
FlashNormalize: Programming by Examples for Text Normalization

Dileep Kini∗
University of Illinois (UIUC)

Urbana, Illinois 61820

Sumit Gulwani
Microsoft Research

Redmond, Washington 98052

Abstract
Several applications including text-to-speech re-
quire some normalized format of non-standard
words in various domains such as numbers, dates,
and currencies and in various human languages.
The traditional approach of manually constructing
a program for such a normalization task requires
expertise in both programming and target (human)
language and further does not scale to a large num-
ber of domain, format, and target language combi-
nations.
We propose to learn programs for such normaliza-
tion tasks through examples. We present a domain-
specific programming language that offers appro-
priate abstractions for succinctly describing such
normalization tasks, and then present a novel search
algorithm that can effectively learn programs in
this language from input-output examples. We also
briefly describe domain-specific heuristics for guid-
ing users of our system to provide representative
examples for normalization tasks related to that do-
main. Our experiments show that we are able to
effectively learn desired programs for a variety of
normalization tasks.

1 Introduction
Real world text contains words from various domains (like
numbers, dates, currency amounts, email addresses, and
phone numbers) in non-standard formats [Sproat, 2010]. It is
desirable to “normalize” text by replacing such non-standard
words (NSWs) with consistently formatted and contextually
appropriate variants in several applications including ma-
chine translation, topic detection, text-to-speech (TTS) sys-
tems, training of automatic speech recognizers and spread-
sheet functions.

The traditional technology for normalizing such NSWs
involves manually writing down a normalization program,
which often consists of a combination of ad hoc translation
rules (e.g., for expanding dates or large numbers) along with
some lookup tables (e.g., for month names or translation of
single or double digit numbers). This process is not only

∗Work done by the author during internships at Microsoft.

time-consuming but also error prone since it involves man-
ual programming and often requires to pair up a program-
mer with the target language expert. Most significantly, such
a program is very specific and needs to be written for each
domain (e.g., numbers) and the target language of normal-
ization (e.g., English). To make matters worse, there can be
multiple normalization formats, even for a given domain and
a target language, each of which requires its own program.
For instance, “1325” might be normalized into “one thousand
three hundred twenty-five”, or may also be read as “one three
two five” or “thirteen twenty-five” or “thirteen hundred and
twenty five” depending on the context. In this paper, we pro-
pose automated learning of programs from examples for such
tasks. This process is also referred to as inductive synthesis in
some communities.

We propose a Programming-by-Examples technology
called FlashNormalize for learning normalization programs.
We identify an expressive domain-specific programming
language (DSL) that offers appropriate abstractions for ex-
pressing such programs. This language describes the concept
class. Our DSL is structured around four kinds of expres-
sions: parse expressions that extract appropriate substrings
from the input string, process expressions that transform
the substrings using table lookups or functions provided by
the language designer, concat expressions that concatenate
various process expressions, and decision lists that allow
for conditional behavior. The key technical contribution
of the paper is a search algorithm for effectively learning
programs in this DSL from input-output examples. Part of
FlashNormalize’s search algorithm learns parse and process
expressions (having learnt appropriate lookup tables) and
builds over recent work on inductive synthesis by [Menon et
al., 2013] that uses brute-force search to explore programs
of increasing size as guided by an underlying DSL. While
Menon’s approach works only on a single example, we show
how to combine this approach with the idea of version-space
algebras for inductive synthesis proposed by Lau et al. [Lau
et al., 2000] to construct a hypothesis space of all programs
that are consistent with all the user provided examples.
In addition, we propose novel deductive top-down search
algorithms to learn decision lists and concat expressions.
Our algorithm for synthesizing decision lists falls into the
paradigm of separate-and-conquer learning [Fürnkranz,
1999]. In order to handle decision lists we identify a key

concept of maximal consistent cover (MCC). We show how
to synthesize small decision lists when one can compute the
MCC for the structure underneath. Therefore our algorithm
for learning decision lists is generic and independent of the
specific structure appearing below it, which in our case is the
concat expression.

Our key contributions are the following:

1. We have designed a rule-based DSL (Section 3) with
support for lookup tables that is able to capture a range
of Text-Normalization (TN) tasks. This DSL is our hy-
pothesis space.

2. We describe learning algorithms for searching programs
(within this hypothesis space) that are consistent with a
set of input-output examples. In particular, we present a
novel technique for learning decision lists (Section 4.1),
and a novel method which combines bottom-up enu-
merative search (Section 4.2) with top-down deductive
search (Section 4.3) for learning branches of the deci-
sion lists.

3. We describe strategies (Section 5.1) for helping users
provide representative sets of examples and demonstrate
their usefulness.

4. Using our techniques we show how FlashNormalize can
learn programs for a range of TN tasks such as number-
names for 9 different languages, dates, phone numbers,
time and measurements through examples (Section 5.2).

Related Work
Various language-specific techniques have also been pro-
posed for French [Larreur et al., 1989], Russian [Sproat,
2010], Croatian [Beliga and Martincic-Ipsic, 2011]. Machine
translation based methods have also been attempted [Schlippe
et al., 2010] but these and other statistical translation methods
require thousands of examples before they converge on ap-
proximately correct solutions. The upside to statistical meth-
ods is the ability to capture noisy input data that our meth-
ods do not possess. But FlashNormalize is much more useful
when the user wants to provide a relatively small sample and
can guarantee that it is consistent.

Our methodology of learning programs from examples
falls into the broad effort of inductive synthesis. We point the
reader to [Flener and Popelı́nsky, 1994] for a classical survey
on the topic. For a survey on program synthesis techniques
we refer to [Gulwani, 2010], apart from statistical methods
they consist of: brute-force enumeration, version space al-
gebras, and logical reasoning based methods. In our case a
brute-force enumeration would be nearly impossible due to
the large search space dictated by our DSL. We use ver-
sion space based techniques to synthesize parse and process
expressions. Logical reasoning based methods use off the
shelf SMT solvers like Z3 [de Moura and Bjørner, 2008], for
solving constraints that correspond to the synthesis problem.
While every synthesis problem can be posed as checking the
validity of second-order formula, SMT solvers are only effec-
tive for solving first-order constraints. It is not clear if one can
encode our synthesis problem as a first-order formula. Deci-
sion lists in the classical sense [Rivest, 1987] are viewed as a

boolean classifiers, while we view them as classifiers coupled
with transformers (the concat expression), which necessitates
the design of new algorithms for learning them.

Comparison with FlashFill: From the technical view point
the closest related work is FlashFill [Gulwani, 2011] which
focuses on synthesizing spreadsheet programs. We treat text
normalization as a string manipulation task, but a more so-
phisticated one than what has been attempted in FlashFill.
Our task requires (a) learning larger programs in a more
expressive DSL that is extensible and allows table lookups
(b) dealing with more elaborate specification in the form of
large number of examples; FlashFill handles tasks that require
only a few examples. For (a) we bring forth two key innova-
tions: (i) we combine a deductive (top-down) search with an
enumerative (bottom-up) search to achieve an efficient syn-
thesis algorithm. (ii) we present a generic technique for learn-
ing conditionals using maximal consistent covers — our tech-
nique scales to large number of examples unlike the greedy
heuristic used in FlashFill. For (b) the user needs assistance
in finding a representative set of examples for which we use
two key strategies (i) modularity: wherein sub-procedures are
learnt first and used as black-box functions for synthesizing
higher level procedures, (ii) active learning: where we prompt
the user with intelligent inputs.

2 Problem Motivation
We begin by describing three typical text normalization tasks
and use them to motivate the problem we address in this pa-
per.

Number Translations.
Translating sequence of digits into words representing the
cardinal form is a scenario that arises in TTS for various
languages. For example in English “72841” is spoken as
“seventy two thousand eight hundred and forty one”, and
in French “1473” is spoken as “mille quatre cent soixante-
treize”. A TTS system engineer designing a system across
various languages would need a a different program for such
translations for every single language.

Dates.
Consider the task of normalizing dates. The goal here is to
transform a date written in ‘MMM dd, yyyy’ format to its
expanded spoken form. Table 1 presents five representative
examples for this scenario.

Input Output
jan 08, 2065 January eighth twenty sixty five
apr 23, 2006 April twenty third two thousand six
oct 14, 2000 October fourteenth two thousand
dec 31, 1804 December thirty first eighteen oh four
aug 10, 1900 August tenth nineteen hundred

Table 1: Dates - MMM dd, yyyy.

What is common to all these examples is that we transform
the MMM part into the expanded month and convert the dd
part into its ordinal form. What is different in all of them is
the way the years are written. In most cases (as in the first

example) the year yyyy is said in pairs, first two together and
the last two together. But if the year is let’s say 2006 one
obviously would not translate it to ‘twenty six’, but rather to
‘two thousand six’ or ‘two thousand and six’.

Telephone numbers.
Phone numbers are spoken differently across the globe. North
America uses a system where a 10 digit number is spoken in
three parts consisting of the area code (3 digits), exchange
code (3 digits) and the subscriber number (4 digits). The area
code might sometimes be omitted, and one might have op-
tional country code at the beginning. The examples in Table 2
illustrate some of these challenges, along with the additional
challenge of variation in the input formats.

Input Output

4259037658 four two five / nine zero three /
seven six five eight

(234) 7020671 two three four / seven zero two /
zero six seven one

1 309 4442780 one / three zero nine / four four four
/ two seven eight zero

742-8537 seven four two / eight five three
seven

Table 2: Examples for telephone number translation.

2.1 Problem Statement
We want to learn functions that take an input string and output
a sequence of strings. The input in the first row in Table 1 is
“jan 08, 2065” and the corresponding output is “January”,
“eighth”, “twenty”, “sixty”, “five”. A function g is said to be
consistent with a set of input-output examples E if g(σ) = ω
for each (σ, ω) ∈ E. Our problem is the following: given a
set of such input-output examples, synthesize a function that
is consistent with all the examples.

3 Representation
We have identified a domain specific language (DSL) for rep-
resenting functions in our concept space. The programs in
this DSL are both (a) expressive enough to capture a range
of normalization tasks and (b) succinct enough to be learnt
efficiently.

FlashNormalize’s DSL consists of a decision list at the
top, which is a chained sequence of if-then-else statements.
Formally, it is an ordered sequence d = (p1, c1), . . , (pn, cn)
where each pi is a Boolean predicate and each ci is
a concatenate expression with String → Bool and
String → List(String) as their respective types. The
final predicate pn is fixed to be true. For an input string σ,
the value d(σ) is defined as ci(σ) where i is the least index
such that pi(σ) evaluates to true. We use D to denote the set
of all decision lists.

A concat expression c is an ordered sequence of process
expressions u1, . . , un. A concatenate expression c applied
to input σ yields a list of strings c(σ) obtained from con-
catenating the output values ui(σ) of process expressions in

the order they appear in c. We use C to denote the set of all
concat expressions.

A process expression u is a program that given an in-
put string transforms it into a list of strings. It is al-
lowed to be either a constant string (independent of the in-
put) or a Table lookup applied to a parse expression. We
use Table to indicate a finite sized map with signature
String→List(String). Any such table can be thought of
as a set of key/value pairs (κ, υ) ∈ String×List(String)
with no two of them having the same key. A program can use
multiple tables (description of a program includes descrip-
tions of the tables it uses).

In the examples in Figure 1 the substring ‘jan’ (‘apr’)
needs to converted to ‘January’ (‘April’) or the string
‘8’ (‘23’) should become ‘eighth’ (‘twenty third’). Such
transformations can be achieved by an appropriate table,
like month and cardinal as used in Figure 1. Most often
these tables represent core semantics relationship between
substrings of the input and those of the output. These can
either be specified by the user, or can even be learned by the
system from sufficient examples.

Parse expressions are programs that extract substrings of
the input. The space of possible parse expressions is described
using a non-recursive grammar. An instance of such a gram-
mar is presented in Listing 1. The reason for preferring a
generic grammar to a fixed syntax is that algorithms designed
for a grammar easily allow for future extensions without the
need to modify the learning algorithm. Formally, a grammar
is a 5-tuple (S,Φ, R, s, in) where:

(a) S is a set of symbols denoting non-terminals. 1

(b) Φ is a set of functions, where each function f has a spe-
cific signature T1, . . , Tk → T where T1, . . , Tk are the
types of the input and T is the return type. The semantics
of the functions is assumed to be given. A function can
also have 0 arguments, in which case it is a constant.

(c) R is a set of rules where each rule is either of the form
A := B or A :=f(B0,..,Bk) where A,B,B0,..,Bk
are symbols in S and f ∈ Φ

(d) a unique start symbol s (S in the sample below)

(e) a unique symbol in denoting the input variable (v in the
sample below). R is not allowed to contain rules going
out of this variable.

We explain some of the functions that constitute parse ex-
pressions. Consider the expression Split(v,0) used in U1
in Figure 1, it is used to extract ‘jan’ from the input ‘jan 08,
2065’. The expression Split(σ,i) returns the i+1st sub-
string of σ when split by the whitespace delimiter. The op-
eration Dig(σ,i) returns the i+1st substring of σ composed
entirely of digits, so Dig(v,0) yields ‘23’ on input ‘apr 23,
2006’ (used in Figure 1). The operator Substr(σ,i,j) ex-
tracts the substring of length j of σ starting at index i. The
index i in all these operators is allowed to be negative which
is a convention indicating that indexing is to be from right

1Note that we do not have terminals in the grammar, instead
parse trees terminate with functions of 0 arity.

to left. In case of Substr(σ,i,j) if the index i is negative
then the substring extracted starts at index `(σ)+i−j+1 and
ends at `(σ)+i, where `(σ) is the length of σ . The opera-
tor Trim removes all leading zeros from its argument. These
and several other operators can be combined in different ways
through a grammar. The domain expert is free to extend/limit
the capabilities of the parse expressions appropriately for the
task in question.

string S := B | SubStr(B, k, k);
string B := v | Split(v, k) | Dig(v, k);
int k := -10 | -9 | .. | 10;
string v;

Listing 1: Syntax of a subset of parse expressions presented as
a grammar in Backus-Naur form. Each symbol is annotated
with a type (eg: string) to denote the return type of the
programs associated with it.

January eighth twenty sixty five

08,jan 2065

U2U1 U3 U4

U1 month(Split(v,0))
U2 ordinal(Trim(Dig(v,0)))
U3 cardinal(Substr(Dig(v, 1),0,2))
U4 cardinal(Substr(Dig(v,1),-1,2))

April twenty third two thousand six

23,apr 2006

ConstantU5U1 U6 U7

U1 month(Split(v,0))
U5 ordinal(Dig(v,0))
U6 cardinal(Substr(Dig(v,1),0,1))
U7 cardinal(Substr(Dig(v,1),-1,1))

Figure 1: Examples from Table 1 showing which substrings
of the input are mapped to which substrings of the outputs
using process and parse expressions.

boolean formula concatenate expression
y3 != 0 U1, U2, U3, U4

y2 = 0 ∧ y4 != 0 U1, U2, U3,‘thousand’, U4
y2 = 0 U1, U2, U3,‘thousand’
y4 != 0 U1, U2, U3, ‘oh’, U4
true U1, U2, U3, ‘hundred’

Table 3: decision list for the dates scenario. We use short
hand yi for the parse expression for extracting the ith digit
of yyyy part of the input. Process expressions Ui are the ones
described in Figure 1.

A Boolean predicate is a function of the type

String→Bool, represented as conjunction of atomic
predicates. Listing 2 is an example of atomic predicates
described using a grammar. Each atomic predicate decides its
truth value based on some feature of the input. For example,
the function CountSeq(σ) counts the number of strings
obtained by splitting σ with whitespace as delimiter, and the
function StrLen(σ) counts the number of characters in σ.

bool A := Equals(N,k) | Equals(S,z)
int N := CountSeq(v) | StrLen(B);
string z := "0" | "1" | "00";

Listing 2: Syntax of atomic propositions obtained by reusing
rules in Listing 1

Example 1 Table 3 provides an instance of a complete pro-
gram in our DSL that is consistent with examples provided
for Dates in Table 1.

4 Synthesis Algorithm
In this section we present our algorithm that takes as input a
set of input-output example pairs and generates a program in
the DSL such that the program is consistent with the exam-
ples. First, we define what it means for a set of examples to
be consistent with respect to a class of functions.
Definition 1 Given a class of functions F , a set of examples
is said to beF-consistent if there is some function g ∈ F such
that the examples are consistent with g. Any such function g
is called a witness for the set of examples.

Now, we describe our algorithm. It has two logically dis-
tinct phases performed in the following order:
(1) A bottom-up learning of process expressions for individ-

ual examples.
(2) A top-down search for decision lists and concat expres-

sions that are consistent with all the examples.
A complete bottom-up approach is infeasible due to the fact
that the number of different concat expressions and decision
lists grow exponentially with their length. While designing a
complete top-down approach requires knowing the semantics
of the constructs and the shape of the grammar apriori, which
we can afford for concat expressions and decision lists, but
not for parse/process expressions whose structure is defined
through a grammar. Hence, we perform a hybrid search as
described above.

4.1 Learning decision lists
For a given set of examples we would like to search for the
smallest decision list consistent with it, in accordance with
Occam’s razor. Since this problem is computationally hard
we propose a greedy heuristic that deduces a small decision
list.
Proposition 1 A decision list (p1, c1), . . , (pn, cn) is consis-
tent with examples E iff there is a partition of E of the form
E1, . . , En such that Ei is the set of those examples in E
whose input makes p1, . . , pi−1 false and pi true, and with
eachEi beingC-consistent (recall thatC represents the class
of concat expressions) ,with ci as the witness.

First, we identify a key concept called maximal consis-
tent cover that enables us to find small partitions that are C-
consistent as above.

Definition 2 Given a set of examples E, a collection
{M1, . . ,Mk} ⊆ 2E , is said to be the maximal F-consistent
cover of E if each Mi is F-consistent and for any M ⊆ E, if
Mi⊂M then M is not F-consistent.

Later on in this section we describe how to construct the
maximal C-consistent cover with witnesses for its mem-
bers. Now we show how to use this cover for constructing
a small decision list. Observe that each part Ei in Proposi-
tion 1 has to be a subset of some member of the MCC cover.
We design an iterative algorithm of the separate-and-conquer
kind [Fürnkranz, 1999] to discover a small partition sequence
E1, . . , En. After i iterations we would have produced a list
(p1, c1), . . , (pi, ci). The ith iteration eliminates examples Ei.
So, at the start of iteration i+1 we would be left with exam-
plesRi+1 = E\(E1∪. . ∪Ei). Our goal in the i+1th iteration
is to figure out a set Ei+1 ⊆ Ri+1 and a predicate pi+1 such
that Ei+1 is also a subset of some member of the MCC cover
and pi+1 distinguishes Ei+1 from Ri+1\Ei+1. The concat
expression ci+1 would be obtained from the witnesses of the
MCC cover. In order to produce a small decision list we pick
Ei+1 as large as possible, while giving preference to mem-
bers of the MCC cover over proper subsets of the members.

In Algorithm 1 we provide the pseudocode for the proce-
dure LearnProgram which learns decision lists for a given
set of examples. It iteratively learns the decision list by invok-
ing LearnBranch on the remaining set of examples until ev-
ery example is covered. (The notation E�p is a shorthand for
{(σ, ω) ∈ E | p(σ) = true}). The function LearnBranch
takes as input a set of examples and produces a pair (p, c) of a
predicate p and a concat expression c. This pair is a choice for
the first branch of a decision list that explains the example set.
In lines 7 to 10 we compute a set of candidates of the form
〈p,M〉 where M is a member of the MCC and p is a con-
junctive predicate. This predicate computed by LearnConj
is positive on all/most examples in M and negative on all
examples in R−M . In lines 11 and 12 we try to pick that
candidate 〈p,M〉 whose predicate p can filter outM from the
rest of the examples entirely, if not we pick a candidate whose
predicate can filter out as many as possible. The chosen pred-
icate p is returned along with the concat expression c(M) that
witnesses M in the MCC.

The procedure LearnConj for computing conjunctive
predicates is presented in Algorithm 2. It takes as input two
sets of examples P and N and produces a set of predicates
that are negative on all inputs in N and positive on as many
as possible in P . In line 1 it considers those atomic predicates
that are positive on many examples in P with ties broken by
looking at those that are positive on few examples in N . If
any of those atomic predicates already negate all examples
in N then those are added to the result (line 4). For every
other example a (line 6), it is combined with a new predicate
(generated using a recursive call to LearnConj) that would
remain positive on many examples in P that a is positive on
and negative on all examples in N that a fails to be negative
on.

Algorithm 1: Learning decision list for set of examples.
function LearnProgram (E)

1 let R← E, d← empty list;
2 while R 6= ∅ do
3 let (p, c)← LearnBranch (R);
4 d← d+ (p, c);
5 R← R�¬p;

6 return d;
function LearnBranch (R)

7 Candidates← ∅;
8 foreach M ∈ MCC(R) do
9 let p ∈ LearnConj (M,R−M) with max

size(M�p);
10 Candidates← Candidates ∪ {〈p,M〉};
11 if ∃ 〈p,M〉 ∈ Candidates with R�p =M then
12 return (p, c(M));
13 let 〈p,M〉 ∈ Candidates with max size(R�p);
14 return (p, c(M));

Algorithm 2: Learning conjunctive predicates that pick
most examples in P and discard all in N .

function LearnConj(P, N)
1 A← top-k atoms a sorted lexicographically by

max size(P �a) then by min size(N�a) ;
2 Result← ∅ ;
3 foreach a ∈ A do
4 if N�a = ∅ then
5 Result← Result ∪ {a};
6 else
7 foreach p ∈ LearnConj(P �a , N�a) do
8 Result← Result ∪ {a ∧ p};

9 return Result;

4.2 Learning process expressions
We learn process expressions using a dynamic programming
technique that builds upon ideas of version space algebra by
[Lau et al., 2000] and the idea of bottom-up program enumer-
ation used in [Menon et al., 2013]. The technique we describe
is applicable to any language of expressions described as a
grammar and not limited to the one that we use in this paper.

Version space was first introduced by [Mitchell, 1982] to
denote the set of all hypotheses (in a given hypothesis space)
that are consistent with a given sample of labeled data. We
use the term version space (VS) to describe a data structure
that symbolically represents a partition of the programs. This
data structure enjoys two properties:

1. It enables sorting a large number of programs into hier-
archical groups with respect to their behavior on a given
set of inputs.

2. It allows for an intersection procedure for producing a
version space representing the intersection of the sets of

programs associated with different sets of inputs.
Given a non-recursive grammar we will show how to con-

struct the VS data-structure for one input-output example.
(Note that the tables and string constants can be treated as
a part of the grammar because tables and examples are as-
sumed to be given).

Formally a version space for a grammar (S,Φ, R, s, in) is
a triple (V,L,G), where V is a set of vertices, L : V→S
is a labelling function assigning a symbol to each vertex,
and G ⊆ V×Φ×V ∗ ∪ V×V is a collection of edges. An
edge is either a tuple (u, f, v1, . . , vk) such that L(u) :=
f(L(v1), . . , L(vk)) ∈ R or a pair (u, v) such that L(u) :=
L(v) ∈ R. With every vertex u ∈ V we associate a set
of programs ũ, which is defined inductively as follows, for
L(u) 6= in:

ũ = {f(p1, . . , pk) | ∃ v1, . . , vk such that
(u, f, v1, . . , vk) ∈ G and each pi ∈ ṽi}
∪ {t | (u, v) ∈ G and t ∈ ṽ}

and if L(u) = in, then ũ = {fin} where fin is a func-
tion with no arguments that returns the input. This set is well
defined because we deal with non-recursive grammars. Now
we describe how to build such a data structure VSσ , for a
given input σ. In VSσ each vertex v is associated with a value
val(v) (unique among all those u with L(v)=L(u)), such
that ṽ represents those programs of L(v) that produce out-
put val(v) when executed on input σ. The way to achieve
this is to add the edge (u, f, v1, . . , vk) if and only if f eval-
uates to val(u) on inputs (val(v1), . . , val(vk)). This gives
rise to a dynamic programming algorithm that computes this
symbolic representation of sets of programs that produce the
same output on the give inputs. We omit a detailed descrip-
tion of this algorithm as it can be derived from the inductive
definition above.

Intersection of two version spaces on the same grammar
is performed by taking a cross product, that is (i) for ver-
tices u and v labelled by the same non-terminal we intro-
duce new vertex 〈u, v〉 in the intersection, and (ii) for edges
(u, f, v1, . . . , vk) and (u′, f, v′1, . . . , v

′
k) we add the edge

(〈u, u′〉, f, 〈v1, v′1〉, . . . , 〈vk, v′k〉).
Given examples (σ1, ω1), . . , (σn, ωn) we consider the in-

tersection of VSσ1 , . . ,VSσn and check if it has a vertex v
with L(v) = s0 and val(v) = (ω1, . . , ωn). Every program in
ṽ would be consistent with the given examples.

4.3 Learning concat expressions
Now, we describe an algorithm that learns the MCC for a
given set of examples as required in learning decision lists.
First we see how we synthesize a concat expression consis-
tent with a single example (σ, ω). This amounts to searching
for a sequence of process expressions that when applied to σ
and concatenated yields ω. For any substring ω′ of ω, we can
search for a process expression that produces ω′ by looking
for a vertex v with L(v)=s0 in VSσ , such that val(v) = ω′.

Next, we show how to search for a partition of the out-
put string into substrings, such that for each substring there
is a process expression that produces it on input σ. Note that
there are exponentially many different partitions of a list, but

only O(n2) different substrings where n is the length of ω.
Hence we can symbolically represent all partitions succinctly
as follows: Given input-output pair (σ, ω), consider a di-
rected acyclic graphG(σ,ω)=(U,F, P) consisting of: vertices
U = {0, 1, ··, n} where n = len(ω), set of edges F ⊆ U×U
defined as

F = { (i, j) | i < j, ∃ v ∈ VSσ such that
ṽ is non-empty, val(v) = ω[i,j] }

and an edge labelling function P :F→V mapping edges to
vertices in VSσ where P ((i, j)) is the vertex that witnesses
the inclusion of (i, j) in F . Observe that G(σ,ω) is an acyclic
graph in which a path from 0 to n denotes a concat expression
that transforms σ to ω. So our problem of finding a concat
expression reduces to searching for a path in this graph.

The next step is to use this idea to construct the MCC cover
for a set of examples. We consider the directed graphs for
each example and perform a parallel depth-first search. In ev-
ery step of this search we pick an edge in each graph such
that there is process expression common to all of them. When
we cannot pick an edge for all examples we drop some and
proceed along the rest in a greedy fashion. This search gives
us concat expressions that explain subsets of examples. We
maintain these subsets and use them to preemptively prune
future attempts to find concat expression for subsets of exam-
ples that we have already found to be C-consistent.

Algorithm 3: Enumerating subsets of examples which
are C-consistent.

function ConsistentSets
(
{(σ1,ω1,i1),..,(σn,ωn,in)}

)
1 if ∀k : len(ωk) = ik then
2 yield {(σ1,ω1),..,(σn,ωn)};
3 else
4 foreach S ⊆ {1, .., n} do
5 if ∃u ∀s∈S ∃js u(σs) = (ωs)[is,js] then
6 rec← {(σs,ωs,js) | s ∈ S};
7 foreach r ∈ ConsistentSets(rec) do
8 yield r;

In Algorithm 3 we describe the pseudocode for enumer-
ating subsets of examples that are consistent with a set of
input-output examples. The function ConsistentSets takes
as input a set of input-output examples each annotated with
an index i indicating a position within the output ω. The first
call to ConsistentSets is made with all i = 0. Lines 1 and
2, represent the base case in which the outputs of each exam-
ple is covered. In lines 4 and 5 we enumerate those subsets
of examples S for which a process expression u can be found
that explains some prefix of each output ωs starting from the
respective indices is. In practice we do not go through all sub-
sets but let the enumeration be guided by the process expres-
sions that explain prefix of outputs of the examples. In lines 6
to 8 we do a recursive call that continues the search from the
indices js. In order to compute the MCC we just return the
maximal subsets from all subsets obtained.

Figure 2: Flowchart describing our active learning strategy
used for number-translations.

5 Implementation and Evaluation
In this section first we describe implementation strategies that
complement our synthesis algorithm, and then the experimen-
tal evaluation we performed on real-world data.

5.1 Strategies
The learning algorithm described in Section 4 takes as input
a set of representative examples and descriptions of the re-
quired tables. In certain cases determining one/both of these
can be challenging. The required number of examples may
be large, or the tables might not be straightforward to con-
struct. In this subsection we see ways to tackle them which
will prove useful in the context of number translations.

Modularity is a software design principle that encourages
separation of a program into smaller ones which can then be
reused. We employ this idea in synthesizing our programs.
We can learn programs that handle certain parts of the output
and then use them to learn a complete program. The advan-
tage of this is that the size of all the modular programs put
together is smaller than that of a monolithic program. In the
case of number translations we learn programs that translate
numbers of a particular length and reuse them as user-defined
functions in process expressions to learn programs for num-
bers of larger lengths.

Active Learning: Requiring the user to provide all repre-
sentative examples at the beginning can be too much to ask.
Active learning provides a setting which can guide the user
in finding the right examples. The DSL designer can encode
domain knowledge in the form a learner that suggests inputs
on which a synthesized program maybe wrong.

Traditionally, an active learner makes two kinds of queries,
(a) membership query, in which the learner presents an in-
put for which it would like to know the output (b) equiva-
lence query, where the learner presents a program and wants
to know whether it is correct. If incorrect the teacher presents
it with a counterexample input-output.

We formulate a third category called test query in which the
learner presents an input-output pair and wants to know if it
is consistent with the target program. Only a negative answer
would lead to a membership query on the same input. In our
setting the teacher is the user who is trying to synthesize the
right program, and therefore a test query is easier to answer
than a membership query which is in turn easier to answer
than an equivalence query.

A key advantage of active learning is that one can learn
required tables by asking the user for outputs on certain vari-
ations of the input. For example consider how 3 digit numbers
are spoken in Portuguese: 101 becomes “cento e um”, 201 be-
comes “duzentos e um”, 301 becomes “trezentos e um” and
so on. Therefore we require a table that maps 1, 2, 3 . . . to
cento, duzentos, trezentos and so on. This can be easily done
by varying only the left most digit of the input and mapping
the input variation to the corresponding variation in the out-
put. We use this strategy in number-translations to synthe-
size the required tables. Another way to help users figure out
counterexamples is through smart inputs. Smart inputs are a
maximal set of inputs such that any two of them can be distin-
guished by the boolean predicates allowed in the DSL. Such
inputs try to cover corner cases that might be missed other-
wise. We use these ideas to generate examples and tables in
an iterative fashion. In Figure 2 we describe how these are
put together to obtain a counterexample guided strategy in
synthesizing the correct program.

5.2 Experiments

Now, we describe results showing the (a) expressiveness of
the programs in our DSL, (b) effectiveness of FlashNormal-
ize’s learning algorithms and strategies.

We first consider number translation scenarios as described
in Section 2 for 9 different languages. We assume that we are
given a table for translating 2 digit numbers, and learn n-digit
translators for n ranging from 3 to 6. We employ the idea of
modularity and synthesize n-digit translator using translator
for smaller lengths. For learning the correct translator it is
crucial that the user provides a representative set of exam-
ples (training examples). These examples in our experiments
were obtained with the aid of an active learning method that
interacts with the user. The active learner used is briefly de-
scribed in Figure 2 and explained in the previous subsection.
The n-digit translator synthesized with these examples is cor-
rect on all its valid inputs. For instance the 4-digit transla-
tor synthesized for any language, correctly produces the right
output for all inputs from ‘1000’ to ‘9999’. Here the synthe-
sis algorithm is not shown all the 9000 valid inputs and their
corresponding outputs, but only shown a small set of training
examples whose size is reported in column E. In each case
the program synthesized is correct on all 9000 valid inputs
(test examples). As seen in Table 4 we are able to success-
fully learn the translators within 2 seconds in all scenarios. In
all but two cases (5-digit French and Chinese) the number of
equivalence queries required was just one, indicating that the
user did not have to manually search for counterexamples in
most cases.

Next, we picked 5 TN tasks with examples and tables as-
sumed to be given and our tool synthesized programs that
were consistent with all the examples. The results are sum-
marized in Table 5. Once again, we learn the programs on
a small training set, which is incrementally constructed by
adding one counterexample (randomly chosen) at a time. The
final size of this training set and the total number of examples
are reported in columns E and A. We are able to successfully
and quickly learn each of the tasks.

T M E tm Dl
R

us
si

an
27 12 5 .13 2
50 17 8 .16 3
90 18 11 .23 4

183 14 17 .31 5

Po
lis

h

27 12 5 .15 2
50 15 8 .14 3
93 20 13 .20 4

210 34 27 .41 5

Fr
en

ch

33 20 8 .12 4
65 42 13 .16 6

142 57 34 .42 6
252 112 38 .77 10

Sp
an

is
h 49 41 12 .14 4

68 44 14 .18 6
112 43 17 .26 4
242 72 42 1.6 11

E
ng

lis
h 20 4 4 .13 2

49 18 8 .14 3
89 19 10 .20 3

180 26 14 .26 3

T M E tm Dl

C
hi

ne
se

30 16 6 .14 4
68 30 12 .19 4
124 54 20 .43 6
195 49 24 .73 6

G
er

m
an

26 12 7 .13 2
43 12 9 .13 3
89 21 11 .16 3
188 42 19 .31 5

Po
rt

ug
ue

se 27 13 6 .11 3
78 55 18 .21 8
93 20 14 .26 4
191 25 18 .38 4

It
al

ia
n

27 10 5 .10 2
48 15 9 .13 3
85 15 8 .15 3
174 15 17 .28 6

Table 4: Experimental results for learning number-translators.
Each language has four rows one for each translator (3 to 6,
top to bottom). T and M denote number of test and member-
ship queries made by the active learning method. E denotes
number of examples used in synthesizing the program. tm de-
notes the time taken in seconds by the synthesis algorithm,
and Dl denotes the length of the decision list learned.

Task E A tm Dl
Dates (MMM dd yyyy) 16 764 1.48 5
Dates (mm/dd/yyyy) 15 820 1.46 7
Measurements (x.y unit) 9 1578 1.06 2
Telephone (Table 2) 10 134 0.32 7
Time (hh:mm:ss zone) 63 966 13.7 15

Table 5: Experiments for learning other normalization tasks.
E, A, tm and Dl denote the number of examples used in syn-
thesizing the program, size of the data set, time take in sec-
onds and the size of decision list learnt respectively.

6 Conclusion
In this paper, we have considered the problem of text nor-
malization. Manually writing programs for such tasks is chal-
lenging as it requires both programming and domain exper-
tise, and is complicated by the fact that this exercise would
have to be repeated for every language and output format.
We have proposed a Programming-by-Examples technology
called FlashNormalize to automate this process in which the
user only has to provide input-output examples. We show
the effectiveness of our technique on real world problems.
The core technical idea of the paper is the design of algo-
rithms and strategies for learning programs in our DSL. While
heuristic search, VSA methods and active learning have been
studied in various communities we bring these complemen-

tary ideas together. We believe such a combination might
be useful for scaling other synthesis tasks [Gulwani, 2010;
2012].

References
[Beliga and Martincic-Ipsic, 2011] Slobodan Beliga and

Sanda Martincic-Ipsic. Text normalization for croatian
speech synthesis. In MIPRO, pages 1664–1669. IEEE,
2011.

[de Moura and Bjørner, 2008] Leonardo Mendonça
de Moura and Nikolaj Bjørner. Z3: an efficient SMT
solver. In TACAS, 14th International Conference, 2008,
pages 337–340, 2008.

[Flener and Popelı́nsky, 1994] Pierre Flener and Lubos
Popelı́nsky. On the use of inductive reasoning in program
synthesis: Prejudice and prospects. In LOPSTR’94 and
META’94, pages 69–87, 1994.

[Fürnkranz, 1999] Johannes Fürnkranz. Separate-and-
conquer rule learning. Artificial Intelligence Review, 13:3–
54, 1999.

[Gulwani, 2010] Sumit Gulwani. Dimensions in program
synthesis. In Principles and Practice of Declarative Pro-
gramming, 2010, pages 13–24, 2010.

[Gulwani, 2011] Sumit Gulwani. Automating string process-
ing in spreadsheets using input-output examples. In 38th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, pages 317–330, 2011.

[Gulwani, 2012] Sumit Gulwani. Synthesis from examples:
Interaction models and algorithms. In 14th International
Symposium on Symbolic and Numeric Algorithms for Sci-
entific Computing, 2012. Invited talk paper.

[Larreur et al., 1989] Danielle Larreur, Françoise Emerard,
and F. Marty. Linguistic and prosodic processing for a
text-to-speech synthesis system. In EUROSPEECH, pages
1510–1513. ISCA, 1989.

[Lau et al., 2000] Tessa A. Lau, Pedro Domingos, and
Daniel S. Weld. Version space algebra and its applica-
tion to programming by demonstration. In ICML, pages
527–534, 2000.

[Menon et al., 2013] Aditya Krishna Menon, Omer Tamuz,
Sumit Gulwani, Butler W. Lampson, and Adam Kalai. A
machine learning framework for programming by exam-
ple. In ICML (1), pages 187–195, 2013.

[Mitchell, 1982] Tom M. Mitchell. Generalization as search.
Artif. Intell., 18(2):203–226, 1982.

[Rivest, 1987] Ronald L. Rivest. Learning decision lists. Ma-
chine Learning, 2(3):229–246, 1987.

[Schlippe et al., 2010] Tim Schlippe, Chenfei Zhu, Jan Geb-
hardt, and Tanja Schultz. Text normalization based on sta-
tistical machine translation and internet user support. In
INTERSPEECH, pages 1816–1819. ISCA, 2010.

[Sproat, 2010] Richard Sproat. Lightly supervised learning
of text normalization: Russian number names. In Dilek
Hakkani-Tür and Mari Ostendorf, editors, SLT, pages 436–
441. IEEE, 2010.

