optimization of EBCOT/JPEG 2000, 
SMEC uses the expected R-D slope, as in RDE [5]. In the current 
SMEC implementation, the weight parameter wi,p is calculated as: 
 ( )pavw iB

ipi ⋅⋅= 4, , (1) 

1287



where vi is the visual weight of the subband, Bi is the number of 
bitplanes of the code-block i, and a(p) is the calibrated weight of 
the coding passes, which is a constant look-up table with pre-
calculated values of: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>−
=
=
=

=

,3,4/)3(
,3,24.0
,2,25.0
,1,75.0

)(

ppa
p
p
p

pa
 (2) 

The bitstream pieces are then concatenated together in the de-
scending order of their weight by the SMEC multiplexer. The 
operation flow of the multiplexer can be shown in Figure 5. The 
multiplexer continues until the satisfactory of a terminate condi-
tion, which can be either a desired bit rate, a desired visual distor-
tion level, or the lossless condition that all code-block bitstream 
pieces have been outputted. 

The SMEC parser reorganizes the compressed bitstream into 
another compressed bitstream of desired bitrate, resolution and 
ROI. Using the LOCB recorded in the companion file, the SMEC 
parser first splits the master bitstream into bitstream pieces, and 
then reassembles them through a multiplexer similar to the en-
coder multiplexer of Figure 5. The multiplexer of the parser con-
trols the bitrate of the output application bitstream by terminating 
when the desired bitrate is reached. It reorganizes the application 
bitstream in resolution and ROI by dropping the bitstream pieces 
of undesired code-blocks. Because the parser just splits and reas-
sembles the bitstream pieces, and does not perform entropy cod-
ing or transform operation, it can perform the bitstream reorgani-
zation very fast. In the SMEC parser, the bitstream pieces can be 
dropped, however, their relative orders never change because the 
weight parameter of equation (1) that controls the order of multi-
plexing is a fixed value for a particular code-block and coding 
pass. Therefore, the dependencies between the code-blocks can be 
used in the encoding and decoding. As a result, we may use the 
inter-scale dependency of the wavelet, and let a code-block be 
encoded with reference to another code-block in the same spatial 
location, but at a coarser resolution level. This further improves 
the compression performance of SMEC.  

 
5. EXPERIMENTAL RESULTS 

To evaluate the merit of the seamless multiplexing, we build a 
SMEC image coder. We compare the compression performance of 
SMEC with that of the JPEG 2000 VM. The test data set is the set 
of images used in the JPEG 2000 standard. The test bitrates are 
0.125, 0.25, 0.5, 1.0 and 2.0 bit per pixel (bpp). Both SMEC and 
JPEG 2000 decompose the image with a 5-level bi-orthogonal 9-7 
wavelet filter. A code-block size of 8x8 is used in both SMEC and 
JPEG 2000. Thus both SMEC and JPEG 2000 compressed bit-
stream can be scaled in term of bitrate, resolutions (6 level of 
scaling) and spatial ROI (with ROI being 256x256). Both SMEC 
and JPEG 2000 encode the image at the top bitrate of 2.0bpp. The 
bitstreams of the other bitrate are obtained by truncating the top 
rate bitstream. The PSNR of the decoded images for SMEC and 
JPEG 2000 are tabulated in Table 1 and 2, respectively.  

It is observed that with the same granularity of access, SMEC 
with the seamless multiplexing outperforms JPEG 2000 by an 
average of 0.8dB. By reducing the overhead of multiplexing and 
utilizing cross-resolution dependencies, the seamless multiplexing 
is an effective technology to improve the compression perform-
ance of the embedded codecs with multiple facet scalability, and 
to reduce the granularity of access of such codecs.  

Table 1 PSNR performance (dB) of the SMEC codec. 
Bitrate 2.0bpp 1.0 0.5 0.25 0.125 
aerial2 37.89 33.17 30.52 28.46 26.41 
bike 43.24 37.68 33.19 29.32 25.77 
cafe 38.67 31.87 26.70 22.87 20.51 
cats 52.77 43.91 37.23 32.72 29.94 
cmpnd1 50.27 41.29 32.30 26.40 21.67 
cmpnd2 49.82 43.04 35.73 30.42 26.30 
finger 37.09 31.20 27.74 24.36 21.89 
gold 42.49 37.33 34.00 31.50 29.49 
hotel 42.66 38.12 33.67 29.92 27.19 
mat 49.77 44.78 40.27 36.59 33.57 
seismic 50.40 46.66 43.70 40.70 36.73 
target 51.35 43.13 33.84 26.87 22.61 
tools 37.92 32.21 27.47 23.63 21.30 
txtur1 30.42 25.05 22.04 20.33 18.89 
txtur2 37.15 31.50 28.59 26.64 24.94 
us 48.33 39.86 34.02 29.30 25.29 
woman 43.33 38.08 33.34 29.57 27.17 
Average 43.74 37.58 32.61 28.80 25.86 

Table 2 PSNR performance (dB) of JPEG 2000. 
Bitrate 2.0bpp 1.0 0.5 0.25 0.125 
aerial2 36.54 32.44 30.02 27.96 25.96 
bike 42.34 36.68 32.16 28.45 25.42 
cafe 37.22 30.30 25.47 22.30 20.16 
cats 51.89 42.10 35.96 31.91 29.45 
cmpnd1 51.36 38.86 30.30 24.43 20.91 
cmpnd2 50.12 41.24 34.04 29.10 25.64 
finger 35.70 30.61 26.91 23.71 21.51 
gold 41.39 36.64 33.46 30.95 28.91 
hotel 41.91 37.20 32.86 29.35 26.37 
mat 50.05 44.30 39.70 36.05 32.97 
seismic 49.29 46.74 43.58 39.57 35.58 
target 54.68 40.77 32.10 26.16 22.07 
tools 36.79 31.13 26.49 23.17 20.88 
txtur1 28.84 24.29 21.61 19.94 18.74 
txtur2 35.53 30.80 28.01 26.17 24.83 
us 47.58 38.73 32.67 28.17 24.22 
woman 42.54 37.12 32.49 29.15 26.82 
Average 43.16 36.47 31.64 28.03 25.32 

6. REFERENCES 
[1] J. Shapiro, "Embedded image coding using zerotree of wave-
let coefficients", IEEE Trans. On Signal Processing, vol. 41, 
pp.3445-3462, Dec. 1993. 
[2] A. Said and W. A. Pearlman, "A new fast and efficient image 
codec based on set partitioning in hierarchical trees," IEEE. 
Trans. Circ. Syst. Video Tech, vol. 6, pp. 243-250, June 1996 
[3] D. Taubman, “High performance scalable image compression 
with EBCOT”, IEEE Trans. On Image Processing, Vol. 9, No. 7, 
pp. 1158-1170, Jul. 2000. 
[4] M. W. Marcellin and D. S. Taubman, Jpeg2000: Image com-
pression fundamentals, standards, and practice, Kluwer Aca-
demic Publishers. 
[5] J. Li and S. Lei, "An embedded still image coder with rate-
distortion optimization", IEEE Trans. On Image Processing, Vol. 
8, No. 7, pp. 913-924, Jul. 1999. 
[6] J. Li and H. Sun, “A virtual media (Vmedia) interactive image 
browser”, Dec. 2003, IEEE Trans. On Multimedia. 

1288


	Index
	ICIP 2004 Home Page
	Conference Info
	Welcome Message
	Techincal Program Overview
	Technical Program Committee
	EDICS Categories
	ICIP2004 Paper Submission Statistics
	ICIP2004 Paper Statistics - Final Program
	ICIP2004 Organizing Committee
	Sponsors
	Exhibition
	Venue Access
	Social Activities
	Other Information
	Call for Papers for ICIP2005

	Sessions
	Monday, 25 October, 2004
	MA-S1-Computational Radar Imaging
	MA-L1-Watermarking I
	MA-L2-Face Recognition
	MA-L3-Video Compression Standards I
	MA-L4-Biomedical Image Processing: Segmentation and Qua ...
	MA-L5-Error Resilience / Concealment I
	MA-P1-Image Segmentation: By Color, Texture, and Edge
	MA-P2-Image Filtering and Morphological Processing
	MA-P3-Image Enhancement I
	MA-P4-Video Segmentation
	MA-P5-Low-level Image Indexing and Retrieval
	MA-P6-DCT-based Video Coding
	MA-P7-Image Compression and Applications
	MA-P8-Distributed Source Coding and Others
	MP-S1-Deformable Models and Applications
	MP-S2-Media Security Issues in Streaming and Mobile App ...
	MP-L1-Face Detection, Recognition, and Classification I
	MP-L2-Video Summarization and Browsing
	MP-L3-Image Filtering and Partial Differential Equation ...
	MP-L4-Image/Video Indexing and Retrieval
	MP-L5-Watermarking II
	MP-P1-Video Compression Standards II
	MP-P2-Error Resilience/Concealment II
	MP-P3-Biometrics I
	MP-P4-Image Segmentation: By Multiple Features and Othe ...
	MP-P5-Image Enhancement II
	MP-P6-Video Object Tracking
	MP-P7-Biomedical Image Processing: Compression and Regi ...
	MP-P8-Video Coding

	Tuesday, 26 October, 2004
	TA-S1-Content-based Analysis of Multi-modal High Dimens ...
	TA-S2-Image Forensics
	TA-L1-Feature-based Image Segmentation
	TA-L2-Denoising and Deblurring
	TA-L3-Biometrics II
	TA-L4-Lossy Image Coding
	TA-L5-Wavelet Video Coding and Scalability I
	TA-P1-Stereoscopic and 3-D Processing I
	TA-P2-Face Detection, Recognition and Classification II
	TA-P3-Motion Detection and Estimation: Block Matching
	TA-P4-Feature Extraction and Analysis: Color and Textur ...
	TA-P5-Watermarking III
	TA-P6-Video Indexing, Retrieval and Editing
	TA-P7-Interpolation
	TA-P8-Geosciences and Remote Sensing and Environment
	TP-S1-What is the Latest in Networked Video?
	TP-L1-Super-resolution and Interpolation
	TP-L2-Deblocking, Restoration, and Enhancement
	TP-L3-Motion Estimation and Detection
	TP-L4-Image Segmentation
	TP-L5-Biomedical Image Processing: Compression, Registr ...
	TP-P1-Stereoscopic and 3-D Processing II
	TP-P2-Face Detection, Recognition and Classification II ...
	TP-P3-Video Streaming and Networking
	TP-P4-Shape Extraction and Analysis
	TP-P5-Watermarking IV
	TP-P6-Image/video Storage and Retrieval
	TP-P7-Wavelet Video Coding and Scalability II
	TP-P8-Image Modeling

	Wednesday, 27 October, 2004
	WA-S1-Content Understanding for Home Photograph and Vid ...
	WA-S2-Pattern Discovery in Real-world Broadcast Video
	WA-L1-Image Scanning, Display, and Printing I
	WA-L2-Image Formation I
	WA-L3-Stereoscopic and 3-D Coding &amp; Processing
	WA-L4-Image Coding I
	WA-L5-Source-Channel Coding I
	WA-P1-Motion Detection and Estimation: Optical Flow and ...
	WA-P2-Watermarking V
	WA-P3-Feature Extraction and Analysis I
	WA-P4-Image Segmentation: Level Set and Active Contour
	WA-P5-Transcoding
	WA-P6-Implementations and Systems
	WA-P7-Document Image Processing and Other Applications
	WA-P8-Biomedical Image Processing: Segmentation and Com ...
	WP-L1-Image Representation, Rendering, and Quality Asse ...
	WP-L2-Stereoscopic Image Processing and 3D Modeling
	WP-L3-Feature Extraction and Analysis II
	WP-L4-Image/Video Segmentation and Tracking
	WP-L5-Distributed Source Coding and Scalability
	WP-L6-Video Streaming
	WP-P1-Image Coding II
	WP-P2-Source-channel Coding II
	WP-P3-Stereoscopic and 3-D Coding
	WP-P4-Super-resolution and Mosaic
	WP-P5-Image Formation II
	WP-P6-Motion Detection and Estimation: Other Methods
	WP-P7-Watermarking and Cryptography
	WP-P8-Image Segmentation: Clustering and Statistical Me ...
	WP-P9-Image Scanning, Display, and Printing II

	Tutorials
	Plenary Sessions
	Special Sessions
	Table of Contents of Printed Proceedings

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	1.1.1: Lossy coding
	1.1.2: Lossless coding
	1.1.3: Image compression standards
	1.2.1: DCT-based video coding
	1.2.2: Wavelet-based video coding
	1.2.3: Model-based video coding
	1.2.4: Scalability
	1.2.5: Transcoding
	1.2.6: Video compression standards
	1.2.7: Other
	1.3: Stereoscopic and 3-D Coding
	1.4: Distributed Source Coding
	1.5.1: Source/channel coding
	1.5.2: Networking
	1.5.3: Error resilience / concealment
	1.5.4: Video streaming
	1.5.5: Other
	2.1.1: Linear filtering
	2.1.2: Nonlinear filtering
	2.1.3: Level set and fast marching
	2.1.4: Partial differential equations
	2.1.5: Other filtering techniques
	2.2.1: Multiframe image restoration
	2.2.2: Contrast enhancement
	2.2.3: Deblocking / artifacts removal
	2.2.4: Deblurring
	2.2.5: Denoising
	2.2.6: Other restoration techniques
	2.2.7: Other enhancement techniques
	2.3.1: By edge
	2.3.2: By color
	2.3.3: By texture
	2.3.4: By multiple features
	2.3.5: By other features
	2.3.6: Active-contour / snake-based methods
	2.3.7: Clustering-based methods
	2.3.8: Model-fitting-based methods
	2.3.9: Statistical-classification-based methods
	2.3.10: Morphological-based methods
	2.3.11: Level-set-based methods
	2.3.12: Other segmentation methods
	2.4.1: Video object segmentation
	2.4.2: Temporal segmentation
	2.4.3: Video shot segmentation
	2.4.4: Tracking
	2.4.5: Other video segmentation techniques
	2.4.6: Other tracking techniques
	2.5: Morphological Processing
	2.6.1: Stereo image processing
	2.6.2: 3D modeling &amp; synthesis
	2.6.3: Other techniques
	2.7.1: Color
	2.7.2: Texture
	2.7.3: Shape
	2.7.4: Shading
	2.7.5: Other features
	2.8.1: Perceptual / human visual system
	2.8.2: Source modeling
	2.8.3: Noise modeling
	2.8.4: Other
	2.9.1: Face detection, recognition and classification
	2.9.2: Fingerprint analysis and coding
	2.9.3: Iris analysis
	2.9.4: Human activity, gait analysis, and gaze analysis
	2.9.5: Goal-oriented analysis tasks
	2.9.6: Other
	2.10.1: Interpolation
	2.10.2: Super-resolution
	2.10.3: Mosaic
	2.10.4: Registration / alignment
	2.10.5: Other techniques
	2.11.1: Block matching
	2.11.2: Optical flow
	2.11.3: Parametric model for motion estimation
	2.11.4: Change detection
	2.11.5: Camera calibration
	2.11.6: Other motion detection techniques
	2.11.7: Other motion estimation techniques
	2.12.1: Hardware and software co-design
	2.12.2: Embedded and real-time systems
	2.12.3: Paralleled and distributed systems
	2.12.4: Other system platforms
	3.1.1: Super-acoustic imaging
	3.1.2: Tomographic imaging
	3.1.3: Nuclear and x-ray imaging
	3.1.4: Magnetic resonance imaging
	3.1.5: Other
	3.2.1: Radar imaging
	3.2.5: Multispectral / hyperspectral imaging
	3.2.6: Other
	3.4: Optical Imaging
	3.5: Synthetic-Natural Hybrid Image Systems
	4.1: Scanning and Sampling
	4.2: Quantization and Halftoning
	4.3: Color Reproduction
	4.4: Image Representation and Rendering
	4.5: Display and Printing Systems
	4.6: Image Quality Assessment
	5.1: Image and Video Databases
	5.2.1: Low-level image indexing and retrieval
	5.2.2: Relevance feedback and interactive retrieval
	5.2.3: Content addressable browsing
	5.3.1: Video partition/shot detection
	5.3.2: Video features for retrieval
	5.3.3: Low-level video indexing and retrieval
	5.3.4: Semantic video retrieval
	5.3.5: Content summarization and editing
	5.4: Multimodality Image/Video Indexing and Retrieval
	5.5.1: Watermarking
	5.5.2: Cryptography
	6.1.1: Image segmentation and quantitative analysis
	6.1.2: Computer assisted screening and diagnosis
	6.1.3: Visualization
	6.1.4: Image compression
	6.1.5: Image registration and fusion
	6.2.1: Astronomy
	6.2.2: Geosciences
	6.2.3: Remote sensing
	6.2.4: Environment
	6.3: Document Image Processing and Analysis
	6.4: Other Applications

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Copyright
	Current paper
	Presentation session
	Abstract
	Authors
	Jin Li



