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Abstract. Developing provably correct programs is an incremental process that
often involves a series of interactions with a program verifier. To increase the
responsiveness of the program verifier during such interactions, we designed a
system for fine-grained caching of verification results. The caching system uses
the program’s call graph and control-flow graph to focus the verification effort on
just the parts of the program that were affected by the user’s most recent modifi-
cations. The novelty lies in how the original program is instrumented with cached
information to avoid unnecessary work for the verifier. The system has been im-
plemented in the Boogie verification engine, which allows it to be used by dif-
ferent verification front ends that target the intermediate verification language
Boogie; we present one such application in the integrated development environ-
ment for the Dafny programming language. The paper describes the architecture
and algorithms of the caching system and reports on how much it improves the
performance of the verifier in practice.

0 Introduction

Making formal program verification useful in practice requires not only automated log-
ical theories and formal programming-language semantics, but also—inescapably—a
human understanding of why the program under verification might actually be correct.
This understanding is often gained by trial and error, debugging verification attempts
to discover and correct errors in programs and specifications and to figure out crucial
inductive invariants. To support this important trial and error process, it is essential that
the integrated development environment (IDE) provides rapid feedback to the user.

In this paper, we enhance the IDE for the specification-aware programming lan-
guage Dafny [19] by adding fine-grained caching of results from earlier runs of the
verifier. The effect of this caching is to reduce the time from user keystrokes in the ed-
itor to the reporting of verification errors that are gathered in the background. In some
cases, this lag time can now be around a second for examples where it previously may
have taken tens of seconds for the verifier to repeat the checking of proof obligations
that were not affected by the change. These improvements rely on a basic caching tech-
nique that tracks dependencies using the program’s call graph to avoid re-verification
of methods that were not affected by the most recent change to the program. Our fine-
grained caching takes this a step futher. It is motivated by the fact that when a proof
obligation is not automatically verified, a user tends to spend human focus and editing
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in one small area of the program. Often, this area can be in one branch of a method, so
if the tool can rapidly re-verify just what has changed, the user can make progress more
quickly. Our fine-grained caching thus makes use of the program’s control-flow graph.

Like other verifiers, the Dafny verifier generates proof obligations by translating
Dafny to an intermediate verification language (IVL), namely Boogie [1, 20]. We de-
signed our fine-grained caching to operate at the level of the IVL, which makes it
possible for other Boogie front ends to make use of the new functionality. Our novel
caching approach compares the current snapshot of a Boogie program with a previously
verified snapshot. It then instruments the current snapshot to adjust the proof obliga-
tions accordingly. Finally, it passes the instrumented Boogie program to the underlying
satisfiability-modulo-theories (SMT) solver in the usual way. Our implementation is
available as part of the Boogie and Dafny open source projects.

In Sec. 1, we explain a motivating example in more detail. Sec. 2 gives background
on the architecture of the Dafny verifier and describes the basic, coarse-grained caching
based on the program’s call graph. We describe our fine-grained caching in Sec. 3 and
evaluate how both techniques improve the performance of the verifier in Sec. 4.

1 Motivating Example

Let us consider some typical steps in the interactive process of developing a verifi-
ably correct program, indicating where our caching improvements play a role. Figure 0
shows an incomplete attempt at specifying and implementing the Dutch Flag algorithm,
which sorts an array of colors.

The program gives rise to several proof obligations, following the rules of Hoare
logic. The loop invariants are checked when control flow first reaches the loop. The loop
body with its three branches is checked to decrease a termination metric (here provided
by the tool: the absolute difference between w and b) and to maintain the loop invariants.
The postcondition of the method is checked to follow from the loop invariants and the
negation of the guard (without further inspection of the loop body). For every call to
method Sort in the rest of the program, the method’s precondition is checked and its
postcondition is assumed.

In addition, all statements and expressions, including those in specifications, are
verified to be well-formed. For example, for the assignment that swaps two array ele-
ments in the loop body (line 18), the well-formedness checks ensure that the array is
not null, that the indices are within bounds of the array, that the method is allowed to
modify the heap at these locations, and that the parallel assignment does not attempt to
assign different values to the same heap location.

To provide design-time feedback to the user, the Dafny IDE automatically runs the
verifier in the background as the program is being edited. This allows the verifier to
assist the user in ways that more closely resemble those of a background spell checker.
Given the program in Fig. 0, the Dafny verifier will report three errors.

The first error message points out that the method body may not establish the post-
condition. Selecting this error in the Dafny IDE brings up the verification debugger [17],
which readily points out the possibility that the array contains two White values. To fix
the error, we add a disjunct c = d to the definition of predicate Ordered. Instead of
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0 datatype Color = Red | White | Blue

1

2 predicate Ordered(c: Color, d: Color) { c = Red ∨ d = Blue }

3

4 method Sort(a: array<Color>)
5 requires a 6= null
6 modifies a

7 ensures forall i,j • 0 ≤ i < j < a.Length =⇒ Ordered(a[i], a[j])

8 {

9 var r, w, b := 0, 0, a.Length;

10 while w 6= b

11 invariant 0 ≤ r ≤ w ≤ b ≤ a.Length

12 invariant forall i • 0 ≤ i < r =⇒ a[i] = Red

13 invariant forall i • r ≤ i < w =⇒ a[i] = White

14 invariant forall i • b ≤ i < a.Length =⇒ a[i] = Blue

15 {

16 match a[w]

17 case Red ⇒
18 a[r], a[w] := a[w], a[r]; r := r + 1;

19 case White ⇒
20 w := w + 1;

21 case Blue ⇒
22 b := b - 1;

23 }

24 }

Fig. 0: Incomplete attempt at implementing the Dutch Flag algorithm. As written, the program
contains a specification omission, a specification error, and two coding errors. As the program is
edited, our fine-grained caching of verification results enables a more responsive user experience
by avoiding re-verification of unaffected proof obligations.

expecting the user to re-run the verifier manually, the Dafny IDE will do so automat-
ically. To speed up this process, the basic caching technique will already avoid some
unnecessary work by using the call graph: only methods that depend on the predicate
Ordered will be re-verified, which includes the body of Sort and, since the postcondi-
tion of Sort mentions the predicate, all callers of Sort. Caller dependencies get lower
scheduling priority, since they are likely to be further away from the user’s current fo-
cus of attention. However, we can hope for something even better: the maintenance of
the loop invariant in Sort need not be re-verified, but only the fact that the loop invari-
ant and the negation of the guard establish the postcondition. Our fine-grained caching
technique makes this possible.

The second error message points out that the loop may fail to terminate. Selecting
the error shows a trace through the Red branch of the match statement, and we realize
that this branch also needs to increment w. As we make that change, the tool re-verifies
only the loop body, whereas it would have re-verified the entire method with just the
basic caching technique.
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The third error message points out that the last loop invariant is not maintained by
the Blue branch. It is fixed by swapping a[w] and a[b] after the update to b. After doing
so, the re-verification proceeds as for the second error.

Finally, it may become necessary to strengthen Sort’s postcondition while verifying
some caller—it omits the fact that the final array’s elements are a permutation of the
initial array’s. If only the basic caching was used, the addition of such a postcondition
would cause both Sort and all of its callers to be re-verified. By using the fine-grained
caching, the body of Sort is re-verified to check only the new postcondition (which
in this case will require adding the postcondition also as a loop invariant). For callers,
the situation is even better: since the change of Sort’s specification only strengthens
the postcondition, proof obligations in callers that succeeded before the change are not
re-verified.

The performance improvements that we just gave a taste of have the effect of fo-
cusing the verifier’s attention on those parts of the program that the user is currently,
perhaps by trial and error, editing. The result is a user experience with significantly
improved response times. In our simple example program, the time to re-verify the en-
tire program is about 0.25 seconds, so caching is not crucial. However, when programs
have more methods, contain more control paths, and involve more complicated predi-
cates, verification times can easily reach tens of seconds. In such cases, our fine-grained
caching can let the user gain insight from the verification tool instead of just becom-
ing increasingly frustrated and eventually giving up all hopes of ever applying formal
verification techniques.

2 Verification Architecture and Basic Caching

In this section, we describe the role of the intermediate verification language Boogie and
the basic caching technique that the fine-grained caching builds on. We have presented
an informal overview of the basic caching technique in a workshop paper describing
different novel features of the Dafny IDE [21].

2.0 Architecture

Like many other verifiers, such as Spec# [2] and VCC [7], Dafny uses the Boogie [1]
intermediate verification language to express proof obligations to be discharged by the
Boogie verification engine using an SMT solver, such as Z3 [9]. The language con-
structs of the source language are translated into more primitive constructs of Boogie,
including variables, axioms, and procedures. For example, a Dafny method is translated
to several Boogie constructs: 0) a procedure (declaration) that captures the specification
of the method, 1) a procedure implementation that captures the method body and checks
that it adheres to the method specification, and 2) a second procedure implementation
that captures the well-formedness conditions for the method specification [18]. As an-
other example, a Dafny function is translated to a corresponding Boogie function and
a procedure implementation that captures the function’s well-formedness conditions.
Boogie functions are given meaning by axioms, but to simplify our presentation, we
omit some details of the translation of Dafny functions.
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0 procedure {:checksum "727"} abs(a: int) returns (r: int)
1 ensures 0 ≤ r;

2

3 implementation {:checksum "733"} abs(a: int) returns (r: int)
4 { r := 0; }

5

6 implementation {:checksum "739"} main()

7 { var x: int; call x := abs(-585); assert x = 585; }

Fig. 1: Boogie program that shows how a front end uses custom attributes on declarations to
assign entity checksums, which can be computed in front-end specific ways.

Boogie supports a modular verification approach by verifying procedure implemen-
tations individually. More precisely, calls in procedure implementations are reasoned
about only in terms of their specification (i.e., the corresponding procedure declara-
tion). Consequently, a change to a program often does not invalidate verification results
obtained for independent program entities. In particular, a change in a given procedure
implementation does not invalidate verification results of other procedure implemen-
tations, and a change in a procedure’s specification may invalidate verification results
only of its callees and of the corresponding procedure implementation.

2.1 Basic Caching

While the Boogie pipeline accepts a single program, obtains verification results, and
then reports them, the basic caching mechanism turns Boogie into more of a verification
service: it accepts a stream of programs, each of which we refer to as a snapshot.

The basic caching approach exploits the modular structure of Boogie programs by
determining which program entities have been changed directly in the latest program
snapshot and which other program entities are indirectly affected by those changes. To
determine direct changes, Boogie relies on the client front end (Dafny in our case) to
provide an entity checksum for each function, procedure, and procedure implementa-
tion. For example, the Boogie program in Fig. 1 shows entity checksums provided by a
front end to Boogie via the :checksum custom attribute. In our implementation, Dafny
computes them as a hash of those parts of the Dafny abstract syntax tree that are used to
generate the corresponding Boogie program entities. This makes checksums insensitive
to certain textual changes, such as ones that concern comments or whitespace.

To determine indirect changes, Boogie computes dependency checksums for all
functions, procedures, and procedure implementations based on their own entity check-
sum and the dependency checksums of entities they depend on directly (e.g., callees).
These checksums allow the basic caching to reuse verification results for an entity if its
dependency checksum is unchanged in the latest snapshot.

For example, when computing dependency checksums from entity checksums in
Fig. 1, Boogie takes into account that both implementations depend on the procedure
declaration of abs (implementation abs needs to adhere to its procedure declaration and
main contains a call to abs). Consequently, a change that only affects the entity check-
sum of procedure abs (e.g., to strengthen the postcondition) will prevent Boogie from
returning cached verification results for both implementations. However, a change that
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only affects the entity checksum of implementation abs (e.g., to return the actual ab-
solute value) will allow Boogie to return cached verification results for implementation
main.

Fig. 2 gives an architectural overview of the caching system. In terms of it, the basic
caching works as follows. First, Boogie computes dependency checksums for all entities
in a given program snapshot. Then, for each procedure implementation P , the cache is
consulted. If the cache contains the dependency checksum for P , branch (0) is taken
and the cached verification results are reported immediately. Otherwise, branch (1) is
taken and the procedure implementation is verified as usual by the Boogie pipeline. Our
fine-grained caching may also choose branch (2), as we explain in Sec. 3.

2.2 Prioritizing Procedure Implementations using Checksums

Besides using them for determining which procedure implementations do not need to
be re-verified, we use the checksums for determining the order in which the others
should be verified. Ideally, procedure implementations that are more directly related to
the user’s latest changes are given higher priority, since these most likely correspond
to the ones the user cares about most and wants feedback on most quickly. The check-
sums provide a metric for achieving this by defining four priority levels for procedure
implementations:
− low (unlike the entity checksum, the dependency checksum in the cache is different

from the current one): Only dependencies of the implementation changed.
− medium (entity checksum in the cache is different from the current one): The imple-

mentation itself changed.
− high (no cache entry was found): The implementation was added recently.
− highest (both the entity and the dependency checksum is the same as the one in the

cache): The implementation was not affected by the change and a cache lookup is
sufficient for reporting verification results to the user immediately, instead of waiting
for other implementations to be verified.

3 Fine-grained Caching

Basic caching can determine which procedure implementations in a new snapshot do
not need to be re-verified at all, but it does not track enough information to allow us to
reuse verification results for parts of an implementation. In this section, we present an
extension of the basic caching that reuses verification results in fine-grained ways. In
particular, our extension avoids re-verification of checks that were not affected by the
most recent change and it recycles errors that are still present in the current snapshot.

Before giving our full algorithm, we sketch how it works in two common scenarios
we want to address: when an isolated part of a procedure implementation (e.g., one
of two branches or a loop body) has been changed, and when the specification of a
procedure has been changed. We proceed by example, starting from the program in
Fig. 3. Running Boogie on this program results in two errors: a failure to establish the
postcondition on line 2 and an assertion violation on line 7. To fix the postcondition
error in the program in Fig. 3, the user might add an explicit else branch on line 10
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program with entity checksums

Compute dependency checksums

Consult cache
0) 1)

2)

Inject cached verification results

Verify implementation

Report errors

impl. P (incl. entity and dependency checksum)

impl. P
impl. P (incl. cached snapshot)

cached
errors

impl. P ′

recycled
errors

errors

Fig. 2: Overview of the verification process for procedure implementations. Boxes correspond
to components and arrows illustrate data flow. The caching component produces three possible
outputs: 0) cached errors in case the entity and dependency checksums are unchanged, 1) the
implementation P in case it is not contained in the cache, or 2) the implementation P and the
cached snapshot in case either the entity or the dependency checksum have changed. Cached
snapshots are used to inject verification results into the implementation and to identify errors that
can be recycled.

and insert statement r := x. This is an instance of the common change-in-isolated-part
scenario. In particular, the change has no effect on the assertion on line 7, and thus we
would hope to be able to cache and recycle the error.

3.0 Fine-grained Dependency Tracking using Statement Checksums

To cache and reuse verification results at this fine granularity, we need to know what
each statement depends on. To determine this, we compute a statement checksum for
every statement from a hash of its pretty-printed representation and—to keep the over-
head small—the statement checksums of all statements that precede it in the control
flow (as opposed to ones that actually affect it). If a statement contains a function call
in some subexpression, then the statement depends on the callee’s definition and we
include the callee’s dependency checksum when computing the statement checksum.

The computation of statement checksums occurs after the Boogie program has un-
dergone some simplifying transformations. For example, loops have been transformed
using loop invariants and back-edges of loops have been cut [3]; thus, the computation
of statement checksums does not involve any fixpoint computation. As another example,
the checks for postconditions have been made explicit as assert statements at the end
of the implementation body and the preconditions of procedure implementations have
been transformed into assume statements at the beginning of the implementation body;
thus, these statements are taken into account for computing the statement checksums.
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0 procedure gcd(x, y: int) returns (r: int)
1 requires 0 < x ∧ 0 < y;

2 ensures 0 ≤ r;

3

4 implementation gcd(x, y: int) returns (r: int) {

5 if (x < y) {

6 call r := gcd(x, y - x);

7 assert 1 ≤ r;

8 } else if (y < x) {

9 call r := gcd(x - y, y);

10 }

11 assert 0 < x + y;

12 }

Fig. 3: Incomplete attempt at implementing a Boogie procedure for computing the greatest com-
mon denominator. Boogie reports a postcondition violation for the implementation and an asser-
tion violation on line 7.

In contrast to an assert statement, which instructs the verifier to check if a condition
holds at the given program point, an assume statement instructs the verifier to blindly
assume a condition to hold at the given program point.

After the simplifications from above, there are only two kinds of statements that
lead to checks: assertions and calls (precondition of callee). We will refer to them as
checked statements. We introduce a cache that associates statement checksums of such
statements in a given implementation with verification results. Before verifying a new
snapshot, we compute statement checksums for the new snapshot and then instrument
the snapshot by consulting this cache.

Let us describe this in more detail using our example. We will refer to the program
in Fig. 3 as Snapshot 0 and the program resulting from adding the else branch and
assignment on line 10 as Snapshot 1. After verifying Snapshot 0, the cache will have
entries for the statement checksums of the following checked statements: the failing as-
sertion on line 7, the succeeding precondition checks for the calls on lines 6 and 9, the
succeeding assertion on line 11, and the failing check of the postcondition from line 2.
The statement checksums for the first three checked statements (on lines 6, 7, and 9)
in Snapshot 1 are the same as in Snapshot 0. Since the cache tells us the verification
results for these, we report the cached error immediately and we add assume statements
for the checked condition before these checked statements in Snapshot 1. The statement
checksums of the fourth and fifth checked statement are different in Snapshot 1, since
they are affected by the modification of line 10. Since the new checksums are not found
in the cache, the statements are not rewritten. As a result, Boogie needs to only verify
those checks. Indeed, Boogie is now able to prove both and it updates the cache accord-
ingly. With reference to Fig. 2, what we have just described takes place along branch
(2) after the basic cache has been consulted.
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3.1 Injecting Explicit Assumptions and Partially Verified Checks

To fix the failing assertion on line 7 in Fig. 3, the user might now decide to strengthen
the postcondition of the procedure by changing it to 1 ≤ r. This is an instance of the
common change-in-specification scenario. In particular, since the change involves a
strengthened postcondition, we would hope to avoid re-verifying any previously suc-
ceeding checks downstream of call sites.

We will refer to the program resulting from the user’s change as Snapshot 2. Af-
ter Boogie computes the statement checksums, only the statement checksum for the
assertion of the postcondition will be different from the ones in the cached snapshot.
However, since the dependency checksums of the callee changed for both calls, we in-
troduce an explicit assumption [6] after each call to capture the condition assumed at
this point in the cached snapshot. We do so by introducing an assumption variable for
each such call that is initialized to true and is only assigned to once (here, after the
corresponding call) using a statement of the form a := a ∧ P , where a is the assump-
tion variable and P is a boolean condition. The variable allows us to later refer to an
assumption that was made at a specific program point; e.g., to mark a check that was not
failing in the corresponding cached snapshot as partially verified under a conjunction
of assumption variables.

To illustrate, consider the rewrite of Snapshot 2 in Fig. 4. At this stage, the pre-
condition is assumed explicitly on line 2 and the postcondition is asserted explicitly on
line 15 as described earlier. On line 0, we introduce one assumption variable for each
call to a procedure with a different dependency checksum, and these are initialized to
true on line 1. The call on line 5 gets to assume the new postcondition of gcd. If that
call happens to return in a state that was allowed by the previous postcondition (0 ≤ r),
then assumption variable a0 will remain true after the update on line 6. But if the call
returns in a state that does not satisfy the previously assumed postcondition, then a0
will be set to false. In our example, since the postcondition of the callee is strength-
ened, the explicit assumption 0 ≤ r will always evaluate to true. Indeed, this works
particularly well when postconditions are not weakened, but, depending on the calling
context, it may also simplify the verification otherwise. For instance, it would work for
a call where the state is constrained such that for this particular call site the previous
postcondition holds after the call, even though the new postcondition is indeed weaker.

Next, we inject assumptions into the program about checked statements that are
found to be non-failing in the cached snapshot based on their statement checksum. More
precisely, for each statement with checked condition P whose statement checksum is
in the cache and that was non-failing in the cached snapshot, we inject an assumption
A =⇒ P , where A is the conjunction of all assumption variables. Intuitively, this tells
the verifier to skip this check if all assumption variables are true. Otherwise, the veri-
fier will perform the check since a state was reached for which it has not already been
verified in the cached snapshot. We say that the check has been marked as partially
verified. As an optimization, we include in A only those assumption variables whose
update statement definition can reach this use; we refer to these as relevant assump-
tion variables. Fig. 4 shows the assumptions being introduced on lines 4, 9, and 13,
preceding the precondition checks and the assert statement, thus marking these checks
as partially verified. Note that the assertion on line 7 is not marked as partially veri-
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0 var {:assumption} a0, a1: bool;

1 a0, a1 := true, true;
2 assume 0 < x ∧ 0 < y; // precondition

3 if (x < y) {

4 assume (true) =⇒ (0 < x ∧ 0 < y - x);

5 call r := gcd(x, y - x);

6 a0 := a0 ∧ (0 ≤ r);

7 assert 1 ≤ r;

8 } else if (y < x) {

9 assume (true) =⇒ (0 < x - y ∧ 0 < y);

10 call r := gcd(x - y, y);

11 a1 := a1 ∧ (0 ≤ r);

12 } else { r := x; }

13 assume (a0 ∧ a1) =⇒ (0 < x + y);

14 assert 0 < x + y;

15 assert 0 ≤ r; // postcondition

Fig. 4: Body of the procedure implementation for Snapshot 2 after injecting cached verification
results (underlined). The instrumented program contains two explicit assumptions [6] on lines 6
and 11 derived from the postcondition of the cached callee procedure. Also, all checks that did
not result in errors in the cached snapshot have been marked as partially verified by introducing
assume statements on lines 4, 9, and 13.

fied, since it is a failing assertion in Snapshot 1. Since the assumption variables remain
true, the partially verified checks in effect become fully verified in this example. Note
that the verifier may discover that only some partially verified checks are in effect fully
verified depending on the state at those checks. For instance, this may happen if the
state after some call was not always allowed by the callee’s previous postcondition,
but some partially verified checks after that call are in a conditional branch where the
branching condition constrains the state such that all states are allowed by the previous
postcondition there.

3.2 Algorithm for Injecting Cached Verification Results

In this subsection, we present our algorithm for injecting cached verification results in
procedure implementations of medium or low priority, for which no limit on the number
of reported errors was hit when verifying the cached implementation. At this point, most
existing Boogie transformations have been applied to the implementation as described
earlier (e.g., eliminating loops using loop invariants and adding explicit assertions for
procedure postconditions).

As a first step, we compute statement checksums for all statements in an imple-
mentation as defined earlier. As a second step, we insert explicit assumptions for calls
if the dependency checksum of the callee has changed in the current snapshot. More
precisely, for each call, we distinguish between three different cases, in order:
0. Dependency checksum of callee is the same as in the cached snapshot: We do not

need to do anything since the asserted precondition and the assumed postcondition
are the same as in the cached snapshot.
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1. All functions that the callee transitively depended on in the cached snapshot are
still defined and unchanged in the current snapshot: Before the call, we add the
statement assume ? =⇒ P , where ? is a placeholder that will be filled in during
the final step of the algorithm and P is the precondition of the callee in the cached
snapshot. This may allow us to reuse the fact that the precondition of a call has
been verified in the cached snapshot. To simplify the presentation, we will only
later determine if the precondition has indeed been verified and under which con-
dition. Since the dependency checksum of the callee is different from the one in
the cached snapshot, we additionally introduce an explicit assumption to capture
the condition that was assumed after the call in the cached snapshot. This condi-
tion depends on the callee’s modifies clause (which lists the global variables that
the callee is allowed to modify) and its postcondition. To capture the former, let
V be the set of global variables that were added to the callee’s modifies clause
since the cached snapshot. We now add ov := v for each global variable v in this
set V before the call, where ov is a fresh, local variable. This allows us to express
the explicit assumption by adding the statement a := a ∧ (Q ∧M) after the call,
where a is a fresh assumption variable, Q is the postcondition of the callee in the
cached snapshot and M contains a conjunct ov = v for each global variable v in
the set V . Note that M does not depend on global variables that were removed from
the callee’s modifies clause since the cached snapshot; the statements after the call
have already been verified for all possible values of such variables.

2. Otherwise: Since we cannot easily express the pre- and postcondition of the callee
in the cached snapshot, we need to be conservative. We therefore do not add any
assumption about the precondition and we add the statement a := a ∧ false after
the call, where a is a fresh assumption variable.

As a third step, we transform each checked statements with the checked condition
P to express cached verification results. We distinguish four cases, in order:

0. Some relevant assumption variable is definitely false when performing constant
propagation: We do not do anything, since we cannot determine under which con-
dition the check may have been verified.

1. There was an error for this check in the cached implementation and there are no
relevant assumption variables: Since it has previously resulted in an error under
identical conditions, we add the statement assume P before and report the error
immediately to avoid unnecessary work.

2. There was no error for this check in the cached implementation: Since it has been
verified previously, we add the statement assume A =⇒ P before, where A is the
conjunction of all relevant assumption variables. If there are any such assumption
variables, we say that the check has been marked as partially verified; otherwise,
we say that it has been marked as fully verified.

3. Otherwise: We do not do anything. For instance, this may happen if we cannot
determine that we have seen the same check in the cached snapshot.

As a last step, we replace the placeholder ? in each statement assume ? =⇒ P with
the conjunction of all relevant assumption variables, if none of the relevant assumption
variables are definitely false and there was no error for the corresponding call in the
cached implementation. Otherwise, we drop the statement.



12 K.R.M. Leino and V. Wüstholz

Optimization for explicit assumptions within loops. By default, loop bodies are veri-
fied modularly in Boogie. That is, on entry to a loop body, all variables that are modified
within the body are “havocked” by assigning a non-deterministic value and the invariant
is assumed. After the loop body, only the invariant remains to be checked. For this rea-
son, an assumption (e.g., as a result of a procedure call) that was made in the loop body
when verifying the cached snapshot was neither used for verifying statements after the
loop (provided there is no break statement in the loop) nor for verifying statements
within the loop that precede the assignment to the corresponding assumption variable.
To reproduce this behavior for the current snapshot, it is safe not to havoc assumption
variables that would usually be havocked in this case. By doing so, such assumption
variables usually remain true at that point unless the corresponding loop has previously
been unrolled a number of times.

4 Evaluation

To evaluate the effectiveness of our caching techniques in practice, we recorded eight
verification sessions during expert use of the Dafny IDE for regular development tasks.
Those sessions were not scripted and therefore cover real workloads that such a tool
faces when it is being used by a user to develop provably correct software. The sessions
span a wide range of activities (including extension, maintenance, and refactoring) that
are encountered when developing programs of several hundred lines. Sessions consist of
up to 255 individual program snapshots (see Fig. 5) since the Dafny IDE automatically
verifies the program as the user is editing it. To make this a pleasant experience for the
user, the responsiveness of the tool is of paramount importance.

Fig. 5 clearly shows that this user experience could not be achieved without caching.
The basic caching alone decreases the running times of the verifier tremendously (more
than an order of magnitude for many sessions) and complementing it with fine-grained
caching decreases them even more. This confirms the positive feedback that we received
from users of the Dafny IDE, including members of the Ironclad project at Microsoft
Research, whose codebase includes more than 30’000 lines of Dafny code [14]. Inter-
estingly, caching turned out to have a more significant effect on the responsiveness of
the tool than parallelization of verification tasks in Boogie using multiple SMT solver
instances.

Fig. 6 sheds more light on why the basic caching is so effective by showing the
priorities of the procedure implementations that are sent to the verifier for each snap-
shot in session 5: most of the procedure implementations do not need to be re-verified
at all and only two implementations (originating from a single Dafny method) need to
be verified for most snapshots. This data looks very similar for the other sessions and
demonstrates that the basic caching benefits significantly from the modular verification
approach in Dafny. Besides this, we can see that there are occasional spikes with proce-
dure implementations of low priority. For example, snapshot 2 consists of a change to
a function that may affect all callers. In fact, due to the way that functions are handled,
all transitive callers are affected, which is not the case for procedures. While in this
case the basic caching needs to re-verify 11 procedure implementations from scratch,
the fine-grained caching is able to mark 400 out of 971 checked statements in Boogie
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SESSION SNAPSHOTS TIME (IN SECONDS) NUMBER OF TIMEOUTS

NC BC FGC NC BC FGC
0 70 4’395.3 315.3 277.5 58 3 1
1 13 758.5 88.2 74.8 11 4 2
2 59 3’648.0 220.2 206.1 83 5 4
3 254 13’977.6 1’734.7 1’008.7 2 1 0
4 255 6’698.6 533.8 499.8 16 6 5
5 27 1’956.0 785.7 519.7 0 0 0
6 29 106.9 33.3 27.3 0 0 0
7 7 765.5 20.5 20.0 0 0 0

Fig. 5: Comparison of three configurations for verifying eight recorded IDE sessions: no caching
(NC), basic caching (BC) and fine-grained caching (FGC). The second column shows the num-
ber of program snapshots per session. The next three columns show the running times for each
configuration and the rightmost three columns show the number of timed-out procedure imple-
mentations for each configuration.

as fully verified. This reduces the running time from 28 seconds to 14 seconds and at
the same time avoids a timeout (by default, 10 seconds per procedure implementation)
for one of those procedure implementations.

Overall, Fig. 5 shows that the fine-grained caching performs even better than the
basic caching for all sessions (42 % faster for session 3 and on average 17 % faster
compared to the basic caching). For session 7, there is no significant speedup even
though the fine-grained caching is able to mark a large number of checks as verified. It
seems that, in this case, most of the time is spent on verifying a single check (e.g., the
postcondition of the edited method) that could not be marked as verified. Such cases
can come up occasionally since the times that are needed for verifying different checks
are usually not distributed uniformly.

Besides increasing responsiveness, caching helps in reducing the number of pro-
cedure implementations that fail to verify due to timeouts (see Fig. 5). Again, the ba-
sic caching avoids the majority of timeouts and the fine-grained caching avoids even
more of them (between 17 % and 100 % less), which is not obvious given our program
transformations. This additional reduction over the basic caching is due to the fact that
Boogie is able to focus on fewer unverified or partially verified checks.

To provide a better indication of how much the fine-grained caching is able to re-
duce the verification effort, Fig. 7 shows the number of checked statements for each
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Fig. 6: Priorities of procedure implementations for session 5. The bars show the number of pro-
cedure implementations of a given priority for each snapshot version. Most implementations are
assigned the highest priority and do not need to be re-verified.
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Fig. 7: Transformed checked statements in session 5. The bars show the number of checked state-
ments for each snapshot version that are marked as fully verified, partially verified, or not trans-
formed at all. Additionally, a number of errors are recycled: two errors each for snapshots 5 and 6
and one error each for snapshots 7 and 8.

snapshot in session 5 that were transformed when injecting cached verification results.
This demonstrates that for many snapshots, more than half of the checks can be marked
as fully verified or errors from the cached snapshot can be recycled (two errors each for
snapshots 5 and 6 and one error each for snapshots 7 and 8). At an early development
stage, fewer checks were marked as verified since statement checksums changed more
often. It turned out that small changes in a Dafny program could result in significant
changes to the corresponding Boogie program due to the way in which names (e.g., of
auxiliary variables) were generated. After taking this into account during the translation
of Dafny into Boogie, performance improved significantly.

5 Related Work

Caching is a widely used technique for reusing information that was computed in the
past. More specifically, there are several existing approaches for reusing results from
previous runs of static analyzers, model checkers, program verifiers, and automatic test-
case generation tools. Clousot [11], a static analyzer for .NET, uses caching to retrieve
the results of previous runs of its cloud-based analysis service [0]. Unlike our fine-
grained caching, it only reuses such results if a method itself did not change and if the
specifications of all its callees did not change. Clousot also supports “verification mod-
ulo versions” [22], which uses conditions inferred for a previous version of a program
to only report new errors for the current version. The Why3 verification platform uses
checksums to maintain program proofs in the form of proof sessions as the platform
evolves (e.g., by generating different proof obligations). In particular, it matches goals
from the existing proof with new goals using both checksums and goal shapes, a heuris-
tic similarity measure. Maintenance of proofs is particularly important for interactive
proof assistants since proofs are largely constructed by users and, ideally, do not need
to be changed once they are completed. Such work has been done for the KIV [23] and
KeY [16] tools. Grigore and Moskal [13] have worked on such techniques for proofs
that were generated by SMT solvers to verify programs using ESC/Java2.

There are several approaches for reusing information that was computed when run-
ning a non-modular tool on an earlier revision of a program. In the area of model
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checking, such information can consist of summaries computed using Craig interpo-
lation [24], derivation graphs that record analysis progress [8], or parts of the reach-
able, abstract state space [15]; even the precision of the analysis that was sufficient for
analyzing an earlier program revision may be used later [4]. Work on incremental com-
positional dynamic test generation [12] presents techniques for determining if function
summaries that were obtained for an earlier version of a program can be safely reused
when performing symbolic execution on the current version of the program.

Regression verification [25] is another area that developed techniques for reusing
information that was collected during runs of a tool on earlier versions of a program.
Unlike in our approach, the goal is to check if the behavior of the latest version of a
program is equivalent to the one of an earlier version, much like in regression testing.

In spirit, our caching scheme is an instance of a truth maintenance system [10].
However, the mechanisms used are quite different. For example, a truth maintenance
system records justifications for each fact, whereas our caching scheme tracks snapshots
of the programs that give rise to proof obligations, not the proofs of the proof obligations
themselves.

6 Conclusions and Future Work

We have presented two effective techniques for using cached verification results to im-
prove the responsiveness and performance of the Dafny IDE. Both techniques are cru-
cial for providing design-time feedback at every keystroke to users of the IDE, much like
background spell checkers. The key novelties of our technique are its use of checksums
for determining which parts of a program are affected by a change and how a program
is instrumented with cached information to focus the verification effort. In particular,
we use explicit assumptions to express the conditions under which we can reuse cached
verification results. We have designed our technique to work on the level of an inter-
mediate verification language. This makes it immediately usable for other verifiers that
use the Boogie verification engine (e.g., VCC [7] or AutoProof [26]) and should make
possible to adopt by other intermediate verification languages, such as Why3 [5].

As future work, we would like to make the existing caching more fine-grained in
cases where assumptions in the program (e.g., resulting from user-provided assume
statements, preconditions, and user-provided or inferred loop invariants) are affected
by a change. We believe that—much like for procedure calls—we can use explicit as-
sumptions to capture assumptions that were made in the cached snapshot, and thereby
mark more checks as partially verified. We would also like to look into techniques, such
as slicing, for determining if certain partially verified checks could be marked as fully
verified by identifying the explicit assumptions they depend on more precisely.
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