
Oracle-Guided Component-Based Program Synthesis

Susmit Jha
UC Berkeley

jha@eecs.berkeley.edu

Sumit Gulwani
Microsoft Research
sumitg@microsoft.com

Sanjit A. Seshia
UC Berkeley

sseshia@eecs.berkeley.edu

Ashish Tiwari
SRI International
tiwari@csl.sri.com

ABSTRACT
We present a novel approach to automatic synthesis of loop-
free programs. The approach is based on a combination of
oracle-guided learning from examples, and constraint-based
synthesis from components using satisfiability modulo theo-
ries (SMT) solvers. Our approach is suitable for many appli-
cations, including as an aid to program understanding tasks
such as deobfuscating malware. We demonstrate the effi-
ciency and effectiveness of our approach by synthesizing bit-
manipulating programs and by deobfuscating programs.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; I.2.2 [Artificial Intelligence]: Program Synthesis;
K.3.2 [Learning]: Concept Learning

Keywords
Program synthesis, Oracle-based learning, SMT, SAT

1. INTRODUCTION
Automatic synthesis of programs has long been one of the

holy grails of software engineering. It has found many prac-
tical applications: generating optimal code sequences [20,
11], optimizing performance-critical inner loops, generat-
ing general-purpose peephole optimizers [2, 3], automating
repetitive programming tasks [15], and filling in low-level
details after the higher-level intent has been expressed [24].
Two applications of synthesis are of particular interest in
this paper. The first is that of automating the discovery
of non-intuitive algorithms (e.g., [8]). The second applica-
tion, as we show in this paper, is program understanding,
and more specifically, program deobfuscation. The need for
deobfuscation techniques has arisen in recent years, espe-
cially due to an increase in the amount of malicious, and
mostly obfuscated, code (malware) [28]. Currently, human
experts use decompilers and manually deobfuscate the re-
sulting code (see, e.g., [22]). Clearly, this is a tedious task
that could benefit from automated tool support.

A traditional view of program synthesis is that of synthe-
sis from complete specifications. One approach is to give
a specification as a formula in a suitable logic [19, 26, 10,
8]. Another is to write the specification as a simpler, but
possibly far less efficient program [20, 11, 24]. While these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

approaches have the advantage of completeness of specifi-
cation, such specifications are often unavailable, difficult to
write, or expensive to check against using automated verifi-
cation techniques. In this paper, we propose a novel oracle-
guided approach to program synthesis, where an I/O oracle
that maps a given program input to the desired output is
used as an alternative to having a complete specification.
The key idea of our algorithm is to query the I/O oracle on
an input that can distinguish between non-equivalent pro-
grams that are consistent with the past interaction with the
I/O oracle. The process is repeated until a semantically
unique program is obtained. Our experimental results show
that only few rounds of interaction are needed.

We apply the oracle-guided approach to automated syn-
thesis of loop-free programs, those that compute functions of
their input and terminate. Such programs arise in a variety
of application contexts, such as low-level bit-manipulating
code, scientific computing kernels, parts of control software
in graphical languages such as LabVIEW, and even appli-
cations in high-level scripting languages such as Javascript
and Ruby that are formed by chaining multiple high-level
operators. A key characteristic of our method is that it is
component-based, meaning that we synthesize a program by
performing a circuit-style, loop-free composition of compo-
nents drawn from a given component library. We can also
address the challenge of identifying whether the given set
of components is insufficient to synthesize the desired pro-
gram. For this purpose, we additionally require making only
one query to a more expensive validation oracle that checks
whether the program is correct or not.

Our synthesis algorithm is based on a novel constraint-
based approach that reduces the synthesis problem to that
of solving two kinds of constraints: the I/O-behavioral con-
straint whose solution yields a candidate program consistent
with the interaction with the I/O oracle, and the distinguish-
ing constraint whose solution provides the input that distin-
guishes between non-equivalent candidate programs. These
constraints can be solved using off-the-shelf SMT (Satisfia-
bility Modulo Theory) solvers. Traditional synthesis algo-
rithms perform a expensive combinatorial search over the
space of all possible programs. In contrast, our technique
leaves the inherent exponential nature of the problem to the
underlying SMT solver, whose engineering advances over the
years allow them to effectively deal with problem instances
that arise in practice, which are usually not hard, and hence
end up not requiring exponential reasoning.

Contributions and Organization.
• We propose a novel oracle-guided approach to synthesis,

where an I/O oracle obviates the need for complete spec-
ifications. Our approach has interesting connections to
results from computational learning theory (Section 5).

• We present an instantiation of the oracle-guided approach
to synthesis of loop-free programs over a given set of com-
ponents (see problem definition in Section 3). This is en-
abled by a novel constraint-based technique that involves

an interaction between SMT solvers and the I/O oracle
(Section 4). We also present an interesting optimization
that leverages biased sampling (Section 4.6).

• We demonstrate the utility of our synthesis technique to
discovery of bit-manipulating programs [29], which are
often needed for optimizing performance (Section 6.1).
These programs are quite unintuitive and can be difficult
for even expert programmers to discover. The upcoming
4th volume of the classic series the art of computer pro-
gramming by Knuth has a chapter on bitwise tricks [13].

• We propose a novel application of program synthesis to
program understanding. We demonstrate this in the con-
text of malware deobfuscation by deobfuscating examples
drawn from and inspired by the Conficker and MyDoom
viruses using our synthesis technique (Section 6.2).

2. MOTIVATING EXAMPLES
We present two examples in this section to introduce the

synthesis problem and motivate our approach.

2.1 Bit Manipulation
Consider the following programming problem: Given a

bit-vector integer x, of finite but arbitrary length, construct
a new bit-vector y that corresponds to x with the rightmost
string of contiguous 1s turned off, i.e., reset to 0s. Such
programming problems often arise while developing low level
embedded code, network applications or in other domains
where bit-level manipulation is needed.

Let us contemplate writing a formal specification for this
problem. The most natural and easiest specification involves
the use of alternating quantifiers, where n is the length of x:

∃i, j. { 0 ≤ i, j < n ∧ (∀k. j ≤ k ≤ i =⇒ x[k] = 1)

∧ (∀k. 0 ≤ k < j =⇒ x[k] = 0)

∧ (x[i+ 1] = 0 ∨ i = n− 1)

∧ (∀k. i < k < n =⇒ x[k] = y[k])

∧ (∀k. 0 ≤ k ≤ i =⇒ y[k] = 0) }

The above specification is not easy to write. Moreover, veri-
fying any candidate implementation against the above spec-
ification is challenging due to the presence of quantifiers.

Let us consider writing some sample input-output pairs,
or examples, for the problem. For any input x, it is easy to
provide the corresponding output y. Some example (x, y)
pairs are (0110, 0000), (0101, 0100), (110110, 110000).

Finally, let us contemplate writing a program for the above
problem. A straightforward, but inefficient, implementation
is a loop that iterates through the bits of x and zeroes out
the rightmost contiguous string of 1s. Can we synthesize a
shorter and more efficient implementation? It is difficult to
answer this, but it is easy to speculate that the elementary
operations that may be used inside such an efficient imple-
mentation will be the standard bit-vector operators: bit-wise
logical operations (|, &, ⊕ , ∼), and basic arithmetic oper-
ations (+,−, ∗, /,%).

Given a set of possible elementary operations, and an abil-
ity to generate outputs for given inputs, our oracle-guided
synthesis tool Brahma will synthesize the following nontriv-
ial and tricky procedure for solving the above problem.

1 turnOffRightMostOneBitString (x)
2 { t1 = x-1; t2 = (x | t1); t3 = t2+1;
3 t4 = (t3 & x); return t4; }

A programmer will require considerable familiarity with
bit-level manipulations to come up with such an implemen-
tation. Hence, automated synthesis of such difficult-to-write

1 genStringObs(int input)
2 {
3 a1=1, a2=0; b1=1, b2=0; c1=0; c2=0;
4 if (input == 0)
5 { a1 = 0; a2 = 0; b1=0; b2 = 0; }
6 else if (input == 1)
7 { c1=0; c2 = 1; }
8 else if (input == 2)
9 { a1 =1; a2 = 0; c1=1; c2=1; }

10 else if (input == 3)
11 { b1 = 0; b2 = 0; c1=1; c2=1; }
12 else return NULL;
13 c = 2*c1 + c2;
14 if(c == 1) { return rot13("EPCG GB, 7"); }
15 else
16 if (c == 2) {
17 if (input * (input-1) % 2 == 0)
18 return rot13("EPCG GB", 7);
19 else
20 return rot13("RUYB", 4);
21 }
22 else {
23 if (b1 ⊕ b2) return rot13("ZNVY SEBZ",9)
24 else if ((a1 ⊕ a2) = (b1 ⊕ b2))
25 return rot13("RUYB", 4);
26 else return rot13("QNGN", 4);
27 }
28 }
29 rot13(char *buf, int sz)
30 {
31 char *buf1 = malloc((sz+1) * sizeof(char));
32 char a;
33 while (a =~ *buf)
34 {
35 *buf1 = (~a-1/(~((a | 32))/13*2-11)*13);
36 buf++; buf1++;
37 }
38 return buf1;
39 }
Figure 1: Obfuscated program inspired by MyDoom

programs is of great practical significance.

2.2 Deobfuscation
A major challenge of dealing with malware is simply to

understand what the malicious code is doing. We introduce
here an example inspired by the obfuscations introduced in
variants of MyDoom, an e-mail virus affecting Microsoft
Windows that became the fastest-spreading virus when it
was first released in 2004 [21].

The example involves the construction of the SMTP header
for the e-mail sent by the virus. SMTP requires a prescribed
sequence of messages of different types, initially starting
with a “hello” message, followed by the “from”, “reply to”,
and other similar control fields, followed finally by the data
segment of the e-mail. The fragment we have constructed
is a program genStringObs, given in Figure 1, which con-
structs a string corresponding to the message type.

We used two types of obfuscations in this example. The
first is a control-flow obfuscation drawn from several obfus-
cations given by Collberg et al. [5]. The second obfuscation
is one that is directly used in MyDoom, involving the modi-
fication of each alphanumeric character in the message type
string by the rot13 substitution cipher [14]. The reader
can appreciate the difficulty of decoding exactly what this
program is doing.

Is there a simpler (deobfuscated) program that performs

1 genString(int input)
2 { if(input == 0) return "EHLO";
3 else if (input == 1) return "RCPT TO";
4 else if (input == 2) return "MAIL FROM";
5 else if (input == 3) return "DATA";
6 else return NULL;
7 }

Figure 2: Deobfuscated version of genStringObs

the same function as genStringObs? It is difficult to answer
this question. However, looking at the obfuscated code in
Figure 1, it is easier to guess that a deobfuscated program
will probably use the following types of components:

• Conditional if-then-else (ternary) operators,
• Boolean expressions that occur in genStringObs, and
• Operators that return strings of size bounded by size of

the largest string in genStringObs.

Given these components and the obfuscated program gen-
StringObs, our oracle-guided synthesis tool Brahma au-
tomatically computes the (deobfuscated) program given in
Figure 2. The reader can appreciate how much easier this
program is to understand.

3. PROBLEM DEFINITION
The goal is to synthesize a loop-free program using a given

set of base components and using input-ouput examples. We
assume the presence of an I/O oracle that can be queried on
any input. The I/O oracle, when given an input, returns
the output of the desired program (that we wish to syn-
thesize) on that input. We also assume the presence of a
validation oracle that validates the correctness of a candi-
date program. Finally, we assume that we are given a set of
(base) components that should be used as building blocks
in the synthesized program. Each component is given in the
form of its input-output specification, which is written as a
logical formula relating the inputs and the outputs of that
component. For ease of presentation, we assume that all
components have exactly one output. We also assume that
all inputs and outputs have the same type. These restric-
tions are easily removed.

Formally, the synthesis problem in our proposed program-
ming methodology requires the following:

• A validation oracle V that, given any candidate program
(constructed from base components), returns a Boolean
answer indicating whether the candidate program is the
desired one or not. We discuss how a validation oracle
can be implemented for the program classes considered
in this paper in Sections 6.1 and 6.2.

• An I/O oracle I that, given any program input, returns
the output of the desired program on that input.

• A set of specifications {〈~Ii, Oi, φi(~Ii, Oi)〉 | i = 1, . . . , N},

called a library, where (~Ii, Oi, φi(~Ii, Oi)〉 is the specifica-
tion for the base component fi, which includes

– a tuple of input variables ~Ii and an output variable Oi

– an expression φi(~Ii, Oi) over variables ~Ii and Oi that
specifies the input-output relationship of the i-th com-
ponent.

The symbols ~Ii, Oi are assumed to be distinct.

The goal of the synthesis problem is to synthesize a pro-
gram P that can be validated by the validation oracle V,
i.e., V(P) = true. Furthermore, program P should be con-
structed using only the set of base components in the library,

i.e., Program P should take ~I as its inputs and use the set

{O1, . . . , ON} as temporary variables in the following form:
P (~I):

Oπ1 := fπ1(~Vπ1); . . . ; OπN
:= fπN

(~VπN
);

return OπN
;

where

C1. each variable in ~Vπi
is either an input variable from ~I,

or a temporary variable Oπj
such that j < i, and

C2. π1, . . . , πN is a permutation of 1, . . . , N .

Program P above appears to be a straight-line program,
but, in fact, it can be more complex because the base com-
ponents fi’s can be complex. In particular, base components
can be “if-then-else” functions, and using these components,
Program P can describe arbitrary loop-free programs.

We note that the program P above is using all components
from the library. We can assume this without any loss of
generality. Even when there is a correct Program P using
fewer components, that program can always be extended to
a program that uses all components by adding dead code.
Dead code can be easily statically identified and removed in
a post-processing step.

We also note that program P above is using each base
component only once. We can assume this without any loss
of generality. If there is a Program P using multiple copies of
the same base component, we assume that the user provides
multiple copies explicitly in the library. Such a restriction
of using each base component only once is interesting in two
regards. First, it can be used to enforce efficient or minimal
programs. Second, it prunes the search space of possible
programs making the synthesis problem finite and tractable.

Informally, the synthesis problem is to come up with a
program – using only the base components in the given li-
brary – that is accepted by the validation oracle.

4. ORACLE-BASED SYNTHESIS
In this section, we provide our solution for the program

synthesis problem formally described above. Our solution
is based on encoding the space of all possible programs by
a formula (Section 4.1). Given a set of input-output pairs,
we then constrain this formula further so that it encodes
only those programs that work correctly on the given input-
output pairs (Section 4.2). By solving this constraint, we
generate a candidate solution. If the candidate solution is
not the desired program, we provide a way to generate a new
input-output pair (Section 4.3). The overall procedure that
combines these parts to solve the program synthesis problem
is presented in Section 4.4. We present enhancements to our
basic procedure in Section 4.6.

4.1 Background: Encoding Programs
We present an encoding of the space of well-formed candi-

date programs, that is, of programs P satisfying constraints C1
and C2, as formulas. This encoding is drawn from recent
work [8]. Note, however, that the material in subsequent
sections depends only on the existence of such an encod-
ing. Our proposed approach can be used with alternative
encodings as well.

Intuitively, the encoding we use involves viewing the space
of candidate programs as all ways of connecting components
from the library that satisfy syntactic and semantic well-
formedness constraints. Each connection is encoded using an
integer-valued location variable. Put another way, the value
of a location variable determines which component goes on
which location (line-number), and from which location (line-
number or circuit input) it gets its input arguments.

The main property of the encoding that our approach re-
lies upon is distilled into the following theorem. This the-
orem states the existence of two formulas (encodings): the
first formula ψwfp represents the set of all syntactically well-
formed programs; whereas the second formula φfunc repre-
sents the set of all semantic input-output behaviors of a
well-formed program.

Theorem 1. There exists a set of integer-valued location
variables L, a well-formedness constraint ψwfp(L) over L, a

mapping Lval2Prog, and a functional constraint φfunc(L, ~I,O)

over L ∪ {~I,O} such that the following properties hold:

• Lval2Prog is a bijective mapping from the set of values L
that satisfy the constraint ψwfp(L) to the set of programs
that satisfy constraints C1 and C2.

• Let L0 be a satisfying assignment to the formula ψwfp.
If α and β are any candidate input and output values,
then the formula φfunc(L0, α, β) is true iff the program
Lval2Prog(L0) returns the value β on the input α.

The proof of Theorem 1 follows from the results stated in [8].
We now describe the encoding more formally. Let P and

R denote the union of all formal inputs (parameters) and
formal outputs (return variables) of the components respec-
tively, that is,

P :=
SN

i=1
~Ii R :=

SN

i=1{Oi} = {O1, . . . , ON}
Any straight-line program constructed using N components
can be described by a set of location variables L

L := {lx | x ∈ P ∪ R}
that contains one new variable lx for each variable x in
P∪R with the following interpretation associated with each
of these variables.

• If x is the output variable Oi of the component fi, then lx
is the line number in the program where the component
fi is used.

• If x is the jth input parameter of the component fi, then
lx is the line number “from where component fi gets its
jth input”.

In the above description, line number refers to either a
line of the program, or to some input. For uniformity, each

input in ~I is assigned a line number from 0, . . . , |~I | − 1 and

the program line numbers then take values from |~I |, . . . , |~I|+

N − 1. Let M = |~I | + N . The variables L take values in
the range 0, . . . ,M −1 and these new line numbers have the
following interpretation.

• For 0 ≤ j < |~I |, line number j is blank; it takes the value

of the jth input of the program.

• For |~I | ≤ j < M , line number j contains the (j−|~I |+1)-th
assignment statement of the original program P .

The well-formedness constraint ψwfp(L), defined below,
encodes the interpretation of the location variables lx along
with syntactic well-formedness constraints, such as consis-
tency and acyclicity constraints.

ψwfp(L)
def
=

^

x∈P

(0 ≤ lx < M) ∧
^

x∈R

(|~I | ≤ lx < M)

∧ ψcons(L) ∧ ψacyc(L)

ψcons
def
=

^

x,y∈R,x 6≡y

(lx 6= ly)

ψacyc
def
=

N̂

i=1

^

x∈~Ii,y≡Oi

lx < ly

The consistency constraint ψcons encodes that every line
in the program should have at most one component, while
the acyclicity constraint ψacyc encodes that every variable
should be initialized before it is used.

The function Lval2Prog returns the program correspond-
ing to a given valuation L as follows: in the ith line of
Lval2Prog(L), we have the assignmentOj := fj(Oσ(1), . . , Oσ(t))
if lOj

= i, lIk
j

= lOσ(k)
for k = 1, . . , t, where t is the ar-

ity of component fj , and (I1
j , . . , I

t
j) is the tuple of input

variables ~Ij of fj . The well-formedness constraint describes
syntactically correct programs, but it does not describe the
semantics of these programs.

The functional constraint φfunc(L, ~I,O) is obtained by tak-
ing ψwfp(L) and adding to it constraints capturing the dataflow
semantics and semantics of components.

φfunc(L, ~I,O)
def
= ∃P,R ψwfp(L) ∧ φlib(P,R)

∧ ψconn(L, ~I,O,P,R)

φlib(P,R)
def
= (

N̂

i=1

φi(~Ii, Oi))

ψconn(L, ~I,O,P,R)
def
=

^

x,y∈P∪R∪~I∪{O}

(lx = ly ⇒ x = y)

where φlib represents the semantics of the base components
(that relates the inputs and outputs of each component),
and ψconn represents the dataflow semantics (that matches
the inputs and output of the different components and the
inputs and output of the overall program with each other,
in accordance with values of location variables).

The formula φfunc(L, ~I,O) represents the class of all syn-
tactically well-formed programs P , constructed using only

the N base components, that on input ~I return output O.
Hence, we can solve the program synthesis problem by find-
ing appropriate values for the L variables. We need to find
values for L such that the input-output behavior of the re-
sulting program matches the input-output behavior specified
by the I/O oracle.

A key step in our solution of the program synthesis prob-
lem is to synthesize programs that work for finitely many
input-output pairs. We discuss this next.

4.2 I/O-behavioral Constraint
In this section, we show how to generate a constraint

whose solution provides a candidate program whose input-
output behavior matches a given finite set of input-output
examples.

Given a set E of input-output examples {(αj , βj)}j , we
use the notation BehaveE to denote the following constraint,
which we refer to as I/O-behavioral constraint.

BehaveE(L)
def
=

^

(αj ,βj)∈E

φfunc(L,αj , βj)

Let L0 be a set of values such that BehaveE(L0) is true. It
follows from the definition of the I/O-behavioral constraint
that the program encoded by L0 will give output βj , when-
ever it is given an input αj , for all pairs (αj , βj) in E. This
property of the I/O-behavioral constraint is stated below.

Theorem 2 (I/O-behavioral Constraint). For any
satisfying solution L0 to the I/O-behavioral constraint, the
input-output behavior of the program Lval2Prog(L0) matches
all the input-output examples in the set E.

The proof of the above theorem is immediate from the
definition of an I/O-behavioral contraint and Theorem 1.

We next check if the program, which is synthesized by
considering finitely many input-output pairs, is the desired
program. We want to avoid the use of the validation oracle,
since it is expensive. Here we use what is perhaps the central
idea of our approach: generate a “distinguishing” input that
differentiates this program from another candidate program.

4.3 Distinguishing Constraint
In this section, we show how to generate a constraint

whose solution provides an input that distinguishes a given
candidate program from another non-equivalent candidate
program, both of which have a given set of input-output
pairs in their respective input-output behavior.

Let E be a set of input-output pairs. Let P be a can-
didate program, defined by values L, whose input-output
behavior matches the set E. Suppose P is not the desired

program. Then, there should be some input ~I such that P

gives incorrect output on ~I . But, how do we find such an ~I?
If P is not the desired program, then let us assume that

there is a correct program P ′. Clearly, for all input-output
pairs (αj , βj) in E, the program P ′ should return βj when
it is given input αj . But since P is not the desired program,
whereas P ′ is the desired program, P and P ′ should give
different outputs on some new input.

We say ~I is a distinguishing input if there is another pro-
gram P ′ whose input-output behavior also matches E, but

P and P ′ give different outputs on the input ~I. The con-

straint DistinctE,P (~I), defined below, represents the set of

all distinguishing inputs ~I and we refer to it as distinguishing
constraint.
DistinctE,L(~I)

def
= ∃L′, O, O′

BehaveE(L′) ∧ φfunc(L, ~I,O)

∧ φfunc(L
′, ~I,O′) ∧ O 6= O′

Theorem 3 (Distinguishing Constraint). If α is a
satisfying solution to the distinguishing constraint

DistinctE,P (~I), then there exists a program P ′ such that
P and P ′ have different behaviors on input α, but have the
same behavior on all the inputs in the set E.

The proof of Theorem 3 follows from the definition of the
distinguishing constraint, Theorem 2 and Theorem 1. We
now have all the ingredients for describing our overall pro-
cedure for solving the synthesis problem.

4.4 Oracle-Guided Synthesis
In this section, we describe our oracle-guided iterative syn-

thesis procedure. The description uses the I/O-behavioral
constraint and the distinguishing constraint described above.

The procedure works by iteratively synthesizing new pro-
grams that work correctly on more and more inputs. It
starts with a set containing just one arbitrarily chosen input.
In each iteration, the procedure synthesizes a program that
works correctly on the current finite set of inputs. If such a
program is found, then the procedure attempts to find a dis-
tinguishing input. If a distinguishing input is found, then it
is added into the set of inputs for subsequent iterations. In
all other cases, the procedure terminates. It either returns
the correct program, or it notes that the components pro-
vided are insufficient for synthesizing the correct program.

For solving the I/O-behavioral constraint and the dis-
tinguishing constraint, the procedure makes use of a func-
tion T-SAT. Given a formula φ(A), the function T-SAT(φ(A))
searches for values for A that will make the formula φ true. If
successful, then T-SAT(φ(A)) returns one such specific value

IterativeSynthesis():

1 // Input: Set of base components used in
2 // construction of BehaveE and DistinctE,L

3 // Output: Candidate Program

4 E := {(α0, I(α0))} // Pick any value α0 for ~I
5 while (1) {
6 L := T-SAT(BehaveE(L));
7 if (L == ⊥) return "Components insufficient";

8 α := T-SAT(DistinctE,L(~I));
9 if (α == ⊥) {

10 P := Lval2Prog(L);
11 if (V(P)) return P;
12 else return "Components insufficient"; }
13 E := E ∪ {α, I(α)}; }

Figure 3: Oracle-guided Synthesis Procedure

for A. Otherwise, it returns ⊥. The function T-SAT is imple-
mented as a call to a Satisfiability Modulo Theory (SMT)
solver. SMT solvers check for satisfiability of a first-order
formula with respect to underlying background theories [4].

The pseudo-code for the procedure is given in Figure 3.
The procedure maintains a set E of input-output examples
constructed by querying the I/O oracle I on a new input at
the start of the while loop (Line 4) and in each iteration of
the while loop (Line 13). In each iteration of the while loop,
the procedure attemps to synthesize a candidate program P
(represented by L) that satisfies the set E of input-output
examples (Line 6). If it fails, then it returns failure (Line 7).
Otherwise, it checks (in Line 9) whether the candidate pro-
gram P is the semantically unique program that satisfies the
given set of input-output examples. A program is semanti-
cally unique if any other program that satisfies the given set
of input-output examples produces the same output as the
program for any other input. If P is the semantically unique
program, then the procedure either returns P (Line 11) or
failure (Line 12) depending on whether the validation oracle
V validates P or not. If the candidate program is not se-
mantically unique, then an input α is obtained that is added
to E to help narrow down the choice of candidate programs
(Line 13).

The following theorem states the correctness of Proce-

dure IterativeSynthesis. Note that if the inputs ~I take
values from a finite domain, then the number of iterations
of the loop in the procedure is bounded by the total number
of different inputs; and hence, in such cases the procedure
is guaranteed to terminate.

Theorem 4. If Procedure IterativeSynthesis, given in
Figure 3, returns a program P , then V(P) is true. If Proce-
dure IterativeSynthesis returns “Components insufficient”,
then there does not exist any program P constructed from the
set of base-components such that V(P) is true. Furthermore,
Procedure IterativeSynthesis is guaranteed to terminate

when the inputs ~I take values from a finite domain.

The proof of the correctness theorem follows immediately
from the description of the procedure in Figure 3, combined
with the properties stated in Theorem 1, Theorem 2 and
Theorem 3. We also illustrate in Figure 4 all three cases in
which Procedure IterativeSynthesisterminates. The first
case corresponds to step 7 and the second and third cases
correspond to step 11 and step 12 respectively.

4.5 Illustration on Running Example
We illustrate the oracle-guided synthesis approach on the

running example presented in Section 2.1. The problem was,

Valid program exists with given components

 No program exists with given components
1

2

Step 12: Discovered semantically unique program P is found
b

a

for synthesizing valid program.
Step 7: Set E of I/O examples show components insufficient

incorrect by the validator − no synthesis feasible.

Step 11: Valid program P is returned.

Figure 4: Termination cases of Synthesis Procedure.
The validation oracle is needed only to ensure cor-
rectness in case 1b.

given a bit-vector integer x, of finite but arbitrary length,
to construct a new bit-vector y that corresponds to x with
the rightmost string of contiguous 1s turned off.

Our technique starts with a random input 01011 and the
I/O oracle I (the user) is used to obtain the corresponding
expected output 01000. This step corresponds to Line 4 of
the algorithm presented in Figure 3.

Given the input/output pair (01011, 01000), our technique
generates the following candidate program (Line 6): (we give
only the expression returned)

(x+ 1) & (x− 1)
Then, it checks whether a semantically different program can
be generated in Line 8. In this case, our technique generates
the following alternative program and the distinguishing in-
put 00000:

(x+ 1) &x
The I/O oracle is used to obtain the output 00000 for this
input (Line 13). This is added to the set of input/output
pairs E. Note that the newly added pair rules out one of
the candidate programs, namely, (x+ 1) & (x− 1).

In the next iteration, with the updated set E, the tech-
nique finds the program

−(¬x)& x
and the check in Line 8 generates the alternate program

(((x& − x) | − (x− 1))&x) ⊕ x
and the input 00101. Hence, we add (00101, 00100) to E.
This rules out (((x& − x) | − (x− 1))&x) ⊕ x.

Note that at this stage, the program (x+ 1)&x remains a
candidate, since it was not ruled out in the earlier iterations.
In next four iterations, Brahma generates (01111, 00000),
(00110, 00000), (01100, 00000) and (01010, 01000) as input-
output examples and adds them to E. The semantically
unique program generated from the resulting set E is the
desired program:

(((x− 1)|x) + 1)&x.

4.6 Optimization
The basic procedure described above can be improved by

using alternate ways to generate the inputs that are used by
the procedure for synthesis.
IterativeSynthesis uses an SMT solver in two ways:

(a) First, an SMT solver is used to generate a candidate
program that works for the current set of inputs.
(b) Second, an SMT solver is used to generate a new distin-
guishing input on which the currently synthesized program
and the desired program potentially differ.

Although SMT solvers are fast and capable of handling
very large formulas, using them in every iteration compro-
mises efficiency. It is tempting to speculate that the use of
SMT solvers for generating a distinguishing input (case (b)
above) can be avoided; for example, by replacing it by a
function that finds new inputs by sampling the input space

ConstrainedRandomInput:

1 // cnt is a global variable initialized to 0
2 // K is a parameter (#rightmost bits to set)

3 if (cnt < 2K) {
4 α := sample(Inputs);
5 α :=Set rightmost K bits of α to cnt;
6 cnt := cnt + 1; }

7 else α := T-SAT(DistinctE,L(~I));
Figure 5: Strategy for generating a new input
based on sampling from the input space with an
application-dependent bias.

in some way. We explore two alternative ways for sampling
the input space.

Sampling Uniformly at Random
Let Inputs be the set of all possible valuations for the input
variables. Let sample(Inputs) be a function that returns
a particular input from the input space Inputs by sam-
pling the set Inputs uniformly at random. The function
sample(Inputs) can be used to find a new input, in place
of the call to the SMT solver, in Line 8 of Procedure Iter-
ativeSynthesis. We will call this new variant as Random.

Sampling With Bias
The second approach we consider is based on biasing the
search for inputs towards a certain part of the input space.
Not all inputs in the input space are equally important. For
example, a program may take an integer input i, but have
the same behavior for all i > 5 and have interesting behav-
iors only on values 0 ≤ i ≤ 5. For many applications, the
user knows a-priori which inputs are more crucial in defin-
ing the overall program. The idea behind the sampling with
bias strategy is to search for distinguishing inputs by biasing
the search to this part of the input space.

In the bitvector benchmarks used in this paper, the in-
put space consists of all (tuples of) bitvectors of a certain
bit width. It is well-known that, for a very large class of
commonly-used bitvector functions, the rightmost bits in-
fluence the output more than the leftmost bits.

Property 1 (See [29], Chapter 2). A function map-
ping bitvectors to bitvectors can be implemented with add,
subtract, bitwise and, bitwise or, and bitwise not instruc-
tions if and only if each bit of the output depends only on
bits at and to the right of that bit in each input operand.

This suggests that we should bias the sampling so that we
get more variety on the rightmost bits.

The code ConstrainedRandomInput in Figure 5 uses a con-
strained random strategy for generating a new input. It
starts with an input α that is sampled uniformly at random,
but then it sets its rightmost K bits to the (rightmost K bits
in the) number cnt. Since cnt is incremented each time, we
get a new combination in each time. Specifically, if K = 2,
then in four calls to the Function ConstrainedRandomInput,
we will get all four combinations – 00, 01, 10 and 11 – in the
rightmost 2 digits of I . The code ConstrainedRandomInput
finds the first 2K inputs this way. If more are needed, then
it goes back to using the SMT solver. The new variant of
IterativeSynthesis – obtained by replacing the call to the
SMT solver in Line 8 by the code ConstrainedRandomInput
– will be called Constrained Random.

We will compare the performance of IterativeSynthe-
sis, Random, and Constrained Random in Section 6.

5. DISCUSSION

5.1 Choosing Base Components
It is reasonable to ask how base components are chosen in

our approach and what happens when the given set of base
components is either insufficient or very large.

The choice of base components is made by the user and is
guided by the application domain. This allows the user to
use his/her knowledge to guide the synthesis and influence
success. It is not unreasonable to expect users to provide this
information. In several application domains, there is a nat-
ural choice for the set of base components. For example, a
natural set of base components for synthesizing bitvector al-
gorithms will contain components that perform bitwise and,
or, not, xor, negation, increment and decrement operations.
In our experiments on synthesizing bitvector programs (Sec-
tion 6), we started with such a set of base components, re-
ferred to as the standard library. If the synthesis procedure
found that this set of components was insufficient, the stan-
dard library was augmented with a set of new components
suggested by the user and the synthesis procedure was re-run
with this extended library.

Nevertheless, choosing a reasonable set of base compo-
nents is crucial for the feasibility of our synthesis approach.
The search space of candidate programs grows exponentially
with the number of base components. The strategy of start-
ing with a small set of base components, and then incremen-
tally adding components, can partly avoid the need to deal
with very large set of base components. However, it can be
successful only if the synthesis engine not only synthesizes
correct programs quickly, but also reports infeasibility of the
synthesis problem quickly. In our experiments, we show that
our technique can detect infeasibility efficiently.
Choosing Base Components for Deobfuscation. When
using our program synthesis approach for performing pro-
gram deobfuscation, the base components are picked from
the assignment and conditional statements in the obfuscated
code. For example, consider the obfuscated program in Fig-
ure 1. Although it is difficult to understand the obfuscated
program, it is easier to guess that the set of important base
components will include if-then-else components and equal-
ity comparators. Similarly, for the other deobfuscation ex-
amples (reported in Section 6), the base components used
for synthesis contain only operators (such as left-shift and
bitwise-xor) that appear explicitly in the obfuscated code
(see Figure 7).

5.2 Connections to Learning
Our oracle-guided synthesis framework has close connec-

tions to certain fundamental results in computational learn-
ing theory. We explore these connections in this section.

Our oracle-based model is similar to the query-based learn-
ing model proposed by Angluin [1], but with some important
distinctions. In Angluin’s model, a learner interacts with
an oracle through the use of membership and equivalence
queries in order to learn a target concept. In our setting,
the target concept is the program we seek to synthesize. A
membership query is similar to the query we make to an
I/O oracle, except that the former returns a binary answer
whereas the I/O oracle returns an output value. An equiv-
alence query is similar to a query to the validation oracle,
except that, in Angluin’s model, if the candidate concept
is not equivalent to the target concept, the oracle returns
a counterexample as evidence for this non-equivalence. In
our context, since the validation oracle is called only at the
end, when we are left with a semantically unique program
consistent with the set of examples, such a counterexample
is not needed. Moreover, Angluin’s model treats both kinds
of queries as equally expensive. We make a distinction be-

tween the cheaper queries to the I/O oracle and the more
expensive queries to the validation oracle, which allows us to
optimize our implementation. Finally, our algorithm iterates
by finding distinguishing inputs, which is not an operation
supported by Angluin’s model.

Two other results from learning theory also shed light on
why our oracle-based approach is effective in practice.

First, note that our focus on loop-free programs that com-
pute functions of finite-precision bit-vector inputs indicates a
connection to the work on learning Boolean circuits. In par-
ticular, the classic result on learning constant-depth Boolean
(AC0) circuits from a few test inputs [17] provides a partial
explanation for the effectiveness of this strategy. The result
relies on a theorem stating that AC0 circuits can be ap-
proximated well by low-degree polynomials, which in turn
are known to be identifiable by their behavior on few inputs.

The second relevant result relates to the notion of teach-
ing dimension introduced by Goldman and Kearns [7]. In-
formally, the teaching dimension of a concept class is the
minimum number of examples a teacher (oracle) must re-
veal to uniquely identify any target concept from that class.
As our experiments show, we need very few examples to syn-
thesize our target programs in practice, indicating that these
programs form a concept class with a low teaching dimen-
sion. Moreover, our algorithm fits closely with a result from
the Goldman-Kearns paper [7], showing that the generation
of an optimal teaching sequence of examples is equivalent to
a minimum set cover problem. In the set cover problem for
a given target concept, the universe of elements is the set
of all incorrect concepts (programs) and each set Si, corre-
sponding to example xi, contains concepts that are differen-
tiated from the target concept by this example xi. We can
see that our Procedure IterativeSynthesis computes such
a distinguishing example in each iteration, and terminates
when it has computed a “set cover” that distinguishes the
target concept from all other candidate concepts (the “uni-
verse”). Given this close connection, it does seem that the
classes of functions corresponding to the bit-manipulating
and deobfuscation examples we consider have small teach-
ing dimension, and also Procedure IterativeSynthesis is
effective at generating a sequence of examples close to the
optimal teaching sequence.

These connections to learning theory are very intriguing.
We leave a formal exploration of these links to future work.

6. EXPERIMENTAL RESULTS
We present experimental evaluation of our technique and

compare different approaches namely IterativeSynthesis,
Random, and Constrained Random discussed in Section 4.

Setup and Benchmarks.
We have implemented IterativeSynthesis in a tool called

Brahma. It uses Yices 1.0.21 [25] as the underlying SMT
solver. We ran our experiments on 8x Intel(R) Xeon(R)
CPU 1.86GHz with 4GB of RAM. Brahma was able to syn-
thesize the desired circuit for each of the benchmark exam-
ples. Semi-biased Brahma implements Constrained Ran-
dom with the parameter K = 2. Thus, it differs only in first
4 steps from Brahma. As mentioned in Section 4, this is
specially targetted towards synthesis of bitvector programs.

We selected a set of 25 benchmark examples to evaluate
our technique. 22 benchmarks (P1-P22) are bit-manipulation
programs from the book Hacker’s Delight, commonly re-
ferred to as the Bible of bit twiddling hacks [29]. 3 bench-
marks were used as examples to illustrate the use of our tech-
nique for deobfuscation. These benchmarks reflect obfusca-

P1(x) :
Turn-off
rightmost 1
bit.

1 o1=(x - 1)
2 res=(x & o1)

P19(x) :
Turn-off the
rightmost
contiguous
string of 1
bits

1 o1=(x - 1)
2 o2=(x | o1)
3 o3=(o2 + 1)
4 res=(o3 & x)

P21(x) :
Next higher
unsigned
number
with same
number of 1
bits

1 o1=(- x)
2 o2=(x & o1)
3 o3=(x + o2)
4 o4=(x ⊕ o2)
5 o5=(o4 >> 2)
6 o6=(o5 / o2)
7 res=(o6 | o3)

P22(x)
: Round
up to the
next highest
power of 2

1 o1=(x - 1)
2 o2=(o1 >> 1)
3 o3=(o1 | o2)
4 o4=(o3 >> 2)
5 o5=(o3 | o4)
6 o6=(o5 >> 4)
7 o7=(o5 | o6)
8 o8=(o7 >> 8)
9 o9=(o7 | o8)

10 o10=(o9 >> 16)
11 o11=(o9 | o10)
12 res=(o10 + 1)

Figure 6: Selected Bit-vector Benchmarks

tion strategies from literature on obfuscation techniques [5]
(P23) and Internet worms - Conficker [22] (P24) and My-
Doom [21] (P25). Some of these examples are presented in
Figure 6 and Figure 7. All the benchmarks used in the ex-
periments are listed in a more detailed version of the paper
made available as a technical report [9].

6.1 Bit-Manipulating Programs
Recall from Section 5.1 that the bitvector benchmarks

were run using a standard library of base components, and
if necessary, an extended library. In Table 1, we report the
runtime when using the standard library (col. 4) and when
using the user-augmented extended library (col. 5), in case
the standard library was not sufficient. Note that our tool
quickly terminates when the given library is insufficient.

For bitvector benchmarks, the user plays the role of the
I/O oracle as well as the validation oracle. If the user guar-
antees that the provided set of base components is sufficient
to encode the desired solution, then we do not require the
validation oracle. Otherwise, it is theoretically impossible
to know whether or not the generated solution is the cor-
rect one without a validation oracle. However, in practice,
our algorithm detects insufficiency of the base components
by discovering inconsistency, and not by a query to the val-
idation oracle. This suggests that in the absence of any
validation oracle, we can consider the semantically unique
candidate program returned by our algorithm to be the cor-
rect program for all practical purposes.

We now compare the three approaches on bit-vector bench-
marks using two metrics - the total runtime and the number
of iterations. We present the ratio of runtimes of random
input generation (col 2 of Table 1) and semi-biased Brahma
(col 5 of Table 1) in Figure 8. Semi-biased Brahma is
1.5 times to 12 times faster than random technique. For
P22, the random technique did not finish in 1 hour while
semi-biased Brahma was able to synthesize it in 186 sec-
onds. Also, the number of iterations required to synthe-
size a program is also reduced significantly as shown in Ta-
ble 1. Brahma and semi-biased Brahma is compared in
Figure 9. While the number of iterations is more for semi-
biased Brahma, it is faster than the Brahma on larger
benchmarks. It reduces the runtime for P18 from 140.65
seconds to 25.55 seconds, P21 from 527.91 seconds to 272.28
seconds and P22 from 1108.15 seconds to 187.17 seconds.
This validates the optimization proposed in Section 4.

 0

 2

 4

 6

 8

 10

 12

 14

1 3 5 7 9 11 13 15 17 19 21
 0

 1

 2

 3

 4

 5

 6

 7

R
at

io
 o

f R
un

tim
e

R
at

io
 o

f I
te

ra
tio

n
C

ou
nt

s

Bitvector Benchmarks

Runtime
Iter Count

Figure 8: Ratio of Runtime for Random Input Genera-

tion to SemiBiased Brahma

 0

 1

 2

 3

 4

 5

 6

1 3 5 7 9 11 13 15 17 19 21
 0

 0.3

 0.6

 0.9

 1.2

 1.5

R
at

io
 o

f R
un

tim
e

R
at

io
 o

f I
te

ra
tio

n
C

ou
nt

s

Bitvector Benchmarks

Runtime
Iter Count

Figure 9: Ration of Runtime for Brahma to SemiBiased

Brahma

6.2 Deobfuscation
The I/O oracle involves simply evaluating the obfuscated

program on the given input. The validation oracle can be a
program equivalence checking tool or the user.

An additional challenge that this domain offers is the pres-
ence of arbitrary string constants. Our synthesis framework
can be easily extended to discovering such constants. For
this purpose, we introduce a generic base component fc that
simply outputs some arbitrary constant c. The component
fc takes no input and returns one output O and its func-
tional specification is written as O = c. The only change
to the framework is that since c is allowed to be arbitrary,
we existentially quantify over c in the functional constraint
φfunc described in Section 4.1.

For the three examples that we used in experiments, ob-
serve that Brahma gives the best performance. The key
observation from the experiments is that random input gen-
eration does not work well for examples such as P25 where
randomly generating integers has a rare chance of 1 in 232 to
pick an input which produces any of the first 4 possible out-
puts. Brahma takes exactly 5 iterations to query the I/O
oracle with inputs that generate all the 5 possible outputs.

The experimental results indicate that adding a distin-
guishing input is better than adding a random input to E
because it guarantees that atleast one candidate program is
definitely removed from the search space. Thus, it guaran-

P23: Interchange the source and destination addresses.

1 interchangeObs(IPaddress* src, IPadress* dest)
2 { *src = *src ⊕ *dest;
3 if (*src == *src ⊕ *dest) { *src = *src ⊕ *dest;
4 if (*src == *src ⊕ *dest) { *dest = *src ⊕ *dest;
5 if (*dest == *src ⊕ *dest) { *src = *dest ⊕ *src;
6 return; }
7 else { *src = *src ⊕ *dest; *dest = *src ⊕ *dest;
8 return;} }
9 else *src = *src ⊕ *dest; }

10 *dest = *src ⊕ *dest; *src = *src ⊕ *dest; return;}

1 interchange(IPaddress* src, IPadress* dest)
2 { *dest = *src ⊕ *dest; *src = *src ⊕ *dest;
3 *dest = *src ⊕ *dest;return; }

P24: Multiply by 45

1 int multiply45Obs(int y)
2 { a=1; b=0; z=1; c=0;
3 while(1) { if (a == 0) {
4 if (b == 0) { y=z+y; a =¬a;
5 b=¬b;c=¬c; if (¬ c) break; }
6 else {
7 z=z+y; a=¬a; b=¬b; c=¬c;
8 if (¬ c) break; } }
9 else if(b == 0) {z=y << 2; a=¬a;}

10 else { z=y << 3; a=¬a; b=¬b; }}}
11 return y;}

1 multiply45(int y)
2 { z = y << 2; y = z + y;
3 z = y << 3; y = z + y; return y;
4 }

Figure 7: Deobfuscation Benchmarks

Bench Random Inputs Semibiased Brahma

Names Runtime Iter Runtime Runtime Iter
Standard Lib Extended Lib

1 2 3 4 5 6

P1 1.48 5 0.80* 0.80 3
P2 7.35 11 4.75* 4.75 7
P3 1.60 8 0.65* 0.65 4
P4 1.65 11 0.86* 0.86 6
P5 3.92 8 2.28* 2.28 6
P6 6.22 23 1.64* 1.64 4
P7 1.39 5 0.50* 0.50 5
P8 2.20 11 1.42* 1.42 6
P9 4.95 10 3.85 4.90 6
P10 13.99 14 4.57 3.25 9
P11 24.31 16 2.86 14.27 10
P12 279.49 24 2.64 45.52 12
P13 32.50 9 3.02 6.95 7
P14 14.32 25 3.00 3.66 6
P15 167.84 7 4.50 13.57 6
P16 66.93 10 4.95 18.97 8
P17 217.34 17 5.89 20.62 13
P18 228.78 19 7.98 25.55 6
P19 163.82 13 65.45* 65.45 7
P20 214.14 17 19.30 63.23 8
P21 1074.04 15 13.28 272.28 8
P22 timeout NA 187.17 185.57 9

Table 1: Random input generation and Semi-biased
Brahma on Bitvector Examples. NA denotes not
applicable. * denotes that the extended library was
same as standard library. Runtimes in sec.

Bench Brahma Random Semibiased Brahma
Names Runtime Iter Runtime Iter Runtime Iter

(sec) (sec) (sec)

P23 1.380 3 24.28 9 12.12 5
P24 5.28 2 11.96 4 2.94 2
P25 0.50 5 timeout NA 0.86 9

Table 2: Deobfuscation Examples

tees progress. Moreover, it possibly also removes a set of
other similar designs from the search space.

7. RELATED WORK
There is a vast body of work on automated program syn-

thesis. In this section, we describe some of the different
approaches used for program synthesis.

Component-based Synthesis
Synthesis of straight-line code-fragments constructed from a
given set of components has received significant attention.

From Type Signatures: Jungloid mining tool [18] syn-
thesizes code-fragments (over a given set of API methods
annotated with their type signatures) given a simple query
that describes the desired code using input and output types.

From Functional Specifications: [8] uses SMT solv-
ing technology to synthesize a straight-line sequence of in-
structions from functional description of the desired code
sequence. DIPACS [10] uses an AI planner to implement a
programmer-defined abstract algorithm using a sequence of
library calls. The behavior of the library procedures and the
abstract algorithm is specified using high-level abstractions,
e.g., predicates sorted and permutation. It uses interaction
with the programmer to prune undesirable compositions.

From unoptimal code sequences: Superoptimizers
generate an optimal code sequence for a given straight-line
sequence of instructions. One approach is to enumerate se-
quences of increasing length or cost, testing each for equal-
ity with the given sequence [20]. Another approach is to
constrain the search space to a set of equality-preserving
transformations expressed by the system designer [11] and
then select the one with the lowest cost. Superoptimization
is useful in optimizing performance-critical inner loops. Re-
cent work has used superoptimization [2, 3] to automatically
generate general-purpose peephole optimizers by optimizing
a small set of instructions in the code.

Program Synthesis

In deductive program synthesis [19, 26], a program is syn-
thesized by constructively proving a theorem which states
that forall inputs in a given set, there exists an output, such
that a given functional specification predicate holds. Deduc-
tive program synthesis assumes that a full functional speci-
fication is given. Moreover, it requires advanced deduction
technology that is hard to automate.

In inductive program synthesis [27, 12], recursive pro-
grams are generated from input-output examples in two
steps. In the first step, a set of I/O examples are writ-
ten as one large conditional expression. In the second step,
this initial program is generalized into a recursive program
by searching for syntactic regularities in the initial program.
In contrast, we do not require a “good” set of I/O examples
be given a-priori. Moreover, we do not explicitly general-
ize – generalization happens implicitly from synthesizing a
function using only a given set of components.

Shapiro’s Algorithmic Debugging System [23] performs
synthesis by repeatedly using the oracle to identify errors
in the current (incorrect) program and then fixing those er-
rors. We do not fix incorrect programs. We use the in-
correct program to identify a distinguishing input and then
re-synthesize a new program that works on the new input-
output pair as well.

In programming by demonstration [15, 16, 6], the user
demonstrates how to perform a task and the system learns
an appropriate representation of the task procedure. Un-
like our method, these approaches do not make active oracle
queries, but rely on the demonstrations the user chooses.
Making active queries is important for efficiency and termi-
nating quickly (so that user is not overwhelmed with queries).

In programming by sketching [24], implementations are
synthesized from sketches – partially-specified programs with
holes. The SKETCH system uses SAT solving within a
counterexample-guided loop that constantly interacts with
a verifier to check candidate implementations against a com-
plete specification, where the verifier provides counterexam-
ples until a correct solution has been found. In contrast,
we do not use counterexamples for synthesis. Further, we
require a validation oracle only when the specification can
not be realized using the provided components. This veri-
fier is not required to return a counter-example. In practice,
we never require a query to the verifier and our technique
correctly identifies infeasible scenarios without calling the
validation oracle.

8. CONCLUSION
We have presented a novel approach to program synthesis

based on oracle-guided learning from examples and SMT
solvers. Applications to synthesis of bit-vector programs
and deobfuscation have been demonstrated. Experiments
indicate that our approach can be efficient and effective for
discovering unintuitive code and for program understanding.

Acknowledgments
We are grateful to Rastislav Bodik, George Necula, John
Rushby, Natarajan Shankar, Hassen Saidi, Dawn Song, Richard
Waldinger and the anonymous reviewers for their insightful
comments. The UC Berkeley authors were supported in part
by NSF grants CNS-0644436 and CNS-0627734, and by an
Alfred P. Sloan Research Fellowship. The fourth author was
supported in part by NSF grants CNS-0720721 and CSR-
0917398.

9. REFERENCES
[1] D. Angluin. Queries and concept learning. Machine

Learning, 2(4):319–342, 1987.
[2] S. Bansal and A. Aiken. Automatic generation of

peephole superoptimizers. In ASPLOS, 2006.
[3] S. Bansal and A. Aiken. Binary translation using

peephole superoptimizers. In OSDI, 2008.
[4] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli.

Satisfiability modulo theories. In Handbook of
Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[5] C. Collberg, C. Thomborson, and D. Low. A taxonomy
of obfuscating transformations. Technical Report 148,
Dept. Comp. Sci., The Univ. of Auckland, July 1997.

[6] A. Cypher, editor. Watch what I do: Programming by
demonstration. MIT Press, 1993.

[7] S. A. Goldman and M. J. Kearns. On the complexity
of teaching. Journal of Computer and System
Sciences, 50:20–31, 1995.

[8] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan.
Component based synthesis applied to bitvector
circuits. Technical Report MSR-TR-2010-12, Microsoft
Research, Feb 2010.

[9] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari.
Oracle-guided component-based program synthesis.
Technical Report UCB/EECS-2010-15, EECS
Department, University of California, Berkeley, Feb
2010.

[10] T. A. Johnson and R. Eigenmann. Context-sensitive
domain-independent algorithm composition and
selection. In PLDI, 2006.

[11] R. Joshi, G. Nelson, and K. H. Randall. Denali: A
goal-directed superoptimizer. In PLDI, 2002.

[12] E. Kitzelmann and U. Schmid. Inductive synthesis of
functional programs: An explanation based
generalization approach. J. Machine Learning Res.,
7:429–454, 2006.

[13] D. E. Knuth. The art of computer programming.
http://www-cs-faculty.stanford.edu/~knuth/
taocp.html.

[14] J. Kominek. rot13 implementation. http://www.
miranda.org/∼jkominek/rot13/, Accessed Sep. 2009.

[15] T. Lau, P. Domingos, and D. S. Weld. Version space
algebra and its application to programming by
demonstration. In ICML, pages 527–534, 2000.

[16] H. Lieberman, editor. Your wish is my command:
Giving users the power to instruct their software.
Morgan Kaufmann, 2001.

[17] N. Linial, Y. Mansour, and N. Nisan. Constant depth
circuits, fourier transform, and learnability. In FOCS,
pages 574–579, 1989.

[18] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman.
Jungloid mining: Helping to navigate the API jungle.
In PLDI, pages 48–61, 2005.

[19] Z. Manna and R. Waldinger. A deductive approach to
program synthesis. ACM TOPLAS, 2(1):90–121, 1980.

[20] H. Massalin. Superoptimizer - a look at the smallest
program. In ASPLOS, pages 122–126, 1987.

[21] MyDoom Wikipedia Article. http://en.wikipedia.
org/wiki/Mydoom, URL accessed Sep. 2009.

[22] P. Porras, H. Saidi, and V. Yegneswaran. An analysis
of conficker’s logic and rendezvous points. Technical
report, SRI International, March 2009.

[23] E. Y. Shapiro. Algorithmic Program DeBugging. MIT
Press, Cambridge, MA, USA, 1983.

[24] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite
programs. In ASPLOS, 2006.

[25] SRI Intl. Yices: An SMT solver.
http://yices.csl.sri.com/.

[26] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger,
and I. Underwood. Deductive composition of
astronomical software from subroutine libraries. In
CADE, 1994.

[27] P. D. Summers. A methodology for lisp program
construction from examples. J. ACM, 24(1), 1977.

[28] Symantec Corporation. Internet security threat report
volume XIV. http://www.symantec.com/business/
theme.jsp?themeid=threatreport, April 2009.

[29] H. S. Warren. Hacker’s Delight. Addison-Wesley
Longman, Boston, MA, USA, 2002.

