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Ensuring the reliability of multithreaded software systems is difficult due to the poten-
tial for subtle interactions between threads. We present a new modular verification
technique to check concise specifications of large multithreaded programs. Our anal-
ysis scales to systems with large numbers of procedures and threads. We achieve
thread-modular analysis by annotating each shared variable by an access predicate
that summarizes the condition under which a thread may access that variable. We
achieve procedure-modular analysis by annotating each procedure with a specification
related to its implementation by an abstraction relation combining the notions of sim-
ulation and reduction. We have implemented our analysis in Calvin-R, a static checker
for multithreaded Java programs.

1 INTRODUCTION

Software verification is an important and difficult problem. Over the past few
decades, a variety of techniques based on dataflow analysis, theorem proving, and
model checking have emerged for the analysis of sequential software. However, these
techniques have not yet enabled verification of large, multithreaded software systems.
Since concurrency is an insidious source of programming errors, multithreaded pro-
grams would benefit significantly from automated error-detection tools. The need
for such tools will continue to grow as multithreaded software becomes even more
widespread, expanding from the domain of low-level systems software (operating
systems and databases) to most programs written in high-level languages like Java
and C#. In this paper, we present a new modular verification technique for multi-
threaded Java programs.

Modularity is the key to scaling program analyses to large software systems. For
sequential programs, modular analysis is achieved through pre- and post-conditions
for procedures. However, due to interaction among threads, pre- and post-conditions
are insufficient for modular verification of multithreaded programs. Jones [26] pro-
posed the first proof rule for modular verification of multithreaded programs. The
proof rule of Jones required, in addition to pre- and post-conditions, a rely-guarantee
specification for each procedure to capture the interaction among the threads. Both
the rely and the guarantee specifications are actions (binary relations on the shared
store). The guarantee specification is a requirement on the updates performed by
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the thread executing the procedure, and the rely specification is a requirement on
the updates performed by the other threads.

In previous work [19], we extended Jones’ method by generalizing the guarantee
of a procedure from a single action to a program constructed from actions. This
guarantee program has the property that every sequence of atomic updates to shared
variables in the implementation is matched by a sequence of atomic updates in the
specification. The implementation and guarantee of a procedure must be related
via simulation. Simulation provides data abstraction for multithreaded programs
by supporting an abstract description of each action in the sequence of actions
performed during the execution of a procedure. In particular, simulation allows
steps that modify only local variables to be abstracted away. This generalization is
crucial for allowing modular specification and verification of a multithreaded library
independently from the clients of the library.

Unfortunately, simulation requires every step in a procedure’s implementation
that updates a shared variable to be matched by a step in its specification. Con-
sider, for example, a multithreaded program in which the shared variable count is
protected by the mutex m. The following procedure increments count by one.

void increment() {
acquire(m);
int j = count;
j++;
count = j;
release(m);

}

A specification that simulates the implementation must have at least three steps
corresponding to acquiring m, updating count, and releasing m. Consequently, such
a specification is no more concise or intuitive than the implementation. Although
the programmer’s intuition is that the execution of increment by a thread appears
to happen “in one step”, simulation does not by itself allow us to prove this.

We introduce a new and more expressive criterion for relating the implementation
of a procedure to its specification. The new relation augments simulation with
the notion of reduction, which was first introduced by Lipton [28]. The notion of
reduction is based on commuting operations performed by different threads when
they do not interfere with each other. An operation that commutes to the right
of a succeeding operation by a different thread is a right mover, and an operation
that commutes to the left of a preceding operation by a different thread is a left
mover. For example, the operation acquire(m) is a right mover, and the operation
release(m) is a left mover. Moreover, since all threads access count only while
holding the mutex m, the read from count and write to count are both right and
left movers since no other thread can concurrently access count.

Any execution sequence in which a thread performs a sequence of right movers
followed by a single atomic operation followed by a sequence of left movers can be
viewed as occurring “in one step”. The execution of increment by a thread has this
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property, as illustrated below. Execution trace (a) shows an execution of increment
by a thread interleaved with arbitrary actions of other threads. Actions from other
threads are labeled X, and for simplicity we insert only a single such action between
consecutive actions of the thread executing increment. Execution (b) shows the
reduced execution.

X

X X X rel(m)acq(m) X j=count j++ count=j

XX X acq(m) rel(m)j=count j++ count=j

(a)

(b)

To check that increment atomically increments count by one, we first apply re-
duction and then check simulation only on the reduced sequence. Recent work by
Flanagan, Freund, and Qadeer [17, 13] suggests that a large majority of methods
in multithreaded programs are reducible to a single atomic step. For an atomic
method, our new specification is no more complex than the pre- and post-condition
that would be written for the method under the assumption that the program is
single-threaded. Thus, we expect that for many methods, the intellectual complex-
ity of using our specifications will be comparable to that involved in writing pre-
and post-conditions.

The abstraction captured by our specification permits many non-atomic meth-
ods to be handled in an equally straightforward way. As an example, consider the
following method that models allocation of resources. The method searches for a
false bit in the bits array and allocates that “resource” by setting that bit to true.
The resource bits[i] is protected by the lock l[i], for each i. The lock for the
allocated resource is held when the function returns, so that the caller has exclusive
access to the resource. For example, in a file system, the resources could be disk
I-nodes, and the caller may need to finish initializing the meta-data inside the I-node
before releasing the lock on it.

public static int alloc() {
for (int i = 0; i < NBLOCKS; i++) {

acquire(l[i]);
if (!bits[i]) {

bits[i] = true;
return i;

}
release(l[i]);

}
return -1;

}

Clearly, this method does not reduce to one atomic sequence because it may acquire
and release a series of locks before finding a false bit. However, by taking advantage
of both reduction and simulation, we are able to specify the functional behavior of
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alloc as a single operation that selects and sets a false bit from the array (or returns
-1 if no free resource is found). We develop such a specification and show how to
check it in Section 2. We are not aware of any other automated checking tool that
uses a combination of simulation and reduction to check abstraction.

In order to apply reduction to code sequences that access shared variables, the
locking discipline for these shared variables must be specified by the programmer.
Although mutexes are the most common synchronization discipline, a variety of
other mechanisms are used in practice [33, 14]. To capture these idioms, we introduce
access predicates, a general mechanism for describing a wide variety of synchroniza-
tion mechanisms including mutexes, readers-writer locks, data-dependent locking,
etc. The access predicate for a variable expresses the condition under which a thread
may access it. Our verification technique checks the code of each thread assuming
that the environment (containing other threads) behaves according to the access
predicates.

We have implemented our analysis in the Calvin-R checker, an extension of the
Calvin checker for multithreaded Java programs [14, 19]. Our tool modularly checks
that each method in a program satisfies the access predicates and is abstracted by its
specification. For each check, Calvin-R constructs a sequential program capturing
the necessary correctness requirements and verifies that this program does not go
wrong using existing verification techniques for sequential programs. Specifically, we
employ verification conditions [9, 20] and the Simplify automatic theorem prover [30].

As a first case study, we used Calvin-R to check properties of Daisy, a simple
multithreaded NFS file system designed to test Calvin-R. The file system synchro-
nization mechanisms are similar in complexity to those found in other file systems.
However, the data structures and algorithms in Daisy are relatively simple, allowing
us to implement it in approximately 1200 lines of Java code. We have verified that
all procedures in Daisy satisfy the access predicates, showing that the code adheres
to the specified synchronization discipline. In addition, we specified and checked
functional requirements for the most complex procedures in Daisy.

We present an overview of our verification technique in Section 2 through several
examples. Section 3 introduces many of the details of our analysis. A more com-
plete and formal presentation may be found in our companion technical report [21].
Section 4 discusses related work and Section 5 summarizes the contributions of this
work and describes possible future directions.

2 OVERVIEW

We demonstrate our specification and verification system with two example classes.
The first implements a counter, and the second implements block allocation in a
simple file system. In both cases, we state concise specifications for the code and
describe how our analysis checks them.
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Counter

The following class implements a counter:

Figure 1: Counter

class Counter {
int m /*@ accessible if m == 0 || m == tid */;

int count /*@ accessible if m == 0 || m == tid */;

/*@ performs action (count) { \old(m) == 0 && count == \old(count) + 1 } */

void increment() {
acquire(m); int j = count; j++; count = j; release(m);

}
}

The increment method adds one to count. Concurrent calls to increment are
serialized using the mutex lock m, which is acquired at the beginning and released
at the end of increment. We model the mutex as an integer variable whose value
is the identifier of the thread holding the mutex, or 0 if it is not held. The atomic
operation acquire(m) blocks until m is 0 and then sets m to the identifier of the
currently executing thread (tid), and the atomic operation release(m) sets m back
to 0. We use acquire and release in place of the built-in Java synchronization
operations only to simplify the technical development of our analysis.

The performs annotation specifies method behavior. According to increment’s
specification, the method behaves as if at some point during its execution, it performs
a single atomic action that (1) modifies only the variable count, which is indicated
with the modifies clause (count); and (2) blocks until the value of m is 0 and then
increments count by 1. Since the value of the mutex variable m is 0 both at the
beginning and the end of the atomic action, this variable does not appear in the
modifies clause. The values \old(m) and \old(count) refer to the variable values
in the pre-state of this action. Note that \old(m) and \old(count) do not refer
to the variable values at the beginning of the procedure, as they might in pre- and
post-conditions.

The accessible if annotations indicate to our checker the access predicates
for the variables. The access predicates for m and count, denoted Am and Acount,
express the requirement that a thread t may access m and count only if m = 0 or
m = t. It is worth noting that the access predicates for the shared variables do not
preclude data races. As we have pointed out earlier [17], absence of data races is
neither necessary nor sufficient for atomicity.

The method increment can be called (possibly concurrently) by any number of
threads. To ensure the specification of increment is valid for any calling thread,
Calvin-R checks the method for an arbitrary thread t with the assumption that
other threads operating concurrently with thread t access m and count according
to the access predicates. For each execution trace of the method in such an envi-
ronment, the tool checks both that thread t satisfies the access predicates and that
the execution is abstracted by an execution of the specification of increment in the
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same environment. The first check can be easily performed using the technique of
thread-modular verification [26, 14, 19].

To check abstraction, Calvin-R reduces the given execution to another execu-
tion that ends in the same final store and in which the operations performed by
thread t (in increment) happen atomically without any interleaved actions by the
environment. After reduction, the tool checks that the single atomic action in the
specification of increment simulates the composition of the consecutively occurring
actions of thread t.

To reduce an execution trace for the method, the tool shows that the operations
by thread t in the execution form a sequence of zero or more right-commuting
operations (right movers) followed by a single operation followed by a sequence of
zero or more left-commuting operations (left movers).

Suppose that immediately after executing an operation of thread t, no other
thread can access a variable accessed by that operation. Then this operation can be
commuted to the right of any operation by another thread and therefore it is a right
mover. Since the environment operations behave according to the access predicates,
we can derive the condition to verify that an operation is right-mover from the
access predicates. For example, if the operation by thread t accesses variable m, the
condition Em(t) must be shown in the post-store:

Em(t) = ∀j ∈ Tid . j 6= t ⇒ ¬Am(j)

= ∀j ∈ Tid . j 6= t ⇒ ¬(m = 0 ∨ m = j)

= (m = t)

Thus, to prove that an operation by thread t accessing m is a right mover, we
must show that thread t holds m in the post-store of the operation. Intuitively, the
predicate Em(t) is the condition under which thread t has exclusive access to m.1

The condition for an operation accessing count is identical. We may commute a
right mover with the operation following it because we are guaranteed that the two
operations access disjoint sets of variables.

Similarly, an operation is a left mover if we can prove that m is held by thread
t in the pre-store. For increment, we can show that acquire(m) and all subse-
quent operations until release(m) are right movers and release(m) is a left mover.
Therefore, the code in increment is reducible to a single action.

Figure 2(a) shows an execution of increment by thread t interleaved with ar-
bitrary actions X of other threads, and execution (b) shows the reduced execution.
The simulation check is straight-forward once the execution has been reduced, as
shown in (c).

1Alternatively, we could have specified the exclusive access predicate and derived the access
predicate from it.
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Figure 2: Checking abstraction for increment

X X \old(m)==0 && count==\old(count)+1

X

(a)

(b)

X X X rel(m)acq(m) X j=count j++ count=j

(c)

XX X

XX

acq(m) rel(m)j=count j++ count=j

Note that the specification of increment shown above is comparable in complex-
ity to the post-condition specification for seq increment, a version of increment
designed for sequential programs:

/*@ modifies count; ensures count == \old(count) + 1 */
void seq_increment() { int t = count; t++; count = t; }

Our recent work suggests that a large fraction of methods in multithreaded systems
are written to be free of interference and may be considered to execute atomi-
cally [13]. In these cases, Calvin-R’s abstraction relation enables us to specify a
method’s behavior in a fashion no more complex than specifying a method’s se-
quential behavior.

Block allocation in Daisy

To further illustrate the importance of using both reduction and simulation for prov-
ing succinct procedure specifications, we present in Figure 3 the code for block allo-
cation from a simple file system implemented as an initial case study for Calvin-R.

The alloc method searches for a free file system block by finding a false bit in
the bits array. The flag bits[j] indicates whether the j-th disk block is currently
in use. When alloc identifies a free block, it allocates the block by setting the
appropriate bit to true and returns the index of the block with the lock corresponding
to it still held. (The caller will release the lock after it has finished initializing the
data structures for the new block.) The alloc method returns -1 if it fails to find
a free block.

The mutex l[j] guards the bit bits[j]. The accessible if annotation on
bits is parameterized by j to indicate this relationship for all j. Locking at such
a fine granularity is a standard technique for improving throughput in commercial
file systems. However, it is also a major source of errors and demands substantial
debugging effort.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 7



CHECKING CONCISE SPECIFICATIONS FOR MULTITHREADED SOFTWARE

Figure 3: Allocator

class Allocator {

static int l[NBLOCKS] /*@ accessible_if[j] l[j] == 0 || l[j] == tid */;

static boolean bits[NBLOCKS] /*@ accessible_if[j] l[j] == 0 || l[j] == tid */;

/*@ performs action "NoBlocks": () { \result == -1 }

[] action "Allocated": (bits[\result], l[\result]) {

0 <= \result && \result < NBLOCKS &&

\old(l[\result]) == 0 && l[\result] == tid &&

!\old(bits[\result]) && bits[\result]

}

*/

public static int alloc() {

for (int i = 0; i < NBLOCKS; i++) {

acquire(l[i]);

if (!bits[i]) {

bits[i] = true;

//@ witness "Allocated";

return i;

}

release(l[i]);

}

//@ witness "NoBlocks";

return -1;

}

/*@ requires l[i] == tid

performs action "Free": (bits[i], l[i]) { l[i] == 0 && !bits[i] }

*/

public static void free(int i) {

bits[i] = false;

release(l[i]);

//@ witness "Free";

}

}

The free method takes a block index i as an argument and requires that the
the mutex l[i] be held on entry to the method. It frees block i by setting bits[i]

to false and returns after releasing l[i].

The performs annotation for alloc is intuitive and mirrors the two possible
outcomes of executing alloc. The specification is a choice between two atomic
actions. In the first action, no free block is found and -1 is returned. The special
variable \result refers to the value returned by a method. In the second action,
the return value is the index of an unused block. This action blocks until the
mutex protecting the allocation bit of the block is zero, and it then updates the
bit from false to true. The witness annotations in the code indicate program
points where simulation steps in the specification may occur. We use the explicit
witness to guide the simulation check by indicating the “commit points” in the
implementation of the atomic actions in the specification. In general, it is difficult
to infer the correspondence between implementation steps and specification steps
automatically, but it is trivial for the programmer to specify the correspondence.
The specification for the free method is similar.

As in the increment example, Calvin-R checks that the implementation of alloc
is abstracted by its specification for an arbitrary thread t in an environment that
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respects the access predicates. However, the checking of alloc is significantly more
complicated than that of increment. The alloc method has an unbounded num-
ber of execution sequences, each consisting of 0 or more acquire-test-release subse-
quences, followed by either a return of -1 or an acquire-test-set and a return of a
non-negative index. Such executions are not reducible to a single atomic action.
Therefore, our checker decomposes the sequence of actions performed by thread t
into subsequences that are each reducible to a single action, as shown in Figure 4(a)
and (b) for one possible execution.

Calvin-R deduces that each acquire-test-release subsequence is reducible to a sin-
gle atomic action, and further checks that each of these actions is simulated by skip,
an action that leaves every variable unchanged. If there is no final acquire-test-set
sequence, then Calvin-R further deduces that the last implementation action returns
-1 and is therefore simulated by the action "NoBlocks" of the specification. If there
is a final acquire-test-set sequence followed by the return of a non-negative index,
Calvin-R reduces it to a single atomic action and checks that it is simulated by the
action "Allocated" of the specification. In both cases, by first using reduction and
then simulation, Calvin-R abstracts the execution to a (possibly empty) sequence of
skip action followed by an action from the specification.2 Figure 4 illustrates one
possible execution of alloc. Execution (b) shows the reduced execution of (a), and
(c) and (d) demonstrate the simulation. We divide the simulation into two steps to
show that simulation involves composing a sequence of actions into a single action,
as well as generalizing an action.

Although alloc uses fine-grained synchronization, our method allows us to prove
a concise and intuitive specification that is similar in complexity to the specification
of alloc assuming single-threaded execution.

3 VERIFICATION TECHNIQUE

Calvin-R modularly checks that each method satisfies (1) the access predicates and
(2) its performs annotation. To check a method, Calvin-R first replaces method
calls in its body with the desugaring of the called methods’ performs annotations.
This desugaring and inlining is routine and is described in [15]. As an example,
the statement x = alloc() is desugared into the following code, written in Java
extended with non-deterministic choice and assert e and assume e statements.
The statement assert e goes wrong if it is executed when the boolean expression
e is false. The statement assume e blocks indefinitely if executed when e is false.

x = random();

{ assume x == -1; } []


assume 0 <= x && x < NBLOCKS &&

l[x] == 0 && !bits[x];
l[x] = tid; bits[x] = true;


2The performs specification implicitly allows arbitrary number of skip actions at any control

point.
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The first statement assigns an arbitrary value to x, and the second statement con-
strains that value in accordance with the specification of alloc. If a method does
not have a performs annotation, Calvin-R inlines the method’s body at call sites.

For each method, Calvin-R performs two checks: (1) the method conforms to
the access predicates, and (2) the method satisfies its performs annotation. Each
of these checks is performed in a two-step process. The first step translates the
method’s body into a sequential program that contains statements of the method,
statements that model the effect of operations performed by other threads, and
assertions that encode the check being performed. The second step verifies that none
of these assertions fail by transforming the sequential program into a verification
condition whose validity is verified by the Simplify theorem prover [30]. If the
verification condition is valid, then the assertions hold and the check is satisfied.

We describe the sequential programs embodying the two checks for access pred-
icates and performs annotations in this section. For simplicity, we present the
transformations to sequential programs at the level of the Java language. The
Calvin-R tool actually performs the transformations on methods after they have
been converted into Plato, a simple guarded command language for multithreaded
programs [21]. For a description of the translation of a sequential program into a
verification condition, we refer the reader elsewhere [9, 20].

Checking access predicates

Before proceeding, we first introduce a new statement form to unify our treatment
of both non-blocking and blocking operations (such as acquire). The statement
“when P do S” blocks until the boolean predicate P is true and then atomically
executes the statement S. For non-blocking operations, P is true. The opera-
tion acquire(m) may be written as “when m == 0 do m = tid”. In the rest of
this section, we assume that only statements written in this form access shared
data. We introduce assignments to auxiliary local variables to handle expres-
sions accessing shared data that are embedded in control structures. For example,
“if (e) S else T” may be rewritten as “boolean t = e; if (t) S else T” if
e accesses shared variables.

To check that a method violates no access predicates, we must check that each
statement accessing shared variables in the body obeys the access predicates. We
embed this check in our translation to a sequential program. We check that the
statement “when P do S” from the original code violates no access predicates when
executed by a thread tid running in parallel with other threads by translating it
according to the translation function =⇒acc defined below. In this translation, V
is the set of variables accessed by P and S.

when P do S; =⇒acc EA∗; assume P; assert AV ; S;

The statement EA∗ represents zero or more actions by any possible environment of
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thread tid. Each action of the environment is represented by the statement EA,
which changes the value of all shared variables to arbitrary values, except those for
which tid has exclusive access. For the increment example, EA is the following:

EA def= if (m != tid) then m = random();
if (m != tid) then count = random();

Note that if thread tid does not have exclusive access to a shared variable, we may
make no assumption about the value stored in it.

Since “when P do S” is enabled only when P is true, we need only check that
the statement conforms to the access predicates in states where P holds. Thus, we
assert AV only after assuming P is true. Note that the translation behaves exactly as
“when P do S” when the access predicates are respected. Using the translation rule
from above, we check access predicates for a method by translating every statement
in the method, as demonstrated for increment:

Figure 5: Checking access predicates for increment

void increment() {
acquire(m); =⇒acc EA∗; assume m == 0; assert Am;m = tid;

int j = count; =⇒acc EA∗; assume true; assert Acount; int j = count;

j++; =⇒acc EA∗; assume true; assert true; j++;

count = j; =⇒acc EA∗; assume true; assert Acount; count = j;

release(m); =⇒acc EA∗; assume true; assert Am; m = 0;

}

If no assertion in the translated program fails when it is verified by a sequential
checker, then the original method does not violate the access predicates.

Checking atomic performs annotations

We present the algorithm to check performs annotations in two stages. In the first
stage, we show how to check abstraction for a method whose performs annotation
is a single atomic action. In this setting, every execution path through the method
must reduce to a single sequence abstracted by this atomic action. This property
simplifies the checking problem, and we show a generalized translation to handle
more expressive performs annotations in the next subsection.

To illustrate the algorithm, we consider the increment method. To check
increment, we introduce an auxiliary variable phase that can take two values—
MatchingRight and MatchingLeft. The phase variable tracks whether the method
is executing in the right mover phase or the left mover phase. This variable is ini-
tialized to MatchingRight and is then set to MatchingLeft upon encountering the
first action that is not a right mover. After that, every action must be a left mover.

An action is a right mover if the thread has exclusive access to all variables
accessed by the action in the post-state. An action is a left mover if it does not
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block and the thread has exclusive access to all variables accessed by the action
in the pre-state. We require that the left movers do not block to ensure that the
method eventually finishes executing the reducible sequence. In order to track the
phase variable and ensure the entire method body is reducible to a single atomic
block, we translate each statement that accesses shared variables “when P do S”
according to the translation function =⇒abs .

Figure 6: Checking abstraction for simple performs annotations

when P do S; =⇒abs



if (phase == MatchingRight) {
assume P; S; execute statement
if (!EV ) phase = MatchingLeft; if no exclusive access, then at commit point

} else {
assert EV && P; ensure exclusive access and non-blocking
S; execute statement

}

If a statement only accesses data local to the executing thread, no translation is
necessary.

In addition to checking that a method body is atomic, we must also ensure that
the pre-state and post-state of the method matches the performs annotation. For
each program variable x, we introduce a variable \old(x) to store the value of x at
the beginning of the procedure. At the end of the procedure, we check that the old
and current values of the program variables are related according to the action in
the performs annotation. The translation for increment is shown in Figure 7.

The assertions in this sequential program will succeed only if the steps of the
original method are a sequence of right-movers followed by a sequence of left-movers,
and if the overall effect of the method is to increment count by one.

Checking arbitrary performs annotations

We now generalize the checking algorithm to handle performs annotations con-
structed from atomic actions and the sequential composition (;), choice ([]), and
iteration (*) operators.

The checking algorithm verifies that every execution path through the method
is a sequence of disjoint subsequences, each of which is reducible to either skip

or an action in the performs annotation. Moreover, the sequence of actions ob-
tained in this way must be comprise a valid path through the stutter-closed pro-
gram in the performs annotation. For example, if a method’s performs annota-
tion is A ; (B [] C), every execution through the method’s body must reduce
to a sequence of atomic steps that are simulated by skip∗;A;skip∗;B;skip∗, or
skip∗;A;skip∗;C;skip∗.

In order to check this requirement, the checker tracks the correspondence between
the flow of control in the method body with the flow of control through the program
embedded in the performs annotation with the variable pc. The value of pc is
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Figure 7: Checking abstraction for increment

/*@ performs action (count) { \old(m) == 0 && count == \old(count) + 1 } */

void increment() {
phase = MatchingRight;

\old(m) = m; \old(count) = count;

acquire(m); =⇒abs


if (phase == MatchingRight) {

assume m == 0; m = tid; if (!Em) phase = MatchingLeft;

} else {

assert Em && m == 0; m = tid;

}

j = count; =⇒abs


if (phase == MatchingRight) {

assume true; j = count; if (!Ecount) phase = MatchingLeft;

} else {

assert Ecount && true; j = count;

}

j++; =⇒abs j++;

count = j; =⇒abs


if (phase == MatchingRight) {

assume true; count = j; if (!Ecount) phase = MatchingLeft;

} else {

assert Ecount && true; count = j;

}

release(m); =⇒abs


if (phase == MatchingRight) {

assume true; m = 0; if (!Em) phase = MatchingLeft;

} else {

assert Em && true; m = 0;

}

assert \old(m) == 0 && count == \old(count) + 1;

}

the label of an action in the performs annotation, or “begin” or “end”. At the
beginning of the method, pc is initialized to “begin”. The programmer must insert
appropriate updates to pc in the method body with the witness annotation to
identify where actions in the performs annotation are said to occur. Figure 3
demonstrates the use of labeled actions and witness annotations.

As before, the translated program begins by storing the value of each variable x in
\old(x) and setting phase to MatchingRight. The phase variable also transitions
from MatchingRight to MatchingLeft in the same way. However, we handle the
case in which a non-left-mover is observed when phase is MatchingLeft differently.
This situation occurs when the program reaches the end of a reducible subsequence.
At this point, we check the values of the program variables in the current state
against their values at the beginning of the reduced sequence (recall that the original
values are stored in the \old variables). There are three possible outcomes:

1. If all program variables have the same values as at the beginning of the reduced
sequence, then we may conclude that the whole sequence is simulated by skip.

2. If the variables have been modified according to Specpc, the action from the
performs annotation labeled with the current value of pc, then the whole
sequence is simulated by that action. To ensure that we are following a valid
path through the specification, we check that Follows(\old(pc), pc). This
predicate is true only if the action labeled pc is a successor of the action labeled
\old(pc) in the flow graph of the performs specification.
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3. The variables have been modified in a way inconsistent with the performs

annotation, and an error should be reported.

If no error is found, we prepare for the program to enter the next reducible region by
inserting EA∗ to model steps from other threads, resetting phase to MatchingRight,
and storing the values of the program variables in the \old variables. Thus, we
translate when P do S according to the following rule.

Figure 8: Check Abstraction

when P do S; =⇒abs



if (phase == MatchingRight) {

assume P; S;

if (!EV ) phase = MatchingLeft;

} else if (EV && P) {

// matching left-movers and found left-mover

assume P; S;

} else {

// matching left-movers and found non-left-mover

assert \old(−→x ) == −→x || Follows(\old(pc), pc) && Specpc;

EA∗;
\old(−→x ) = −→x ;

assume P; S;

if (EV ) phase = MatchingRight;

}

The notation \old(−→x ) = −→x indicates that x is assigned to \old(x), for all
variables x that are accessed or modified in the body of the method. We show the
translation of alloc in Figure 9. At return statements, assertions check that the
program in the performs annotation can end after executing the action labeled pc.

4 RELATED WORK

Lipton [28] first proposed reduction as a way to reason about concurrent programs
without considering all possible interleavings. He focused primarily on checking
deadlock freedom. Doeppner [10], Back [2], and Lamport and Schneider [27] ex-
tended this work to allow proofs of general safety properties. Misra [29] has pro-
posed a reduction theorem for programs built with monitors [25] communicating via
procedure calls. Cohen and Lamport [7] have extended reduction to allow proofs
of liveness properties. These papers focus on the theory of reduction, but they do
not describe a methodology for verifying programs. We go beyond their work by
developing a specification and verification methodology for a widely used language.

Partial-order methods [23, 31] have been used to limit state-space explosion
while model checking concurrent programs. These methods identify sequences of
interleaved steps for which the property being checked is insensitive to the exact
ordering. A single representative interleaving of the operations is then explored.
These methods have mostly been applied to systems of processes communicating
through message passing. Verisoft [22] is one such tool. While these methods are
typically unable to reorder accesses to shared variables, Calvin-R uses access pred-
icates to determine when it is safe to reorder accesses to shared variables as well.

VOL 0, NO. 0 JOURNAL OF OBJECT TECHNOLOGY 15



CHECKING CONCISE SPECIFICATIONS FOR MULTITHREADED SOFTWARE

Figure 9: Check abstraction for alloc

static int alloc() {
phase = MatchingRight;

pc = "begin";

\old(pc) = pc; \old(l) = l; \old(bits) = bits;

for (int i = 0; i < NBLOCKS; i++) { =⇒abs for (int i = 0; i < NBLOCKS; i++) {

acquire(l[i]); =⇒abs



if (phase == MatchingRight) {
assume l[i]==0; acquire(l[i]);

if (!El[i]) phase = MatchingLeft;

} else if (El[i] && l[i]==0) {
assume l[i]==0; acquire(l[i]);

} else {
YIELD;

assume l[i]==0; acquire(l[i]);

if (El[i]) phase = MatchingRight;

}

test = bits[i]; =⇒abs



if (phase == MatchingRight) {
assume true; test = bits[i];

if (!Ebits[i]) phase = MatchingLeft;

} else if (Ebits[i] && true) {
assume true; test = bits[i];

} else {
YIELD;

assume true; test = bits[i];

if (Ebits[i]) phase = MatchingRight;

}
if (!test) { =⇒abs if (!test) {

bits[i] = true; =⇒abs



if (phase == MatchingRight) {
assume true; bits[i] = true;

if (!Ebits[i]) phase = MatchingLeft;

} else if (Ebits[i] && true) {
assume true; bits[i] = true;

} else {
YIELD;

assume true; bits[i] = true;

if (Ebits[i]) phase = MatchingRight;

}
//@ witness "Allocated"; =⇒abs pc = "Allocated";

return i; =⇒abs


\result = i;

YIELD;

assert Follows(pc, "end");

return i;

} }

release(l[i]); =⇒abs



if (phase == MatchingRight) {
assume true; release(l[i]);

if (!El[i]) phase = MatchingLeft;

} else if (El[i] && true) {
assume true; release(l[i]);

} else {
YIELD;

assume true; release(l[i]);

if (El[i]) phase = MatchingRight;

}
} }
//@ witness "NoBlocks"; =⇒abs pc = "NoBlocks";

return -1; =⇒abs


\result = -1;

YIELD;

assert Follows(pc, "end");

return -1;

}

YIELD
def
= assert \old(pc) == pc && \old(l) == l && \old(bits) == bits

|| Follows(\old(pc), pc) && Specpc;

EA∗;
\old(pc) = pc; \old(l) = l; \old(bits) = bits;
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Dwyer et al. extended partial-order reduction to take advantage of object escape
and locking information [11].

Using ideas from reduction and partial-order methods, Bruening [4] has built an
assertion checker based on state-space exploration for multithreaded Java programs.
His tool requires another checker to ensure the absence of races. This assumption
allows synchronized code blocks to be treated as atomic. Stoller [37] provides a
generalization of Verisoft and Bruening’s method to allow model checking of pro-
grams with either message-passing or shared-memory communication. Both of these
approaches are restricted to mutex-based synchronization and operate on the con-
crete program without any abstraction. In our work, access predicates provide a
more general mechanism for specifying synchronization. More recently, Stoller and
Cohen have adopted access predicates in order to capture a richer set of synchro-
nization idioms and to perform reduction during model checking [38]. A similar
approach has recently been pursued by Flanagan and Qadeer [16].

Insights gained while developing Calvin-R have recently led us to develop sev-
eral light-weight verification tools that focus on identifying procedures in multi-
threaded programs that may be considered to execute atomically. Flanagan and
Qadeer use reduction in a syntactic type-based analysis to identify atomic proce-
dures [18, 17]. The type system scales more easily because it requires fewer and
less complex program annotations, but it is limited to checking this single atomicity
property. Flanagan and Freund have implemented the Atomizer tool [13], which
uses reduction to identify atomic blocks of code dynamically. Although the Atom-
izer is unsound because it does not check all execution paths, it requires little or no
programmer-supplied information and has identified atomicity errors in a number
of large systems. In other work, the notions of reduction and atomicity are used
by Qadeer et al. [32] to infer concise procedure summaries in an analysis for multi-
threaded programs. Calvin-R’s combination of simulation and reduction enable it
to check many properties beyond the capabilities of these other checkers.

Hatcliff et al. [24] explore an alternative approach for verifying atomicity us-
ing model-checking. In addition to using Lipton’s theory of reduction, they also
investigate an approach based on partial-order reductions. Their experimental re-
sults suggest that the model-checking approach for verifying atomicity is feasible for
unit-testing, where the reachable state space is smaller than in integration-testing.
In related work, Robby et al. [34] demonstrate how to check some properties of
multithreaded code with standard pre- and post-conditions by refactoring code into
methods that do not update global state from critical sections nested inside methods.

A number of static tools have been designed to detect data races. These in-
clude several type systems [12, 3], Warlock [36], and a race detector for SPMD
programs [1]. Dynamic race detection tools [35, 5] require very few annotations, if
any, but may fail to detect some errors due to insufficient coverage. Several tools
combining dynamic and static analyses have recently been proposed [39, 6]. Access
predicates provide a simple, general method for specifying and verifying a wider
variety of synchronization mechanisms than allowed by these tools.
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Several tools [8, 40] verify safety properties using a combination of data abstrac-
tion and model checking. These tools consider all possible thread interleavings while
performing state exploration. The approach in this paper can be used to abstract a
program, thereby reducing the possible interleavings. Invariant checking can then be
performed on the abstract program thus improving the efficiency of these techniques.

5 CONCLUSIONS

Calvin-R provides a way for programmers to specify and check complex properties
of multithreaded programs in a simple, intuitive way. The access predicates used
by Calvin-R enable synchronization mechanisms to be expressed in a simple and
uniform way. In addition, the abstraction relation based on simulation and reduction
permits both data and control abstraction in method specifications. Many properties
of multithreaded code can be expressed concisely and checked with this technique.

The next step is to validate this methodology further by showing that it can
scale to larger programs. Some issues to address are how to best map errors in the
generated sequential program back to errors in the original, multithreaded program;
how to reduce annotation overhead by automatically inferring some annotations,
such as simple access predicates for variables guarded by mutual exclusion locks;
and how to ensure that our translation does not produce sequential programs too
complex for the underlying theorem prover to handle.
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