Promising Directions in Hardware Design Verification

Shaz Qadeer

Serdar Tasiran

Compaq Systems Research Center

Palo Alto,

Abstract

Ensuring the functional correctness of hardware early in
the design cycle is crucial for both economic and method-
ological reasons. However, current verification techniques
are inadequate for industrial designs. Formal verification
techniques are exhaustive but do not scale; partial ver-
ification techniques based on simulation scale well but
are not exhaustive. This paper discusses promising ap-
proaches for improving the scalability of formal verifica-
tion and comprehensiveness of partial verification.

1 Introduction

Functional validation of hardware designs is an important
but extremely difficult problem. The two most common
approaches to this problem are based on simulation and
formal verification. Currently, neither approach is able to
handle industrial designs. Simulation can be performed
on large designs but it exercises only a small fraction of
the possible input sequences and can miss errors. Formal
verification is exhaustive but does not scale. As a result,
research in this field has focused on increasing both the
comprehensiveness of simulation and the capacity of for-
mal verification.

The most widely used formal verification method is
model checking [1, 2] where properties of a design are
checked by state space enumeration. Current model
checkers are limited to hardware designs with a few
hundred signals. We present assume-guarantee reason-
ing [3, 4, 5, 6], a semi-automatic technique for addressing
this limitation. In this style of reasoning, a model check-
ing task on a large module is decomposed into a set of
model checking tasks on smaller modules. Several large
hardware designs [7, 8, 9] have been successfully verified
using this approach.

Assume-guarantee reasoning is not completely auto-
matic because it requires the user to provide an abstrac-
tion of the implementation and definitions of implementa-
tion signals in terms of the abstraction. Hence, this verifi-
cation method is naturally useful in a design methodology
of top-down iterative design refinement. The complexity
of modern designs, the need for design reuse, and the pro-
hibitive cost of functional validation has started to push
the design process in this direction. Therefore, we be-
lieve that assume-guarantee style reasoning will find wide
application in the future of hardware design.

In order to apply assume-guarantee reasoning, specifi-
cations and designs need to be expressed formally, with

CA 94301

precisely defined interfaces between modules implemented
by different designers. Furthermore, this modular struc-
ture needs to be maintained during the evolution of the
design. This implies a radical shift from the typical de-
sign practices of today. Consequently, software simulation
continues to be the prevalent means for functional verifi-
cation. However, simulation driven by random and hand-
written inputs has become increasingly unsatisfactory.
The resulting validation is not exhaustive enough and
gaps in validation are hard and costly to pin-point and
improve. In the second half of the paper, we present an
approach for improving the quality of validation obtained
from software simulation. The techniques discussed are
based on coverage analysis, and automatic generation of
simulation inputs guided by this analysis.

2 Hardware modules

In this section, we introduce a hardware design that is
used to illustrate the techniques discussed in the paper.
Figure 1 shows a simple three-stage pipeline. The module
PIPELINE has a set of input and output signals of finite
types. PIPELINE has four inputs: the signals op, srci,
src2, and dest denoting the type, the two source regis-
ters, and the destination register of the operation to be
performed. The operation op is either AND or NOP. There is
an ALU to perform the operation AND. The pipeline con-
tains a register file regs, and two sets of pipeline latches
pipel and pipe2. The pipeline latches are records: pipel
has fields op, oprl, opr2, and dest; pipe2 has fields op,
dest, and res.

The output signals are initialized by the sequence of
assignments denoted by init. The next values of output
signals are obtained by executing the sequence of assign-
ments denoted by next. At each step, the next value of
an output signal can depend on the values of signals in
both the current and the next state. It is illegal for two
signals to each depend on the next value of the other sig-
nal. In the assignments, an unprimed signal refers to its
value in the current state and a primed signal refers to its
value in the next state.

A state of a module M is an assignment to its input and
output signals. The set State s of all states of the module
M is exponential in the number of signals. A hardware
module M has a set of initial states Initpr C Statens
and a transition relation Nextyr C Statenr X Stateas. A
state s € Inity iff s can be obtained by executing the
init assignments. The pair (s,t) € Nexty iff ¢t can be

e 1
op op on
SCL—— oprl
regs ALU res
SIC2Z—— e opr2
dest dest des
i —

module PIPELINE
input op: opType; srcl, src2, dest: regIndexType
output regs: regFileType;

pipel: pipelType; pipe2: pipe2Type

init
pipel.op’ := NOP
pipe2.op’ := NOP
forall i do regs’[i] := 0
next
pipel.op’ := op’
pipel.oprl’ :=

if srcl’ = pipel.dest & pipel.op = AND
then pipe2.res’

elsif srcl’ = pipe2.dest & pipe2.op = AND
then pipe2.res

else regs[srcl’]

pipel.opr2’ :=

if src2’ = pipel.dest & pipel.op = AND
then pipe2.res’

elsif src2’ = pipe2.dest & pipe2.op = AND
then pipe2.res

else regs[src2’]

pipel.dest’ := dest’

pipe2.op’ := pipel.op

pipe2.dest’ := pipel.dest

pipe2.res’ := pipel.oprl & pipel.opr2

regs’ [pipe2.dest] :=
if pipe2.op = AND then pipe2.res
else regs[pipe2.dest]

Figure 1: Three-stage pipeline

obtained by executing the next assignments from s. A
state s of M is reachable if there is a sequence so, ..., Sn
of states such that sg € Inity; and s, = s and for all
0 < i < n we have (s;,si+1) € Nextns. The set Reachas
is the set of all reachable states of M.

Modules M; and M, (with different outputs) can be
composed by connecting the inputs of M; that are out-
puts of M2 and the outputs of M that are inputs of Ma.
The composition of M; and My is denoted by Mi||Ma.

3 Formal verification

A hardware module is formally verified by stating a prop-
erty on the design and then checking that the design sat-
isfies the property. The most commonly specified prop-
erty is an invariant, which expresses a condition on the
hardware module that should never happen in a reach-
able state (or conversely, a condition that should always
be true in a reachable state). Formally, an invariant is

a boolean formula over the signals of the module. The
module M satisfies the invariant [if every reachable state
of the module satisfies I. Thus, invariant verification on
a module can be performed by computing the set of its
reachable states. However, this computation is difficult
in general since the set of reachable states can be ex-
ponential in the number of signals in the module. This
exponential growth in the number of states is known as
the state explosion problem.

An approach to mitigating the state explosion prob-
lem is symbolic model checking [10, 11]. Symbolic model
checking represents sets of states and the transition rela-
tion of a hardware module as a boolean function. Boolean
functions are commonly represented as binary decision
diagrams (BDDs) [12]. The BDD representation of both
Initpr and Nextys is obtained by a syntax-directed trans-
lation from a description like that in Figure 1. The BDD
representation of I can be computed similarly.

During reachability computation, the set R, of states
reachable in n steps from an initial state is computed it-
eratively. The set Ro is just Initas; the BDD for R, 41
is obtained by performing image computation using the
BDD representations of R,, and Nextns. The set Reach s
is the fixpoint of this computation. Finally, the valid-
ity of Reachar = I (checkable by a BDD operation) en-
sures that M is satisfied by I. For a number of hardware
designs, the BDD representation of the set of reachable
states is manageable even though the number of reach-
able states itself is very large. For such designs, although
explicit enumeration of reachable states is infeasible, it
is still possible to check invariants using symbolic model
checking.

Even with symbolic model checking, invariant verifica-
tion is currently limited to modules with a maximum of a
few hundred signals. To overcome this limitation, another
approach is to verify the invariant I on an abstract mod-
ule N (with smaller number of signals) and show that M
is a refinement of N. Then, the module M also satisfies
I. A module M refines a module N, denoted by M < N,
if every output of N is an output of M, every input of N
is either an input or output of M, and every transition
taken by M can also be taken by N. The last requirement
can be easily checked by symbolic model checking by first
computing Reachys and then checking the validity of

Reachar N\ Nextyr = Nexty.

It can be shown easily that if M < N and N satisfies an
invariant I, then M also satisfies I.

The refinement check M < N still requires the com-
putation of the set Reach s of the reachable states of M.
If done naively, this is no better than checking the in-
variant [on M directly. However, assume-guarantee rea-
soning allows the decomposition of refinement checking
tasks into subtasks on modules with smaller number of
signals. In Sections 3.1 and 3.2, we illustrate the use of
refinement checking and assume-guarantee reasoning on
the three-stage pipeline module described in Section 2.

module ISA
input op: opType; srcl, src2, dest: regIndexType
output isaRegs: regFileType
init
forall i do isaRegs’[i] := 0
next
isaRegs’[dest’] :=
if op’ = AND then isaRegs([srcl’] & isaRegs[src2’]
else isaRegs[dest’]

Figure 2: Instruction set architecture

3.1 Pipeline verification

Let us consider the pipeline in Figure 1. What does it
mean for the pipeline to be functionally correct? One ap-
proach is to check various properties about the behavior
of the pipeline. For example, we could assert that for any
time ¢, if the pipeline is empty (pipel.op = pipe2.0p =
NOP) and the input instruction is RO « AND(R1, R2), then
the contents of register 0 at time ¢ + 3 is the conjunction
of the contents of registers 1 and 2 at time ¢. While this
property is useful, it is difficult to come up with a compre-
hensive set of properties that provide a full specification
of the pipeline.

A different way to specify PIPELINE is to write the in-
struction set architecture for it. The instruction set ar-
chitecture for PIPELINE is the module ISA shown in Fig-
ure 2. ISA has the same set of inputs as PIPELINE but
its implementation is simpler. ISA executes each instruc-
tion and updates its register file isaRegs in one cycle,
whereas PIPELINE takes three cycles to process an instruc-
tion. The conformance between PIPELINE and ISA can be
expressed as the requirement that if the pipeline is empty
then the contents of the register files in PIPELINE and ISA
are identical. This requirement can be formalized as the
invariant

1Y pipel.op = NOPApipe2.op = NOP = regs — isaRegs

The invariant I depends on pipel.op, pipe2.op, regs,
and isaRegs. The signal regs depends on pipe2, which
depends on pipel, which again depends on pipe2 and
regs. Thus, the presence of these circular dependencies
in PIPELINE ensure that every signal is relevant for the
verification of I. Commonly used heuristics for reducing
the number of signals relevant to a property like cone-
of-influence reduction is ineffective in this situation. Al-
though we can check the invariant I on the composition
of PIPELINE and ISA, this approach will not scale to mod-
ules with a large number of signals. In the next section,
we present a method to decompose the verification of I
into a set of verification subtasks each of which involves
a module with a small subset of the signals in PIPELINE
and ISA. The decomposition method works even in the
presence of circular dependencies.

3.2 Assume-guarantee reasoning

We would like to construct an abstraction of the composi-
tion of PIPELINE and ISA such that it is simpler to verify

I on the abstraction. Then we would like to use assume-
guarantee reasoning to check that the abstraction is cor-
rect. The key insight in coming up with the abstraction
is that the computation being performed in the various
stages of the pipeline has already been performed in the
instruction set architecture. For example, the value of
pipe2.res is computed from pipel.oprl and pipel.opr2
in PIPELINE. But, that value is already present in the
register pipe2.dest of isaRegs. Similarly, the values of
pipel.oprl and pipel.opr2 are present in the registers
srcl and src2 respectively of isaRegs. Thus, we have the
following abstraction module ABS containing the abstract
definitions of pipe2.res, pipel.oprl and pipel.opr2 in
terms of isaRegs:

module ABS
input pipel.op, srcl, src2, pipe2.op, pipe2.dest
output pipel.oprl, pipel.opr2, pipe2.res
pipel.oprl’ :=
if pipel.op’ = AND then isaRegs[srci’]
else {false,true}
pipel.opr2’ :=
if pipel.op’ = AND then isaRegs[src2’]
else {false,true}
pipe2.res’ :=
if pipe2.op’ = AND then isaRegs[pipe2.dest’]
else {false,true}

The definition of pipe2.res says, for example, that the
value of pipe2.res is the same as register pipe2.dest in
isaRegs if there is a valid operation in the second stage
of the pipeline. Otherwise the value of pipe2.res is arbi-
trary.

Given a module M and a subset P of its output sig-
nals, the P-slice of M is the module whose output signals
are in P and which is obtained by taking the subset of
init and next statements that assign values to signals
in P. Thus, if P and P is a partitioning of the out-
put signals of M, then the composition of the P;-slice
of M and the Ps-slice of M is equal to M. Let A, B,
and C be the {pipel.opri}-slice, the {pipel.opr2}-slice,
and the {pipe2.res}-slice of PIPELINE|ISA respectively.
Then PIPELINE||ISA can be alternatively represented by
A||B||C||E, where E is the module with output signals
other than pipel.oprl, pipel.opr2, and pipe2.res. Let
A, B, and C be the {pipel.opri}-slice, the {pipel.opr2}-
slice, and the {pipe2.res}-slice of ABS respectively.

Now we can prove the invariant I in two steps:

AlBlclie < AIB|C|E
A||B||C||E satisfies I
A||B|C||E satisfies T

Finally, assume-guarantee reasoning allows us to decom-
pose the refinement check as follows:

AllBlCIE
Al Bl ClE
Al|B|IC| E
AllBl[ClE

I PPN
| Qf ol |

E

IClIE

Note that the circular dependencies between the pipeline
signals is reflected in the three refinement verification lem-
mas. The abstraction of each of pipel.oprl, pipel.opr2
and pipe2.res is verified using the abstractions of the
other signals. The correctness of the assume-guarantee
decomposition is ensured by two requirements. First, two
signals in a module cannot have zero-delay dependency on
each other. Second, there are no two signals z and y such
that = has a zero-delay dependency on y in the module
A||B||C||E, and y has a zero-delay dependency on x in the
module A||B||C||E. More technical details can be found
in our tutorial paper [13].

We have reduced the verification of the invariant I on
the composition of PIPELINE and ISA into four verifica-
tion subtasks: one invariant verification lemma and three
refinement verification lemmas. In each of these lemmas,
the relevant signals (over which reachability computation
needs to be performed) as determined by the cone-of-
influence heuristic are a small subset of the signals in
PIPELINE and ISA. For example, in the invariant verifica-
tion lemma, the set of relevant output signals are regs,
isaRegs, pipel.op, pipe2.op, pipe2.res, pipe2.dest,
and pipel.dest. The fields srcl and src2 of pipel are
no longer needed because the definition of pipe2.res does
not depend on them. Similar reductions are obtained in
the three refinement verification lemmas. Each of these
lemmas can be checked automatically by a model checker.
This decomposition can be generalized to a pipeline of ar-
bitrary depth so that a particular stage of the pipeline is
verified using the abstract definitions of other stages on
which it depends.

4 Coverage-directed simulation

Methods that combine model checking with compo-
sitional decomposition techniques, such as assume-
guarantee reasoning, scale well to large designs but are
not completely automatic and their use requires changes
in the current hardware design process. Other innova-
tions, such as partial-order reduction and approximate
reachability analysis, have considerably broadened the
scope of completely automatic methods but industrial de-
signs still remain outside their reach. As a result, design-
ers continue to rely heavily on software simulation for
functional validation.

However, the conventional approach of simulation
driven by random and hand-written inputs has become
unsatisfactory due to growing design complexities. The
validation quality attained is hard to quantify and labor
intensive to improve. This issue is the focus of recently
intensified research and development activity. In this sec-
tion, we present one such approach: coverage-directed
simulation.

In comparison to the huge state spaces of industrial cir-
cuits the amount of simulation that can be performed is
very small. Therefore, careful use must be made of the
limited simulation resources, i.e., as many qualitatively
distinct input patterns must be simulated as possible.
A computationally feasible mathematical formulation of

this goal has not been accomplished so far. In the absence
of such a formulation, verification coverage metrics [14]
have found increasingly wider use as heuristic means to
guide the validation process.

Coverage metrics are associated with a class of struc-
tures in the syntactic or semantic description of a design
or its specification. A gap in coverage provides a con-
crete goal for input stimulus generation. Traditionally,
input generation to improve coverage has been done by
designers and verification engineers through inspection,
trial and error. We believe that the greatest near-term
improvement to the verification process will come from
the development of automatic input stimulus generation
tools targeting coverage.

Coverage metrics can be classified into four groups
based on the form of the description to which they re-
fer [14].

(i) Code coverage metrics: Metrics defined on an HDL
description, such as line, branch, expression, or con-
trol path coverage.

Metrics based on circuit structure: Metrics defined
on a circuit netlist, such as toggle, register-to-
register paths coverage, datapath-control interface
coverage.

(ii)

(iii) Metrics defined on finite state machines: Metrics
defined on a finite state machine that is either ex-
tracted from the design or is a manually constructed
abstraction of it. Typical metrics are state, transi-
tion, and path coverage.

(iv) Functional coverage metrics: Metrics that refer to
the various modes of functionality or tasks that a
design is expected to perform. These metrics often
take the form of lists of error prone execution sce-

narios or transaction sequences.

High code coverage is often a minimal requirement in
the validation process, is relatively easily achieved, and
gaps in coverage can often be addressed by test writers
without much difficulty. Metrics based on circuit struc-
ture are good sanity checks. However, in order to address
conceptual and design errors, metrics in categories (iii)
and (iv) are more appropriate. It is difficult to provide
automation for functional coverage metrics; they are of-
ten addressed by writing test cases associated with each
coverage requirement. We believe that metrics in cate-
gory (iii) provide a good compromise between relevance
to non-trivial design errors and the possibility of provid-
ing automation for vector generation. In the rest of this
section, we will focus on these metrics and associated vec-
tor generation methods.

4.1 State-based coverage

It is impractical to cover the entire state space of an im-
plementation level description by simulation. To ensure
that simulation runs explore enough qualitatively distinct
regions of the state space, state-based metrics defined on

smaller, more abstract modules called coverage modules
are used. At each step of a simulation run, the state c
of the coverage module is determined uniquely in terms
of the state m of the simulated module by an abstrac-
tion function faps such that ¢ = faps(m). If the coverage
module is extracted from the implementation by select-
ing a subset of the signals, fups is a simple projection.
For hand-written abstractions, a mapping may need to
be written to represent f,us in order to measure cover-
age during simulation. Figure 3 presents the state transi-
tion diagram of a coverage module for the pipeline exam-
ple of Section 2. This module is obtained by extracting
the signals pipel.op, pipe2.op and the predicate srcl =
pipe2.dest from PIPELINE.

o Cc1

pipe2.op = AND

pipel.op = AND
pipe2.op = NOP

‘pipel.op = AND

srcl = pipe2.dest srcl = pipe2.dest

c2 €3
pipel.op = AND ’

pipel.op = AND

pipe2.op = NOP pipe2.op = AND

srcl # pipe2.dest srcl # pipe2.dest

ca Y cs
pipel.op = NOP ’

pipel.op = NOP

pipe2.op = NOP pipe2.op = AND

srcl # pipe2.dest srcl # pipe2.dest

Cc6 c7

pipel.op = NOP

pipe2.op = AND

pipel.op = NOP
pipe2.op = NOP

srcl = pipe2.dest srcl = pipe2.dest

Figure 3: A coverage module for PIPELINE. Some transi-
tions are not shown to keep the figure simple.

For the purposes of state-based coverage, a simulation
run is a path in the state transition diagram of the imple-
mentation that starts at an initial state. An implemen-
tation state is wisited if it lies on such a path traversed
during a simulation run. A state c of a coverage module C
is covered if ¢ = faps(m) for a state m of the implementa-
tion module M that is visited during a simulation run. A
transition ¢ — ¢ of the coverage module is covered if there
exist implementation states m and m such that m is vis-
ited immediately following m during a simulation run and
¢ = fabs(m) and ¢ = faps(m). A path c1,ca, ..., cn is said
to be covered if the transitions ¢1 — ¢c2 — ... — ¢, are
covered consecutively. In the PIPELINE example, execut-
ing instructions RO < AND(R1, R2), R1 « AND(RO, R2),
R1 < AND(R2, R2), and NOP in that sequence first brings
the coverage module of Figure 3 to state ¢; from an arbi-

trary state, and makes it visit c3 and c¢s. The states c1,c3
and cs, the transitions ¢1 — ¢3 and ¢3 — c¢5, and the path
c1 — c3 — ¢ are covered.

4.2 Coverage modules

A coverage module determines the part of the implemen-
tation state space that is explored during simulation. The
coverage module should be an abstraction of the design,
otherwise large parts of the state space of the design might
remain unexplored even with full coverage. Such a mod-
ule is either written manually or extracted from the design
by selecting a small number of signals and constructing a
module that only refers to these signals.

A manually-constructed coverage module has the ad-
vantage of concisely capturing knowledge about the ar-
chitecture and the intended behavior of the implemen-
tation. Even in the simple example of Figure 3, choos-
ing the predicate srcl = pipe2.dest as a state variable
has kept the state space of the coverage module small.
Without this choice, which required knowledge of the
pipeline architecture, we would have had to include srcl
and pipe2.dest as part of the coverage module state.
Manually-constructed coverage modules have been suc-
cessfully used for coverage analysis and vector genera-
tion of industrial designs [15, 16, 17]. A drawback of a
manually-constructed coverage module is that it may not
be a correct abstraction of the implementation.

A coverage module extracted from the design is desir-
able because it is a correct abstraction by construction.
The selection of the signals to be included in the coverage
module can be done manually [18] or heuristically [19, 20].
The heuristics for this selection often make a distinction
between control and datapath signals in the implemen-
tation and attempt to include only the control signals in
the coverage module. Since the control-datapath separa-
tion is not always obvious, these heuristics can generate a
large number of control signals. Other heuristics [21, 22]
have been developed for identifying control signals that
change most frequently; these signals are given preference
for inclusion in the coverage module.

A desirable property of a coverage module is that com-
plete coverage should guarantee detection of a class of
design errors. The identification of necessary and/or suf-
ficient conditions for such guarantees is a largely unex-
plored area. Gupta et al. [23] impose certain restrictions
on signals that can be included in a coverage module.
These restrictions guarantee that a transition tour of the
state machine of the coverage module uncovers all output
and transition errors in the implementation.

4.3 Input sequence generation

Gaps in state-based coverage need to be addressed by
generating additional input sequences for driving the im-
plementation module. For example, suppose that a tran-
sition ¢ — ¢ in the coverage module has not been cov-
ered. The input sequence generation task consists of
finding an initial state mo and a sequence of transitions
mo — Mi — .. — My — Mp+1 in the implementa-

tion such that ¢ = faps(mn) and ¢ = faps (Mn4+1). Recall
that our formal definition of a state also includes inputs.
Therefore, the task of finding such a path also includes
generating the necessary inputs that enable each transi-
tion along the path mo — ... — my41. The generation of
inputs is complicated by the fact that there may be ad-
ditional restrictions on the inputs to the implementation.
Not every combination of inputs is allowed; for instance,
the input to a processor has to be a legal instruction. The
input to a module that is part of a larger system must be
chosen from possible outputs that the surrounding mod-
ules can generate. These restrictions on the inputs may
be sequential as well as combinational.

Traditionally, input sequences have been generated by
choosing random values for input signals. Better in-
put sequences can be generated by biasing certain in-
puts towards particular values during this random selec-
tion. Such techniques use few computational resources
but typically will not cover all transitions in a coverage
module. ATPG techniques, theoretically more complex
but often computationally feasible in practice [24], can
be used to generate input sequences to cover the remain-
ing uncovered transitions. Validation of industrial de-
signs [15, 16, 17] typically use a multitude of techniques
proceeding from the simple to the complex. Recently, Ho
et al. [18] have combined a number of input-generation
techniques to achieve validation on designs beyond the
reach of formal verification tools.

5 Conclusions

Ideally, a hardware design project would start with a
modular and abstract specification. An implementation
would be constructed through successive refinement of
the specification while maintaining the interfaces between
modules. Global properties can be verified using the spec-
ification, and the implementation is guaranteed to satisfy
them. The complexity of modern designs, the need for
design reuse, and the prohibitive cost of functional vali-
dation has started to push the design process in this di-
rection. The compositional verification method based on
assume-guarantee reasoning presented in Section 3 could
be very useful for such a design methodology.

However, current design practices are very far from this
formal top-down design methodology and are likely to re-
main so in the near future. The coverage module driven
simulation methods presented in Section 4 are essential
for validating current designs, and providing a bridge to
a more formal design discipline. Simulation is unlikely to
go away as a validation tool though; abstract models need
to be debugged by simulation before formal refinement
proofs can be attempted. Coverage guided techniques are
extremely valuable for getting the maximum from simu-
lation. We believe that formal techniques together with
coverage-based simulation will be essential components of
the functional validation toolkit of the future.

References

[1] E.M. Clarke and E.A. Emerson. Design and synthe-
sis of synchronization skeletons using branching-time
temporal logic. In Workshop on Logic of Programs,
Lecture Notes in Computer Science 131, pages 52—
71. Springer-Verlag, 1981.

[2

J. Queille and J. Sifakis. Specification and verifica-
tion of concurrent systems in CESAR. In M. Dezani-
Ciancaglini and U. Montanari, editors, Fifth Inter-
national Symposium on Programming, Lecture Notes
in Computer Science 137, pages 337-351. Springer-
Verlag, 1981.

[3] J. Misra and K.M. Chandy. Proofs of networks of
processes. IEEE Transactions on Software Engineer-
ing, SE-7(4):417-426, 1981.

[4] M. Abadi and L. Lamport. Conjoining specifications.
ACM Transactions on Programming Languages and
Systems, 17(3):507-534, 1995.

[5] R. Alur and T.A. Henzinger. Reactive modules. In
Proceedings of the 11th Annual Symposium on Logic
in Computer Science, pages 207-218. IEEE Com-
puter Society Press, 1996.

[6] K.L. McMillan. Verification of an implementation of
Tomasulo’s algorithm by compositional model check-
ing. In A. Hu and M. Vardi, editors, CAV 98: Com-
puter Aided Verification, Lecture Notes in Computer
Science 1427, pages 110-121. Springer-Verlag, 1998.

[7] A.Th. Efriksson. The formal design of 1M-gate
ASICs. In G. Gopalakrishnan and P. Windley, ed-
itors, FMCAD 98: Formal Methods in Computer-
Aided Design, Lecture Notes in Computer Science
1522, pages 49-63. Springer-Verlag, 1998.

[8] T.A. Henzinger, X. Liu, S. Qadeer, and S.K. Ra-
jamani. Formal specification and verification of a
dataflow processor array. In ICCAD 99: IEEE/ACM
International Conference on Computer Aided De-
sign, pages 494-499. IEEE Computer Society Press,
1999.

[9] R. Jhala and K.L. McMillan. Microarchitecture ver-
ification by compositional model checking. In CAV
2001: Computer Aided Verification, Lecture Notes
in Computer Science 2102, pages 396-410. Springer-
Verlag, 2001.

[10] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill,
and L.J. Hwang. Symbolic model checking: 10%°
states and beyond. Information and Computation,
98(2):142-170, 1992.

K.L. McMillan. Symbolic Model Checking: An Ap-
proach to the State-FExplosion Problem. Kluwer Aca-
demic Publishers, 1993.

(12]

(13]

(16]

(17]

(19]

20]

22]

R.E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Com-
puters, C-35(8):677-691, 1986.

T.A. Henzinger, S. Qadeer, and S.K. Raja-
mani. Decomposing refinement proofs using assume-
guarantee reasoning. In ICCAD 2000: IEEE/ACM
International Conference on Computer Aided De-
sign, pages 245-252. IEEE Computer Society Press,
2000.

S. Tasiran and K. Keutzer. Coverage metrics for
functional validation of hardware designs. IEEE De-
sign and Test of Computers, 18(4):36-45, July 2001.

M. Kantrowitz and L.M. Noack. I'm done simulat-
ing; now what? Verification coverage analysis and
correctness checking of the DECchip 21164 Alpha
microprocessor. In DAC 96: Design Automation
Conference, pages 325—-330. ACM, 1996.

S. Ur and Y. Yadin. Micro architecture coverage di-
rected generation of test program. In DAC 99: De-
sign Automation Conference, pages 175-180. ACM,
1999.

M. Benjamin, D. Geist, A. Hartman, G. Mas,
R. Smeets, and Y. Wolfstahl. A study in coverage-
driven test generation. In DAC 99: Design Automa-
tion Conference, pages 970-975. ACM, 1999.

P.-H. Ho, T.R. Shiple, K. Harer, J.H. Kukula,
R. Damiano, V.M. Bertacco, J. Taylor, and J. Long.
Smart simulation using collaborative formal and sim-
ulation engines. In ICCAD 2000: IEEE/ACM In-
ternational Conference on Computer Aided Design,
pages 120-126, 2000.

D. Moundanos, J.A. Abraham, and Y.V. Hoskote.
Abstraction techniques for validation coverage analy-
sis and test generation. IEEE Transactions on Com-
puters, 47(1):2-13, January 1998.

R.C. Ho and M.A. Horowitz. Validation coverage
analysis for complex digital designs. In ICCAD 96:
IEEE/ACM International Conference on Computer
Aided Design, pages 322-325, 1996.

J. Shen and J.A. Abraham. An RTL abstraction
technique for processor microarchitecture validation
and test generation. Journal of FElectronic Testing:
Theory and Application, 16(1-2):67-81, 1999.

J. Shen and J.A. Abraham. Verification of proces-
sor microarchitectures. In Proceedings of the 17th
IEEE VLSI Test Symposium, pages 189-194. IEEE
Computer Society Press, 1999.

A. Gupta, S. Malik, and P. Ashar. Toward formaliz-
ing a validation methodology using simulation cov-
erage. In DAC 97: Design Automation Conference,
pages 740-745. ACM, 1997.

[24] M.R. Prasad, P. Chong, and K. Keutzer. Why is

ATPG easy? In DAC 99: Design Automation Con-
ference, pages 22-28, 1999.

