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A technique for finding errors in computer programs is to translate a given program and
its correctness criteria into a logical formula in mathematics and then let an automatic
theorem prover check the validity of the formula. This approach gives the tool designer
much flexibility in which conditions are to be checked, and the technique can reason about
as many aspects of the given program as the underlying theorem prover allows. This paper
describes a method for reconstructing, from the theorem prover’s mathematical output,
error traces that lead to the program errors that the theorem prover discovers.

0. Introduction

Mechanical tools that analyze software in search of errors can help find software defects
earlier in the development process, which reduces the overall cost of software development.
Some software analyses focus on a particular kind of program error, for example index
bounds errors in programs with arrays [4] or car-of-atom errors in functional programs [7].
A more general approach is to encode the program’s correctness as a verification condition,
a logical formula that is valid if and only if the program is free of the classes of errors
that are analyzed. A theorem prover can then be used to determine the validity of the
verification condition.

While this translation of a program into mathematics provides a flexible approach for
encoding a variety of program properties—as many as the theories of the underlying
theorem prover support—it may not be obvious how to translate the theorem prover’s
output back into something that a programmer can make sense of. In this paper, we
show a method for constructing the verification condition in such a way that it is easy
to reconstruct, from the theorem prover’s output, a trace in the program that leads to
the error that the theorem prover has discovered. The method has been implemented in
the Extended Static Checker for Java (ESC/Java) [8]. It enables ESC/Java to produce
warning messages like the one shown in Figure 0.

Our method can be used with a variety of refutation-based theorem provers. Our
implementation of the method in ESC/Java makes use of a special labeling feature, which
ESC/Java’s theorem prover Simplify [11] supports. The labeling feature lends itself to an
efficient implementation of the method.

We start by showing the generation of verification conditions for a toy language. We
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Cup.java:13: Warning: Possible null dereference (Null)

int y = t.f;

^

Execution trace information:

Executed else branch in "Cup.java", line 5, col 1.

Reached top of loop after 0 iterations in "Cup.java", line 8, col 1.

Executed then branch in "Cup.java", line 9, col 12.

Executed break in "Cup.java", line 10, col 2.

Figure 0. Example output from ESC/Java, calling attention to a possible error and
showing an execution trace leading to the program point of the reported error.

then describe our view of the theorem prover and labels. In Section 2, we review
how the labeling mechanism was used in the Extended Static Checker for Modula-3
(ESC/Modula-3) [10], and also in ESC/Java, to pinpoint the location of an error, that
is, the point in the program where the error is manifested. In Section 3, we show our
method, which allows the tool to output not just the location of the error, but also an
execution trace leading to the error. Section 4 considers some programming constructs
beyond those in the toy language and Section 5 considers some implementation issues.
The paper ends with some related work and a conclusion.

1. Preliminaries

To explain our method, we introduce a simple imperative programming language. Pro-
grams written in this source language can contain a single kind of error, array index
out-of-bounds errors. Section 4 discusses the extension of our method to a richer lan-
guage.

To find errors, we translate the source language into a verification condition in two
steps [17]: we first desugar the source language into a more primitive intermediate lan-
guage and then compute verification conditions from the intermediate language according
to the semantics of weakest preconditions [6,22].

1.0. Source language
The source language operates on (implicitly declared) variables whose type is either

integer or array of integer. The grammar of the source language is shown in Figure 1.
To keep the language as simple as possible, an array A can be used only in the special
assignment statement x := A[i ], where x denotes an integer variable and i denotes an
(integer-valued) expression. For brevity, we have omitted array updates, so the arrays
are effectively read-only. Also, for simplicity, we assume that all arrays have length 100.
Expressions used to index into arrays must therefore be non-negative integers less than
100. The verification conditions we will produce are valid if and only if the source program
is free of array index out-of-bounds errors.
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Stmt ::= Id := Expr
| Id := Id [ Expr ]
| Stmt ; Stmt
| if Cond then Stmt else Stmt end

Cond ::= Cond ∧ Cond | Cond ∨ Cond | ¬Cond
| (Cond)
| Expr = Expr | Expr < Expr
| false | true

Expr ::= Expr + Expr | Expr − Expr
| (Expr)
| Id
| 0 | 1 | 2 | · · ·

Figure 1. The grammar of the source language.

1.1. Intermediate language
We translate (“desugar”) source programs into programs in a more primitive interme-

diate language whose grammar is shown in Figure 2. In the intermediate language, there
are maps instead of arrays; the difference is that maps can be applied (using the function
select ) to any integer, whereas arrays can be indexed only at integers between 0 and 99
inclusive.

The commands in our simple intermediate language always terminate, but there are
three kinds of termination: normal, erroneous, and miraculous. We use normal termi-
nation to model state changes in the source program. We use erroneous termination to
model errors in the source program. For our source language, these errors are array index
out-of-bounds errors. We use miraculous termination to model the programmer being
“off the hook” (that is, absolved of responsibility for any subsequent error; see, e.g., [
0,20,22,21,17]).

An assignment command x := E updates the state by setting the variable x to the
value of the expression E and then terminates normally. The commands assert P and
assume P terminate normally, without changing the state, if P evaluates to true; other-
wise, the assert statement terminates erroneously and the assume statement terminates
miraculously. That is, the command assert P in effect says that the programmer is re-
sponsible for making sure P holds, whereas assume P says that the programmer is off
the hook if P does not hold.

The command C ; D executes C and then, if C terminates normally, executes D .
The command C D arbitrarily (“demonically”) chooses to execute either C or D . We
let ; bind more strongly than and use curly braces to indicate a different grouping.

The expressions in the intermediate language include the select function, which is
used to dereference maps. The lblneg and lblpos expressions are explained later. As
suggested by the grammar, some formulas are atomic, meaning that they have no proper
sub-formulas. A literal is an atomic formula or its negation. According to the grammar,
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Cmd ::= Id := Term
| assert Formula
| assume Formula
| {Cmd}
| Cmd ; Cmd
| Cmd Cmd

Formula ::= Formula ⇒ Formula
| Formula ∧ Formula | Formula ∨ Formula | ¬Formula
| (lblneg Id : Formula) | (lblpos Id : Formula)
| (Formula)
| Atom

Atom ::= Term = Term | Term < Term
| Id
| false | true

Term ::= Term + Term | Term − Term
| select(Term,Term)
| (Term)
| Id
| 0 | 1 | 2 | · · ·

Figure 2. Cmd gives the grammar of the intermediate-language commands. Formula
also gives the grammar for the formulas of verification conditions.
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Desugar(x := E ) =
x := E

Desugar(x := A[E ]) =
assert ¬(E < 0) ∧ E < 100 ; x := select(A,E )

Desugar(S ; T ) =
Desugar(S ) ; Desugar(T )

Desugar(if P then S else T end) =
{assume P ; Desugar(S ) assume ¬P ; Desugar(T )}

Figure 3. The desugaring of source-language statements into intermediate-language com-
mands.

both atomic formulas and terms can be identifiers. The term identifiers correspond to
program variables; the formula identifiers are uninterpreted predicate symbols, which we
use later in the paper.

Here and throughout, ¬ binds more strongly than ∧ and ∨, which in turn bind more
strongly than ⇒ .

The translation from the source language into the intermediate language is performed
by the function Desugar , defined in Figure 3. The if statement is desugared into an
arbitrary choice between two commands, each one guarded by an assume statement,
which has the effect of the programmer getting off the hook if the inappropriate branch
is chosen.

1.2. Verification conditions
Verification-condition formulas follow the same grammar as the formulas in the inter-

mediate language shown in Figure 2. To translate from the intermediate language into
formulas, we use weakest preconditions [6,22]. For any command C and formula R on
the post-state of C , the weakest precondition of C with respect to R , written wp(C ,R),
characterizes the set of pre-states of C from which execution terminates normally in a
state satisfying R or terminates miraculously. Formally, we define wp over the structure
of commands, as shown in Figure 4, where R[x := E ] denotes the formula identical to R
but with each occurrence of x replaced with E .

We have now defined a translation from the source language to verification conditions.
In particular, for any source program S , the formula:

wp(Desugar(S ), true) (0)

is valid if and only if S is free of errors (that is, if and only if erroneous termination is
not a possible outcome of Desugar(S )).

1.3. Proof procedure
We postulate an automatic proof procedure (theorem prover) that takes a logical for-

mula as input and produces as output an indication of whether or not the formula is
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wp(x := E , R) = R[x := E ]
wp(assert P , R) = P ∧ R

wp(assume P , R) = P ⇒ R
wp({C }, R) = wp(C ,R)

wp(C ; D , R) = wp(C , wp(D ,R))
wp(C D , R) = wp(C ,R) ∧ wp(D ,R)

Figure 4. The weakest preconditions of commands with respect to any formula R on the
post-state.

valid.0 An indication of “invalid” is accompanied with a counterexample context, as we
describe next.

A counterexample context Q for a given formula P is a conjunction of literals (that is,
possibly negated atomic formulas) that satisfies the following two conditions:

(Q ⇒ ¬P) valid

and

Q satisfiable

The first condition states that Q entails ¬P ; the second condition states that Q is
satisfiable.1 Equivalently to thinking of Q as a counterexample context for P , we may
think of Q as a satisfying context for ¬P .

To check a source program S for errors, we construct the verification condition (0) and
pass it to the proof procedure. If the proof procedure responds with “valid”, the program
is correct; if the proof procedure responds with a counterexample context, the program
contains an error.

For example, consider the following contrived source program:

if ¬(k < 10) ∧ k < 20 then
j := k

else
j := k

end;
x := A[j ]

(1)

0 For the purpose of this paper, it does not matter if the proof procedure is mathematically complete, but
an incompleteness in the proof procedure can result in spurious warnings being produced by the program
checker.
1 Or rather, satisfiable insofar as the proof procedure can tell, since the proof procedure may in general
be incomplete. From now on, we won’t continue to belabor the point about completeness.
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The desugared version of this program is:

{ assume ¬(k < 10) ∧ k < 20 ;
j := k
assume ¬(¬(k < 10) ∧ k < 20) ;
j := k} ;

assert ¬(j < 0) ∧ j < 100 ;
x := select(A, j )

The verification condition for the program is:

(¬(k < 10) ∧ k < 20 ⇒
¬(k < 0) ∧ k < 100 ∧ true) ∧

(¬(¬(k < 10) ∧ k < 20) ⇒
¬(k < 0) ∧ k < 100 ∧ true)

A counterexample context for this program is:

k < 0

which reveals the existence of an error in the program.
In the next section, we describe how to determine the source-program location of an

error from a counterexample context. Before we do that, we need to explain labels.

1.4. Labels
The time has come to explain the lblneg and lblpos formulas, which are used to label

sub-formulas. Intuitively, (lblneg L: P) and (lblpos L: P) are logically equivalent to
P but cause the proof procedure to emit the label L when producing a counterexample
in which P has the indicated sense (negative or positive, respectively; that is, ¬P or P ),
and in which the labeled occurrence of P is “relevant”. Formally, we define the labeled
formulas as follows:

(lblneg L: P) = P ∨ L
(lblpos L: P) = P ∧ ¬L

(2)

where, on the right-hand side, we use label L as an uninterpreted predicate symbol.
If the identifiers used as labels are distinct and distinct from other identifiers, lblneg

is used only in positive contexts, and lblpos is used only in negative contexts, then the
labeling of sub-formulas in a formula P yields a formula P ′ that is valid if and only if
P is. Worded differently, ¬P and ¬P ′ are equisatisfiable. Here’s a proof sketch. Let’s
write P as P(A,B ,C ), where P is monotonic in A and antimonotonic in B . That is,
P uses A only in positive contexts and B only in negative contexts. Let L and M be
any identifiers that do not occur in P(A,B ,C ) (but we allow L and M to be the same
identifier). We can now think of P ′ as:

P((lblneg L: A), (lblpos M : B), C )

We calculate:
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P(A,B ,C ) valid
⇒ { weaken positive contexts and strengthen negative contexts }

P(A ∨ L, B ∧ ¬M , C ) valid
= { (2): definition of lblneg and lblpos }

P((lblneg L: A), (lblpos M : B), C ) valid
= { (2): definition of lblneg and lblpos }

P(A ∨ L, B ∧ ¬M , C ) valid
⇒ { a formula remains valid under instantiation, so instantiate

both L and M with false }
P(A ∨ false, B ∧ ¬false, C ) valid

= { logic }
P(A,B ,C ) valid

which shows, by mutual implication, that P and P ′ are equally valid.
The label set of a counterexample context Q is the set of label symbols that appear

negated in Q . We assume that the proof procedure does not gratuitously negate label
symbols, but that it only gives values to label symbols when such values are needed to
produce a counterexample context.

Next, we look at how labels can be used in the generation of verification conditions so
that their appearance in a counterexample context tells us something about the errors in
a source program.

2. Error locations

The translation from the source language to the intermediate language introduces an
assert statement for each check to be performed on the program. For example, in our toy
language, an assertion is generated for every array access in a program, to ensure that the
access is within the appropriate bounds. If the proof procedure produces a counterexample
context, it is because at least one of these assert statements cannot be proven always to
succeed. We would like to extract from a counterexample context enough information to
tell which of the many assertions is potentially erroneous.

To this end, in ESC/Modula-3 [10], and subsequently also in ESC/Java [8,17], assertions
in the intermediate language are adorned with negative labels. The labels encode the kind
of error and the location in the source program of the statement that desugars into the
assertion. We change the desugaring of array accesses from that given in Figure 3 to:

Desugar(x := A[E ]) =
assert (lblneg ArrayAccess@l .c: ¬(E < 0) ∧ E < 100) ;
x := select(A,E )

where l and c denote the line and column in the source program where the assignment
occurs, and where ‘@’ and ‘.’ are special characters that can appear in intermediate-
language identifiers.

Consider again our example (1) from the previous section. Assuming the array access
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is at line 218, column 23 of the source program, the desugared version becomes:

{ assume ¬(k < 10) ∧ k < 20 ;
j := k
assume ¬(¬(k < 10) ∧ k < 20) ;
j := k} ;

assert (lblneg ArrayAccess@218.23: ¬(j < 0) ∧ j < 100) ;
x := select(A, j )

The verification condition then becomes:

(¬(k < 10) ∧ k < 20 ⇒
(lblneg ArrayAccess@218.23: ¬(k < 0) ∧ k < 100) ∧ true) ∧

(¬(¬(k < 10) ∧ k < 20) ⇒
(lblneg ArrayAccess@218.23: ¬(k < 0) ∧ k < 100) ∧ true)

(3)

Expanding the lblneg expressions, we get:

(¬(k < 10) ∧ k < 20 ⇒
((¬(k < 0) ∧ k < 100) ∨ ArrayAccess@218.23) ∧ true) ∧

(¬(¬(k < 10) ∧ k < 20) ⇒
((¬(k < 0) ∧ k < 100) ∨ ArrayAccess@218.23) ∧ true)

Finally, the counterexample context produced is now:

k < 0 ∧ ¬ArrayAccess@218.23

The appearance of the negated label in the counterexample context reveals which array
access in the source program is potentially erroneous.

We remark that there are two occurrences in (3) of the sub-formula labeled with
ArrayAccess@218.23. This duplication comes about from the definition of wp(C D , R)
in Figure 4. The duplication suggests a way to generate labels that encode not just the
location of an error but also the entire execution path leading to the error: simply define

wp(C D , R) = wp(C ,R) ∧ wp(D ,R′) (4)

where R′ is R in which the labels bear additional qualifications to encode branching
through the second command (D ). However, in practice, it is important for performance
reasons to avoid this duplication altogether, so it is not possible to use the idea (4).
ESC/Java follows a scheme [9,16] that sometimes gives verification conditions in a form
significantly smaller and/or easier-to-prove than those generated according to Figure 4.
For the present example, this scheme produces only one occurrence of the formula la-
beled with ArrayAccess@218.23. For simplicity in this paper, we continue to use the
straightforward encoding of wp(C D , R) as shown in Figure 4.

3. Error traces

The error location itself sometimes does not contain enough information for a program-
mer to figure out how the error may arise. In our running example (1), we learn that the
array access at the end is potentially erroneous, but we don’t know whether the problem
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arises by passing through the then or the else branch of the preceding if statement.
In this section, we describe how to use labels to determine a complete error trace that
represents a scenario under which the erroneous statement may fail.

We extend the labeling method of the previous section. In addition to labeling asser-
tions, which represent the various program checks, we now label each assume statement,
which represents a particular branch of an if statement. The assumed conditions end
up in antecedents (negative positions) in the verification condition, so we use lblpos
formulas. We change the desugaring of if statements from that given in Figure 3 to:

Desugar(if P then S else T end) =
{ assume (lblpos Then@lt .ct : P) ; Desugar(S )

assume (lblpos Else@le.ce: ¬P) ; Desugar(T )}
(5)

where lt and ct are the line and column of the then branch and le and ce are the line
and column of the else branch.

The desugared version of our running example (1) now looks as follows:

{ assume (lblpos Then@214.5: ¬(k < 10) ∧ k < 20) ;
j := k
assume (lblpos Else@216.5: ¬(¬(k < 10) ∧ k < 20)) ;
j := k

} ;
assert (lblneg ArrayAccess@218.23: ¬(j < 0) ∧ j < 100) ;
x := select(A, j )

The verification condition, with labels expanded, becomes:

((¬(k < 10) ∧ k < 20 ∧ ¬Then@214.5) ⇒
((¬(k < 0) ∧ k < 100) ∨ ArrayAccess@218.23) ∧ true) ∧

((¬(¬(k < 10) ∧ k < 20) ∧ ¬Else@216.5) ⇒
((¬(k < 0) ∧ k < 100) ∨ ArrayAccess@218.23) ∧ true)

Finally, the counterexample context produced is now:

k < 0 ∧ ¬ArrayAccess@218.23 ∧ ¬Else@216.5

The negated labels in the counterexample context now reveal both a particular array
access in the source program and an execution trace to that access that is potentially
erroneous.

4. Other programming constructs

In this section, we consider how to deal with a larger source language, one that contains
short-circuit boolean operators, exceptions, loops, and procedures.

4.0. Short-circuit boolean operators
Short-circuit boolean operators in expressions also give rise to branches in executions.

To describe our method for short-circuit boolean operators, we consider a small extension
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of our source language. We modify the grammar for the if statement as follows:

Stmt ::= . . .
| if CCond then Stmt else Stmt end

CCond ::= Cond
| Cond candCCond

where cand is the short-circuit operator conditional-and. For simplicity, we allow the
new operator only as a top-level operator in the guard of if statements.

The new desugaring of if is different from the previous desugaring (5) in two ways.
First, we introduce a fresh variable κ to hold the value of the evaluated guard expression.
Using Eval(CP) to denote the desugaring that causes conditional expression CP to be
evaluated and its result to be assigned to variable κ, we change the desugaring of if
statements from (5) to:

Desugar(if CP then S else T end) =
Eval(CP) ;
{ assume (lblpos Then@lt .ct : κ) ; Desugar(S )

assume (lblpos Else@le.ce: ¬κ) ; Desugar(T )}
Second, to track the branching introduced by the short-circuit boolean operator, we define
Eval as follows, for any non-conditional expression P and any expression Q :

Eval(P) =
κ := P

Eval(P candQ) =
κ := P ;
{ assume κ ; Eval(Q)

assume (lblpos Cand@l .c: ¬κ)}
where l and c denote the line and column in the source program of the operator cand .2

Note that we introduce a label only for the case when evaluation of cand is actually
short-circuited. We found from experience with ESC/Java that too many error-trace
labels in the tool’s output (and hence in the resulting error trace presented to users) can
be more distracting than helpful. Therefore, we use a label only in the “unexpected” case
where the short-circuit nature of the conditional operator is used.

4.1. Exits and exceptions
Programming languages may offer several mechanisms to avert normal control flow,

for example to exit loops prematurely or to signal a special condition that is handled in
some enclosing context. To describe our method for such language features, we extend
our source language with named blocks and exits (which can be generalized into a fuller
exception mechanism):

Stmt ::= . . .
| name Id {Stmt}
| exit Id

2Some readers may have noticed the conflation of formulas and terms: the desugaring shown here assigns
formulas to the variable κ . ESC/Java actually employs a slightly more complex desugaring (beyond the
scope of this paper) involving a reflection of the formulas false and true into the term domain.
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A block statement name N {S} introduces a name N that can be used in exit statements
inside S . The execution of such a statement exit N causes the entire block statement to
terminate; that is, exit N transfers control to the point immediately following the block
statement.

To desugar named blocks, we extend the intermediate language with the ability to raise
and handle exceptions :

Cmd ::= . . .
| raise
| try Cmd catch Cmd end

In the presence of these features, intermediate-language commands have a new possible
outcome: they can terminate exceptionally in some state. The raise statement always
terminates exceptionally, without changing the program state. The statement

try C catch D end

executes C and then, if C terminates exceptionally, executes D . The command D
is often called an exception handler. We omit from this paper a weakest-precondition
formalization of commands with exceptional outcomes, but see, e.g., [17,5,15].

Named blocks and exits are desugared as follows. First, we introduce a special variable
ξ that records the label in the most recent exit statement. Without concern about labels,
we would then define Desugar on the new statements as follows:

Desugar(exit N ) =
ξ := N ; raise

Desugar(name N {S}) =
try

Desugar(S )
catch

assume ξ = N
assume ¬(ξ = N ) ; raise

end

where the block names are treated as symbolic constants with distinct values. The desug-
aring of exit records the name of the specified exit and then raises an exception. The
block statement desugars into a try command that behaves like the desugaring of S ,
except that it turns any exceptional termination where ξ = N into normal termination.
With labels, we use the following desugaring:

Desugar(exit N ) =
assume (lblpos Exit@l .c: true) ; ξ := N ; raise

Desugar(name N {S}) =
try

Desugar(S )
catch

assume (lblpos EndBlock@lb.cb: ξ = N )
assume ¬(ξ = N ) ; raise

end
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where l and c denote the line and column of the exit statement and lb and cb denote
the line and column of the end of the named block. We record the point of the exit by a
positive label on true , which will appear in any counterexample context that involves the
exit . This label allows resulting error traces to highlight the origin of a thrown exception.
By also including a label on entry to the exception handler, resulting error traces highlight
where the thrown exception is caught, which can be many source lines apart from the
exit statement. We have chosen not to include a label for the case where the exception
is re-raised, to be handled by an enclosing block, but this could easily be incorporated.

4.2. Loops
We consider the addition of an iterative construct to the source language:

Stmt ::= . . .
| loop {inv Cond} Stmt end

where the condition gives programmers the ability to specify a loop invariant (which may
be the trival invariant true). For simplicity, the loop has no explicit loop guard; instead,
the loop is an infinite loop that can be exited prematurely by enclosing the loop inside a
named block and using exit statements inside the loop (see the previous subsection).

ESC/Java provides two different desugarings of loops. We describe each one.
The full (“safe”, “sound”) translation of a loop considers an arbitrary iteration of the

loop body. For a loop at line l and column c , this desugaring is:

Desugar(loop {inv J} S end) =
assert (lblneg LoopInvInit@l .c: J ) ;
. . . ;
assume J ;
assume (lblpos LoopHead@l .c: true) ;
Desugar(S ) ;
assert (lblneg LoopInvMaintained@l .c: J ) ;
assume false

where the “ . . .” assigns arbitrary values to the assignment targets of the loop. By follow-
ing this arbitrary assignment with the command assume J , the intermediate program
effectively models the execution of an arbitrary number of loop iterations (cf. [17]). The
command assume false at the end of the desugaring has the effect of ending the checking
after this arbitrary iteration (but remember that the loop body may use exit statements
to continue execution beyond the loop).

This desugaring uses different labels for the two loop-invariant checks, one for checking
the loop invariant on entry to the loop and one for checking the maintenance of the loop
invariant by the loop body [17]. These labels allow error traces to give programmers
precise information about why J is not a valid loop invariant. For the benefit of error
traces, we also include a label at the beginning of the arbitrary iteration.

ESC/Java also provides a limited desugaring of loops, in which it unrolls loops a speci-
fied number of times. This limited desugaring does not capture all possible executions of
the loop, and so may cause the checker to miss errors; in return, the checker is faster and
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can do some useful checking without the need for non-trivial loop invariants [10,8]. For a
loop at line l and column c , this limited desugaring for k unrollings is:

Desugar(loop {inv J} S end) =
assert (lblneg LoopInvInit@l .c: J ) ;
Unroll(loop {inv J} S end, 0, k)

Unroll(loop {inv J} S end, j , k) =


assume (lblpos LoopHead .j@l .c: true) ;
Desugar(S ) ;
assert (lblneg LoopInvMaintained@l .c: J ) ;
Unroll(loop {inv J} S end, j + 1, k)


 if j < k

assume false otherwise

For example, for k = 1, this desugaring yields:

assert (lblneg LoopInvInit@l .c: J ) ;
assume (lblpos LoopHead .0@l .c: true) ;
Desugar(S ) ;
assert (lblneg LoopInvMaintained@l .c: J ) ;
assume false

We have simplified this explanation a bit too much. As stated, the resulting labels
would not all be distinct, and thus would not allow the tool to determine which loop-
body branches were considered in which unrolling of the loop. For example, suppose the
loop body contains an if statement and suppose the number of loop unrollings (k above)
is set to 2. Then, if a counterexample context arises because of a program error that is
reached by taking the then branch in the first iteration and the else branch in the second
iteration, then both of the labels Then@lt .ct and Else@le.ce would appear negated in
the counterexample context, but there would be no information as to which branch is
taken during which iteration.

To avoid this problem, ESC/Java adds a sequence number to each label generated
during verification-condition generation, with the property that the sequence numbers
reached in any execution of the intermediate-language program appear in ascending order.
ESC/Java then sorts the trace labels returned by the theorem prover according to their
sequence numbers, and prints the error trace information in that order.

4.3. Procedures
Without going into the details of procedure desugaring (see, e.g., [17,15]), we briefly

make a couple of notes about labels and procedure calls.
We have found that it is sometimes useful to point out calls in an error trace. This is

especially true if a procedure call is inlined. To include such a label, our desugaring uses
a command like:

assume (lblpos Call@l .c: true)

at the beginning of the procedure-call desugaring.



Error traces from VCs 15

If a call is inlined, it may also be useful to provide a label at the point where execution
is resumed in the caller, since the caller and the return in the callee may be many source
lines apart. Moreover, even if calls are not inlined, we have found it useful to include
a label for the case that corresponds to an exceptional return from the procedure. To
avoid getting multiple occurrences of the same label when a procedure is inlined in several
places, ESC/Java adds sequence numbers to labels, as we described above for unrolled
loop iterations.

5. Implementation considerations

Our definition of labeled formulas (2) allows our method to be used with any proof
procedure that does not gratuitously negate label symbols in its counterexample contexts.
However, if labeled expressions are actually expanded into disjunctions or conjunctions
according to (2), there is sometimes an adverse impact on prover performance.

Consider, for example, a source program containing the fragment:

x := A[j ] ;
y := A[j ] + 1

In the absence of labels, the two array accesses give rise to the same assertion in the
intermediate language, namely:

assert ¬(j < 0) ∧ j < 100

Since there is no assignment to j between the two instances of these assertions, they will
give rise to two instances of the same subformula in the verification condition. With labels,
expanded according to (2), the two assignments may give rise to different assertions:

assert (¬(j < 0) ∧ j < 100) ∨ ArrayAccess@104.11 ;
. . .
assert (¬(j < 0) ∧ j < 100) ∨ ArrayAccess@105.11

and thus to different subformulas in the verification condition, making it more likely that
work done by the prover in refuting the possibility of a bounds error on the first access
will have to be repeated in order to refute the possibility of a bounds error on the second
access.

In the course of the ESC/Modula-3 project, some verification conditions were found to
suffer from performance problems of the sort described above. Consequently, the Simplify
theorem prover was changed to accept labeled formulas in its input and treat them spe-
cially [11,10]. The result is that Simplify’s performance on ESC/Modula-3 and ESC/Java
verification conditions is almost identical to its performance on the same verification con-
ditions with all instances of (lblpos L: P) and (lblneg L: P) replaced by P . That
is, there is virtually no extra cost for reporting error locations and traces, compared to
merely reporting the presence of a potential error. By contrast, the naive treatment (2)
has, on average (although not always) a deleterious effect on performance [11].

Simplify also uses labels to control its generation of multiple counterexample con-
texts [11]. Briefly, certain labels are designated as major labels. After reporting a
counterexample context that includes a major label, Simplify continues to search for
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additional counterexamples, but ignores portions of the search space that would give rise
to counterexample contexts containing any already-reported major label. ESC/Java uses
this facility by generating major labels for error locations and minor labels for execution
traces. In this way, it can report possible program errors at many locations in a single
routine, but will report only one execution trace (rather than a potentially exponential
number) leading to each possible error.

The combination of error locations and error traces has turned out to be sufficiently
informative that this information is the only information that ESC/Java reports in most of
its warning messages. In a few cases (notably for broken object invariants [18]), however,
it has been found necessary and useful to extract and report additional information from
counterexample contexts.

6. Related work

We know of one other program checker that uses an automatic theorem prover to analyze
programs and reports execution traces leading to the possible errors it discovers, namely
JACK [2]. JACK’s approach is quite different from ours: whereas ESC/Java generates
one verification condition per method implementation, JACK generates one verification
condition (called a lemma) for each execution path through a method implementation.
This makes it trivial to report a particular execution trace for each unproved lemma, but
has the considerable drawback of generating a possibly exponential number of lemmas
(which in practice ESC/Java usually avoids [9]).

Dynamic program analyzers can offer more than the source location of a manifested
error. While it may be too expensive to record a complete history of branches and data
values that lead to an error, the additional information of a stack trace at the time the
error manifests itself can be useful. Some dynamic checking tools, like Eraser [24], record
a collection of stack traces during a program’s execution, and display in the tool’s error
reporting a selection of these stack traces that contribute to the manifestation of the error.

In model checking [3,23], one computes a set of states reachable forward from the initial
states or backward from the error states. In this setting, the application of next-state or
previous-state relations naturally lends itself to keeping track of how a state is reached.
This information can then be used to report error traces (see, e.g., SPIN [13] or SMV [19]).
Going beyond static text and tabular output, some tools offer graphical replay of error
traces (see, e.g., [14]).

Recent work in model checking has considered the generation of multiple correct and
erroneous execution traces, from which the checking tool heuristically arrives at possible
sources of a manifested error [1,12].

7. Conclusions

We have presented a method for instrumenting verification conditions with information
that makes it easy to produce, from a theorem prover’s output, execution traces leading
to the errors discovered. Our method builds on ideas used to instrument verification
conditions with information about the location of errors [10]. We have implemented our
method in ESC/Java.

Using the underlying theorem prover’s built-in support for labels, we have found the
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overhead of our instrumentation to be negligible. Through experiments, we have found a
set of program points that are often useful to include in error traces. We have also found
a number of branch points that are commonly “expected”, and that are therefore better
suppressed in the error reporting to make error messages more focused.

One opportunity to suppress lines in the reported error traces that our implementation
conspicuously does not act on is removing trace information that follows immediately
from the error location. For example, if an error is manifested in the then branch of
an if statement, then our implementation ends up mentioning the then branch in the
error trace, despite the fact that this is the only way for an execution to reach the error
location.

The error messages produced by ESC/Java draw almost exclusively from the labels
reported by the theorem prover. That is, the rest of the counterexample context produced
by the theorem prover is mostly ignored, suggesting we’ve been successful at extracting
the most vital information from the theorem prover in a simple way.

On the other hand, for cases where the error traces are not enough to explain why an
error may occur, we have not been able to usefully extract further information from the
counterexample context, except as alluded to in Section 5. Such further harvesting of
information from counterexample contexts would make for interesting future work.
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