
AIOOL 2005

Inferring Object Invariants

(Extended Abstract)

Bor-Yuh Evan Chang 0

University of California, Berkeley, CA, U.S.A.

K. Rustan M. Leino 1

Microsoft Research, Redmond, WA, U.S.A.

Abstract

The program state for object-oriented languages, such as Java or C#, consists of
both variables local to procedures and variables stored in the global heap. The
variables stored in the heap are the fields of objects (i.e., fields of class instances).
This paper proposes a technique for inferring properties of such object-oriented pro-
grams. The technique divides the work into two interacting parts: a flow-sensitive
analysis that tracks the local and global state as seen at each particular program
point, and a flow-insensitive analysis that tracks properties that are common among
all “valid” instances of a class, independent of the program counter. The analysis is
sound and works in the presence of many object references (aliasing). For precision,
the analysis makes use of a recent methodology for object invariants, which makes
explicit when each object’s invariant is supposed to hold (valid objects) or is allowed
to be violated.

Key words: object invariants, abstract interpretation,
object-oriented programs, inference

0 Introduction

Proving the correctness of a computer program requires knowledge about the
program that is not readily available in the program text. For example, to
prove the correctness of a loop, one may need to know that a condition, such
as 0 � x , is a loop invariant. Or, to prove the correctness of a class in an
object-oriented program, one may need to know that a condition 0 � this.f
is invariant for all instances (objects) of a class. Such a condition is called an

0 E-mail: bec@cs.berkeley.edu
1 E-mail: leino@microsoft.com

Chang and Leino

class A {
int x ;
A() {

this.x := 8 ;
}
method M() {

this.x := this.x + 1 ;
}

}

class B {
int x ;
B() {

this.x := 8 ;
}
method M(B b) {

this.x := b.x + 1 ;
}

}

class C {
int x ;
C() {

this.x := 8 ;
}
method M(C c) {

c.x := 7 ;
}

}
Fig. 0. Simple program examples that demonstrate the need to consider object
references.

object invariant. Since we cannot always rely on the program text to include
declarations of the needed invariants, we consider in this paper the technique
of abstract interpretation [6] to automatically infer such invariants from the
text of an object-oriented program.

Object references

Let us use some examples to home in on what our program analysis needs
to deal with. Consider the Java-like classes in Figure 0. For class A , the
condition this.x � 8 holds on exit from the constructor and on entry to and
exit from the method M , and thus, we wish to obtain from our analysis that
this.x � 8 is an object invariant for A . Since conditions like x � 8 can be in-
ferred using, for example, the polyhedra domain [7], a straw-man proposal for
inferring the object invariant this.x � 8 is to treat the field select expression
this.x as denoting one variable, essentially focusing the analysis on one (ar-
bitrary) object at a time. Then, perform abstract interpretation on the body
of constructors and methods (e.g., in the class setting of Logozzo [13]) to infer
the condition this.x � 8, from which one would conclude (∀ a : A • a.x � 8).

But this straw man has problems. Class B illustrates the need to know
about properties of objects other than this . Since it focuses on what can be
said about this.x , the straw man gives no information about b.x in method
B.M , and thus we are not be able to conclude the fact (∀ b : B • b.x � 8).
Perhaps more critically, class C demonstrates that the straw man is unsound.
Method C.M updates the x field of an object other than this , so the straw
man might not consider this update as having any effect on the object invariant
of C objects. The analysis would then incorrectly infer this.x = 8, which
would suggest the fallacious (∀ c : C • c.x = 8). We conclude from classes B
and C that our analysis must know about object references.

To handle object references, we build on the abstract-interpretation frame-
work for heap structures in our previous work [5]. In this framework, we treat
a field read expression o.x in the source language as indexing into an explicit
heap (represented by the variable H) at location 〈o, x〉 , where o is the object
reference (i.e., object identity, pointer, or address) and x is a uniquely valued

2

Chang and Leino

constant that names the field x , written as sel(H, o, x) (cf. [9,11,17]). To han-
dle field updates, our framework additionally uses a heap succession predicate
H ≡o.x H ′ , which asserts that heaps H and H ′ store the same values for all
locations except possibly for the location 〈o, x〉 .

Starting from an initial state represented by an abstract-domain element
L , performing a forward analysis on a field update statement o.x := e amounts
to applying the following abstract-domain operations, where H ′ is a fresh
variable:

L := Constrain(L, sel(H ′, o, x) = e) ;

L := Constrain(L, H ≡o.x H ′) ;

L := Eliminate(L,H) ;

L := Rename(L,H ′, H) ;

These operations introduce a name H ′ for the heap after the update statement,
and constrain H ′ using sel and the heap succession predicate. Then, the old
heap H is projected out and the name heap H ′ is renamed to H .

Most of the detailed workings of our abstract-interpretation framework
are not relevant to our present paper. However, one feature that is important
is that the framework is parameterized by various “off-the-shelf” abstract
domains (i.e., ones that reason about relations on variables as independent
coordinates). For example, parameterizing the framework with the polyhedra
domain [7], we obtain an analysis that can reason about references into a heap
and linear arithmetic. Such an instantiation of the framework is thus able to
infer that the statements o.x := 5 ; p.y := o.x + 12 result in a state where
o.x = 5 ∧ p.y = 17 holds.

It is also worth pointing out that our framework correctly handles the
aliasing issues that arise when distinct variables reference the same object. In
the example we just gave, aliasing is not an issue (that is, it doesn’t matter if
o and p refer to the same object), because the example updates two different
fields, x and y . For an example like . . . ; o.x := 5 ; p.x := o.x + 12, the
analysis (rightly) infers o.x = 5 to hold in the final state only if there is
information that implies that o and p do not reference the same object.

A methodology for object invariants

Note that the problems with the classes B and C above arise even if
there are no aliasing issues. What the examples show is that our analysis
must somehow simultaneously keep track of the state of multiple objects (like
this.x , b.x in B.M , and c.x in C.M). This situation may look pretty grim,
because there is no bound on the number of different objects and all of these
objects can simultaneously be in different states. As a solution, we abstract
over a particular subset of objects and keep track of their states collectively.

We say that each object is in one of two states: it is either valid, which
means its object invariant can be relied upon, or it is mutable, which means its
object invariant may temporarily be violated. It is the set of valid objects that
our analysis keeps track of collectively. The valid objects are class instances

3

Chang and Leino

in their “steady states”, which means it’s plausible to imagine that these
objects satisfy some common constraint, namely the object invariant of their
respective classes.

We make the following assumptions about the object-oriented code we
analyze:

• an object o transitions from mutable to valid by the execution of a special
statement pack o

• an object o transitions from valid to mutable by the execution of a special
statement unpack o

• a field update o.x := e takes place only when the object o is mutable

These assumptions were introduced in the Boogie methodology for object in-
variants [0,12,2], which is used in the object-oriented Spec# programming
language [1]. Note that the pack and unpack statements need not be pro-
vided directly by the programmer; they could be implied by rules in the source
language or by rules in some stylized use of the language (e.g., unpack on
method entry and pack on method exit).

The Boogie methodology also treats class inheritance. It does so by having
a mutable/valid state bit for each class frame of an object. A class frame is
the set of declared fields of a particular class. For example, if B is a subclass
of A , then a B object can be valid for A and mutable for B . This allows
each subclass to declare its own object invariant. The statements we consider
are therefore pack o as T and unpack o from T , which change object o ’s
mutable/valid bit for class frame T . If x is a field declared in a class T , then
we assume a field update o.x := e takes place only when o is mutable for T .

Overview of our technique

The technique for inferring object invariants that we propose in this paper
performs two analyses that work together. One analysis, the local analysis,
proceeds flow-sensitively and infers properties of the program at each program
point, which is a standard thing to do in abstract interpretation. This anal-
ysis more or less determines properties of local variables and heap locations
reachable from the local variables. The other analysis, the global analysis,
proceeds flow-insensitively and infers, for each class T , properties of all valid
T objects—that is, the object invariant for class T .

When the local analysis encounters a valid object of some type T , the
global analysis’ current approximation of the object invariant for T objects
is instantiated to give the local analysis more information. When the local
analysis reaches a program point where the invariant of a given object is
supposed to hold, the information it has about that object is used by the
global analysis for its next approximation.

4

Chang and Leino

1 Inferring Object Invariants

In this section, we describe our technique to infer object invariants using
the abstract interpretation-based framework discussed in the previous section.
Recall that the framework is parameterized by various traditional abstract
domains, which determine the kind of invariants that we infer about objects.
To simplify the discussion, we consider a single such abstract domain, which
we shall call the policy abstract domain. In other words, we describe a flexible
mechanism by which object invariants can be inferred and defer to the user
the choice of policy that determines the kind of invariants that are inferred
(as well as, how precise the analysis is).

Let P denote the given policy domain. As alluded to earlier, we can
transparently extend the policy domain to infer properties about heap struc-
tures using the framework described in our previous work [5]. We denote the
abstract domain given by this extension by C(P, S) where S indicates the
presence of the abstract domain that handles the heap succession predicate
for heap updates.

The abstract state of the local flow-sensitive analysis is precisely an ele-
ment of C(P, S). Meanwhile, the global flow-insensitive analysis tracks the
object invariant for each class T , which is simply a constraint on fields of
valid objects of class T representable by C(P), the policy domain extended to
reason on heap locations. Thus, the abstract state of the global analysis is a
mapping from classes to elements of C(P), which we denote by I . (The heap
succession domain S is not needed to represent object invariants, as it is only
needed to reason about updates to heaps whereas the object invariant applies
globally to all heaps.) More precisely, the concretization of an element of I is
a conjunction of universally-quantified propositions of the following form:

(∀H • (∀ t : T • Valid(t) ⇒ ToPredicateC(P)(C)))

where C is an element of C(P) whose only free variables are t and H .
Moreover, the sel expressions in ToPredicateC(P)(C) should be of the form
sel(H, t, x) for any field x of T or superclass thereof. (In the literature [6],
the concrete domain is often described as sets of program states rather than
as state predicates and ToPredicate is written as γ .)

We now describe the abstract interpretation by defining the following ab-
stract transition judgment for a statement s :

s : 〈I �C 〉 → 〈I ′
�C ′〉

where I and I ′ are elements of I and C and C ′ are elements of C(P, S). We
write the combined abstract state 〈I �C 〉 at each program point for notational
convenience, but while there is one C per program point as in standard ab-
stract interpretation, there is only one global I . As usual, the C is initially
bottom (⊥C(P,S)) at each program point except in some initial state where it

5

Chang and Leino

is top (C(P,S)). Similarly, the global I is also initially bottom (i.e., each class
T is mapped to ⊥C(P)).

The global and local components of the abstract state interact precisely
at the unpack and pack statements. At each statement pack o as T ,
the program asserts the object invariant for class T to hold for the object
o , so we incorporate any properties inferred about the fields of o into the
local analysis. Roughly speaking, we need to obtain from C the constraints
involving fields of o declared in T or any superclass of T (i.e., expressions
of the form sel(H, o, x) for fields x of class T). Then, rename o to t in the
local invariant and weaken the current global I with it. As we show with
an example below, this weakening must be performed with a widen operator
to ensure termination of the analysis, not simply a join. (As usual [6], one
can use some sequence of successively coarser widening operators of which the
first few may be join operations.) More precisely, the handling of pack is as
follows:

P = C ↑ sel(H, o, ∗T)

pack o asT : 〈I �C 〉 → 〈I [T �→ I (T) � [t/o]P] �C 〉
where H is heap variable for the current heap. We write � for the widen
operator and [y/x]e for the capture-avoiding renaming of variable x to y in
expression e . Also, we writeC ↑ e for the operation that may drop constraints
from C , keeping only those constraints that have no free variables other than
those occurring in subexpressions that match e (in which “∗T ” matches any
field declared in class T or superclass of T). As applied above, this operation
obtains the constraints that involve only the fields of o . For example, if
x, y, z represent fields declared in class T and C represents sel(H, o, x) �
5 ∧ sel(H, o, y) � sel(H, p, z), then what C ↑ sel(H, o, ∗T) returns represents
sel(H, o, x) � 5. 0

One may observe that C is an element of C(P, S), while I(T) is an element
of C(P), so the above rule is not quite well-formed. To communicate between
the two analyses, the language of discourse is that of first-order logic—we first
concretize and extract the predicate of interest from C and then abstract in
the abstract domain C(P) before widening. One can view C ↑ e as a special
filtering ToPredicateC(P,S) .

During the local analysis, we may need to instantiate an object invariant to
obtain a certain property at a particular point. The object invariant methodol-
ogy ensures that changes to fields are guarded by an unpack statement and
thus indicates when the object invariant may be temporarily violated. We
instantiate object invariants at unpack statements, as it marks the code sec-
tion that weakens the object invariant. More precisely, an unpack statement

0 The implementation of the ↑ operation uses the fact that our framework maps all subex-
pressions to symbolic values [5], but we lack the space to discuss those details here.

6

Chang and Leino

proceeds as follows:

unpack o fromT : 〈I �C 〉 → 〈I �C [o/t]I (T)〉

Similar to pack , the actual interaction is via a conversion of I (T) to a predi-
cate (concretization) and then an abstraction in the abstract domain C(P, S)
before the meet () with C .

All other program statements affect only the local abstract state C and
proceed basically as standard abstract interpretation (except the reasoning is
extended to work with heap structures [5]). Note that this separation is only
obtained because of the object invariant methodology described in Section 0.
In particular, a field update has no affect on the global abstract state I because
the methodology dictates that only a mutable (i.e., unpacked) object can be
modified—recall that the object invariant carried in I applies only to valid
(i.e., packed) objects.

Example

Figure 1 gives an example analysis of a slightly modified version of class
B from Figure 0 with explicit unpack and pack statements. We assume the
polyhedra domain [7] is used as the policy domain. The abstract state at each
program point is shown right-justified and boxed. For this example, we assume
that we have as a precondition that d is valid, which might be user-specified,
implied by the rules in the source language or some stylized use of the language,
obtained by a separate analysis, or obtained simultaneously with this analysis.
In either case, we have in the initial state of method M that sel(H, d, y) =
1 ∧ sel(H, d, x) = 8 through an instantiation of the current object invariant
for D and B . The unpack statement in M instantiates the current object
invariant of B for this . The field update statement does not affect the global
state and proceeds as usual on the local state. Then, at the pack statement
in M , we get from the local state that sel(H, this, x) = 9. This state is
widened into the current object invariant for B to get that sel(H, t, x) � 8
for the new object invariant for B . Since this widening brought about a
weakening of the current approximation of the object invariant for B , the
analysis needs to revisit all program points where the previous approximation
for B was instantiated, namely at those points marked with an ∗ in Figure 1.
Continuing the analysis with the weaker object invariants then reaches a fixed
point.

The example in Figure 1 demonstrates why the weakening of the object
invariant must be with a widen operator, just as in standard abstract inter-
pretation with looping constructs. In the example, using joins to weaken the
object invariant would yield the infinite ascending chain of abstract domain
elements

9 � sel(H, t, x) � 8 10 � sel(H, t, x) � 8 11 � sel(H, t, x) � 8 . . .

7

Chang and Leino

class D extends B {
int y ;

D() { 〈D �→ ⊥ � �〉

this.y := 1 ; 〈D �→ ⊥ � sel(H, this, y) = 1〉

pack this as D ; 〈D �→ sel(H, t, y) = 1 � sel(H, this, y) = 1〉

}
}

class B {
int x ;

B() { 〈D �→ sel(H, t, y) = 1, B �→ ⊥ � �〉

this.x := 8 ; 〈D �→ sel(H, t, y) = 1, B �→ ⊥ � sel(H, this, x) = 8〉

pack this as B ; 〈D �→ sel(H, t, y) = 1, B �→ sel(H, t, x) = 8 � sel(H, this, x) = 8〉

}
method M(D d) {

〈D �→ sel(H, t, y) = 1, B �→ sel(H, t, x) = 8 � sel(H, d, y) = 1 ∧ sel(H, d, x) = 8〉 ∗
unpack this from B ;

〈D �→ sel(H, t, y) = 1, B �→ sel(H, t, x) = 8 � sel(H, d, y) = 1 ∧ sel(H, d, x) = 8 ∧ sel(H, this, x) = 8〉 ∗
this.x := d.x + d.y ; 〈D �→ sel(H, t, y) = 1, B �→ sel(H, t, x) = 8 � sel(H, this, x) = 9〉

pack this as B ; 〈D �→ sel(H, t, y) = 1, B �→ sel(H, t, x) � 8 � sel(H, this, x) = 9〉

}
}

Fig. 1. An example analysis.

We note that the class argument to unpack and pack need not be the
surrounding class as it is in this example. For example, specifying a superclass
would instantiate and update the object invariant of the superclass.

Object invariants that mention more than one object

class Set {
int card ; int[] arr ;
invariant this.card = this.arr .Length ;
. . .

}

The technique for inferring
object invariants we have de-
scribed thus far does not con-
sider object invariants involving
multi-level field accesses, which
often are quite important. For
example, we may implement a Set class with an array as the backing store
where an object invariant is that the cardinality of the set is equal to length of
the array (see inset). Without additional support, soundly inferring such an

8

Chang and Leino

invariant is hard because of aliasing issues—an alias of the arr field of a Set
object o could modify the array to which arr points without going through
o.arr . Fortunately, the object invariant methodology [0] also helps us with
this problem: an ownership model is imposed, and such an object invariant
is allowed only if arr is declared to be “owned” by Set (i.e., declared a rep
field). The details of this ownership model are not relevant here; what is nec-
essary is that the methodology assures us that arr cannot be made mutable
unless o is first made mutable (i.e., unpacked). This allows us to instantiate
the object invariant for any owned field (e.g., arr) of an object o when o
is unpacked and incorporate any information about the fields of owned fields
(e.g., arr) when o is packed (and transitively for the owned fields of the owned
fields of o). In the context of the analysis described in Section 1, the · ↑ ·
operation that pulls out constraints involving the fields is extended to also get
fields of owned fields (and transitively). The condition above the line in the
rule for pack then takes a form like (here shown without transitivity):

P = C ↑ { sel(H, o, ∗T), sel(H, (sel(H, o, ∗repT)), ∗) }
where ∗repT matches any rep field declared in T or a superclass of T , and
∗ matches any field.

2 Related Work

Inferring properties of object-oriented programs poses several challenges. One
challenge is the fact that objects can be aliased, that is, distinct variables may
refer to the same object. Various pointer analyses exist to address such prob-
lems (see, for example, [19,8]). These pointer analyses can then be used as a
basis for generating abstract locations on which traditional abstract interpre-
tation can be applied [3,20]. Another challenge is determining the structure
of pointers in the object heap—a technique that goes under the name of shape
analysis [16], which has also been used as a basis for abstract interpreta-
tion [18]. Another challenge is analyzing properties of object fields [5], or
considering combinations of the methods in a class [13]. The challenge we
address in this paper is inferring relations among the fields of an object, and
in particular inferring the field relations (object invariants) that are the same
for all instances of a class.

Our technique uses a combination of a flow-sensitive analysis and a flow-
insensitive analysis. Venet and Brat have also used a combination of such
analyses [20], though their flow-insensitive analysis is used instead to refine
set of abstract locations obtained from an initial points-to analysis. The anal-
ogous reasoning is incorporated in our flow-sensitive analysis via the C(·, S)
framework. Logozzo [14] has also considered the analysis of object-oriented
languages in the presence of aliasing and a context of other objects. In his
recent PhD thesis, Lahiri [10] has considered inferring quantifications whose
bodies are boolean combinations of predicates P (k), where k is the quantified

9

Chang and Leino

variable and P comes from some fixed set of predicate symbols. His technique
also performs a join operation to weaken the body of the quantifier by new
facts inferred in a flow-sensitive manner.

3 Conclusion

Summarizing our contributions, we have presented a technique for inferring
object invariants in object-oriented programs. Aimed at mainstream object-
oriented languages, the technique handles aliasing among objects and works
in the presence of multiple objects that can be in different states. Our tech-
nique splits the work into two collaborating parts: a flow-sensitive analysis
that infers invariants for each program point and a flow-insensitive analysis
that infers invariants of all valid objects of a class. Building on our previ-
ous work on combining abstract domains and handling heap structures [5],
our technique can be parameterized by arbitrary abstract domains that de-
termine what kinds of invariants are inferred. To determine in a structured
way when objects are in “steady states”, we use the Boogie object-invariant
methodology [0].

To our knowledge, our technique is the first to, in the presence of multiple
objects, infer object invariants that hold for all objects of a class.

The technique itself is one of the first to divide up the work into a combina-
tion of a flow-sensitive part and a flow-insensitive part. A possibly surprising
aspect of our work is that we do not apply a global alias analysis. Instead,
we use information available locally to resolve aliasing issues. This makes
our technique more modular, and we expect it to work well in settings where
programmers have the ability to write preconditions of methods (like in Eif-
fel [15], Java with JML [4], and Spec# [1]). A final contribution of our work
is to combine a methodology and an analysis, which adds power to both. The
methodology gives the analysis guidance about the form of what is to be in-
ferred and where to infer it, and the analysis makes the methodology easier
to use by supplementing any explicit invariants the programmer might have
declared. In fact, we posit that because of the methodology, we could get
quite precise invariants even with a cheap conservative intraprocedural analy-
sis where a call is modeled as basically scrambling the entire heap, for we can
assume after the call that the object invariant of any object that is not passed
to the callee in the mutable (i.e., unpacked) state holds.

We are implementing our technique in the Spec# [1] program verifier and
are looking forward to getting some experience with it.

References

[0] Barnett, M., R. DeLine, M. Fähndrich, K. R. M. Leino and W. Schulte,
Verification of object-oriented programs with invariants, Journal of Object
Technology 3 (2004), pp. 27–56.

10

Chang and Leino

[1] Barnett, M., K. R. M. Leino and W. Schulte, The Spec# programming system:
An overview, in: CASSIS 2004, LNCS 3362 (2005), pp. 49–69.

[2] Barnett, M. and D. A. Naumann, Friends need a bit more: Maintaining
invariants over shared state, in: Mathematics of Program Construction 2004,
LNCS 3125 (2004), pp. 54–84.

[3] Blanchet, B., P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux and X. Rival, A static analyzer for large safety-critical software,
in: PLDI 2003 (2003), pp. 196–207.

[4] Burdy, L., Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino and E. Poll, An overview of JML tools and applications,
International Journal on Software Tools for Technology Transfer (2005).

[5] Chang, B.-Y. E. and K. R. M. Leino, Abstract interpretation with alien
expressions and heap structures, in: VMCAI 2005, LNCS 3385 (2005), pp. 147–
163.

[6] Cousot, P. and R. Cousot, Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints, in:
Fourth POPL, 1977, pp. 238–252.

[7] Cousot, P. and N. Halbwachs, Automatic discovery of linear restraints among
variables of a program, in: Fifth POPL, 1978, pp. 84–96.

[8] Das, M., Unification-based pointer analysis with directional assignments, in:
PLDI 2000 (2000), pp. 35–46.

[9] Hoare, C. A. R. and N. Wirth, An axiomatic definition of the programming
language PASCAL, Acta Informatica 2 (1973), pp. 335–355.

[10] Lahiri, S. K., “Efficient techniques for Unbounded System Verification,” Ph.D.
thesis, Carnegie Mellon University (2004), to appear.

[11] Leino, K. R. M., “Toward Reliable Modular Programs,” Ph.D. thesis, California
Institute of Technology (1995), Technical Report Caltech-CS-TR-95-03.

[12] Leino, K. R. M. and P. Müller, Object invariants in dynamic contexts, in:
ECOOP 2004, LNCS 3086 (2004), pp. 491–516.

[13] Logozzo, F., Class-level modular analysis for object oriented languages, in: SAS
2003, LNCS 2694 (2003), pp. 37–54.

[14] Logozzo, F., Separate compositional analysis of class-based object-oriented
languages, in: AMAST 2004, LNCS 3116 (2004), pp. 332–346.

[15] Meyer, B., “Object-oriented Software Construction,” Series in Computer
Science, Prentice-Hall International, 1988.

[16] Muchnick, S. S. and N. D. Jones, Flow analysis and optimization of Lisp-like
structures, in: S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis:
Theory and Applications, Prentice-Hall, 1981 pp. 102–131.

[17] Poetzsch-Heffter, A., Specification and verification of object-oriented programs,
Habilitationsschrift, Technische Universität München (1997).

[18] Sagiv, M., T. W. Reps and R. Wilhelm, Parametric shape analysis via 3-valued
logic, TOPLAS 24 (2002), pp. 217–298.

[19] Steensgaard, B., Points-to analysis in almost linear time, in: 23rd POPL (1996),
pp. 32–41.

11

Chang and Leino

[20] Venet, A. and G. Brat, Precise and efficient static array bound checking for
large embedded C programs, in: PLDI 2004 (2004), pp. 231–242.

12

	Introduction
	Inferring Object Invariants
	Related Work
	Conclusion
	References

