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Capsule Summary. As in other engineering professions, software engineers rely
on tools. Such tools can analyze program texts and design specifications more
automatically and in more detail than ever before. While many tools today are
applied to find new defects in old code, I predict that more software-engineering
tools of the future will be available to software authors at the time of authoring.
If such analysis tools can be made to be fast enough and easy enough to use, they
can help software engineers better produce and evolve programs.
A programming language shapes how software engineers approach problems. Yet
the abstraction level of many popular languages today is not much higher than that
of C programs several decades ago. Moreover, the abstraction level is the same
throughout the program text, leaving no room for behavioral abstraction where
the design of a program is divided up into stages that gradually introduce more
details. A stronger arsenal of analysis tools can enable languages and develop-
ment environments to give good support for behavioral abstraction.

0 Introduction

The science and practice of software engineering have made great strides in the few
decades since its inception. For example, we have seen the rise of structured program-
ming, we have come to appreciate types (enforced either statically or dynamically), we
have developed models for program semantics that underlie reasoning about programs,
we have recognized the role of (unit, system, regression, white-box, . . . ) testing, we are
starting to understand how to collect metrics that help in setting software-development
schedules, and, having available far more CPU cycles than would have been easily
imaginable in 1968, we have produced tools that assist in all these tasks.

Nevertheless, software engineering remains difficult and expensive.
What is it all about? Software engineering produces software—if we had no interest

in software, the activities that make up software engineering would have no purpose. We
have a number of desiderata for this engineering task. We want to develop software. . .

– with the right features. A software project is successful only if the final software
does what its users need it to do. The requirements for a piece of software can be
difficult to determine, the assumptions made by users and the software team may
be in conflict with each other, and that which seems important when prototyping
may end up being different from what is important during deployment of the final
software.
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– that is easy to use. At times, we have all been frustrated at desktop software where
we found menus to be unnecessarily cumbersome or non-standard, and at web soft-
ware where the number of clicks required for a purchase seems ridiculously high.
Software in a car must allow operation while the driver stays on task.

– that is hard to misuse, both accidentally and maliciously. Letting an operator open
up the landing gear of an airplane too far off the ground may not be what we want
of our embedded software. And we expect banking software to apply judicious
security measures to prevent various forms of privacy breaches.

– can be developed effectively, on schedule and free of defects. Ideally, we want
all software to have zero defects (like crashes, deadlocks, or incorrect functional
behavior). But reducing defects comes at a price, so market forces and engineering
concerns may bring about compromises. Whatever defect rates can be tolerated, we
would like the software engineering process to get there as easily and confidently
as possible.

– can be evolved, to add or remove features, to adapt to new environments, to fix
defects, and to preserve and transfer knowledge between developers. Successful
software lives far beyond its first version, an evolution in which feature sets and
development teams change. As the software is changed, one needs to understand
what modifications are necessary and also which modifications are possible.

The future of software engineering holds improvements in these and related areas. In
this essay, I will focus on issues concerning the software artifacts themselves, paying
much less attention to the important issues of determining requirements and of usability
of the software itself.

1 Composing Programs

The phrase “composing programs” has two senses. One sense is that of authoring pro-
grams, like a musician composes music. Another sense is that of combining program
elements to form a whole program. When we create a piece of software, we take part
in activities that comprise both senses of “composing programs”: we both write new
code, designing new data structures and algorithms, and combine existing or planned
program elements, calling libraries and reusing types of data structures.0 Both activities
wrestle with complexity. Complexity arises in the algorithms used, in the data structures
used, and in the interaction between features. The major tool for keeping complexity at
bay is abstraction.

Common Forms of Abstraction. When authoring new program elements, abstraction
is used to group related functionality to make larger building blocks. Standard program-
ming languages offer several facilities for abstraction. Procedural abstraction provides
the ability to extend the primitive operations of the language with user-defined, com-
pound operations. These can be named and parameterized, and they separate uses of the

0 Encompassing both senses, the IFIP Working Group 2.3 on Programming Methodology states
as its aim, “To increase programmers’ ability to compose programs”.
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operation from its implementation. Data abstraction provides the ability to extend the
primitive data types of the language with user-defined, compound data types. These can
be named and sometimes parameterized, and they can separate uses of the data from
the actual representation.

For example, one part of a program can create and apply operations to a file stream
object without having to understand how many underlying buffers, file handles, and po-
sition markers are part of the actual data representation or to understand the operations
of the protocol used by the disk to fetch the contents of a particular sector.

When combining program elements, abstraction is needed to let a program element
declare indifference about certain aspects of its uses. The main facility for this is param-
eterization. This is as important for the provider of a program element as it is for clients
of the program element. Sometimes, there are restrictions on how a program element
can be parameterized. Such restriction can be declared, for example, as type constraints
or precondition contracts.

For example, a sorting procedure can be parameterized to work for any data type,
as long as the objects of that data type have some means of being compared. This can
be declared as a type constraint, requiring the sorting procedure’s type parameter to be
a type that implements a Compare method. Alternatively, the sorting procedure can be
parameterized with a comparison procedure, and a precondition of the sorting procedure
can require the comparison to be transitive.

Abstraction by Occlusion. These and similar abstraction facilities go a long way to
organizing a program into understandable and manageable pieces. But not far enough.
There is one major aspect of abstraction that is conspicuously underdeveloped in popu-
lar languages. The facilities for abstraction I mentioned above provide a way to occlude
parts of a program, revealing the insides of those parts only in certain scopes. For exam-
ple, the callers of a procedure see only the procedure signature, not its implementation,
and the fields of a class may be visible only to the implementation of the class itself,
not to clients of the class. We may think of this as abstraction by occlusion. What is
lacking in this kind of abstraction is that it only gives us two options, either we have to
try to understand a particular part of the program by digging into its details or we don’t
get any information to help us understand it. Stated differently, a view of a program is
a subset of the code that is ultimately executed.

For example, consider a type that represents a graph of vertices and edges, and
suppose you want to evolve the functionality of this type, perhaps to fix a defect or add
a feature. When you look at the implementation, you immediately get immersed with
the details of how edges are represented (perhaps there is a linked list of vertex pairs,
perhaps each vertex stores an array of its edge-ordering successors, or perhaps both of
these representations are used, redundantly) and how results of recent queries on the
graph may be cached. This may be more details than you need to see. Furthermore,
suppose you change the explicit stack used by an iterative depth-first graph traversal
from using a vertex sequence to reusing reversed pointers in the graph à la Schorr-Waite.
You will then remove the previous vertex sequence, which means that the next person
to look at this code will have to understand the complicated pointer swiveling rather
than the easier-to-grasp stack of vertices. Finally, the fact that you would remove the
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previous vertex-sequence implementation is unfortunate, because it would have been
nice to have kept it around as a reference implementation.

Behavioral Abstraction. Abstraction by occlusion does not provide a good story for
understanding more abstractly what the code is supposed to do, or even giving a more
abstract view of how the code does what it does. If you were to explain a piece of
software to a colleague, you are not likely to explain it line by line. Rather, you would
first explain roughly what it does and then go into more and more details. Let me call
this behavioral abstraction.

While behavioral abstraction is mostly missing from popular languages, it does ex-
ist in one important form: contracts, and especially procedure postcondition contracts,
which are found in some languages and as mark-ups of other languages [17, 16, 6, 7,
5]. A postcondition contract abstracts over behavior by giving an expression that re-
lates the possible pre- and post-states of the procedure. To give a standard example,
the postcondition of a sorting procedure may say that its output is a permutation of the
input that arranges the elements in ascending order. Such a postcondition is easier for
a human to understand than trying to peer into the implementation to figure out what
its loops or recursive calls do. It also opens the possibility for verification tools to com-
pare the implementation with the intended behavior of the procedure as specified by the
postcondition.

A weaker form of behavioral abstraction is found in software engineering outside
programming languages, namely in test suites. To the extent that a test suite can be seen
as a set of use cases, it does provide a form of behavioral abstraction that, like contracts,
shows some of the intent of the program design.

The behavioral abstraction provided by contracts and use-case test suites provide
one layer of description above the actual code. But one can imagine applying several
layers of behavioral abstraction.

Stepwise Refinement. The development of many programs today goes in one fell
swoop from sketchy ideas of what the program is supposed to do to low-level code that
implements the ideas. This is not always wrong. Some programmers have tremendous
insights into how, for example, low-level network protocols for distributed applications
ought to behave. In such cases, one may need tools for verification or property dis-
covery to ensure that the program has the desired properties. But, upon reflection, this
process of writing code and then coming up with properties that the code should have
and trying to ascertain that the code does indeed have those properties seems terribly
twisted. Why wouldn’t we want to start by writing down the salient properties of the
software to be constructed, and then in stages add more detail, each maintaining the
properties described in previous stages, until the program is complete? This process is
called stepwise refinement, an old idea pioneered by Dijkstra [8] and Wirth [26].

Well, really, why not? There are several barriers to applying this technique in prac-
tice. Traditionally, stepwise refinement starts with a high-level specification. Writing
high-level specifications is hard, so how do we know they are correct? While program-
ming is also hard, a program has the advantage that it can be executed. This allows us
to subject it to testing, simulation, or other use cases, which can be more immediately
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satisfying and can, in some development organizations, provide management with a
facade of progress milestones.

If we are to use layers of behavioral abstraction, then we must ensure that any stage
of the program, not just the final program, can be the target of modeling, simulation,
verification, and application of use cases.

Another problem with stepwise refinement—or, a misconception, really—is that
the high-level specification encompasses all desired properties of the final program. In
reality, the specification is introduced gradually, just like any other part of the design.
For example, the introduction of an efficient data structure or a cache may take place
at a stage in the middle of the refinement process. By splitting the specification in this
way, each piece of it may be easier to get right.

Finally, a problem to overcome with stepwise refinement is that so much of the
programming culture today is centered around final code. It will take some training to
start writing higher-level properties instead, and engineers will need to learn when it is
worthwhile to introduce another stage versus when it is better to combine some design
decisions into one stage. There is good reason to believe that software engineers will
develop that learning, because engineers have learned similar trade-offs in today’s prac-
tices; for example, the trade-off of when it is a good idea to introduce a new procedure
to perform some series of computational steps versus when it is better to just do the
steps wherever they are needed.

Let’s consider a vision for what a development system that embraces behavioral
abstraction may look like.

2 A Development Environment for Behavioral Abstraction

First and foremost, a development environment is a tool set that allows engineers to ex-
press and understand designs. The tools and languages we use guide our thinking when
developing a program and are key to human comprehension when reading code. By
supporting behavioral abstraction, the environment should allow engineers to describe
the system at different levels of abstraction. Here are some of the characteristics of such
a development environment.

Descriptions at Multiple Stages. The environment permits and keeps track of in-
creasingly detailed descriptions of the system, each a different stage. A stage serves as
a behavioral abstraction of subsequent stages.

Ceaseless Analysis. At each stage, the environment analyzes the given program. For
example, it may generate tests, run a test suite, simulate the description, verify the
description to have certain well-formedness properties (e.g., that it parses correctly,
type checks, and adheres to the usage rules (preconditions) of the operations it uses),
infer properties about the description, and verify that the stage maintains the properties
described in previous stages.

To the extent possible, trouble spots found by such analyses only give rise to warn-
ings, so as not to prevent further analyses from running.
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There is no reason for the analyses to be idle, ever. Instead, the environment cease-
lessly runs the analyses in the background, noting results as they become available.

Multiple Forms of Descriptions. The descriptions at one stage can take many dif-
ferent forms. For example, they may spell out a use case, they may prescribe pre- and
postcondition contracts, they may give an abstract program segment, they may intro-
duce variables and associated invariants, or they may supply what we today think of as
an ordinary piece of program text written in a programming language. Many of these
descriptions (like test cases and weak postconditions) are incomplete, homing in on
what is important in the stage and leaving properties irrelevant to the stage unspecified.

In some cases, it may be natural to switch languages when going into a new stage.
For example, a stage using JavaScript code may facilitate the orchestration of actions
described in more detailed stages as C# code for Silverlight [18]. Other examples of
orchestration languages include Orc [20] and Axum [19].

Note, since one form of description is code in a programming language, one could
develop software using this system in the same way that software is developed today.
This is a feature, because it would allow engineers to try out the capabilities of the
new system gradually. One gets a similar effect with dynamically checked contracts:
if a notation for them is available, programmers can start taking advantage of them
gradually and will get instant benefits (namely, run-time checks) for any contract added.
In contrast, if a machine readable format for contracts is not available, contracts that
appear in the head of an engineer while writing or studying the code turn into lost
opportunities for tools to help along.

Change of Representation. It is important that a stage can refine the behavior of a pre-
vious stage not just algorithmically—to make an incomplete description more precise—
but also by changing the data representation. For example, the description at one stage
may conveniently use mathematical types like sets and sequences, whereas a subse-
quent stage may decide to represent these by a list or a tree, and an even later stage may
want to add some redundant representations, like caches, to make the program more
efficient.

By describing an optimization as a separate stage, the overall design can still be
understood at previous stages without the code clutter that many good optimizations
often bring about.

This kind of transformation is known as data refinement and has been studied ex-
tensively (e.g., [12, 3, 21, 22, 9]).

Executable Code. The development environment allows designs to be described down
to the level of the executable code of the final product. That is, the development environ-
ment is not just for modeling. However, the code need not all be produced by traditional
compilers; parts of it may be synthesized from higher-level descriptions. Similar ideas
have been explored in the language SETL [23] and in correct-by-construction synthesis
frameworks [24].
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Automation. For the most part, we think of program analysis as an automatic pro-
cess. Sometimes, however, an analysis may need manually supplied hints to improve
the analysis or to keep it from getting stuck. For example, a static type checker may
need a dynamic type cast, a type inference engine may need type annotations for recur-
sive procedures, and a proof assistant may need a lemma or a proof-tactic command. To
provide a seamless integration of such analysis tools, the hints are best supplied using
concepts at the level of the description at hand. For example, an assert statement in a
program text can serve as a lemma and may, in that context, be more readily under-
stood by an engineer than an indication that a certain proof-tactic command needs to be
invoked at some point in the proof.

Room for Informality. The development environment allows formal verification of
properties in and between stages. Indeed, such verification may be easier than in a
monolithic program with specifications, because behavioral abstraction naturally breaks
up the verification tasks in smaller pieces. However, it is important not to prevent pro-
grams from being written, simulated, or executed just because they cannot be formally
verified at the time. Instead, an engineer has the option to accept responsibility for the
correctness of certain conditions.

3 Challenges

A number of challenges lie ahead before a development environment built around be-
havioral abstraction can become a reality. Here are some of them.

User Interface. A behavioral-abstraction environment could benefit from a different
user interface than the file-based integrated development environments of today. Con-
ceptually, a stage contains only the differences in the program since the previous stage.
Sometimes, one may want to see only these differences; at other times, one may want
to see the combined effect of a number of stages.

Early Simulation. A stage is more useful if something can be done with it. The closer
something is to executable code, the easier it is to imagine how it may be simulated.
How should one simulate the program in its most abstract and most incomplete stages?

Tools in the spirit of Alloy [13] or Formula [14] would be useful here.

Prioritizing Analyses. To run analyses ceaselessly is harder than one might first imag-
ine. Many analyses are designed with various compromises in mind, terminate quickly,
and then have nothing more to do. For example, a type checker may be designed to
report an error when types don’t match up; but instead of being idle after warning about
such a condition, it could continue being useful by searching for program snippets that
supply possible type conversions. If an analysis could use boundless amounts of CPU
time, the development environment must use some measures of priority. For example,
if the engineer just modified the implementation of a procedure, it would seem a good
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idea to give priority to analyses that can tell the engineer something useful about the
new implementation. This may require recognition of differences in the abstract syn-
tax tree (e.g., to re-analyze only those code paths that were changed), keeping track of
dependencies (e.g., the call graph), and maybe even using a program verifier’s proof to
determine detailed dependencies (e.g., to figure out that one procedure relies only on
some specific portions of other specifications).

Allowing Informality. Ideally, we want a program to be all correct in the end. But
before then, engineers may be able to be more productive if they can continue simulat-
ing or testing their program even in the presence of some omissions or errors. How to
go about doing this is a challenge. Perhaps we can draw inspiration from dynamically
typed languages that try hard to give some interpretation to code at run time, even if a
static type checker would have had a hard time with the program. Also, what run-time
checks could be used to make up for failed or incomplete proofs?

Refinements into Dynamically Allocated State. Many modern applications require,
or at least benefit from, use of dynamically allocated state. Yet, this issue has not re-
ceived nearly the same amount of attention in data refinement as it has in the area of
program verification [11].

Supporting Program Evolution. Getting a new program together is a big feat. But
even more time will be spent on the program as is evolves into subsequent versions.
To determine if a development system really helps in program evolution, one needs to
undertake some long-running deployments.

4 Related Work and Acknowledgments

Many people have had ideas in this space and much work has been done on various
components. I cannot do them all justice here, but in addition to what I have already
mentioned above, I will mention a number of efforts and people who have been most
influential in my own thinking.

Built on the Event-B formalism [1], the Rodin system [2] is perhaps the closest
of existing systems to what I have sketched. With its pluses and minuses, it sports an
integrated development environment, uses a sequence of files to record stages of the
design, mostly unifies descriptions into one form (“events”), lacks direct support for
dynamic memory allocation, does not routinely output executable code, and requires a
noticeable amount of prover interaction.

Other important systems that let designs be described at various levels of abstraction
are B [0] and VDM [15]. The Play-in, Play-out technique [10] simulates systems from
given use cases.

Bertrand Meyer pioneered the inclusion of behavioral descriptions (contracts) of
program elements as compiled constructs in a modern programming language [17].

When using verification tools today, one of the focus activities is finding specifica-
tions that describe what the code does. It would seem a better use of our time to shift
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that focus to finding code that satisfy specifications. In some cases, programs can even
be automatically synthesized from specifications, as has been investigated, for example,
by Doug Smith and colleagues [25, 24].

This essay has also benefited from ideas by and discussions with Jean-Raymond
Abrial, Mike Barnett, Michael Butler, Mike Ernst, Leslie Lamport, Michał Moskal, and
Wolfram Schulte, as well as Mark Utting, who formulated some ideas around a collec-
tion of descriptions on which tools operate to produce efficient code and report potential
problems. Kuat Yessenov worked as my research intern on language and verification
support for refinement.

I have been personally influenced by Ralph Back, whose ground-breaking and in-
spiring work gave stepwise refinement mathematical rigor [3, 4]. Work by Shaz Qadeer
and Serdar Tasiran hammered home to me how much simpler invariants can be if
they are written for an abstract program instead of for the final code. A number of
people have reminded me that some descriptions are most easily formulated as code;
among them, Wolfram Schulte, Ras Bodik, and Gerwin Klein. Cliff Jones has repeat-
edly pointed out the importance of requirements and the high cost incurred by getting
them wrong.

Bart Jacobs and Rosemary Monahan provided comments on a draft of this essay.

5 Conclusion

Software engineering uses lots of tools. To take a bigger step in improving software
engineering, we need not just to improve each tool, but to combine tools into usable
development environments. The time is ripe for that now. As a vision for how tools and
languages can be combined in the future of software engineering, I discussed in this
essay a development environment built around behavioral abstraction, where programs
are divided up not just into modules, types, and procedures, but also according to the
level of abstraction at which they describe the program under development.
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