Huang HD, Tong X, Wang WC. Accelerated parallel texture optimization. JOURNAL OF COMPUTER SCIENCE
AND TECHNOLOGY 22(5): 761~769 Sept. 2007

Accelerated Parallel Texture Optimization

Hao-Da Huang!?® (##4ik), Xin Tong? (#

~

fik), and Wen-Cheng Wang! (F 3 i)

! State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
2 Microsoft Research Asia, Beijing 100080, China
3 Graduate University of Chinese Academy of Sciences, Beijing 100080, China

E-mail: haoda.huang@gmail.com; xtong@microsoft.com; whn@ios.ac.cn

Received November 7, 2006; revised June 19, 2007.

Abstract
emplar textures. However, its slow synthesis speed limits its usage in many interactive or real time applications. In

Texture optimization is a texture synthesis method that can efficiently reproduce various features of ex-

this paper, we propose a parallel texture optimization algorithm to run on GPUs. In our algorithm, k-coherence search
and principle component analysis (PCA) are used for hardware acceleration, and two acceleration techniques are further
developed to speed up our GPU-based texture optimization. With a reasonable precomputation cost, the online synthe-
sis speed of our algorithm is 4000+ times faster than that of the original texture optimization algorithm and thus our
algorithm is capable of interactive applications. The advantages of the new scheme are demonstrated by applying it to

interactive editing of flow-guided synthesis.

Keywords

1 Introduction

Texture synthesis aims at generating visually simi-
lar large textures from a small exemplar texture. It
has many applications in computer graphics and com-
puter vision, and thus received much attention in re-
cent years. In general, texture synthesis methods can
be categorized as either local ones or global ones. Lo-
cal texture synthesis methods grow a texture pixel by
pixell!™~0] or patch by patch(7~, They have achieved
much success in either constrained or unconstrained
texture synthesis. Global texture synthesis methods
evolve a texture as a whole based on some similarity
measurement!12~18] As local methods grow pixels or
patches by previously grown pixels and patches, they
are order-dependent and thus cannot be implemented
in parallel. Moreover, small errors may be accumu-
lated over large distances leading to inconsistencies in
the synthesized texture. On the contrary, global meth-
ods update pixels or patches simultaneously[!416~18]
so they are order-independent and have the poten-
tial to run parallel on GPUs. The error accumu-
lation problem is also avoided in global methods,
and the global methods proposed recently have re-
vealed many interesting functions such as control-
ling the texture variability or allowing flow-guided

texture synthesis, energy minimization, parallel, GPU, flow visualization

synthesis!'®>18 " Thus, global texture synthesis meth-

ods have drawn much attention in recent years.

Among existing global texture synthesis methods,
texture optimization!'®] is especially interesting. It for-
mulates texture synthesis as an energy minimization
problem, and uses simple iteration operations to op-
timize the target texture. Besides producing state-
of-the-art texture synthesis quality, texture optimiza-
tion also affords additional flexibility to perform con-
trollable synthesis like flow-guided synthesis. Unfortu-
nately, this method is slow, limiting its usage in many
real time applications, such as drag-and-drop control
on texture synthesis and interactive editing of texture
flows.

In this paper, we firstly propose a basic parallel
scheme to run texture optimization on GPUs, by using
k-coherence search for finding nearest neighborhoods
and introducing PCA (principle component analysis)
to reduce the cost on neighborhood comparison. Then
we proposed two acceleration techniques to speed up
our basic parallel scheme by avoiding redundant syn-
thesis work. With a reasonable precomputation cost,
our accelerated parallel scheme can produce a 256 x 256
texture from a 64 x 64 sample texture in 77~87ms,
about 4000+ times faster than the original texture
optimization’® and more than two times faster than

Regular Paper

The IOS authors are partially supported by the National High Technology Development 863 Program of China under Grant
No. 2006AA01Z306 and the National Grand Fundamental Research 973 Program of China under Grant No. 2002CB312102.

762

our basic parallel scheme.

The remainder of this paper is organized as follows.
A brief overview of the related work is given in Section
2. The new scheme is described in details in Section
3 and its application, the interactive flow-guided syn-
thesis, is described in Section 4. After experimental
results are given and discussed in Section 5, a sum-
mary is drawn in Section 6.

2 Related Work

Texture synthesis methods have been proposed in
a large quantity. It is beyond the scope of this paper
to survey them all. Here, we mainly discuss the global
methods for texture synthesis.

No matter whether a global method or a local
method is used, a target texture is produced either
pixel-by-pixel or patch-by-patch. Generally speaking,
the patch-based methods perform better to reproduce
semantic information of a texture®~!2! and can save
time on synthesis, while the pixel-based methods are
more flexible and thus more suitable for constrained
synthesis2~4].

Many global texture synthesis methods work
by pixels. An order-independent texture synthesis
method was proposed in [14] to run by multi-resolution
synthesis with several passes of pixel correction in each
resolution, where all the pixels could be corrected in-
dependently and simultaneously. Based on this work,
a parallel texture synthesis method was proposed in
[16], which could synthesize new texture in real-time
on GPUs. It is also able to control the variation of
output textures. Afterwards, the method in [16] was
improved by synthesizing textures in a transformed ap-
pearance space to promote texture quality'®. How-
ever, because these global methods are pixel-based,
they may fail to reproduce some semantic features in
example textures, and so lower the synthesis quality.

Texture optimization!'®! is a global texture synthe-
sis method which is intermediate between pixel-based
and patch-based methods. It formulates the synthe-
sis problem as a minimization problem of an energy
function and refines the output texture progressively
through an Expectation Maximization (EM)-like algo-
rithm. Here, the neighborhood size used to define tex-
ture energy determines the granularity at which syn-
thesis is performed. The use of large neighborhoods
gives texture optimization a patch-based flavor, while
each pixel value is allowed to change, giving texture
optimization a pixel-based flavor. Thus, it can bet-
ter reproduce semantic structures of an exemplar tex-
ture than pixel-based methods, and also better per-
form constrained synthesis than patch-based methods.
Although texture optimization has many advantages,
it is not fast enough for interactive applications. So
in this paper, a fast parallel scheme is proposed to

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

promote the synthesis speed of texture optimization.

To our knowledge, there is another work to imple-
ment texture optimization on GPUs by utilizing its
inherent synthesis parallelism!*”!, but our new scheme
is about 20+ times faster than [17]. This is because
our scheme has two more improvements: 1) the PCA
is adopted to reduce the cost on neighborhood com-
parison; 2) we utilize local pixel coherency and local
neighborhood stability to reduce redundant synthesis
work.

3 Accelerated Parallel Synthesis Scheme

This paper is to present a scheme to accelerate tex-
ture optimization. Before discussing the scheme, we
give a brief overview of texture optimization in Sub-
section 3.1. Then, in Subsection 3.2, we discuss how to
implement texture optimization on GPUs in parallel.
After that, two techniques are developed to acceler-
ate the parallel scheme in Subsection 3.3, using two
properties in the synthesis process to reduce redun-
dant computation.

3.1 Brief Review of Texture Optimization

For ease reference, we list the pseudo-code of [15]
in Fig.1. Here, Z denotes the input exemplar tex-
ture, X denotes the output texture, @ is the vector-
ized version of X, @, (sub-vector of @) denotes the
pixel neighborhood centered at pixel p, and z,, is the
vectorized pixel neighborhood in Z that is most similar
to @,. Then the texture energy function is defined as
E(x) = Ei(x;{zp}) + AE.(x;u), which measures the
similarity between output texture and input texture.

The first term Ey(x;{z,}) (= D pex+|®p — zp|2)

measures the local neighborhood similarity across X+
and the second term represents the user-specified con-
straints. X7 is a subset of X and it is empirically
chosen to consist of the neighborhood centers that are
w/4 pixels apart, where w is the width of each neigh-
borhood. This is for saving time and preventing the
synthesized texture from getting too blurry in regions
where there is a mismatch between overlapping neigh-
borhoods.

As texture optimization uses an EM-like algorithm
to minimize the texture energy function, it executes its
E-step and M-step as follows, also illustrated in Fig.1.
In the E-step, E(x) is minimized through updating
output pixels @ with neighborhoods {z,} unchanged,
where each pixel of @ is set to the average of the corre-
sponding values from the neighborhoods overlapping it
and user-specified constraints. In the M-step, E(x) is
minimized through updating neighborhoods {z,} with
output pixels unchanged, where z, is found by hier-
archical tree search. After several iterations of E-step

Hao-Da Huang et al.: Accelerated Parallel Texture Optimization 763

and M-step, the energy function would finally converge
and the output texture is produced.

Algorithm. Controllable Texture Synthesis
zg + random neighborhood in ZVp € X+t
for iterationn =0: N do
"t arg ming[E: (x; {2 }) + AE.(w; u)]
/ /E-step
22+ arg miny [, — |2 + ABe(y; w)]
//M-step, v is a neighborhood in Z and y is the
//same as @ except for neighborhood @, which is
//replaced with v
if z;+1 =2z7Vp € XT then
x — " t!
break
end if

Fig.1. Pseudo-code of texture optimization.

In texture optimization described above, most of
the synthesis time is spent on M-steps due to the fol-
lowing two factors: 1) the large number of input neigh-
borhoods for nearest neighborhood search, and 2) ex-
pensive neighborhood comparison (||, —v||?) for large
size neighborhoods. Although the hierarchical struc-
ture is used to organize the neighborhoods for reducing
the complexity on nearest neighborhood search, such
search is still time consuming. Moreover, hierarchical
tree search involves recursive operations that prevent
this texture synthesis method from implementing on
GPUs. These two problems will be solved in our GPU-
based texture optimization algorithm.

3.2 GPU-Based Texture Optimization

To accelerate texture optimization for interactive
applications, we introduce k-coherence search and
PCA to efficiently run texture optimization on GPUs.
The GPU-based texture optimization is illustrated in
Fig.2.

We firstly introduce k-coherence search to substi-
tute hierarchical tree search in M-steps. k-coherence
searchl is fast and amenable to GPU implementation.
It has been used in [16] to implement nearest neigh-
borhood search on GPUs and greatly accelerate the
texture synthesis speed.

k-coherence search consists of two phrases: pre-
computing and synthesis. In the precomputing phrase,
for each exemplar pixel p a similarity set Cy_x(p) of k
exemplar pixels with similar m, X ms neighborhoods is
precomputed. In the synthesis phrase, the most simi-
lar neighborhood regarding to x, is selected from the
candidate set C(p) by considering m; X m; immediate
neighbors of p. C(p) could be expressed as

C(p) ={u|u=Ci(S(p+d) —d), i=1.k,
d=(—mi/2,—m;/2)..(mi/2,m;/2)}.

Algorithm. Parallel Texture Synthesis
zg + random neighborhood in ZVp € X+t
for iteration n =0: N do
2"t arg ming 2 (p)ep(p)[Et(x; {z5}) + ABc(z;)]
/ /E-step
2 arg ming, yeoq (1, — 812 + ABe(y;w)]
//M-step
if z;”'H =zVp € X then
x — x" Tt
break
end if
end for

Fig.2. Pseudo-code of Parallel Texture Optimization. There are
three major differences between Fig.1 and Fig.2: 1) in the E-
step the pixel &(p) is restricted to the candidate set D(p); 2) in
the M-step the neighborhood v is restricted to the candidate set
C(p); 3) neighborhood similarity is approximated by ||&p — ¥||2
using PCA.

where S(p) stores the source position of pixel p in the
exemplar texture. From the above analysis, it could
be concluded that the time complexity of k-coherence
search here is O(k x m; x m; X ms X mg). In our ex-
periment, we set k = 2, m; = 7, and mgs = 16 or 8 to
obtain high quality textures.

Since k-coherence search requires the source po-
sition of each pixel of X (the source pixel positions
are stored in S, see the expression of C(p)), and the
original E-step does not store S(p), we have to modify
E-step in the following steps. 1) Firstly a candidate set
D(p) for pixel p is constructed from overlapping neigh-
borhoods; 2) then the average color value is calculated
from D(p) and user-specified constraint to minimize
the energy function E(x); 3) finally the pixel in the
candidate set D(p) and closest to the average color
value is selected as the result of the E-step: its color
value is stored into X and its source position is stored
into S. Steps 1 and 2 are as the original E-step while
Step 3 is specifically designed for k-coherence search
in an M-step.

Although with k-coherence search, the texture op-
timization method could run in parallel on GPUs,
the evaluation of the similarity between pixel neigh-
borhoods in the search is still time consuming. To
reduce this cost, we introduce PCA for fast neigh-
borhood comparison as in [16]. In the precomputing
phrase, PCA is run on all the neighborhoods x;, and
the PCA projection matrix Pig is calculated. Then,
both «, and v are projected to be 16-dimensional vec-
tors &, = Pygxp, and ¥ = Pqgv, and their similarity
distance could be evaluated as 16-dimensional distance
|&, — ?||. PCA has afforded a trade off between the

quality and speed for nearest neighborhood search. In

764

Input Z

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

Zp

. For simplicity, only 2 of 16

neighborhoods are shown.

1]
{

,‘r__ ;__

Fig.3. Local pixel coherency. In the left image, according to neighborhood placement of X+, the output texture could be divided

into blocks of (w/4) x (w/4) pixels, where w is 8. In the middle image, the 4 pixels of the yellow block are covered by the same

16 neighborhoods which are marked respectively with their top-left corner pixel in white. These 16 neighborhoods including z;

and zq are placed w/4 pixels apart. In E-step, the yellow pixels are likely to be updated by pixels completely from one of these 16

neighborhoods. So after the E-step, pixels of the output texture are locally coherent, as illustrated in right image.

our experiment, high quality results could be guar-
anteed when the neighborhoods are compared in the
projected 16-dimensional space. The synthesis speed
of our basic parallel scheme is illustrated in Table 1.
Compared with the original scheme for texture opti-
mization, our basic parallel scheme has achieved much
acceleration.

3.3 Accelerated Parallel Scheme

Although the basic parallel scheme proposed in the
last section is much faster than the original texture
optimization, it is yet not competent for interactive
or real-time applications. Our observation shows that
the basic parallel scheme exhibits local pixel coherency
and local neighborhood stability in the synthesis pro-
cess. Ignoring these two properties leads to much re-
dundant work in the texture synthesis process. In the
following two subsections, we exploit these two proper-
ties to develop two acceleration techniques for speeding
up texture optimization further.

3.3.1 Local Pixel Coherency

Local pixel coherency is referred to that the space-
coherent pixels covered by the same set of neighbor-
hoods in the output texture are likely to have coher-
ent source positions in the exemplar texture after E-
step. Since neighborhoods of X are set to w/4 pixels
apart (see Subsection 3.1), every (w/4) x (w/4) pixels

in the output texture are covered by same 16 neigh-
borhoods, so the output texture could be divided into
blocks of (w/4) x (w/4) pixels, as illustrated in Fig.3.
Before E-step, pixels of each block may not be coher-
ent. However, because pixels of each block are covered
by a same set of neighborhoods, they are likely to be
updated by pixels completely from one of the neigh-
borhoods. As a result, pixels of each block are likely
to have coherent source positions after E-step. Please
see Fig.3 for the illustration of local pixel coherency.

A straightforward improvement based on local
pixel coherency is to update only the top-left pixel
of the (w/4) x (w/4) space-coherent pixels in E-step
while keeping M-step unchanged. According to local
pixel coherency, source positions of other pixels could
be induced respect to the source position of top-left
corner without running E-step. By this improvement
the pixels updated in E-step will be reduced to only
1/((w/4) x (w/4)) of the original number.

In practice, we propose a more efficient technique
using local pixel coherency. Firstly, according to local
pixel coherency, each block of pixels could be regarded
as one super pixel to update in E-step. Like the treat-
ment in Subsection 3.2, we apply PCA to project each
block to a 4-dimensional super pixel. Then in M-step,
each neighborhood of w X w pixels could be changed
as a super neighborhood consisting of 4 x 4 super pix-
els. In this way, the cost of M-step is also reduced
because we project only 4 x 4 4-dimensional pixels to
16-dimensional vector now, instead of projecting w x w
3-dimensional pixels to 16-dimensional vector in the

Hao-Da Huang et al.: Accelerated Parallel Texture Optimization 765

Fig.4. Local neighborhood stability. Stability maps before the 2nd, 3rd, 4th and 5th iterations are displayed with black pixels

denoting stable neighborhoods and yellow pixels denoting unstable neighborhoods. Most of the neighborhoods become stable after

1~2 iterations. Here, the threshold is 0.1.

basic parallel scheme.

3.3.2 Local Neighborhood Stability

Local neighborhood stability is referred to that
most output neighborhoods {z,} may reach stable sta-
tus after few iterations in the synthesis process. We
will utilize local neighborhood stability to reduce the
cost of M-step. Local neighborhood stability is an in-
herent property of the EM-like synthesis algorithm. As
reported in [15], the EM-like algorithm need to per-
form 3~5 iterations at each synthesis level (in a multi-
level synthesis framework) to achieve a high quality
result. In fact, we found that most output neighbor-
hoods {z,} reach stable status after 1~2 iterations, as
illustrated in Fig.4. So it is not necessary to perform
4~5 iterations of E-step and M-step for all neighbor-
hoods. Considering this, an adaptive strategy by the
stability of neighborhoods is used for performing E and
M steps.

In this paper, the stability of single neighborhood
centered at p is measured as ||z, — 2 ||, where 2}, is
the result of the last iteration. Before M-step, the sta-
bility of each neighborhood is calculated. When the
stability of a neighborhood centered at pixel p is be-
low a set threshold (like 0.1 in our experiments), we let
it inherit its old z, instead of searching for a new z,,.
In our experiments this adaptive strategy may reduce
nearly half of the M-step cost.

3.4 Implementation Details

In this subsection, we provide some implementa-
tion details to complement the above discussion.

Multi-Level Synthesis. As reported in [15], multi-
level synthesis is combined with the basic texture op-
timization algorithm to capture large scale texture
structures with relative small neighborhood sizes. We
also perform multi-level synthesis and generally use 3
or 4 resolution levels and successive neighborhood sizes
of 16 x 16 and 8 x 8 pixels at each resolution.

Precomputation. In our algorithm, two kinds of
precomputed data are required: 1) for k-coherence

search, the similarity set C;. (p) is precomputed for
each neighborhood, as done in [5]; 2) for fast neigh-
borhood comparison and using local pixel coherency,
the neighborhood PCA projection matrixes with re-
lated projected neighborhoods are precomputed like
[16]. All these precomputed data are stored as 2D
textures and preloaded to GPU before the synthesis
algorithm works.

GPU Implementation. Similar to [16], the basic
parallel scheme could be divided and implemented in
three fragment programs: E-step program, M-step
program and upsampling program. The input of E-
step program is neighborhood texture Y (storing {z,})
and related precomputed data, and its output is pixel
texture X (storing «). The input of M-step program is
X and related precomputed data, and its output is Y.
Upsampling program is needed when applying multi-
level synthesis. Either X or Y could be up-sampled,
and we found upsampling Y is helpful for keeping the
stability of neighborhoods.

In the accelerated parallel scheme, we avoid redun-
dant M-steps for stable neighborhoods by branching.
However, the current GPU pixel shader does not sup-
port efficient branching on per pixel granularity, so we
use early-Z culling to terminate M-steps for the sta-
ble neighborhoods. Thus two fragment programs are
added: a backup program and a stable program. The
backup program stores current z, for next compari-
son, and the stable program sets the depth information
according to the neighborhood stability and enables
early-Z culling for M-steps.

All fragment programs are carefully designed so
that there is no need to transfer data between CPU
and GPU except loading precomputed data into GPU
in the beginning.

4 Interactive Flow-Guided Synthesis

As our synthesis scheme is fast enough, it can be
applied to interactive editing for the flow-guided syn-
thesis. We follow [19] to define several user-specified
constraints. Each user-specified constraint represents
a kind of vector field, and they could be accumulated

766

to form a new combinatorial vector field. Users can
interactively add, delete or modify these constraints
to guide the flow-guided synthesis.

For instance, a constraint corresponding to an
isotropic source at location p, = (¢, yo) with strength
k > 0 is defined as

v = (¢ 2)(225) [t@-ar + -

Other isotropic singular constraints include a sink, a
saddle, a counter-clockwise center, and a clockwise
center, whose matrices are as follows:

(56 5)G) (Ges)

A regular constraint at location p, with vector value
V is define as

V(p) = ((z —z0)* + (y — 50)*) Vo

After a new vector field is decided by users, the
warp-correct scheme!*® is adopted for flow-guided syn-
thesis. The new texture flow could be synthesized at
interactive speeds by our accelerated parallel synthesis
scheme, demonstrated in appended videos.

5 Results and Discussion

We made experiments to test our new scheme for
texture optimization, in comparison with the original
scheme for texture optimization!!® and the parallel
controllable texture synthesis method'!. Some re-
sults of unconstrained texture synthesis are illustrated
in Fig.6, and some results of flow-guided synthesis are
illustrated in appended videos.

Table 1. Synthesis Times for Compared Synthesis Schemes

. Flow-Guided
Texture Synthesis

Target (642 — 2562) Synthesis
(642 — 2562)
Original Texture 420~600s 20~60s
Optimization
Discrete Texture > 3.6s > 1.2s
Optimization
Basic Parallel Scheme 170~190ms 140~150ms
Accelerate Parallel 77~ 87Tms 55~65ms

Scheme

Besides producing high quality textures as the orig-
inal scheme for texture optimization!*®, our acceler-
ated parallel scheme could run at interactive speeds,
which is 4000+ times faster than the original scheme.
In our experiments, precomputation for PCA takes
less than 1 second on a 642 or 1282 exemplar tex-

ture, and precomputation for k-coherence search takes

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

about 15~20 seconds on a 642 exemplar texture and
1~2 minutes on a 1282 exemplar texture. Various
schemes for texture optimization are compared in Ta-
ble 1 by the synthesis time, including original texture
optimization!!?!| discrete texture optimization!”), our
basic parallel scheme and accelerated parallel scheme.
Time of our algorithms was measured on a personnel
computer installed with a Pentium 4 3.2GHz CPU and
an NVIDIA Geforce 7900 GT GPU. Time of the origi-
nal texture optimization is extracted from their paper.
As for the time of discrete texture optimization in [17],
it is briefly and reasonably estimated from the results
of the paper on surface texture synthesis.

Although our method is a little slower than [16], it
is better to handle the textures with semantic struc-
tures by utilizing neighborhoods of relatively large
sizes. As shown in the results in Fig.5, our scheme can
better reproduce various features of exemplar textures
such as the consistent feature of curves, the shape fea-
ture of red balls and the uniform distribution of knots
in the upper, middle and below exemplar textures re-
spectively.

Fig.5. Synthesis quality comparison. For each group of images,

input is on the left, our result is in the middle, and the result of
[16] is on the right.

Results of unconstrained texture synthesis (Fig.6
and Table 1) show that our accelerated parallel scheme
is able to produce high quality texture in high speeds.
And it also inherits the controllability and flexibility
of texture optimization, which is illustrated by the

Hao-Da Huang et al.: Accelerated Parallel Texture Optimization 767

crarg the ssapoey the

i e
function of peatecinay

cewl descriptind demcriztion of that e

Fig.6. Results by our new scheme. For each group of images, input is on the left and output is on the right. Please refer to

accompanied videos for texture animation. (Please contact authors if you need the videos.)

768

interactive flow-guided synthesis in the accompanied
videos.

As discussed above, k-coherence search and PCA
together could afford a good trade-off between quality
and speed, but broken of feature lines and periodic
phenomena could still be observable in some of our re-
sults. It might be due to following reasons: 1) texture
optimization adopts an EM-like algorithm. It is well-
known that EM algorithm itself is a local optimization
algorithm, which is much dependent on initial value
and could not reach the global minimum in general,
so local minimum is unavoidable and the broken of
feature lines might appear; 2) neighborhood similar-
ity is defined by L? distance of neighborhood colors,
which has not explicitly considered the feature lines of
the exemplar texture, so broken feature lines may be
produced in synthesized texture; 3) no mechanism is
explicitly considered to control the randomness of syn-
thesized result, so in some results periodic phenomena
might appear.

We might try to incorporate semantic information
into our neighborhood similarity to avoid the broken of
feature line, and design randomness-controlling mech-
anism to avoid periodic phenomena in the future.

6 Summary and Future Work

A fast parallel scheme is proposed for texture op-
timization. By using k-coherence search for finding
nearest neighborhoods, the inherent synthesis paral-
lelism of texture optimization is successfully exploited
to implement parallel synthesis on GPUs. Meanwhile,
much acceleration is obtained by taking full advan-
tages of local pixel coherency and local neighborhood
stability in the texture optimization process. Our new
scheme is capable of interactive applications like in-
teractive editing for flow-guided synthesis. There are
several directions to extend our scheme, such as apply-
ing it to other interactive applications or anisometric
synthesis. We will study these in the near future.

References

[1] Efros A, Leung T. Texture synthesis by non-parametric sam-
pling. In Proc. International Conference on Computer Vi-
ston, Corfu, Greece, 1999, pp.1033~1038.

[2] Wei L Y, Levoy M. Fast texture synthesis using tree-

structured vector quantization. In Proc. ACM SIGGRAPH

2000, New Orleans, Louisiana, USA, 2000, pp.479~488.

Ashikhmin M. Synthesizing natural textures. In Proc.

ACM Symp. Interactive 3D Graphics, Chapel Hill, NC,

USA, 2001, pp.217~226.

[3

(4]

[5

6

[7]

8

(13]

(14]

[15]

(16]

(17]

18]

(19]

J. Comput. Sci. & Technol., Sept. 2007, Vol.22, No.5

Hertzmann A, Jacobs C E, Oliver N et al. Image analogies.
In Proc. SIGGRAPH, Los Angeles, California, USA, 2001,
pp.327~340.

Tong X, Zhang J, Liu L et al. Synthesis of bidirectional tex-
ture functions on arbitrary surfaces. In Proc. SIGGRAPH
2002, San Antonio, Texas, USA, 2002, pp.665~672.

Zhang J, Zhou K, Velho L, Guo B, Shum H Y. Synthe-
sis of progressively-variant textures on arbitrary surfaces.
In Proc. SIGGRAPH 2003, San Diego, California, 2003,
pp.-295~302.

Efros A A, Freeman W T. Image quilting for texture synthe-
sis and transfer. In Proc. SIGGRAPH 2001, Los Angeles,
California, USA, 2001, pp.341~346.

Liang L, Liu C, Xu Y Q, Guo B, Shum H Y. Real-time tex-
ture synthesis by patch-based sampling. ACM Transactions
on Graphics, 2001, 20(3): 127~150.

Cohen M F, Shade J, Hiller S, Deussen O. Wang tiles for
image and texture generation. In Proc. SIGGRAPH 2003,
San Diego, California, 2003, pp.287~294.

Kwatra V, Schodl A, Essa I, Turk G, Bobick A. Graphcut
textures: Image and video synthesis using graph cuts. ACM
Transactions on Graphic, 2003, 22(3): 277~286.

Wu Q, Yu Y. Feature matching and deformation for tex-
ture synthesis. In Proc. ACM SIGGRAPH, Los Angeles,
California, 2004, pp.364~367.

Heeger D J, Bergen J R. Pyramid-based texture analy-
sis/synthesis. In Proc. ACM SIGGRAPH, Los Angeles,
CA, USA, 1995, pp.229~238.

Debonet J S. Multiresolution sampling procedure for anal-
ysis and synthesis of texture images. In Proc. ACM SIG-
GRAPH, Los Angeles, CA, USA, 1997, pp.361~368.

Wei L Y, Levoy M. Order-independent texture synthesis.
Tech. Rep. TR-2002-01, Stanford University CS Depart-
ment, 2002.

Kwatra V, Essa I, Bobick A, Kwatra N. Texture optimiza-
tion for example-based synthesis.
Graphic, 2005, 24(3): 795~802.
Lefebvre S, Hoppe H. Parallel controllable texture synthesis.
ACM Transactions on Graphic, 2005, 24(3): 7T77~786.
Han J, Zhou K, Wei L, Gong M, Bao H, Zhang X, Guo B.
Fast example-based surface texture synthesis via discrete
optimization. The Visual Computer, 2006, 22(9): 918~925.
Lefebvre S, Hoppe H. Appearance-space texture synthesis.
In Proc. SIGGRAPH, Boston, Massachusetts, USA, 2006,
pp.541~548.

Zhang E, Mischaikow K, Turk G. Vector field design on sur-
faces. Tech. Rep. 04-16, Georgia Institute of Technology,
2004.

ACM Transactions on

Hao-Da Huang received his
B.S. degree in computer science
from University of Science and
Technology of China in 2004. Cur-
rently he is a master candidate
of Institute of Software, Chinese
Academy of Sciences. His research
interests include texture synthesis
and realistic rendering.

Hao-Da Huang et al.: Accelerated Parallel Texture Optimization

Xin Tong is a researcher/pro-
ject leader of Internet graphics
group, Microsoft Research Asia. Af-
ter receiving his Ph.D. degree in
computer graphics from Tsinghua
University, Beijing in July 1999,
he joined Microsoft Research China
as an associate researcher. Before
that, he received his B.S. degree and
Master’s degree in computer science

A

769

Wen-Cheng Wang is a re-
search professor in Institute of Soft-
ware, Chinese Academy of Sciences.
He received the B.S. degree in com-
puter science from Xiangtan Uni-
versity in 1988, Master’s degree and
Ph.D. degree in computer science
from Institute of Software, Chinese
Academy of Sciences in 1993 and
1998 respectively. His current re-

from Zhejiang University in 1993 and 1996, respectively. search interests include visualization/volume rendering,

His research interests include appearance modelling and image-based rendering, texture synthesis and virtual re-

rendering, image-based rendering, texture synthesis and ality.

natural phenomena simulation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

