University of Cambridge
Computer Science Tripos Part 1B
Lent Term 1996

Semantics of Programming Languages

Dr P. N. Benton

Contents

1 Introduction
1.1 Formal Semantics
1.2 Outlineof Course o
1.3 Acknowledgements
1.4 Recommended Reading
2 Inductive Definitions and Proofs
2.1 Inductive Definitions e
2.1.1 Introduction e
2.1.2 What do inductive definitions mean?
2.1.3 Upwards characterisation of inductively defined sets
2.1.4 Simultaneous inductive definitions
2.1.5 Derivations e e e e e e e
2.1.6 Inductively defined functions
2.2 Inductive Proofso
2.2.1 Mathematical induction
2.2.2 Ruleinductiono
2.3 EXErcises e e e e e e e e
3 IMP and its Operational Semantics

3.1 The Syntax of IMP
3.2 Transition Semantics of IMP

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

States
Operational semantics via transition relations
Theorems about the transition semantics
Evaluation sequenceso
Implementing the transition semanticsin ML

3.3 Structural Evaluation Relations for IMP

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6

Evaluation relations oo
Equivalence of transition and evaluation semantics of IMP
Implementing the evaluation semantics in ML
Semantic equivalence Lo Lo Lo
Congruences oo i e e e
Semantic equivalence proofs as functions (optional)

3.4 EXErcises e e e e e e

4 Denotational Semantics of IMP

4.1

4.2

4.3

4.4
4.5
4.6

Complete Partial Orders o
4.1.1 Partialorderso
4.1.2 Chains and least upper bounds o0
4.1.3 Continuous functionso
4.1.4 Binary product of cpos.
4.1.5 Exponentationof cpos L Lo
4.1.6 Liftingo
4.1.7 Conditionals
4.1.8 Least fixed points. L L
4.1.9 Fixpoint induction Lo
Denotational Semantics of IMP oo oo
4.2.1 Semantics of integer and boolean expressions
4.2.2 Semantics of commandso
Equivalence of the Denotational and Operational Semantics of IMP
4.3.1 Adequacy and full abstraction
4.3.2 Compositionality and congruence
Information, Continuity and Computability
Implementing the Denotational Semantics in ML
Exercises e e e e

5 Further Topics

5.1

5.2

9.3

Non-Determinism 0 v v i e e e e e e e e e e e
5.1.1 Transition semantics of non-determinism
5.1.2 An evaluation semantics for non-determinism
5.1.3 Non-determinism and semantic equivalence
5.1.4 Denotational semantics for angelic non-determinism
5.1.5 Erratic non-determinism and the Egli-Milner order
Jumps and Continuations
5.2.1 Continuation semantics of IMP
5.2.2 Continuation semantics of IMP-with-exits
5.2.3 An ML implementation of IMP-with-exits
Axiomatic Semantics of IMP oL o
5.3.1 Partial Correctness Assertions.
5.3.2 HoareLogic e
5.3.3 Soundness of Hoare Logic

A Semantic Equivalence Proofs as ML Functions

44
45
45
45
46
47
49
49
50
50
ol
93
93
54
56
99
60
60
63
64

67
67
68
68
70
71
72
73
74
75
76
79
79
81
81

84

Chapter 1

Introduction

1.1 Formal Semantics

This course is about understanding and reasoning about programs and programming lan-
guages. Any programming language can be studied at a number of different (but related)
levels, amongst which it is convenient to distinguish:

Syntax The alphabet of symbols used to write programs and some description (e.g. BNF)
of the way in which those symbols may be combined to give well-formed expressions,
commands, programs, etc. of the language.

Semantics The meaning of each expression, command, program, etc. This means some
description of how programs behave when they are actually executed.

Pragmatics The way in which the language is actually implemented (e.g. compiled or
interpreted, separate compilation, garbage collection) and used (e.g. typical pro-
gramming techniques, suitability for different problem domains).

We shall be concerned with the second of these aspects — giving desciptions of the run-time
behaviour of programs — and we shall use mathematical and logical methods to give these
descriptions in a formal and rigorous way.

A formal semantics can have many uses:

e It can serve simply as a specification of how programs should behave. This is obvi-
ously of value to the compiler writer and, if the semantics is sufficiently readable, to
the programmer.

e The very act of trying to give a formal semantics can help the language designer
to spot mistakes and ambiguities in an informal account of how programs should
execute.

e A formal semantics can be used to obtain or verify reasoning principles which may
be used to prove that programs satisfy their specifications or that two programs are
equivalent. This is vital if one wishes formally to verify or derive software, as is
increasingly done in, for example, ‘safety-critical’ applications. Even if one does not
wish to go to the trouble and expense of giving a completely formal proof of program
correctness, if programmers are aware of the reasoning principles which they would
use were they to attempt such a proof then the informal reasoning which they use
whilst writing code is much more likely to be sound.

3

e Sophisticated program analyses and transformations, such as those used in highly
optimising compilers, are not only verified with repect to a formal semantics, but
are very often designed and expressed in terms of the semantics.

e A mathematical analysis of computational and programming language constructs
which is independent of any particular programming language allows one to sim-
plify and generalise. This then feeds back into computer science in the form of new
programming languages and language features. For example, ML and other similar
languages are based on the lambda calculus, which is a mathematical model of com-
putation which predates computer programming. Similarly, some implementations
of ML-like languages are based on a translation of programs into a language of com-
binators, which originally arose in mathematical logic and has since been refined in
various ways to suit the needs of language designers and implementers.

e Finally, obtaining a deeper understanding of the basic nature of computation is a fas-
cinating and worthwhile intellectual activity in its own right. Fundamental scientific
research has a cultural value beyond its immediate technological applications.

Historically, semantics have been given in three main styles:

Operational Semantics specifies how programs should be executed, for example by
giving a translation of programs into some simpler abstract machine language. In
this course we will use a style of operational semantics called structural operational
semantics, due to Gordon Plotkin, in which evaluation and transition relations are
defined directly by induction on the syntax of the language.

Denotational Semantics gives the meaning of programs as elements of some suitable
mathematical structure. This style of semantics was pioneered by Christopher Stra-
chey and Dana Scott in the late 60s and early 70s, making use of the theory of
certain special partially ordered sets.

Axiomatic Semantics defines the meaning of each programming construct by giving
proof rules for it in some suitable program logic. This style of semantics was intro-
duced by Robert Floyd and Tony Hoare. You will learn more about this in the Part
IT course on Specification and Verification.

Of course, these different styles of semantics each have advantages and disadvantages for
particular purposes. We shall concentrate on the first two styles and the relationships
between them, though there is some material in Chapter 5 on axiomatic semantics.

1.2 Outline of Course

In this course we will study the operational and denotational semantics of a simple imper-
ative programming language which we call IMP. Since we will be making considerable use
of induction, we start by recalling some basic material on inductive definitions and proofs.
We then define the syntax of IMP and give it an operational semantics using transition
relations. Next we give an alternative presentation of the operational semantics in the
style known as ‘natural semantics’ and relate this to the first semantics.

We then turn to the denotational semantics of IMP. After introducing the basic mathe-
matical concepts which we shall need, we show how IMP programs may be given meaning

as functions between certain ordered sets and relate this to the operational semantics
which we gave earlier.

Having studied the operational and denotational semantics of IMP in considerable
detail, we then look briefly at some slightly more advanced topics: how to treat a non-
deterministic version of IMP, how to use continuations to give a denotational semantics to
a version of IMP with some non-local control operators, and how to use the denotational
semantics of IMP to justify Floyd-Hoare logic proof rules for the language.

Finally, an appendix contains some material on a functional view of proofs of semantic
equivalence. (This is highly non-examinable and merely included because T thought it
might be amusing.)

We will make continual use of the ML programming language. This is because ML
makes it possible (almost!) to implement directly many of the mathematical ideas which
we shall be using to understand IMP. It is hoped that this alternative, more concrete and
computational, viewpoint will make understanding the mathematics easier. The use of ML,
should, however, only be treated as an intuitive aid to understanding the real mathematical
semantics. Any more formal understanding of the relationship between IMP and the
various bits of ML which we shall present would involve giving a mathematical semantics
to ML and this requires rather more sophisticated ideas than we shall need in order to deal
with IMP. Note that this is a slightly unusual use of a programming language. Whilst all
the ML code used in these notes will be made available for students to experiment with,
its real purpose is to be read, not executed. That is, it is used primarily as a language for
human communication, and only incidentally as a language whereby people can control
machines.

The material on using ML to implement semantic ideas is all non-examinable.

At this point we should mention that ML itself does in fact have a completely formally
specified operational semantics (the Definition of Standard ML). I strongly recommend
that you read the preface to the Definition and have at least a brief look at the rest of it,
so as to get some idea of how the ideas introduced in this course scale up to real-world
languages.

The prerequisites for the course are merely TA Discrete Maths and some knowledge of
programming. An understanding of ML is also very desirable, but not absolutely essential
since ML is only used as a metaphor for the more formal semantics.

1.3 Acknowledgements

Thanks to Andy Pitts, Gordon Plotkin and Glynn Winskel, all of whose lecture notes I
have liberally plundered in writing this course, and to Larry Paulson for permission to use
parsing and prettyprinting code from his book ‘ML for the Working Programmer’ in the
programs accompanying the course. Andrew Kennedy made some very useful comments
on drafts of these notes. I have used John Reynolds’s diagram macros and Paul Taylor’s
proof tree macros.

1.4 Recommended Reading
Books

e G. Winskel The Formal Semantics of Programming Languages. MIT Press
1993. If you're going to buy a book on semantics, this is the one to get. Dr

5

Winskel used to lecture this course and the book is based in part on his lecture
notes.

e R. D. Tennent Semantics of Programming Languages. Prentice Hall Interna-
tional 1991.

e M. Hennessy The Semantics of Programming Languages. Wiley 1990.
R. Nielson and F. Nielson Semantics with Applications. Wiley 1992.

R. Harper, R. Milner and M. Tofte The Definition of Standard ML. MIT Press
1990.

e R. Milner and M. Tofte Commentary on Standard ML. MIT Press 1991.

Papers etc.

e G.D. Plotkin A Structural Approach to Operational Semantics. Report DAIMI
FN-19 Aarhus University 1981. Available as V105 604 in the CL library.

e G. Kahn Natural Semantics. In K. Fuchi and M. Nivat (eds) Programming of
Future Generation Computers. North-Holland 1988.

Chapter 2

Inductive Definitions and Proofs

This chapter recalls some mathematical background material (from the Discrete Mathe-
matics course) which we shall be using repeatedly in this course.

2.1 Inductive Definitions

2.1.1 Introduction

Inductively defined sets arise throughout Computer Science. For example:

1. Backus-Naur form (BNF) used in the definition of the concrete syntax of program-
ming languages, as in the following simple definition of binary numbers (with leading
zeros allowed):

(bity == 0]1

(bin) == (bit) | (bit)(bin)
which says that a bit is either 0 or 1 and that a bin is either a bit or a bit followed
by a bin.

2. Inductive datatypes in ML, such as one corresponding to the above BNF:

Zero | One;
Single of BIT | Bitstring of BIT*BIN;

datatype BIT
datatype BIN

or the type of binary trees with integers at the nodes:
datatype TREE = Empty | Node of int*TREE*TREE;

3. The definition of various logics as collections of inference rules, such as the following
rule for introducing conjunction, which should be read as ‘if from a set of assumptions
I' you can prove a formula A, and from the same set of assumptions you can also
prove B, then from I' you can prove A A B’:

r-A '-B
'-AAB

VA

What all these examples have in common is that a set S (of strings, datastructures or
provable sequents) is defined by a collection of rules all which have the general form ‘if a;
up to a, are all in the set then so is a’, which we will usually write as

a €8 aa€S - ap €S

a€eS

using the logical rule notation
(hypotheses)
—— (rulename)
(conclusion)

so that the BNF example (which is, of course, two definitions) could be written as

0 € bit 1€ bit
to define the set bit and
b € bit b € bit s € bin
b € bin bs € bin

to define the set bin. Notice that we allow the case n = 0, i.e. no hypotheses. This simply
means that the conclusion holds unconditionally. Such rules are sometimes called azioms.
Note also that rules may contain variables (e.g. b and s in the second rule for bin above).
Such a rule should be thought of as a rule scheme standing for the infinite collection of all
rules arising by substituting atomic things for the variables.! We will also sometimes add
side conditions to a rule scheme; these constrain the meaning of the scheme to the set of
substitution instances which also satisfy the side conditions.

In this course we shall usually use the rule notation, rather than BNF, to define
programming language syntax. A slight subtlety is that BNF is usually taken to define
a set of strings (i.e. concrete syntax), whereas we shall always think of syntax as a set
of trees (i.e. abstract syntax). This allows us to avoid any issues relating to parsing,
which are completely irrelevant for this course (though they are obviously important for
compiler writers). Thus the set bin defined above should be thought of as containing trees
like this:?

1 0

!Strictly speaking, this is not quite right since we haven’t said what ‘atomic things’ one is allowed to
plug in for the variables. The correct answer is that we can only really make an inductive definition of a
subset S of some already existing set U, and the atoms are all the elements of U. In practice, however,
it doesn’t usually matter exactly what U is, as long as it’s large enough to contain everything of interest
(in the case of binary numbers, for example, U could be the set of all finite strings of ASCII characters,
or it might be all those together with all countably infinite strings or whatever). We will usually omit all
mention of U, with the tacit understanding that a suitable set could easily be found were anybody to press
us on the matter.

%S0 when (to save time and paper) we write syntax in a linear way, the use of parentheses is a meta-
notation to indicate the intended tree structure, rather than a proper part of the abstract syntax itself.

8

Given an inference rule

al €S aa€S - ap €S

ae S

we say that a set S is closed under R if

((ap € S)AN(ag € S)AN---AN(an €S)) = (a €S)

2.1.2 What do inductive definitions mean?

Consider the set of natural numbers {0,1,2,3,...}. Another way to describe this set,
without using ‘...", is by induction. We take a constant symbol Z, which we intend to
mean 0, and a unary function symbol S which is intended to represent the successor
function (so S(Z) represents 1, S(S(Z)) represents 2 and so on). The following two rules
then constitute an inductive definition of the set N = {Z, S(7), S(S(Z)),...}:

1. Z is a natural number. In symbols, Z € N, which we can can also write as an
inference rule with no hypotheses:

Z €N

2. If n is a natural number then S(n) is a natural number. We can write this as

n €N = S(n) € Nor as
n€eN

S(n) €N

But how do these two rules specify the set we intend, viz.{Z,S(Z),S(S(Z)),...}7 After all,
the two rules are only conditions which we want N to satisfy, and there are many other sets
which also satisfy both conditions, such as N = {Z, S(Z), S(5(Z)),...,V,S(V),S(S(V)),...
where V is just some arbitrary new symbol. The reason N is not what we meant to define
is that it contains a lot of extra junk which doesn’t need to be there (such as S(V)).
Note that N C N — when we make an inductive definition such as that given above, it is
understood to mean the least set (with respect to the subset ordering) satisfying all the
clauses of the definition. Formally:

Definition 1 Given an inductive definition comprising a set of rules R, R is said to
inductively define the set S if

1. S is closed under all the rules in R
2. For any S’ such that S is closed under all the rules in R, S C S’.

It is not, however, immediately clear that there is a unique smallest set satisfying any
inductive definition, i.e. that inductive definitions really do define something.

Proposition 1 (Uniqueness) Given an inductive definition in the form of a set of rules
R, the set defined by R, if it exists, is unique.

Proof. Assume that S; and Sy both satisfy the conditions of Definition 1 above. Because
S1 satisfies part 1 of the definition and Sy satisfies part 2, we have S; C So. A symmetric
argument yields Sy C Sq, so that S = Ss. O

At this point it’s convenient to introduce a new notion, that of the operator associated
with a set of rules. If R is a set of rules, indexed by a set I:

R ={R;|iel}
where the rule R; has the form

hii hig - hiy,
R;

C;
then @ is an operator which takes sets to sets, defined by
Or(T)={ci | (hig €T)N---A(hjn, €T)}

The following two properties of ® are immediate from the definition:
Lemma 2

1. For any set of rules R, ®r is monotonic. That is

if X CY then Or(X) C dr(Y)
2. A set X is closed under all the rules in R if and only if ®r(X) C X. If this is the
case, we say X is a prefixed point of ®.
O

Lemma 3 IfR is a set of rules and {S; | i € I} is a collection of sets (indexed by the set

I) such that for each i € I, S; is closed under all the rules in R, then the set ;c; S; is
also closed under all the rules in R.

Proof.
jel jel
= Vi.@n(ﬂ Sj) cCS;
Jj€EI
= (I)R(ﬂ Sj) - ﬂ S;
jer iel

where the first inclusion is an obvious property of intersection, the first implication follows
by monotonicity of @, the second by the fact that each S; is a prefixed point of & and
the last by another property of intersection. |

Proposition 4 (Existence) If R is a set of rules, then the set
s ﬂ{S' | " is closed under all the rules in R}
is inductively defined by R.

10

Proof. By Lemma 3, S is closed under all the rules in R and so satisfies part 1 of
Definition 1. To see that it also satisfies part 2, let S” be closed under all the rules in R.
It should then be obvious that since S” € {S' | S’ closed under R}, we have

S = ﬂ{S' | §’ closed under R} C S”
as required. |

So, taking Propositions 1 and 4 together, we see that inductive definitions really do
make sense. Proposition 4 says exactly that S = N{S" | ®r(S") C S’} is the least prefized
point of ®x. It’s worth noting the following:

Proposition 5 S =N{S" | ®r(S’) C S’} is the least fixed point of ®r. That is
1. dR(S) =S, and
2. If ®R(S") = S then S C S".

Proof.

1. We already know that ®(S) C S because S is a prefixed point. Thus we want to
show S C & (S). Well, let Z = &z (S). By monotonicity applied to the fact that
Z C S we get that ®(Z) C Z and hence that Z € {S' | ®r(S’) C S'}. Thus
N{S" | Pr(S") C S’} C Z, i.e. S C Pr(S5), as required.

2. If 8" is a fixed point, it is a prefixed point and hence S C S” as S is the least prefixed
point.

2.1.3 Upwards characterisation of inductively defined sets

The way we have explained the meaning of inductive definitions is in some sense ‘down-
wards’ — we start with a collection of candidates for the meaning of the definition, which
are, in general, too big; the true meaning is then extracted as the intersection of all the
candidates.

There is another way of describing the set defined by an inductive definition which
works from the bottom up. The intuitive idea is that one builds the set up in stages,
starting with the empty set and at each stage adding in those extra things which the
rules say have to be there as consequences of the previous stage. The set defined by the
inductive definition is then the limit of this chain of successive approximations. In the
case of the definition of natural numbers, for example, we build the chain like this:

No = {} start with the empty set
Ny = {Z} the rule for Z says add Z without any condition
No = {Z,5(Z)} now the S rule says add S(Z) because Z € N;
N = U2 N the (infinite) limit is the union of all the (finite) approximations

You should recognise this as the way in which the construction of the Herbrand universe
of a set of clauses is explained in Dr Paulson’s ‘Logic and Proof’ course. (Indeed, one view
of pure Prolog is that it is essentially a language for making inductive definitions.)

11

We can make this intuitive account more formal. If R is a set of rules, we define the
chain of approximations (inductively!) like this:

So = {}
Sn—l—l = CI)R(Sn)

Note that we are justified in calling this a chain, since Lemma 2 implies that
SHp S5 CSC---
(Why?) The limit is then simply
o0
Se = UJ Sn
n=0
And this does actually work:

Proposition 6 Given a set of rules R, the set

is inductively defined by R.

Proof. There are two parts to Definition 1 and we check each in turn. Firstly, we need
to check that S, is closed under all the rules in R. Take a typical rule

hheS -+ h,es
R
ce S

and assume that h; € S, for each 1 < ¢ < k. Then there must be some finite approximation
Sm such that h; € S, for each 7. Then by the definition of &%, ¢ € S;, 11 C S, and we're
done.

Now we have to check the second part of the definition, i.e. that S, is contained within
any other set, call it T', which is closed under all the rules in R. We shall establish this
by mathematical induction (which we shall discuss in the next section). Firstly note that
() = Sp C T. This is the base case of the induction. Now assume that S,, C T. It’s easy
to see that

Sm—l—l = CI)R(Sm)
Pr(T)
T

N 1N

where the last inclusion follows from the fact that 7' is a prefixed point for & (Lemma 2,
part 2) and the middle one from the fact that S, C T" and monotonicity (Lemma 2, part
1). So by mathematical induction we have that S,, C T for all n € N, and it’s then clear
that S, being the union of all the S);s, is also contained in T as required. Thus S, is the
least prefixed point, and is equal to the S we defined in the previous section. O

As another example, the meaning of the ML datatype of binary trees which we gave
earlier

datatype TREE = Empty | Node of int*TREE*TREE;

12

can be built as the limit of the chain of approximations which starts

TREE, = 0

TREE; = {Empty}

TREE; = {Empty,Node(0,Empty,Empty), Node(1,Empty, Empty),...}
TREE; = {Empty,Node(0,Empty,Empty),Node(1,Empty,Empty),...

Node(0, Node(0, Empty, Empty)), Node(1, Node(0, Empty, Empty)), ...
}

2.1.4 Simultaneous inductive definitions

The ideas of the previous section can be generalised to the case where a collection of sets
S1,89,...,S; are defined by a set of rules which each look like

:L'lESZ'I InESin

T €S

For example, we might define the syntax of integer and boolean expressions in some
(slightly C-like) language by rules including the following:

— neZ
n € lexp true € Bexp false € Bexp
e € Iexp ey € lexp b, € Bexp bs € Bexp
e1 + eg € Iexp b1& &by € Bexp
b € Bexp e; € lexp ez € lexp e € lexp es € lexp
(b7ey : eg) € Iexp (e1 = e2) € Bexp

Note that the integer expressions depend on the boolean expressions and vice-versa. The
formal meaning of such mutually dependent inductive definitions is a generalisation of
that of a single inductive definition, and is left as an exercise for the diligent reader.

2.1.5 Derivations

If the set S is defined by an inductive definition R = {R; | 7 € I} then each s € S is there
for a reason — this is the essence of the second part of Definition 1, each such s is there
because it is forced to be by some finite number of applications of rules in R. These can
be written in a tree which we call a derivation of the statement s € S. For example, in
the case of our integer and boolean expressions, the following is a typical derivation:

3 € lexp 4 € lexp

(3 =4) € Bexp 5 € Iexp 6 € lexp
(3=4) 75 : 6)€ lexp

There may, in general, be more than one derivation that a particular element belongs
to the set. This doesn’t happen in our example above since each syntactic form is the
conclusion of exactly one rule.

13

Given a set of rules R defining a set S, the set of derivations in R is itself an inductively
defined set. It is defined by the following two rules:

1. Any rule R € R with no hypotheses is a derivation.

2. If Dq,...,D, are derivations in R with conclusions hy € S, ..., h, € S respectively,
and R € R is a rule with hypotheses h; € S through to h, € S and conclusion ¢ € S,
then the following is a derivation:

D; D,
hpes --- hp, €S

ce S

2.1.6 Inductively defined functions
Assume that S is inductively defined by R = {R; | i € I'} where

hii hig -+ hip;
i = ;
C;

and that furthermore there is a unique derivation for each s € S. If T is any set, then
to define a function f : S — T, it suffices for each i to give f(¢;) in terms of the n;
values f(hi1),..., f(hin,;)-This is, of course, the way in which one defines functions over
datatypes using pattern matching and recursion in ML.? For example:

datatype NAT = Z | S of NAT;

fun double Z = Z
| double (S(n)) = S(S(double(n)));

2.2 Inductive Proofs

We now turn from defining sets to proving things about them.

2.2.1 Mathematical induction

This means induction over the natural numbers, and is somthing with which you should
already be familiar. (Indeed, we have used it once already in these notes, to prove Propo-
sition 6.)

Proposition 7 (Mathematical Induction) Suppose that P is some property of the
natural numbers, so P C N. If P is closed under the following rules

neP
0eP pi1ep

then P is the whole of N.

3This is actually a gross simplification, but never mind.

14

Proof. Suppose that the result is false, so that P is closed under the rules but there is
some m € N such that m € P. We can furthermore take m to be the smallest such number
(the ‘minimal criminal’). Now, since P is closed under the first rule, we have that 0 € P
so that m # 0. This means that m = m' + 1 for some m’ € N. But now m' & P (or else
m € P by the fact that P is closed under the second rule), and m’ is strictly smaller than
m, which contradicts the minimality of m. So no such m exists and P = N. a
Here’s a familiar and rather trivial example of a proof by mathematical induction:
Proposition 8
n

Vn.Zi = 7n(n—i— D)
i=0 2

Proof. Let P = {n | > i =n(n+1)/2} and we have to check that P is closed under
the two rules for zero and successor.

1. For zero, we calculate
0
> i=0=0/(0+1)/2
i=0
so that 0 € P.

2. For the successor rule, we assume n € P and then

n+1 n

Yoi = Yit(n+1)

i=0 i=0

1
= % + (n + 1) by the inductive assumption
4+ D)((n+1)+1)
B 2
so (n+1)eP.
Then applying Proposition 7, we get that P = N as required. a

You should be able to see that the conditions required of P for mathematical induction
to be applicable are closely related to the inductive definition of the natural numbers in
terms of Z and S() which we gave in Section 2.1.2. This is no accident and generalises to
give an induction principle for any inductively defined set.

2.2.2 Rule induction

Proposition 9 (Rule Induction) Let the set S be inductively defined by a set of rules
R and P C S. Then if P is closed under all the rules in R, P is the whole of S.

Proof. By the second part of Definition 1, which says what it is for S to be inductively
defined by R, we have S C P. Then since we assumed P C S we have P = S. a

Mathematical induction is just the special case of rule induction which arises when §
is N. In the case that rule induction is applied to a set of syntactic objects, where there is

15

one rule for each syntactic construct, rule induction is also known as structural induction
because it becomes an induction over the syntactic structure of objects in the set.

As an example, we will consider proving some things about functions which manipulate
lists in ML by structural induction — you will see more proofs like these in Dr Paulson’s
IB course on Foundations of Functional Programming. Lists of integers are defined by the
following inductive datatype declaration*:

datatype INTLIST = Nil | Cons of int*INTLIST;
Given this inductive definition, we can define the append function inductively like this:

(* append : INTLIST*INTLIST -> INLIST *)
fun append(Nil,ys) = ys
| append(Cons(x,xs),ys) = Cons(x,append(xs,ys));

Proposition 10 The append function is associative. That is to say, for any xs,ys,zs:
append(xs, append(ys,zs)) = append(append(xs,ys),zs)
Proof. We prove this by structural induction on xs. There are two cases:

1. If xs = Nil then

append(Nil, append(ys,zs)) = append(ys,zs)
= append(append(Nil,ys),zs)

2. If xs = Cons(w, ws) then

append(Cons(w,ws), append(ys,zs)) = Cons(w,append(ws,append(ys,zs))
(induction) = Cons(w, append(append(ws,ys), zs)
= append(Cons(w,append(ws,ys)),zs
= append(append(Cons(w,ws),ys), zs

)
)
)
)

a

Something to watch out for when doing any kind of induction is that you will, to
make the proof work, sometimes have to prove something slightly stronger than the result
for which you are really aiming. Here are some more inductively defined functions to
manipulate lists:

(* reverse : INTLIST -> INTLIST *)
fun reverse Nil = Nil
| reverse (Cons(x,xs)) = append(reverse xs, Cons(x,Nil));

(* revapp : INLIST+*INLIST -> INTLIST x*)
fun revapp (Nil,ys) =
| revapp (Cons(x,xs),ys) = revapp(xs,Cons(x,ys));

(* rev : INTLIST -> INTLIST x*)
fun rev xs = revapp (xs,Nil);

*Of course, lists are already built in to the language, but we’ll pretend they aren’t.

16

and let us suppose we want to prove the following by structural induction on lists:

Proposition 11
Vxs € INTLIST. rev xs = reverse Xxs

One’s first attempt at a proof would be to try to use structural induction on xs to
prove the result directly. There are two syntax formation rules to consider

1. For Nil we observe that reverse Nil = Nil from the definition of reverse and
that

rev Nil = revapp (Nil,Nil)
= Nil

so that case is OK.

2. For Cons we have that for any x and xs

rev (Cons(x,xs)) = revapp (Cons(x,xs),Nil)
= revapp (xs,Cons(x,Nil))
and that

reverse (Cons(x,xs)) = append(reverse xs,Cons(x,Nil))
= append(rev xs,Cons(x,Nil)) by induction

= append(revapp(xs,Nil), Cons(x,Nil))

but then we’re stuck. The problem is that the induction hypothesis doesn’t say
anything at all about revapp when its second argument is non-Nil.

So we have to prove a stronger statement which implies what we want:

Lemma 12

Vxs. Vys. revapp(xs,ys) = append(reverse xs,ys)
Proof. We prove this by induction on xs:
1. In the case where xs is Nil we need to show
Vys.revapp(Nil,ys) = append(reverse Nil,ys)

The left-hand side (LHS) is equal to ys by the definition of revapp, whilst the RHS
is equal to append(Nil,ys) by the definition of reverse, and this is ys by the
definition of append.

2. In the case where xs is Cons(z,zs) we reason as follows

revapp(Cons(z,zs),ys) = revapp(zs,Cons(z,ys)) (defn. of revapp)
(induction) = append(reverse zs,Cons(z,ys))

(defn. of append) = append(reverse zs,append(Cons(z,Nil),ys))
(Proposition 10) = append(append(reverse zs,Cons(z,Nil)),ys)
(defn. of reverse) = append(reverse(z,zs),ys)

17

|

Proposition 11 then follows immediately from Lemma 12. In a case like this it can
require a certain amount of intelligence and experience (not to mention luck) to see exactly
what the stronger induction hypothesis should be to make the proof go through. Indeed,
finding the right hypothesis is sometimes referred to as the ‘ahal’ or ‘eureka!’” step in an
inductive proof since it appears to be plucked magically out of thin air, but once you have
it the rest of the proof is often fairly mechanical. A common strategy for finding induction
hypotheses is to try a simple one and if the proof fails to go though, try to see why it fails,
and use that as guidance as to how the hypothesis should be strengthened. The problem
of finding induction hypotheses also shows up as the problem of finding loop invariants
when proving properties of programs using Floyd-Hoare logic (see the Appendix and next
year’s Specification and Verification course).

2.3 Exercises

1. Given our inductive definition of N, give an inductive definition of the usual ‘less-
than’ relation <C N x N.

2. What can you say about the set defined by an set of rules which doesn’t contain any
axioms?

3. Can every set be defined by an inductive definition? Given a set S, can it be that
the set R of rules defining S is not unique? For a given set of rules R, can two
distinct sets of rule schemes denote R?

4. Notice that we are quite happy to deal with inductive definitions which have an
infinite number of rules (remember that a rule scheme is just shorthand for all its
substitution instances). All our rules are, however, constrained to have a finite
number of hypotheses. Think about what would happen if we were to relax this
restriction. Do such definitions define anything? What happens to the downward
(N) construction? What about the upwards (|J) one?

5. Work out the formal details of exactly what simultaneous inductive definitions mean
(Section 2.1.4). If you don’t already know, find out how to make mutually recursive
datatype declarations in ML and think of some practical examples.

6. Why, when defining functions from S by induction in Section 2.1.6, did we insist
that every element of S had to have a unique derivation? Do elements of inductive
datatypes in ML always have unique derivations?

7. The Fibonacci numbers are defined inductively by
Fy=0 =1 Fopo=F,1 +F,

Prove, by mathematical induction, that

1 n__In
where
b= 7(1 +2\/5) and $ =1-—¢.

8. Given a set Prop of propositions, the set of contexts over Prop is defined by

I' e Ctxt A € Prop
[| € Ctxt I')A € Ctxt

So, intuitively, a context is a finite list of propositions, separated by commas. Define
a relation ~C Ctxt x Ctxt by induction such that T' ~ T just when T' and T” are
the same list of propositions but in a different order. (You may need to make use
of some auxiliary relations.) Prove that your relation ~ is an equivalence relation.
(Warning: this question is fairly tricky!)

9. Assume we are given a set of basic propositions Atom. Let Prop, the set of conjunc-
tive propositions over Atom, be defined by

A € Atom A € Prop B € Prop
A € Prop AN B € Prop

Now let Ctxt be the set of contexts over Prop and ~ be the equivalence relation
on contexts as in the previous question. The entailment relation FC Ctxt x Prop,
which we write infix, of a little logic is then defined as follows:

A TID~T A TFB
T,AF A ' A T-AAB
T-AAB T-AAB
THA T-B

Prove by induction that the following are all admissible rules (i.e. adding them does
not make any difference to the set of derivable sequents):

(a)
T+ B
T,A+- B

(T,A),AF B
T,A+- B

T'-A T,AFB
T+ B

19

Chapter 3

IMP and its Operational
Semantics

3.1 The Syntax of IMP

Throughout this course we shall work with a toy imperative programming language which
we call IMP. IMP is also sometimes called the language of while programs. The syntax of
IMP comprises three sets (or syntactic categories): Bexp for boolean-valued expressions,
Iexp for integer-valued expressions and Com for commands. These are defined inductively
in terms of some auxiliary sets

Z = {...,—2,-1,0,1,2,3,...} the integers

B = {true, false} the booleans
Iop = {+,—,%,...} some finite set of integer operations
Bop = {=,>,...} some finite set of boolean operators
Pvar = {x,y,...} some infinite set of program variables

We will not worry too much about exactly what operators are built in to the language.
The syntax of IMP is then defined inductively by the rules shown in Figure 3.1. We use
typewriter font (like this) for expressions in the language and math italic (like this) for
metavariables ranging over the various syntactic categories and auxiliary sets.

If n € Z is an integer, we write n for the syntactic IMP expression corresponsing to
n. So, for example, 5 € Z but 5 = 5 € Iexp. Likewise, true € B is a boolean value,
whereas true = true € Bexp is the corresponding IMP phrase. A similar convention is
used for the integer and boolean operations, so zop € Iop should be thought of as a proper
mathematical function iop: Z x Z — 7, whereas iop is the syntactic name of that function
which we use in the programming language. Fo:example, x € Iop is the multiplication
function, but x = * is the textual symbol we use to indicate multiplication in IMP. Whilst
this might appear abstruse, it is not mere pedantry — these distinctions between syntax
(5 € Iexp) and semantics (5 € Z) are absolutely central to this course.!

!This is also discussed in Dr Forster’s Part IT Philosophy lectures as the ‘use-mention distinction’ which
occurs in natural language. When we write a word (for simplicity, a noun) then we are normally using it —
we expect the reader mentally to dereference the marks on the page to obtain (the idea of) the real-world
object which they denote. By using quotation marks, we can mention the word, referring to the syntactic
object. The following two sentences illustrate the idea:

20

(Rl)——— neZ (R2)——— =z € Pvar

n € Iexp z € lexp
1e1 € lexp teg € Iexp
— 1op € Iop (RA)——— bHeB
iey top ies € lexp b € Bexp
1e1 € lexp 169 € lexp
bop € Bop
ie1 bopies € Bexp
ie € Iexp
(R6)——M— (RT7) x € Pvar
skip € Com z:=1e € Com
Ci € Com (Cy € Com be € Bexp C € Com
(128) (R9)
Ci1;Cy € Com while bedo C € Com

be € Bexp C, € Com Cy € Com

(R10)

if be then C else Uy € Com

Figure 3.1: The Syntax of IMP

The syntax of IMP is simple enough that you should be able to guess (informally) how
programs are supposed to behave. (We will shortly see how to formalise that behaviour.)
For example, the following program computes the factorial of 5, leaving the result in the
variable r:

x := 5;(r :=1; (while x>1 do (r := r*x; x := x-1)))

We can also express the syntax of IMP as ML datatypes (using the builtin type string
to represent Pvar, int to represent Z and bool for B):

datatype IOP = Plus | Times | Minus;
datatype IEXP = N of int | Pvar of string | Iop of IOP*IEXP*IEXP;

datatype BOP = Equal | Greater;
datatype BEXP = B of bool | Bop of BOP*IEXP*IEXP;

datatype COM = Skip | Assign of string*IEXP | Seq of COM*COM |
If of BEXP*COM+COM | While of BEXP*COM;

Notice that the distinction between integers and IMP numerals which we made such a

Philosophers are all very rich.
“Philosophers” is a word with twelve letters.

This kind of distinction is important in many disciplines. The (often rather complex) interplay of signifier
and signified, sign and referent, is at the heart of much work in philosophy, metamathematics, linguistics
and even sociology. Whilst this is clearly all well outside the scope of these lectures, you should at least
be aware that it is A Very Important Idea.

21

fuss about earlier shows up quite clearly in the ML code, with the place of the underline
operation taken by the constructor N(). Thus 5:int, but N(5) : IEXP.?

3.2 Transition Semantics of IMP

In this section we give IMP an operational semantics using a transition relation which
expresses how a command or expression successively rewrites, or evolves, to another. This
is similar to the S-reduction relation for the A-calculus (IB Foundations of Functional
Programming) or the labelled transitions used to define the dynamic behaviour of CCS
agents or Pi Calculus processes (Part IT Concurrency Theory and the Pi Calculus). One
difference is that how an IMP phrase behaves depends not just on the phrase itself, but
also on the values currently held in each of the program variables. Similarly, the behaviour
of a command consists not just of rewriting to a new phrase, but may also involve changes
to some of the variables.

3.2.1 States

We will refer to an assignment of an integer value to each program variable as a state.
Formally, we define the set of all states by

States def Pvar — 7Z

so a state is a function from variable names to integers. If S € States, + € Pvar and
S(z) = n then n is the integer stored in variable z in state S.
If S € States,z € Pvar and n € Z then we write S[n/z] for the state S with z updated
to n. In symbols
n ify==x

def
(S[n/z])(y) = { S(y) otherwise
for all y € Pvar.

We can code states in ML in several ways. The one which mimics the mathematical
treatment most closely uses ML functions:

type STATES = string —> int;

(* update : STATES*string*int -> STATES x)
fun update (S,x,n) = fn y => if y=x then n else S(y);

but this has the slight disadvantage (for interactive experimentation) that states are then
not printable values. For this reason alone, we will instead let states be (finite) partial
functions from strings to integers. These can then be represented by association lists
(which can be printed):

2The observant and picky reader will also notice that the analogous distinction for integer and boolean
operations still exists in the ML code, but has been reversed by comparison with the mathematical treat-
ment. In the ML, an term of type I0P is the name of an operation which will be mapped to the operation
itself by a function iopmeaning which we will give later on. This contrasts with the mathematics, where
an element of Iop is the actual operation, which can be mapped to its name by applying the underline
function. There’s no significant difference - it’s just a matter of what is taken as basic and what is derived.

22

type STATES = (string*int) list;

(* lookup : string*STATES -> int *)
exception Lookup;
fun lookup(x,[]) = raise Lookup
| lookup(x,(y,v)::pairs) = if x=y then v else lookup(x,pairs);

(* update : STATES*string*int -> STATES *)
fun update (S,x,n) = case S of
0 => [(x,n)]
| ((y,v)::pairs) => if x=y then (x,n)::pairs
else (y,v)::(update (pairs,x,n));

3.2.2 Operational semantics via transition relations

We now inductively define three relations:

—1 C (Iexp x States) x (Iexp x States)
—p C (Bexp x States) x (Bexp x States)
—¢ C (Com x States) x (Com x States)

by the rules shown in Figure 3.2 where we write, for example,
(Ca S) —C (Cla Sl)

instead of

((Cv S)v (Clv Sl)) Shadel

which should be read as ‘in state S the command C can make a one-step transition to
the command C’ and new state S”’ (and similarly for integer and boolean expressions).
We will sometimes simply write — for any of —7, —p,—¢, since which relation is meant
is usually clear from context. We will call a pair (e, S) of a phrase (an expression or a
command) and a state a configuration.

Notes on Figure 3.2:

1. We have left out some fairly obvious side-conditions for reasons of space. For exam-
ple, rule (—7-1) has the side condition that = € Pvar.

2. In rule (—;-4), ny iop no denotes ¢ where ¢ € Z is the result of applying the actual
mathematical operation 10p: Z x Z — Z to the integers n; and ns. For example, one
of the instances of this rule is (56 + 3,5) —7 (8,5) (for any 5).

3. Similarly, in rule (—p -3), ny bop ns stands for whichever of true or false corre-
sponds to the value of the function bop: Z x Z — {true, false} when it is applied to
the two integers nq and ns.

4. The rules divide into two classes. Those with no hypotheses are the ones which do
real computational work, whilst the others are there to show exactly how a transition
on a subphrase causes a transition on the larger phrase of which it is a part. For
example, (—7-1) and (—7 -4) make real progress, whereas the other two integer
expression rules do not.

23

(iel, S> —7T (ie'l, S,>

(—r-1) (—1-2)

(z,S) =1 (S(x),S) (ie1 iopiez, S) —p (i€} iopies, ')
(ie, Sy —1 (i€', S")
(=13)—— —— (—=r-4)— ;
(niopie,S) =1 (niopie',S") (n1 dop ng, S) —1 (n1 iop ng, S)
(ie1, S) —1 (i€}, S") (ie, Sy —1 (ie', S")
(—>B-1) (—>B-2)

ie1 bop ies, S) —p (i€} bopies, S’ n bopie, S) —p (nbopic, S’
= 1 22F = =

(—5-3)
(n1 bop ng, S) =1 (n1 bop na, S)

(ie, S) —7 (i€/, S")

] —)C"2\
(e)(:v:zie,5> —c (z:=ie’, S") (}(xzzn, S) —¢ (skip, S[n/z])
(C1,8) —=c (C1,8")
(—=c3) 1 - (—c4)
(C1;Ca,8) = (C) 50, 5) (skip;C, S) —¢ (C, S)

(be, S) —p (be, S

(—>C'5) - - 7 p
(if be then C4 else O, S) —¢ (if be' then C else (5, S")

(—c-6)
(if true then C] else C9, S) —¢ (C1,S)

(=c7)

(if false then C else Oy, S) —¢ (Cs, S)

(—c8)
(while be do C, S) —¢ (if be then (C ; while be do C) else skip, S)

Figure 3.2: One-Step Transition Semantics of IMP

24

5. Following on from the last point, the rules (—;-2) and (—-3) specify the evaluation
order for integer expressions as being strictly left-to-right — the first operand must
be a numeral before any transitions on the second operand can occur. For some
applications, this might be regarded as overspecification (see the Exercises).

Here is an example of a simple derivation of an instance of the transition relation,
where we assume that the state S is such that S(y) = 3:

bS5 ores Y

(yi=y+(3+4),S) »c (y:=3+(3+4),5)

You should similarly be able verify each of the following subsequent steps in the execution
of this command:

(=c-1)

(y:=3+(3+4+4),8) —=¢c (y:=3+7,5) —¢c (y:=10,8) —¢ (skip,S[10/y])

As a more involved example, assume that S € States satisfies S(x) = 2 and S(r) = 60
and let C' = (whilex > 1do () where C; = (r:=r*x;x:=x — 1). Each of the following
transitions can be justified by a short proof using the rules of the transition semantics
(rather tedious Exercise).

(C,S) —¢ (if x > 1 then (C ; C) else skip, S)

C
—¢ (if 2 > 1 then (C] ; C) else skip, S)
—>c if true then (C] ; C) else skip, S)

(
(
(
c (C1;C,S)
c{(r:=60xx;x:=x—1);C,S)
c ((r==60%x2;x:=x—1);C,S)
c ((r:==120;x:=x—-1);C,S)
c ((skip; x: —x—i) C, S[120/x])
c (x:=x—1;C, S[120/r])
—>c (x:=2—-1;C,S[120/x])
c (x:=1;C, S[120/r]>
(
(
(
(
(
c

—¢ (skip; C S[120/x][1/x])

—c (C, S[120/x][1/x])

—¢ (if x > 1 then (C) ; C) else skip, S[120/r][1/x])
—¢ (if 1 > 1 then (C) ; C) else skip, S[120/r|[1/x])
—>c if false then (C) ; C) else skip, S[120/r|[1/x])

skip, S[120/r|[1/x])

3.2.3 Theorems about the transition semantics

The transition semantics is good for more than just specifying what the result of a par-
ticular program should be. We can also use it to prove statements about programs in
general. Here’s one simple example:

Proposition 13 (IMP expressions have no side-effects) If either
(ie, Sy —1 (i€', S") or (be,S) —p (be’, S")

then S = 8. In other words, evaluation of integer and boolean expressions has no effect
on the state.

25

Proof. This follows by rule induction, first on the definition of —; and then on that of
— g, and is left as an exercise. |

Commands, on the other hand, can change the state (rule (—¢ -2)). Proposition 13
means that we could have given an alternative set of definitions for the transition semantics
in which the relations —; and —p were given as subsets of (Iexp x States) x Iexp and
(Bexp x States) x Bexp respectively.

Theorem 14 (Transitions are deterministic) For any phrases (expressions or com-
mands) e,e’ ,e” and any states S,S',S", if

(e,8) — (¢/,8") and (e, S) — (", S")
then ¢/ =¢€"” and 8" = S".

Proof. This follows by structural induction on e. In any proof of (e, S) — (¢, S’), the
last rule used is uniquely determined by the structure of e. For example, suppose that
e = (e 10p e2) and that the result holds for e; and e;. Then there are three cases to
consider:

e If ey = ny and e3 = my are both constants then the last rule used in a proof of

(e,S) —r (e, S") or of (e,S) — (€', S") must be (—;-4) and hence ¢’ = e; iop es =
¢ and §'=5=5".

o If ey = ny is a constant but ey is not then the last rule used in any proof of (e, S) —
must be (—7-3) so that the two proofs must look like

(e2,8) =1 (€5, ") (e2,S) =1 (€5, S")
S) —

(—=1-3) (—r1-3)

(ny iop ez, S) =1 (ny iop ey, S') (ny iop ez, 1 (nyiop ey, S")

Then by the induction hypothesis applied to ez, we must have e}, = e§ and S’ = S”,

and hence

¢ = (niiopey) = (nyiopes) = €

as required.

e ¢ is not a constant. Then the last rule used must have been (—;-2) and we reason
much as in the previous case that ¢/ = ¢’ and S’ = §”.

Each of the other cases for the structure of e can be dealt with in a similar manner, and
we leave them as Exercises. a

3.2.4 Evaluation sequences

A configuration (e, S) is said to be terminal if there is no (¢/, S’) such that (e, S) — (¢/, 5’).
A moment’s inspection of the transition rules shows that the terminal configurations are
precisely

(n, S) (true, S) (false, S) (skip, S)

An infinite evaluation sequence for (e,S) is an infinite chain of one-step transitions:
(e, S) = (e0,So) — (e1,51) — (e2,52) — -+~

26

where for all 4, (e;, S;) is not terminal.
A finite evaluation sequence for (e, S) is finite chain

(e,) = (e, So) — (e1,51) — (e2,82) — -+ — (en,Sn)

with (e, S,) terminal. Evaluation sequences are also called ¢races (which roughly matches
the way in which the word ‘tracing’ is used in the context of debugging to refer to examining
the sequence of indermediate states during a particular run of a program).

By Theorem 14, each (e, S) has a unique evaluation sequence which is either infinite
or else terminates with a terminal configuration (e, S,) which is uniquely determined by
(e,S). In fact we can be a bit more precise:

Lemma 15 (Expressions always terminate) If e € Iexp U Bexp then for any S €
States, (e, S) has a finite evaluation sequence.

Proof. Structural induction (Exercise). O

The previous lemma, together with Proposition 13, means that we can define evaluation
functions for expressions

Ieval : Iexp — (States — Z)
Beval : Bexp — (States — B)

Ieval(ie)(S) = the unique n € Z st. (ie,S) =7 (n,S).
Beval(be)(S) = the unique b € B st. (be, S) =% (b, S).

(Recall that —* is the reflexive transitive closure of —, defined by the following inductive

rules:
="y y—z

="z z ="z

)

In contrast to the situation for expressions, commands can have infinite evaluation
sequences. For example, if C' = while true do skip then
(C,S) —¢ (if true then (skip; () else skip,S)

—C (Sklp) Ca S)

—C (Ca S>

—¢ --- and so on for ever
However, if (C,S) does have a finite evaluation sequence, say

(C,S) —¢ (skip,S')

then by Theorem 14 we know that S’ is uniquely determined by C and S, so that C
determines a partial function from states to states:
Ceval : Com — (States — States)

the unique S’ st. (C,S) —¢ (skip, S’} if it exists
undefined, otherwise

Ceval(C)(S) = {

27

For example, if C' is the factorial program
C =r := 1; (vhile x>1do (r := rx*x; x = x—1))
then Ceval(C) is the (total) function States — States given by

Sin!/r][1/x] ifn>1
5= { S[1/x] ifn <1

where n = S(x).

We should remark at this point that although IMP is a long way from being a practical
programming language, it is Turing powerful. This means that for any partial recursive
function f:Z — Z, there is an IMP command C' which computes f in the sense that for all
states S, Ceval(C)(S) is defined iff f(S(x)) is defined and in that case Ceval(C)(S)(y) =
f(S(x)). (See the Exercises at the end of the Chapter.)

3.2.5 Implementing the transition semantics in ML

To implement the transition semantics in ML, we rely on some of the mathematical results
which we have just proved. In particular, the one-step transition relations are all actually
partial functions because every non-terminal configuration (e, S) has a unique successor.
We simply code these partial functions as ML functions istep, bstep and cstep (for
integer expressions, boolean expressions and commands, respectively) in a way which
directly expresses the rules in Figure 3.2:

(* iopmeaning : IOP -> ((int*int)->int) *)

fun iopmeaning iop (x:int,y:int) = case iop of
Plus => x+y

| Times => xx*y

| Minus => x-y;

(* bopmeaning : BOP -> ((int*int)->bool) x*)

fun bopmeaning bop (x:int,y:int) = case bop of
Equal => x=y

| Greater => x>y;

(*x istep : IEXP*STATES -> IEXP *)
fun istep(ie,S:STATES) = case ie of
Pvar(name) => N(lookup(name,S))
| Iop(iop,N(n1),N(n2)) => N(iopmeaning iop (nl,n2))
| Top(iop,N(nl),ie2) => let val ie2’ = istep(ie2,S)
in Iop(iop,N(nl),ie2’)
end
| Top(iop,iel,ie2) => let val iel’ = istep(iel,S)
in Iop(iop,iel’,ie2)
end;

(* bstep : BEXP*STATES -> BEXP *)
fun bstep (be,S:STATES) = case be of
Bop(bop,N(n1) ,N(n2)) => B(bopmeaning bop (nl,n2))

28

Bop(bop,N(nl1),ie2) => let val ie2’ = istep(ie2,S)
in Bop(bop,N(nl),ie2’)
end
Bop(bop,iel,ie2) => let val iel’ = istep(iel,S)
in Bop(bop,iel’,ie2)
end;

(*x cstep : COM+STATES -> COM*STATES *)
fun cstep (com,S:STATES) = case com of

Assign(name,N(n)) => (Skip,update(S,name,n))

Assign(name,ie) => let val ie’ = istep(ie,S)
in (Assign(name,ie’), S)
end

Seq(Skip,C) => (C,S)
Seq(C1,C2) => let val (C1’,S’) = cstep(C1,S)
in (Seq(C1’,C2),S’)
end
If(B(true),C1,C2) => (C1,S)
If(B(false),C1,C2) => (C2,8)
If(be,C1,C2) => let val be’ = bstep(be,S)
in (If(be’,C1,C2), S)
end
While(be,C) => (If(be,Seq(C,While(be,C)),Skip), S);

You should be able to see that each clause of the definition of (say) cstep corresponds
to exactly one of the transition rules, though we have to use some intelligence in ordering
the clauses.? Once we’ve got the one-step transitions, defining the ML versions of the
functions Ieval, Beval and Ceval is straightforward, as we just keep applying the successor
operation until we reach a terminal configuration:

(x ieval : IEXP -> (STATES -> int) =*)
fun ieval (N(n)) (S:STATES) = n

ieval ie S = let val ie’ = istep(ie,S)
in ieval ie’ S
end;

(* beval : BEXP -> (STATES -> bool) *)
fun beval (B(b)) (S:STATES) = b

beval be S = let val be’ = bstep (be,S)
in beval be’ S
end;

(x ceval : COM -> (STATES -> STATES) *)
fun ceval Skip (S:STATES) = S

ceval C S = let val (C’,S’) = cstep (C,S)
in ceval C’ §?

3There are no clauses for terminal configurations, just as there are no transition rules for them in the
semantics — attempting to compute the successor of such a configuration will simply raise an uncaught
match exception.

29

end;

Note that the evaluation functions are tail-recursive, so that iterative IMP programs will
execute in constant ML stack space. Here’s an example of using the ML code to execute
an IMP program:

- (% initial state - everything is undefined *)
= wval (S:STATES) = [1;
val S = [] : STATES

- (* example factorial calculation *)

= val factprog = Seq(Assign("x",N(5)),Seq(Assign("r" ,N(1)),
= While (Bop(Greater,Pvar("x"),N(1)),

= Seq(Assign("r",Iop(Times,Pvar("r") ,Pvar("x"))),
= Assign("x",Iop(Minus,Pvar("x") ,N(1)))))));

> val factprog = Seq(Assign ("x", N 5), ...) : COM
- ceval factprog S;
> [("x",1),("r",120)] : STATES

In fact, the ML code which accompanies this course includes simple parsers and pretty-
printers for IMP programs (based on code for Dr Paulson’s book “ML for the Working
Programmer”). This means you don’t have to type programs in the extremely messy form
used above, but can instead do this:*

- wval fibprog = readcom "\

=\ last := 0; next := 1; n := 8;\
=\ while n>0 do\

=\ next := last+next;\

=\ last := next-last;\

=\ n := n-1\

=\ endwhile";

> val fibprog = Seq(Assign("last",N 0), ... : COM

- ceval fibprog S;
> [("last",21),("next",34),("n",0)] : STATES

There are also functions to parse expressions (readiexp and readbexp) and to print
phrases (prcom, priexp and prbexp).

Attempting to compute ceval C S in the case that (C,S) has an infinite evaluation
sequence (that is, in the case that Ceval(C)(S) is undefined) will cause ML to fail to
terminate. Because of the undecidability of the halting problem, there is in general no
way to predict when this will happen.

“The concrete syntax of IMP which the parser implements includes mandatory endif and endwhile
keywords which are used in the obvious way. The default behaviour of sequential composition (i.e. ;) is
to associate to the right, as is that of arithmetic operations (which also have the normal precedences).
For both commands and arithmetic operators, parentheses may be used to override the default groupings.
Whether or not you have to type the rather unpleasant \ continuation characters to break string literals
over more than one line depends on what version of ML you use.

30

3.3 Structural Evaluation Relations for IMP

3.3.1 Evaluation relations

The transition semantics of the previous section allowed us to define the evaluation re-
lations Ieval,Beval and Ceval in terms of the reflexive transitive closures of the one-step
transition relations —7,— g and —¢. In this section we shall show that these relations can
be described directly by a set of rules which follow the syntactic structure of IMP phrases.
This kind of operational semantics, which is sometimes called ‘natural semantics’, is often
more convenient to work with than the transition semantics.

We will define three evaluation relations

=75 C Iexp x States X Z
=p C Bexp x States x B
=c C Com x States x States

and we will write

ie,S =1 n instead of (ie,S,n) €=y
be,S =p b instead of (be,S,b) €=p
C,S =¢ S instead of (C,8S,9) e=¢

The evaluation relations are defined by the inductive rules shown in Figure 3.3, where
once again we have left out some obvious side-conditions.

Here is the same simple example as we gave on page 25, but done using the evaluation,
rather than the transition, semantics. Assume that S is such that S(y) = 3, then:

— (=11 — (=)
(=) 3,5=r73 4,5:>[4(:> 3)
y, 9 =713 ! 34+4,5=17 !

y+(3+4),S=,10
y:=y+(3+4),S =¢ S[10/y]

(=1-3)

(=c2)

Note that there is just one derivation for the entire evaluation of the command. This is
in contrast to the situation for the transition semantics, where every individual transition
is justified by its own derivation.

Exercise: Assume that S € States satisfies S(x) = 2 and S(r) = 60 and let C =
(whilex > 1do C;) where C; = (r:=r+*x;x:=x—1). Produce a derivation like that
above which proves

C,S =¢ S[120/r][1/x]

The evaluation semantics is much less ‘fine-grained’ than the transition semantics and
this style is sometimes called big step operational semantics, by contrast with the small
step style of the transition semantics. Certain low-level features which are made explicit
in the small-step semantics are thus hidden in the big-step semantics. The most obvious
is that, as we remarked on page 25, the transition semantics specifies that the evaluation
of integer expressions proceeds in a strict left-to-right order. This is not the case for the
evaluation semantics, since rule (=7-3) simply amounts to saying ‘to evaluate ie; iop iez,

31

(=1-1) (=19

n,S=rn z,S =1 S(z)
iel,S =1 ni ieg,S =71 N9 (3)
. - = — (=g5-1
(ie1 1op ie), S =1 ny iop ny l_),S:>Bb(nl)
iel,S =7 ni ieg,S =71 N9 (2)
=B
(ie1 bopiez), S =p n1 bop ng
ie,S=rn (2)
— (=c¢1 . =c
skip, S =¢ S () z:=1e,S =¢ Sn/z]
C1,S =¢ S’ CQ,SI = S" be, S =p true Ci1,S8 =¢ S’
_ - =c3) - - (=c4)
Ci;C,8=c S if be then C else (9, S =¢ S
be, S =p false Cy,8 =¢8' 5) be, S = p false (5 -6)
= c-
if be then C else Cy, S =¢ S ¢ whilebedo C,S =¢ S

be, S =p true C,S=c 9 whilebedo C, 5" =¢ S"
whilebedo C,S = §”

(=c7)

Figure 3.3: Evaluation Semantics of IMP

32

evaluate ie; and ies and combine the results with sop’. In general, how much difference
this makes will depend on the fine details of the language; whether we are interested in
the extra low-level details provided by the transition semantics will depend on what we
are using the semantics for.

3.3.2 Equivalence of transition and evaluation semantics of IMP

Now we have two different operational semantics for IMP, the obvious question to ask
(particularly in view of the remarks at the end of the last section) is whether or not they
agree. In this section we shall prove that they do.

Theorem 16 For all ie € Iexp, be € Bexp,C € Com, S, S’ € States, n € Z and b € B,

(ie, SY =7 (n,S) if and only if ie,S =i n
(be, Sy =% (b,S) if and only if be,S =pb
(C,S) =& (skip, ') if and only if C,S =¢ S
Proof. Firstly note that for each of the three clauses of the theorem, we have to prove

both a left-to-right and a right-to-left implication. The broad structure of the proof is as
follows:

1. Prove the right-to-left implications by rule induction for =.

2. Use rule induction for — to show that

(ie, S) — (i€/, S) and i€/, S = n implies ie,S =1 n
(be, Sy —p (be',S) and be', S =p b implies be,S =p b
(C,S) =¢c (C',8") and C', 8" =¢ §” implies C,S =¢ S”

3. Deduce the left-to-right implications from 2.

Proof of 1. Since =7,=p and = are inductively defined by the rules shown in Fig-
ure 3.3, it suffices to show that the subsets

{(ie, S,n) | (ie, S) =7 (n,S)} C Iexp x States x 7
{(be, S,b) | (be,S) =% (b,S)} C Bexp x States x B
-

{(C,8,8")] (C,S) =& (skip, S')} Com x States x States

are closed under all these rules. We will just check the case of rule (=¢-7) (since it
is the most interesting) and leave the remaining cases as Exercises.

So, suppose that the hypotheses of (=¢ -7) are in the sets. l.e. we assume the
following three things:

(a) (be,S) =3 (true,S)

(b) (C,S) —¢ (skip, S')

(c) (whilebedo C,S’) —¢ (skip, S”)

33

and we have to show that the conclusion of (=¢-7) is in the set, i.e. that
(whilebedo C,S) —¢ (skip,S”)

Well, writing C for while be do C' we can reason as follows:

(C1,S) —¢ (if bethen C'; C) else skip, S) by (—¢-8)
—¢ (if true then C; C else skip, S) by (a) and several (—¢-5)s
—c (C;C1,S) by (—¢-6)
—% (skip; C1,S") by (b) and several (—¢-3)s
—c (C1,5) by (—c4)
—¢ (skip,S") by (c)

as required.

Proof of 2. This follows by rule induction on each of the relations —;,—p and —¢.
Define three relations

~ C (Iexp x States) x (Iexp x States)
~p C (Bexp x States) x (Bexp x States)
~¢ C (Com x States) x (Com x States)

as follows:
(ie, S) ~ (i€/,8") iff S =S5" and Vn € Z.(ie/, S = n implies ie, S = n)
(be,S) ~p (be',S") iff S =5 and Vb e B.(be', S =p b implies be, S =p b)
(C,S) ~¢ (C',8") iff VS" € States.(C',S" =¢ S" implies C, S =¢ §")
Then 2. is equivalent to proving (ie, S) —r (ie/,S’) implies (ie, S) ~ (ie’, S") and
similarly for boolean expressions and commands. This follows by rule induction if
we can show that ~»;, ~»p and ~¢ are closed under the rules defining —;,—p and

— ¢ respectively. We will just check the case of rule (—¢-8) and leave the other 14
cases as Exercises.

Since (—¢-8) has no hypotheses, we just have to show that
(while be do C, S) ~»¢ (if be then (C ; while be do C) else skip, S)
Writing C4 for while be do C this means showing that for all S” € States if
if be then (C'; C}) else skip, S =¢ S (3.1)

then
1,8 =c S (3.2)

But if (3.1) holds then it can only have been deduced by applying (=¢-4) or (=¢5),
and we consider each possibility in turn.

Case (=¢-4) The derivation looks like this

Dl DZ
be, S =p true C;C,8=c98"

if be then (C'; C}) else skip, S =¢ 5"

(=c4)

34

but the subderivation Dy can only end in an instance of (=¢ -3), so we must

have
D3 Dy
D, C,S=c 8 1,8 = S" (5c3)
be, S =p true C;0,8=c8"
(=c-4)

if be then (C'; C}) else skip, S =¢ S”

for some intermediate state S’. Given all that, it’s easy to see that we can
derive (3.2) like this

Dl D3 D4
be, S =p true C,S =¢S5 whilebedo C,S' =¢ S”

whilebedo C,S = S”

(=c-7)
as required.
Case (= -5) In this case the derivation of (3.1) looks like

Dy D,
be, S = p false skip, S =¢ S”

=cD
if be then (C'; C}) else skip, S =¢ S” (Sc5)

but then Dy can only be an instance of (=¢-1) so S = S” and the derivation is

D,

be, S = p false skip,S =¢ S

: : (=c+5)
if be then (C'; C4) else skip, S =¢ S

so that we can apply (=¢-6) like this

D,
be, S = p false

o6
WhilebedoC,S:>cS(c6)

to deduce (3.2) as required.

Proof of 3. It is easy to see that each of the relations ~+;, ~»p and ~»¢ defined in the
proof of 2. is reflexive and transitive, simply because logical implication is reflexive
and transitive. Furthermore, 2. says that —;C~+;, -pC~~p and —;C~»7; thus,
because the reflexive transitive closure of a relation R is the smallest reflexive and
transitive relation containing R, we have

(ie, S) —7 (ie',S") implies (ie, S) ~ (ie’,S")
(be,S) =% (be',S") implies (be,S) ~p (be',S")
(C,8) =& (C', 8"y implies (C,S)~¢ (C', 8"

So, if (ie, S) =% (n, S) then (ie, S) ~ (n,S) and hence by the definition of ~
Vm € Z.(n, S = m implies ie, S = m)

35

Taking m = n and using rule (= -1) gives ie, S = n as required. Similarly, if
(be,S) =% (b, S) we get that (be,S) ~p (b,S) and we can use (=p -1) and the
definition of ~+p to deduce be, S =p b. Finally, much the same reasoning applies
to commands, so that if (C,S) —¢, (skip, S’) then (C,S) ~¢ (skip, S’) so by the
definition of ~»¢ and rule (=¢-1) we have C, S =¢ §'.

a

The full proof of Theorem 16, filling in all the cases we missed out in parts 1. and 2.,
is obviously fairly lengthy but it doesn’t involve any more concepts — it’s just a matter
of checking a lot more cases. The important thing is to understand and remember the
broad outline, as you should then be able to fill in the details yourself without any great
difficulty.

3.3.3 Implementing the evaluation semantics in ML

Translating the big-step evaluation semantics into ML is even easier than was the case for
the small-step transition semantics. Once again, we rely on the fact that the evaluation
relations are actually partial functions (this follows from the equivalent fact for the tran-
sition semantics and the equivalence of the big-step and small-step semantics which we
just proved). As we have previously remarked, the inference rules defining the evaluation
relations do not specify an evaluation order for expressions, but we do have to pick one in
order to translate the rules into ML code.

(* bigstepi : IEXP -> (STATES -> int) *)
fun bigstepi ie (S:STATES) = case ie of
N(n) => n
| Pvar(x) => lookup(x,S)
| Top(iop,iel,ie2) => let val nl
val n2

bigstepi iel S
bigstepi ie2 S

in
iopmeaning iop (n1,n2)
end;

(* bigstepb : BEXP -> (STATES -> bool) x*)
fun bigstepb be (S:STATES) = case be of
B(b) => b
| Bop(bop,iel,ie2) => let val nl
val n2

bigstepi iel S
bigstepi ie2 S

in
bopmeaning bop (nl1,n2)
end;

(* bigstepc : COM -> (STATES -> STATES) *)
fun bigstepc C (S:STATES) = case C of
Skip => S
| Assign(x,ie) => let val n = bigstepi ie S
in update(S,x,n)
end

36

| Seq(C1,C2) => let val S’ = bigstepc C1 S
in bigstepc C2 S’
end

| If(be,C1,C2) => if (bigstepb be S)
then bigstepc C1 S
else bigstepc C2 §

| While(be,C1) => if (bigstepb be S)

then let val S’ = bigstepc C1 S
in bigstepc C S’
end

else S;

This gives a very natural interpreter for IMP programs. The functions bigstepi,bigstepb
and bigstepc have, of course, exactly the same input/output behaviour as their small-step
equivalents ieval, beval and ceval.

3.3.4 Semantic equivalence

One of the reasons for studying semantics which we mentioned in the introduction was to
have a precise notion of when one command is equivalent to another. We are now in a
position to define such a notion.

If C; and Cy are IMP commands, then we say C', and Cs are semantically equivalent,
and write C; ~ C» if for all states S and S’

Ceval(C1)(S) is defined and equal to S’
if and only if
Ceval(C5)(S) is defined and equal to S’

Whilst Ceval was defined in terms of the small-step semantics, in view of Theorem 16
we obviously have

C ~ Oy iff VS, S’ € States.(C1,S =¢c S'= 03,8 =¢ ')

It’s clear that the relation ~C Com x Com is an equivalence relation, i.e. it is reflexive,
symmetric and transitive. Here’s an example of an interesting equivalence:

Proposition 17 For any three commands C,C',C"
(if be then C else C') ; C" ~ if be then (C';C")else (C';C")
Proof. Let

C; = (ifbethenCelse(’);C”
Co, = ifbethen(C;C")else (C';C")

There are two things to prove, firstly that if Cy, S =¢ S’ then C5,S =¢ S’ and secondly
that if Cy, S =¢ S’ then C1,S =¢ S" and we prove each in turn.
If C1,S =¢ S’ then the deduction of that fact must have ended in an instance of rule
(:>C -3):
Dy Dy
if bethen Celse C', S = S” " S" =8

(if be thenCelse C'); C", S =¢ S

(=c3)

37

for some state S”. There are then two possibilities for the last rule used in Dy, viz. (=¢-4)
and (=¢-5). If the last rule was (= -4) then the derivation must look like

D3 Dy
be, S =p true C,S=c 8" Do) D,
if bethenC else C', S = 5" " S" =0 8 (3)
:> .
(if bethenCelse C');C",S =¢ S ¢
and so we can form the following derivation
Dy Dy
Dy C,S=¢cS8" " S8" =0 8 (5 3)
o
be, S =p true C:C" S=c8
:>(j-4)

if be then (C'; C") else (C'; C"), S =¢ &'

to show that C3, S =¢ S’ as required. The case where the last rule of Dy is (=¢ -5) is
similar, and omitted. Thus we have proved the first part of the proposition.

Similarly, starting with Cs, S =¢ S’ we can deduce C,S =¢ S’. Hence C; =~ Cs, as
required. |

Proposition 18 For an commands C1,Co and boolean expression be,
if C1 ~Cy then while bedo C; =~ while be do Cy

Proof. We have to show that if while be do C1,S =¢ S’ then while be do Co, S =¢ S’
for any states S and S’. Once we’ve done that, it’s clear that the converse holds too, just
by symmetry.

The proof is by induction on the derivation D of while be do C, S =¢ S’. There are
two cases for the last rule applied in D, viz. (=¢-6) and (=¢-7). If the last rule applied
was (=¢-6), then D looks like this:

D,
be, S = p false

=C -6)
whilebedo C1,S =¢ S

so that S = S’. In this case, we can obviously form D’, deriving while be do C5, S =¢ S’

like this:
D,

be, S = p false

=C -6)
whilebedo (s, S =¢ S

If, on the other hand, the last rule used in D was (=¢-7), then D looks like

D1 DQ D3

be, S =p true C1,S =¢c 5" while bedo C1,5" =¢ 5’
(=c7)

whilebedo C1,S =¢ &'

for some state S”. In this case, we can apply the assumption that C; ~ Cs to deduce
from Dy that there must be a D proving Cy, S =¢ S”. We can also apply the induction

38

hypothesis to D3 to obtain a derivation D} which proves whilebedoCy,S” =¢ S’. Putting
these bits together we can form D’ to be

Dy D} Dy
be, S =p true Cor, S = 5" while be do Co, 8" = S’ (7
=C-
while bedo Cy, S =¢ S’
deriving while be do C5, S =¢ S’ as required. O

3.3.5 Congruences

There is an obvious question to be asked here which has considerable implications for
how useful this notion of semantic equivalence is in practice. The most obvious reason
for having a notion of equivalence is so that one can replace some command C; with an
equivalent (but, let us say, more efficient) command C5 in a larger program and know that
the program would still give the same results (though, we hope, more quickly). However
we do not yet know that this is sound.

We can express the property we want by introducing the notion of a command context,
which is usually written C[] and defined slightly informally to be ‘a command with a hole
in it’. In other words, a command context is just like a command, except that it can also
contain one or more holes, which are written [], as subcommands. If C[] is a command
context and C} is a command, then C[C}] is the command which results from replacing all
the occurences of the hole [] in C[] with Cy. Now if R is a binary equivalence relation on
commands, we say that R is a congruence if for all C[], C; and Cs, if (C1,C5) € R then
(C[C4],C[Cs)) € R. Another way of saying this is that R is a congruence if it is preserved
by all the constructs of the command syntax. (Exercise: Why are the two definitions
equivalent?)

What we want to know is that our semantic equivalence relation = is a congruence,
as that then allows us to ‘substitute equals for equals’. Luckily, it turns out that ~ is a
congruence for IMP programs. The theorem can be proved directly from the operational
semantics, and Proposition 18 is actually one of the steps in the proof (this is developed
further in the Exercises), but it will also follow from the results of the next chapter. The
Part II Concurrency Theory course develops these ideas further — for concurrent processes
there are many natural notions of equivalence, some of which are congruences and some
of which are not.

3.3.6 Semantic equivalence proofs as functions (optional)

If you study the proofs of Propositions 17 and 18, and have done some of the exercises
on semantic equivalence then you should be able to see that the proofs all have a similar
form. There are always two implications (for the two parts of the definition of semantic
equivalence), each of which has the form

if C,S =¢ S’ then Csy, S =¢ S’

These are proved by looking at the possible derivations of C, S =¢ S’ and showing that for
each one we can construct a derivation of Cy, S =¢ S’. For some of the proofs concerning
looping constructs, this construction requires structural induction on the derivation of
C1,S =¢ S, whereas for simpler cases (like Proposition 17) it’s just a matter of splitting

39

the each derivation of C,S =¢ S’ into a small number of subderivations which can be
reassembled to give a derivation of Cy, S =¢ S’. In any case, one can view the proof that
(any instance of) Cy is semantically equivalent to (the corresponding instance of) Co as
a pair of functions which take derivations to derivations — given a derivation about Cf,
one function returns the derivation of the same thing about Cy (and the other function
does the converse). In the case that the proof requires structural induction on derivations
the functions which express the proof will themselves be defined inductively. In the case
where the proof relies on an assumption that two commands are equivalent, the function
corresponding to the proof will take as extra arguments the functions which witness that
equivalence.

All this can be formalised in ML, but the details are rather too messy to include here.
Appendix A contains further details, and the code is available electronically for those who
would really like to play with it.

3.4 Exercises

1. Check that you can give derivations in the one step transition semantics for each of
the transitions in the example on page 25.

2. Do the proof of Proposition 13, that IMP expressions have no side-effects.
3. Complete the proof of Theorem 14, that transitions are deterministic.
4. Prove Lemma 15, that the evaluation of expressions always terminates.

5. How would you change the one-step transition semantics to specify a right-to-left,
rather than a left-to-right evaluation order? How would you write the rules so that
the evaluation order is unspecified and, for example, all the following sequences are

allowed?
((0+ (1+2) + (3 +4),
/ \
(0+3)+(3+4),8 ((0+(1+2)+7,9)
\
(3+(3+4),8 (0+3)+7,8)

\ +7,5)

(10, S)

Prove that in this case, although the one-step transition relations —; and —p are
no longer deterministic, the evaluation relations Ieval, Beval and Ceval which are
defined in terms of them are still deterministic.

40

10.

11.

12.

13.

14.

15.

Produce a derivation in the big-step evaluation semantics for the example on page 31.

Finish the proof of Theorem 16, showing the equivalence of the small-step and big-
step semantics for IMP.

There is a lot of choice about what constitutes a ‘small step’ in the transition se-
mantics. Formulate a different version in which expressions all evaluate in just one
step, but commands still generally take lots of little steps.

Show that for all C' € Com,

C;skip ~ C =~ sgkip;C

Show that for all commands C4,C5,C3

(C1;C2);C3 = Cy;(Cy;Cy)

Give examples of be € Bexp and C1, Cy, C3 € Com for which

C1; (if be then Cy else C3) % if bethen (Cf ; () else (Cf ; Cs)

Suppose be, S = p true. Prove that there is no S’ € States such that

while be do skip, S =¢ S’

Complete the proof that ~ is a congruence using the evaluation semantics. In other
words, show that if Cy ~ C5 then:

(a) (Cl 3 C) ~ (CQ) C) and (C,Cl) ~ (C,CQ)
(b) (ifbethenCelse(C;) =~ (if bethenCelse (Cy) and (if be thenC) else () =~
(if be then Cy else C).

Prove that for any be € Bexp and C' € Com
while bedo C' = if be then (C ;while bedo C') else skip

(You can do this in two natural ways — one is a direct proof from the evaluation
semantics and the other uses the transition semantics.)

Augment the rules defining Bexp with

be € Bexp

not(be) € Bexp

and extend the relation = p by the rule

be,S =pb

not(be) =p —b 5:3)

where —true = false and —false = true.

41

Now augment the rules defining Com with

C € Com be € Bexp

(repeat C'until be) € Com

The intended meaning of (repeat C until be) is ‘repeatedly execute C' until the
condition be evaluates to true’. Extend the evaluation relation =< by adding some
rules which express this intention. Prove, using your new definition of = ¢, that for
any C and be

(repeat C'until be) =~ C';(while not(be)do C)

16. Augment the commands of IMP with the following two new constructs

be € Bexp C, € Com Cy € Com

exitif(be) € Com (C1 orelse C5) € Com

The intended meaning of exitif(be) is to abort execution at the current state just

in case be evaluates to true. The intended meaning of C; orelse C is to execute
C4 until either it terminates normally (in which case C5 is ignored completely), or
until execution is aborted as above, in which case Cy is executed. This is made
precise by adding to the evaluation relations =pg,=; and =, the new relation
{C Com x States x States (pronounced ‘aborts at’) with the following new rules:

be, S =p true be, S = p false
exitif(be), S S exitif(be),S =¢ S
C,, S8 C1,S=¢c 8 Co, S 1 S
(C15C2), 51 S (C15C2), 81+ 8"

be, S =p true C1,S1+S be,S =p false Co, S S
if be then C else 03, S} S’ if be then C else Co, S 1} S’

be, S =p true c,s (s
whilebedo C,S 1 S’

be, S =p true C,8 =8 while bedo C, S {4 "
while bedo C,S f+ 8"

C1,S =c S Cp,S S Co, S =¢ 9"
(Cy orelse (), S =¢ S’ (Cy orelse (), S =¢ S"

Ci, S S Co, 8" v 9"
(Cy orelse C5),S ## S”

(a) For the new language, the old definition of ~ still makes sense, but it is no
longer a congruence. Why not? Refine the definition of semantic equivalence
of commands to repair this.

42

17.

18.

(b) Call a command C unezceptional if C,S ft S’ holds for no states S,S’. For
such a C, show that (if be then C' else C) is semantically equivalent to an
expression built from be,C' and C’ using just exitif, orelse and ;.

(¢) Use the new language to define a macro exit and a new form of while construct
with the property that exit will abort the smallest such enclosing new while
loop.

If you know how to program in Prolog, experiment with implementing the two kinds
of operational semantics for IMP in Prolog, rather than ML. What are the advantages
and disadvantages of this approach?

Prove that IMP is Turing-powerful, by picking your favourite model of computation
from the Computation Theory course (Turing machines, register machines or partial
recursive functions) and showing how to simulate it in IMP.

43

Chapter 4

Denotational Semantics of IMP

The aim of this chapter is to present a different style of semantics for IMP in which
the meanings of IMP phrases are given directly as (static) mathematical objects, rather
than in terms of operational rules which express (dynamically) how evaluation proceeds.
This approach has several payoffs. One is that we will be able to see straight away that
the semantics is compositional. This means that the meaning of any phrase is determined
solely by the meaning of its subphrases, and will show, amongst other things, that semantic
equivalence is a congruence (cf. the remarks and exercises at the end of the last chapter).

Another major advantage of the denotational approach is that it gives an independent
mathematical meaning to the syntactic constructs of our language. This enables one to
compare the semantics of different languages and to identify the key concepts underlying
them. For example, the way in which we will give a meaning to while-loops in IMP turns
out to use the same techniques as are needed to give a denotational semantics to recursive
functions in more sophisticated languages than IMP.

The mathematical spaces in which we will find the meanings of IMP phrases are certain
kinds of partially ordered sets, called complete partial orders or domains. These structures
are central to denotational semantics and can be used to treat nearly all programming
language features you will meet. In particular, they can be used to give semantics to
functional languages like ML and Haskell and to non-determinism and parallelism.'

From the point of view of this course of lectures, there is a slight pedagogical difficulty
caused by the fact that our language IMP is so very trivial (no interesting datatypes,
no procedures, no higher-order functions) that it is actually possible to explain its de-
notational semantics just in terms of partial functions between sets and without explicit
mention of complete partial orders at all. However, since this naive approach does not
scale up to more interesting languages, I will jump straight in to using the more general
machinery of complete partial orders to give the semantics of IMP.?

! Actually there are still some things that the standard theory of domains doesn’t deal with very nicely.
These include dealing with sequentiality, computability and with ‘fairness’. Denotational semantics is still
an active research area, though the material in this course has been pretty stable and standard since the
seventies.

2And anyway, this is the only way I can set any interesting exercises or exam questions... :-)

44

4.1 Complete Partial Orders

4.1.1 Partial orders

A binary relation C on a set D is a partial order if it is

reflexive Vd € D.d C d
transitive Vd,d',d" e D.dCd Nd Cd" =dCd"
anti-symmetric Vd,d' €e D.dCd Nd Cd =d=4d.

A pair (D,CC D x D) for which C is a partial order is called a partially ordered set,
or poset for short. D is then called the underlying set, or carrier, of the poset. We will
frequently abuse notation by just referring to ‘the poset D’ and using C to denote the
partial order on a variety of differet posets.

The least element, or bottom, of a poset D, if it exists, is an element 1. € D such that

Vde D. 1 Cd

Note that, by anti-symmetry, the bottom element of a poset, if it exists, is unique. If L
and L' were two bottoms then we’d have 1 C 1’ and 1’ C 1| and hence L = 1'. We will
sometimes use subscripts to distinguish the bottoms of different cpos, but will also feel
free to omit them.

4.1.2 Chains and least upper bounds

If (D,C) is a poset, then a (countable) chain ¢ in D is a function ¢:N — D such that
Vn € N.e(n) C ¢(n + 1):
(0) T e(l) T e(2) C -

If ¢ is a chain, we will usually write ¢, rather than ¢(n).
An upper bound for a chain ¢ in D is an element d € D which dominates all the
elements of the chain:
VneN. ¢, Cd

Clearly, for a given chain, there may be no upper bound or there may be many upper
bounds. The least upper bound |52, cp of the chain ¢, if it exists, is an upper bound
which is C all other upper bounds:
o0
vd € D. <|_| cn> Cd < (VneN ¢ Cd)
n=0
Least upper bounds are also known as lubs (for obvious reasons) or sups (sup is short for
supremum, so sups is short for suprema (mixing English and Latin plurals)). Least upper
bounds, like bottoms, are unique if they exist as a trivial consequence of the fact that C
is antisymmetric.
A complete partial order, or cpo for short, is a poset which has least upper bounds for
all (countable) chains. We will also sometimes refer to cpos as domains. >
Examples:

*What we are calling a cpo is often called an w-cpo in the literature, the w indicating that only lubs
of countable chains are required to exist. Many authors also require cpos to have a least element, and
would refer to our potentially bottomless ones as predomains. Even more confusingly, the term ‘domain’
is frequently taken to mean a cpo with some particular more complicated extra structure, which we will
have no need of here.

45

. If X is any set, then the powerset of X

P(X) € {S|SC X}

ordered by C is a cpo. The lub of a chain Sy C Sy C --- is the union ;> Sn. The
cpo (P(X),C) also has a least element: the empty set) C X.

. For any sets X and Y, the set X — Y of partial functions from X to Y

X YU (feP(XxY)|VeeXVy,y €Y. (r,y) € fA(z,y) € f=y=1y'}

ordered by C is a cpo with lubs of chains given by union and least element the empty
set (i.e. the always undefined partial function), just as in 1.

. For any set X, defining C to be the equality relation on X, i.e. z C 2/ < =z =1/,
makes X into a cpo, called the discrete cpo on X. Note that any chain ¢ in (X, =)
is constant, ¢p = ¢; = - - -, and so trivially has a least upper bound ¢j. (X,=) has a
bottom just when X has precisely one element.

. Let © = NU{oo} (where oo is just a suggestive name for some element distinct from
all those in N), and define C on Q by

rC1 < (r,2' eNAz<2)V (2 =o0)

Then €2 is a cpo which may be pictured like this:

oo

n—-i—l

O — = — 1 - -

4.1.3 Continuous functions

If (D,Cp) and (E,Cg) are cpos, and f: D — FE is a function between their underlying
sets, then f is monotonic if it preserves order:

Vd,d € D.dCpd = f(d) Cg f(d)

It is continuous if it is monotonic and also preserves least upper bounds of all chains in

f ('j Cn) = |j f(en) (4.1)
n=0

n=0

46

Note that f oc:N — F is a chain because f is monotonic.
Actually, one half of Equation 4.1 follows directly from monotonicity, since for any
mé€EN

0o
cm Cp |_| Cn,

n=0

by the definition of upper bounds, so monotonicity gives
o0
n=0

which says f (1172, ¢n) is an upper bound for the chain f oc. Therefore, it is Jg the least
upper bound:

m=0

n=0

which means that Equation 4.1 holds iff

n=0

n=0
You should check (Exercise) that

1. For any cpo D, the identity function idDdéfAd € D.d: D — D is always continuous.*

2. If f:D — FE and g: E — F are continuous then the composition
gof¥rdeDg(fd) :D—F
is continuous.

3. If X is a discrete cpo, then any function f: X — D is continuous.

4.1.4 Binary product of cpos
If Dy and D5 are cpos, then their binary product Dy x Dy has as underlying set

Dy x Dy = {(dl,dg) | die Dy N dy € D2}
with the partial order
(dl,dg)g(Il,dIQ) = dlgdll A dQEdIQ

It’s easy to check that this is a cpo, with least upper bounds calculated ‘compontentwise’.
If ¢ : N — Dy x Dy is given by ¢, = (c},,cl) then

00 00 00

_ / "
|_| Cn = |_| Cpn |_| Cn
n=0 n=0 n=0

If D and FE both have bottoms, then so does D x E, viz. the pair (Lp, Lg).

“Recall that Az € A.e, where e is some expression possibly involving the variable z, means ‘the function
which sends any a € A to e[a/z]’. It’s essentially the same as fn (x:4)=>e in ML.

47

There are continuous projection functions fst: D1 X Dy — Dy and snd: D1 X Dy — Do
given by fSt(dl, dg) = d1 and Snd(dl, dg) = dg.

Given continuous functions fi: £ — Dy and fo: E — D5, we get a continuous function
(f1, f2): B — Dy x Dy defined by (f1, fo)(e) = (fi(e), f2(e)). This obviously satisfies the
pair of equations

fsto(fi,f2) = fi

sndo (fi,f2) = [
which we can summarise in a diagram:
D, fst Dy x Dy snd D,
(f1, f2)
fi f2
E

Given fi: Fy — D;i and fo: F9 — D5 continuous, we define the continuous function
f1 X f2: Ey x Ey — Dy X Dy to be <f1 o fSt, f2 o SHd). In other words (f1 X f2)(61, 62) =

(fi(e1), fa(e2)).
For example, if €2 is the cpo defined at the end of Section 4.1.2,then Q X is the cpo

which we can draw like this:

(00, 00)
(2, 00) (00, 2)

/ AN
(1,00) (00, 1)
/ N
(0, 00) (00,0)
(2.2)

VRN
(1,2) (2,1)
NN
(0,2) (1,1) (2,0)

N SN/

(0,1) (1,0)

NS
(0,0)

48

4.1.5 Exponentation of cpos

If D and E are cpos, then the exponential, or (continuous) function space, cpo [D — E]|
has as underlying set
{f:D — E| f is continuous}

with the order
fEf' < VYdeD.f(d)C f'(d)

Note that we use much the same notation for the set of all functions between two sets and
the cpo of all continuous functions between two cpos. If X and Y are sets, regarded as
discrete cpos, then the exponential cpo [X — Y] is just the discrete cpo on the set of all
functions from X to Y.

You should check that [D — E] really is a cpo, with lubs of chains calculated ‘point-

wise’: - -
UﬁlzxdeD(LyhuO
n=0 n=0

If E has a bottom, then [D — FE] has a bottom, given by L;p_ g = Ad € D. L, the
constant | g function (which is easily seen to be continuous).

The evaluation function ev:[D — E] x D — E is the continuous function defined by
ev(f,d) = f(d).

Given a continuous ¢g: F'x D — E, there is a continuous function cur(g): F — [D — EJ,
called the Currying of g, where for each x € F, cur(g)(z) = \d € D. g(z,d). Thus cur(g)
satisfies g = evo (cur(g) x id), which we may draw as a diagram:

FxD g E
cur(g) x id ev
[D — E] x D

4.1.6 Lifting

Given a cpo D, the lifted cpo D is obtained by adding a new bottom element below all
those in D. Formally, the underlying set of D is

{ld] |de DyuU{L}
with the order

/

rC2 << (z=1L)v@ddeD rs=[dAd=[d]ANdCd)
where [-] is a formal function to ‘mark’ all the elements of D in such a way as to make
them distinct from the new L, so for any d,d’ € D ([d] =[d'] = d=d and L # [d].
Clearly, D, has a bottom L. The function [-]: D — D, is continuous and order-
reflecting, in the sense that
[Cd] = dCd

49

If f: D — FE is continuous and F has a bottom, then we can lift f to get a continuous
function f*: D, — FE defined by

« def | f(d) if z = [d] for some d € D
) = {J_ ifz =1

So that f = f* o [-] which can be drawn as

*
Dy / E

D
The operation f +— f* is itself a continuous function
()*:[D — E] = [D. — E]

For example, if B is the set {true, false}, regarded as a discrete cpo,then the cpo B
(which is not discrete) looks like

[true] [false]

N/

A cpo like this, which is the lift of a discrete cpo, is said to be flat. For a flat cpo,
zCr <— (r=1)V(z=2).

4.1.7 Conditionals

Regarding B = {true, false} as a discrete cpo, for each cpo D there is a continuous function

Bx Dx D — D called the conditional function for D, whose value at (b,dy,ds) € Bx D x D
is

def | dy if b= true

(b= di|d) = { do if b = false

4.1.8 Least fixed points

Suppose D is a cpo with a bottom, L, and f: D — D is a continuous function. Consider
the sequence of elements of D

L, f(L), FUFL) = F2(L), £2(L), .

We have
1 C f(L) by definition of bottom
f(L) T f(f(L1))= f?(L) by montonicity and previous line
f2(L) C f3(L) for the same reason

50

and so on. Thus
LEf)CcAe .-

is a chain in D, and therefore has a least upper bound:

oo

fix(f) € |] (L)

where, inductively, f°(1) = L and f"*1(1) = f(
Since f is continuous, we have

Ry
S
=

(I
~
=
E

fix(f)) =
n=0
= /M)
n=0

But [%, f**1(L) is the lub of the chain f(1) C f?(L) C --- and this is clearly the same
as the lub of the chain | C f(L)C f2(L) C ---. In other words

ftix(f)) = fix(f)

so fix(f) is a fixed point of f.
More generally, a prefized point of f is an element d € D such that f(d) C d. Given
such a d, we can reason as follows:

1 C d since | is bottom, so
f(L) © f(d) £ d as f monotone & d prefixed point
f2(L) T f(d) C d for the same reason

etc. Thus Vn € N. f*(d) C d, which means that d is an upper bound for the chain
{f™(L) | n € N}. So d is 3 the least upper bound of that chain, i.e.

fix(f) = || /(L) C d
n=0

which means that fix(f) is the least element of the set of all prefixed points of f. In
particular, it is also the least fized point of f.5

In fact the operation f — fix(f) actually determines a continuous function fix: [D —
D] — D.

4.1.9 Fixpoint induction

There is a useful technique for proving properties of least fixed points, due to Scott and
de Bakker, which is called fizpoint induction (or sometimes Scott induction). Assume that

SOf course, this all looks very familiar — it appears to be essentially the same as the arguments we used
right at the start of these notes to justify inductive definitions. In fact, there are some slight differences.
Previously we showed (in the ‘downwards’ construction) that any monotone function on a complete lattice
(i.e. a set with greatest lower bounds of all subsets, which in that case were intersections) has a least fixed
point. Here we have just shown that a continuous function (which is rather more than just a monotone
function) over a cpo with a L (which is rather less than a complete lattice) has a least fixed point.

o1

D is a cpo with a bottom and that f: D — D is a continuous function. Then if P(-) is a
particular kind of predicate over D, we can deduce P(fix(f)) by showing

- and Pl
P(1) P(f ()

But what is the special condition which P(-) has to satisfy to make this valid? We can
find the answer just by trying to prove that the induction principle above is sound, and
seeing what we have to assume about P(-) to make the proof go through. So we’ll assume
that we’ve shown the two things above and try to deduce P(fix(f)).

Recall that fix(f) = |72, f"(L). So we start by observing that as we’ve assumed
that P(L) holds, we have that P(f°(L)) holds. Now assume that P(f"(L)) holds. By
the second rule above, this means that P(f(f™(L))) holds. But that’s just P(f"*!(L1)).
Hence we can conclude by mathematical induction that P(f™(L)) holds for all n. But
what we want to know is that P (| |72, f™(L)) holds. To make this leap, we have to know
that P itself has a special property. Clearly, a sufficient condition on P is that whenever
zo E z1 C --- is a chain in D such that for all n, P(zy) holds, P (|02 zn) holds. In
words, whenever we have a chain, all of whose elements satisfy P, the limit of the chain
also satisfies P. A predicate with this property is said to be inclusive or chain-closed, and
we have just shown

Theorem 19 (Fixpoint Induction) If D is a cpo with a bottom, f:D — D is a con-
tinuous function and P(-) is an inclusive predicate on D, then

(P(L) and Vz € D. P(x) = P(f(z))) implies P(fix(f))
a

(Of course, we can, as usual, identify a predicate on D with the subset of elements of D
which satisfy it, so we can speak of inclusive subsets, rather than predicates.)

As it stands, Theorem 19 doesn’t seem to be very useful. After all, checking that a
predicate is inclusive looks like quite a lot of work, in general; so all we save ourselves by
appealing to the fixpoint induction theorem is a little application of ordinary mathematical
induction. The reason that the method is useful is that we can often save ourselves the
bother of explicitly checking from first principles that a particular predicate is inclusive.
This is because there are a whole range of ways in which we can build inclusive predicates
from other inclusive predicates. Hence we can often tell that a predicate is inclusive just by
looking at it and seeing that it’s made up from “inclusivity-preserving” operations (much
as we can often tell that a function is continuous just by inspection because we know
things like ‘composition preserves continuity’). This is developed further in the Exercises.

Here’s an example of a proof by fixpoint induction:

Theorem 20 If D and E are cpos with bottom, f: D — E is a strict continuous function
(i.e. f(L)= 1) and h: D — D and g: E — E are continuous functions with foh = go f,
then

fix(g) = f(fix(h))

Proof. We will prove fix(g) = f(fix(h) by proving that the left hand side is C the right
hand side and vice versa. Firstly

f(fix(h)) = f(h(fix(h))) defn. of fixpoint
= g(f(fix(h))) assumption

52

So f(fix(h)) is a fixpoint of g, and hence fix(g) C f(fix(h)) by minimality of least fixed
points.

Now we use fixpoint induction to prove the reverse inequality. We take the predicate
P(z) over D to be

P(x) © (f(x) C fix(g))

which is an inclusive predicate (Exercise). Then we need to check firstly that P(L) holds.
This means checking f (L) C fix(¢g) which is immediate since we assumed that f was strict,
so f(L) =L C fix(g). Next we need to check that under the hypothesis that P(z) holds,
we can deduce P(h(z)) holds. So the hypothesis is that f(z) C fix(g) and we reason as
follows:

f(h(z)) = g(f(z)) assumption
C g(fix(g)) monotonicity of ¢ and hypothesis
= fix(g) defn. of fixpoint

So P(h(z)) holds as required, and we can use Theorem 19 to deduce P(fix(h)), i.e. that
f(fix(h)) C fix(g) as required. O

You can find more interesting Exercises on fixpoint induction in past examination
questions (e.g. 1993 Paper 8 Question 10).

4.2 Denotational Semantics of IMP

Having dealt with the mathematical preliminaries, we can now give the denotational se-
mantics of our language using cpos.

4.2.1 Semantics of integer and boolean expressions

We define functions

[I-] : Iexp — (States — Z)
-] : Bexp— (States — B)

by induction on the structure of expressions.> You can pronounce [e] as ‘the meaning of
e’, and the definitions are as follows, for any S € States:

Constants Forn € Z, b € B
[n](S) € n
[BIS) € b

Variables For z € Pvar

[](S) < S(x)

®The symbols [and | are called semantic brackets and part of their purpose is to emphasize that what’s
inside them is to be treated as a piece of syntax, rather than a mathematical expression. Since we already
have some conventions (involving underlining and the use of different typefaces) for this, that aspect is not
quite so important for us.

53

Compound expressions For iop € Iop, bop € Bop, iey,ies € Iexp

liev iop ies)(S) = ([iea](S)) iop ([ie2](S))
liex bopiies](S) = (Tier](S)) bop ([iea](S))

Proposition 21 For all ie € Iexp, be € Bexp, S € States, n € Z, b € B:

ie,S=>rn <= [ie](S)=n
be,S =pb << [be](S)=0b

In other words, the [—] functions are identical to the operationally defined functions Ieval
and Beval.

Proof. This is an elementary structural induction, and is left as an Exercise. a

So the meaning of an expression is a (total) function from States to whichever of Z
and B is appropriate. We can regard States,Z and B as discrete cpos, in which case the
functions are trivially continuous.

4.2.2 Semantics of commands

Giving a semantics to commands is more complicated than giving a semantics to ex-
pressions. This is because we have to deal with two (closely related) extra features of
commands: potential non-termination and looping constructs. Recall that for command
C, we defined Ceval(C') to be a partial function States — States. An alternative way to
express this partiality is by taking total functions into the flat cpo States, :

Proposition 22 For any sets X and Y, there is a bijective correspondence between the
set (X — YY) of partial functions from X to'Y and the elements of the cpo [X — Y]
(where we regard X and Y as discrete cpos).

Proof. Firstly note that any function from X to the underlying set of Y is continuous,
because X is discrete.

We define a function I from (X — Y) to the underlying set of [X — Y]] by, for
feX—-Y),zeX

1 otherwise

I(f) () { [f(@)] if f(z) is defined

The inverse function 7' sends ¢: X — Y| to I '(g9): X — Y where for any z € X,
I7'(g)(z) is defined iff g(x) = [y] for some y € Y, and in this case I~!(g)(z) = y.
Clearly I Y(I(f)) = f and I(I '(g)) = g O

Note that the completely undefined partial function corresponds to the constantly
1 function (Az € X. 1): X — Y. When we define the denotation of a command as
a continuous function from States — States), non-termination of the command will be
represented by its denotation returning 1.
We can now define
[-]: Com — [States — States, |

by induction on the structure of commands. The meaning of any command will be a
(trivially) continuous function from the discrete cpo States to the flat cpo States, .

54

Skip
[skip] % AS € States.[S]

Assignment If x € Pvar and ie € Iexp then the meaning of the assignment x := ‘e in
a state S is the element of States| corresponding to the state S updated to send
the variable z to the integer [ie](S) (with apologies for the overloading of square

brackets):
def

[z :=1ie] = AS € States.[S[[ie](S)/x]]
Sequencing For C1,Cy € Com we have [C]: States — States; and [Cs]: States —
States| and we want to compose them together, for which we need to use the (-)*
operation (Section 4.1.6)

[C1] ([CD)”

States

States | States |

So we define

[C1; Co] & AS € States.[Co]* ([C1](S))

Conditionals For be € Bexp, C1, Cs € Com we can give the meaning of ifbethenC)elseC)
using the continuous conditional function which we defined in Section 4.1.7:

[if be then C else Cs] ©F\S € States. ([e] (S) = [C1](S) | [C2](S))

While-loops This is where we need the interesting bit of the order structure of cpos.
Recall that (cf. the transition semantics and the exercises at the end of the last
chapter)

while bedo C' =~ if be then (C ;while bedo (') else skip

We want the denotation of the command on the left to be equal to that of the
command on the right. If we write f € [States — States,] for the as yet unknown
denotation of while be do C, this means that we want f to satisfy

f = XS € States.([be](S) = f*([C](S)) | [S])

The expression on the right is a continuous function of f, which means that we can
find an f satsifying the equation by taking the least fixed point of that function.

[while be do (] def fix(®)

where ®: [States — States) | — [States — States|] is defined by

o Af € [States — States) |.\S € States.([be](S) = f*([C](S)) | [S])

The fact that for any command C, [C] is indeed a well-defined continuous function is
relatively easy to see. The only thing that might not be completely obvious is that the
operation ® which we used to define the meaning of while commands is continuous, but
this can be seen from the fact that it is built up out of continuity-preserving operations.
Alternatively, you can prove it from first principles (Exercise). To know that fix(®) exists

95

we also need to know that ® is an operator on a domain with a least element, which it is,
since [States — States| | has as least element the constantly L function.

It is worth trying to understand just how the denotation of while commands is con-
structed. Assume that there is some command 2 such that [Q] = A\S € States. L, then
[whilebedo C] = fix(®) € [States — States, | is constructed as the least upper bound of a
chain of functions f: N — [States — States| |, starting with the constant bottom function:

fn : States — States|
fo = AS € States.L

= [9]
fi = 2(fo)

AS € States.([be](S) = fo (IC1(S)) | [S])
= \S € States.([be](S) = L | [S])
= [if be then Q else skip]
fa = @(fH)
= AS € States.([be](S) = fr(IC1(5)) | [S])
= [if bethen (C';if be then) else skip) else skip]
fs = 2(f2)
= S € States.([be](S) = f5([C](S)) | [S])
= [if be then (C'; if be then (C'; if be then () else skip) else skip) else skip]
fo = (fs)

= and so on...

So the limit of this chain, which is the denotation of the while command is (morally)
equal to the denotation of its infinite unfolding in terms of if statements. Each of the f;
is the denotation of a finite approximation to the while command which behaves like the
while command for up to ¢ iterations and then fails to terminate.

4.3 Equivalence of the Denotational and Operational Se-
mantics of IMP

Theorem 23 For all ie € Iexp,be € Bexp,C € Com,n € Z,b € B and S, S’ € States:
1. ie, S =1 n if and only if [ie](S) = n.
2. be,S =p b if and only if [be](S) = b.
3. C,S =¢ S"if and only if [C](S) = [97].

In other words, the denotational [—] functions are equal to the operationally defined
functions Ieval,Beval and Ceval (where in the third case we regard Ceval as a function
Com — [States — States| | using the bijection of Proposition 22).

Proof. The first two parts are just Proposition 21. For part 3., we have two directions to

prove. The left-to-right direction is proved by rule induction for = ¢, whilst the right-to-
left direction is shown by structural induction on C.

o6

For the left-to-right direction, we want to show that
{(C,8,8") | [C](S) =[S"]} C Com x States x States

is closed under the rules defining =, using parts 1. and 2. of the theorem for those rules
whose hypotheses involve =5 or =;. We just deal with the case of rule (=¢-7) and leave
the other rules as Exercises.

Suppose that C' is while be do C’ and that

(a) [be](S) = true
(b) [C')(S) = [5]
(c) [CI(S") = [5"]

for some states S,5’,S”. We have to prove that [C](S) = [S”]. Now, by the definition of
the denotational semantics, [C] = fix(®) where

= Mg AS.([be](S) = g"([C'1(S)) | [S])
By the discussion in Section 4.1.8,
[C] = fix(®) = @(fix(P)) = P([C])
so that
[C1(S) = Tbe](S) = [CT(IC'1(S)) | [S]
true = [C]*([S"]) | [S] by (a) and (b)
[CT*([S']) by definition of =|

[C](S") by definition of (-)*
= [S”] by (C)

as required.

For the right-to-left direction we use induction on the structure of C. As usual, the
interesting case is when C' is while be do C” and we consider this case in detail and leave
the others as Exercises. In this case we want to show that

VS, S [C](S) =[S'] implies C,S =¢ S’ (4.2)
on the inductive assumption that
VS, 8" .[C'](S) =[S'] implies C',S =¢ S (4.3)
Now, (4.2) is equivalent to
[C] C Ceval(C) in [States — States, | (4.4)
where,

aef | [97] if C,S =¢ S for some S’
1 otherwise

57

But by the definition, [C] = fix(®) and that means, by the discussion in Section 4.1.8,
that we can deduce (4.4) if we can show Ceval(C') to be a prefixed point of ®, as it is then
3 the least prefixed point. In other words, we want to show

®(Ceval(C)) C Ceval(C) (4.5)
i.e. that whenever ®(Ceval(C))(S) # L then ®(Ceval(C))(S) = Ceval(C)(S). But
&(Ceval(C))(8) = ([be](S) = (Ceval(C) ([C'1(S)) | 1S))
so if ®(Ceval(C))(S) # L then there are two possibilities:
1. Either [be](S) = true and (Ceval(C))*([C'](S)) # L, or
2. [be](S) = false.
We consider each case in turn:

1. In this case we have

L # (Ceval(C))*([C'](S)) = { feVal(C)(S’) iﬂ%g}lfiz 4

So we must have [C'](S) = [S'] and Ceval(C)(S") = [S”] for some S,S”. Then by
(4.3) and the definition of Ceval we have
C''S=¢S and C,§ = 95"

We are assuming that [be] = true so that by Part 2. of the Theorem (which was
part of Proposition 21) we have

be, S =p true

which taken with the two instances of =¢ above, allows us to apply (=¢ -7) to
obtain C, S =¢ S” and hence

®(Ceval(C))(S) = [§"] = Ceval(C)(95)
as required.

2. In the case that [be](S) = false, then by Part 2. of the Theorem, be, S = p false and
so by applying rule (=¢-6) we get
C,S=¢S

and hence

O(Ceval(C))(S) = [S] = Ceval(C)(S)
as required.
So in either case, we get ®(Ceval(C))(S) # L implies ®(Ceval(C))(S) = Ceval(C)(S) for
all S’ € States and thus we have established (4.5) and hence (4.2) as explained above. O
Theorem 23 immediately implies that the operational and denotational notions of
equivalence coincide:

Corollary 24 For any C1,Cy € Com
Cl ~ CQ < [[01]] = [[CQ]]

o8

4.3.1 Adequacy and full abstraction

We have been rather fortunate here — the correspondence between the denotational and
operational semantics is very accurate. For more complicated languages, it is very difficult
to achieve such a precise match. However, for many purposes a precise correspondence is
not strictly necessary. For example, suppose we wish to use the denotational semantics to
deduce that two commands are semantically equivalent. In other words, we plan to show
that the two commands have the same denotation and deduce that they will behave the
same operationally. For this to be a valid procedure, we only need to know the right-to-left
direction of Corollary 24, viz.

[[01]] = [[02]] = Cl =~ 02

A semantics with this property (denotational equality implies operational equality) is
said to be adequate. A semantics which satisfies both directions of Corollary 24 (so that
operational equality implies denotational equality as well as vice-versa) is said to be fully
abstract.

Of course, if our semantics is adequate but not fully abstract, we might fail to prove a
true fact C; ~ (5 using the denotational semantics. But for a good semantics this won’t
happen very often, and in any case, we don’t expect to be able to prove all true equiva-
lences, simply because of the incompleteness theorem (or the insolvability of the halting
problem, according to taste). Note that an adequate but non-fully abstract semantics
is no good at all for proving semantic inequivalences, but that showing inequivalences
directly from the operational semantics is usually easy (for example, for IMP, to show
that two commands are inequivalent we just have to give one state on which they behave
differently).

So why is it hard to find fully abstract denotational semantics for many interesting
languages? Part of the answer is that denotational models usually contain some points
which are not the denotation of any program phrase. Now this does not in itself cause a
failure of full abstraction: after all, there are continuous functions from States to States |
which are not the denotation of any IMP command (Exercise: why? Find one.), but our
semantics for IMP is fully abstract. The problem arises when two semantically equivalent
phrases have denotations which are different, but are only different because of the presence
of the extra elements in the semantics. For example, we might have two functions which
behave the same on all arguments which are the denotation of a term in the language, but
which give different results on some argument which is not the denotation of any term.
Examining just how this occurs can give fairly deep insights into the structure of the
language in question. For example, a straightforward denotational semantics for a little
functional language turns out not to be fully abstract because all the functions definable
in the language are sequential — they can be computed without any parallelism or time-
slicing. The model contains functions which cannot be so computed, such as ‘parallel or’,
which is the continuous function por: B; x B, — B, defined by

[true] if z = [true] or y = [true]
por(z,y) = [false] if z = [false] and y = [false]
L otherwise

You should be able to see that to implement a function with this behaviour requires
some parallelism, because on a sequential machine the function has to look at one of
its arguments first, and if that fails to terminate, the application as a whole will fail to

99

terminate, even if the other argument would have returned [true]. And in fact it turns
out that adding a parallel or constant to the language makes the simple semantics fully
abstract. The alternative, refining the definitions of domains and continuous functions so
as to get full abstraction for the sequential language is an extremely challenging problem
(which has recently been solved, after a fashion).

4.3.2 Compositionality and congruence

The denotational semantics we have given for IMP has a very interesting property, which
is that the meaning of any phrase is given in terms of the meaning of its subphrases (go
back and look!). We call this property of the semantics compositionality, and it is a highly
desirable feature of a semantics. We can use the fact that the denotational semantics is
compositional to give a slick proof of the fact that semantic equivalence is a congruence
(you should have already proved this directly from the operational semantics when doing
the Exercises at the end of the last chapter):

Corollary 25 (Semantic congruence) For any C1,Cy € Com and C|-| a ‘command
with a hole in it’,
Cy = Cy implies C[C] = C[Cy]

Proof. Because [—] is compositional, it’s obvious that [C1] = [C2] implies that [C[C1]] =
[C[C5]] and the result then follows from Corollary 24 (just using the adequacy direction).
a

4.4 Information, Continuity and Computability

We have given the semantics of IMP commands in terms of continuous functions between
cpos. It seems worth trying to give some slightly more intuitive explanation of why cpos
and continuous functions were chosen, and work, for this purpose.

Cpos and continuous functions are not a priori obviously the place to look for the
meanings of programs. One’s first thought would be to just take sets and functions. This
doesn’t quite work for a number of reasons:

1. Non-termination. If [A] were the set associated with a type A, and [B] that asso-
ciated with a type B, then taking [A — B] to be ([A4] — [B]), the set of functions
between [A] and [B] would not account for the possibility of non-termination. (You
should know from Computation Theory that the possibility of non-termination is a
central part of all Turing-powerful computational paradigms.)

2. Recursion. Looping or recursive language constructs such as recursive function def-
initions in ML or while loops in IMP naturally lead to the denotation of certain
expressions being defined in a recursive way. If the denotation of a program expres-
sion e is a function f:[A] — [B] then this means defining f to be a solution to an
equation f = ®(f) where ® is some function from ([A] — [B]) to itself. We simply
cannot find solutions to arbitrary such equations if we allow all set-theoretic func-
tions for ®. We feel somehow that we shouldn’t have to solve arbitrary equations,
since there are vastly fewer computable functions and these are the only ones which
give rise to equations which we absolutely have to be able to solve. Furthermore,

60

some equations may have more than one solution (e.g. f = f has any function at
all as a solution), and we need some way to pick the one of those solutions which
corresponds to what the operational semantics actually gives.

3. Recursive domain equations. As well as recursively defined elements of domains,
we also have to deal with situations where the domains themselves are recursively
defined. IMP is too simple to require this, but it shows up in the semantics for
ML’s recursive datatypes or in the case of the untyped lambda calculus, which was
the original reason for Dana Scott’s introduction of domain theory in the late 60s.
Roughly speaking, the argument goes as follows: in the untyped lambda calculus
every term is a function which can be applied to any other term and return a term.
So if D is the set representing the meanings of untyped lambda terms, we would
have to have D = (D — D). In fact, we’d be content with D = (D — D) (replacing
equality with isomorphism), but even this has only a trivial solution if we take
(D — D) to be the set of all functions from the set D to itself. The problem is
that (D — D) is always of strictly larger cardinality (size) than D whenever D
has more than one element.” By adding some order structure to D, and restricting
the meaning of (D — D) to those functions which respect that order structure it
is possible to find solutions to the equation and hence to find a semantics for the
untyped lambda calculus.

So the reasons for introducing all the technical machinery of order and continuity were
initially very pragmatic — we just wanted something like a set, but sets wouldn’t actually
work because they had too many functions between them. So we added some structure
and cut down the function space to functions that preserved the structure so that we
could solve recursive domain equations (and recursive element equations). After the fact,
however, we can develop an informal story which relates the order structure to an intuitive
idea of information, and continuity to computability. This analogy between continuity and
computability is not precise, but we can certainly argue informally that any computable
function should be continuous.

Firstly, just consider non-termination. The idea of adding a new element to represent
non-termination seems simple enough, but why not just take a set-theoretic union? Well,
consider a function f:NU{Ll} - NU{L}. If f(L) = [n] then that means that when
the argument of f fails to terminate, then f returns the natural number n. Now if f is
supposed to be the meaning of a computer program, then this must mean that f([m]) = [n]
for all m € N, since f could not have decided what to do when given | as input by looking
at its input, seeing that it failed to terminate, and then returning [n] — that would take
for ever! So f must return [n] for any input. So L represents less information than [m],
and if the function is given more information as input, it must give more information as
output, which we can express by putting an order on NU { L} to give N, , and restricting
attention to monotone functions.

As another example, consider a computer program or system F' which takes finite and
infinite streams of Os and 1s as input and returns a 0 or a 1. There are many such systems.
One of them just returns a 0 without reading any input. Another returns 1 straight away.
One of them reads one character from the input and returns that, whereas another negates
the first character. One returns a 1 as soon as it has seen more than 42 1s in the input, one

"By a simple diagonalisation argument of the sort you should have met in Discrete Maths and in
Computation Theory.

61

counts all the ones in the input and returns 0 or 1 according to whether the total is a prime
number, and so on. There are some constraints on the possible behaviours, however. One
of these is that if F' outputs a value before it’s seen all of the input, then it cannot retract
that on the basis of any subsequent input. We can use | as a ‘don’t know’ element on
the input and the output and there is then a natural information order imposed on them
both. For the output side we get {0,1}, reading L as ‘F hasn’t produced an answer yet’
and 0 (resp. 1) as ‘F has printed a 0 (resp. 1)’. The order on the input is more interesting
and starts like this:

0,00 - - [0,1] [1,1]

OOJ_ 01J_ 10J_ 11J_

[0, L 0 [1, L

[0] [1]

L

where, for example | means we haven’t seen any of the input yet, [0, L means that we've
seen a zero but we don’t know what comes next and [0] means that we’ve seen a zero and
then an end-of-stream marker. Note that the information ordering is essentially a prefix
ordering. You should be able to convince yourself that any implementable F' has to be
monotonic with respect to this ordering.

What about continuity? Take, for example, the increasing chain one obtains by aways
taking the right-hand branch in the input domain. This is

1 CQLCc,,LCclil,LlC-- C[L,1,1,...]

where the limit is the infinite stream of 1s, which we can also write as 1“. Continuity
imposes the extra restriction on F' that it cannot return L at all the finite stages and
then suddenly return 0 or 1 at the infinite limit 1. This is surely reasonable, since F' can
only know that it is being presented with an infinite stream of 1s after waiting an infinite
amount of time.

This is not, of course, a truly compelling argument that computable maps are con-
tinuous, but it does give some idea of how we can rationalise the fact that domains and
continuous maps suit the purposes of semantics. You should note that the other implica-
tion certainly doesn’t hold — there are clearly many non-computable functions in [N — N],
since any partial function N — N at all gives rise to such a continuous function. Continuity
only really starts to cut things down at higher types.

62

4.5 Implementing the Denotational Semantics in ML

It is relatively easy to produce a rather imprecise translation of the clauses defining [—]
into ML functions. We cannot, however, really reflect the subtleties of the distinctions we
make between, for example, States and States; in the ML code, since all ML types already
contain the possibility of non-termination, and one cannot in any case write programs
which manipulate non-termination like any other value. Thus the best we can do is to write
some ML code which has, morally, the same denotational semantics as IMP programs,
rather than being that semantics. The ML code is closer to an alternative presentation of
the semantics in which we do not make lifting explicit, and instead make the denotation
of a command be a strict continuous function from States; to States| (see Exercise 17).
It is virtually the same as the implementation of the big step evaluation semantics:

(* Denotational Semantics of IMP x*)

(* denotei : IEXP —> (STATES -> int) %)
fun denotei ie (S:STATES) = case ie of
N(n) =>n
| Pvar(x) => lookup(x,S)
| Iop(iop,iel,ie2) => let val nl
val n2

denotei iel S
denotei ie2 S

in
iopmeaning iop (n1,n2)
end;

(* denoteb : BEXP -> (STATES -> bool) *)
fun denoteb be (S:STATES) = case be of
B(b) => b
| Bop(bop,iel,ie2) => let val nl = denotei iel S
val n2 denotei ie2 S

in
bopmeaning bop (nl,n2)
end;

(* Fixpoint combinator *)
fun fix f x = f (fix f) x;

(* denotec : COM —> (STATES -> STATES) *)
fun denotec C (S:STATES) = case C of
Skip => S
| Assign(x,ie) => let val n = denotei ie S
in update(S,x,n)
end
| Seq(C1,C2) => let val S’ = denotec C1 S
in denotec C2 S’
end
| If(be,C1,C2) => if (denoteb be S)
then denotec C1 S
else denotec C2 S

63

| While(be,C1) =>
let val phi = fn f => fn S’=> if (denoteb be S’)

then f (denotec C1 S?)
else S’

in (fix phi) S
end;

4.6 Exercises

1.

Let X and Y be sets, regarded as discrete cpos. Show that a function f: X, — Y
is continuous if and only if one of the following holds:

(a) fis strict. That is, f(L) = L.
(b) fis constant. Vz € X |.f(z) = f(L).

Suppose that C is a partial order on a set X and that f: X — X is a monotone
function. Show that zo € X is a fixed point of f if both the following two conditions
hold:

(a) zo C f(0)
(b) Ve € X.(z C f(z) = zC).

Suppose that D,E and F are cpos, and that f: D x F — F is a function satisfying

(a) For alld € D, \y € E.f(d,y) is a continuous function £ — F,
(b) For all e € E, Ax € D.f(x,e) is a continuous function D — F'.

Is it the case that f is itself a continuous function from the product cpo D x E to
F?

. Show that the function ev:[D — E] x D — E of Section 4.1.5 is continuous.

Let D be a cpo with a least element. Show that the function fix:[D — D] — D of
Section 4.1.8 is continuous.

Let © be the cpo in the Examples at the end of Section 4.1.2 and 1 a one-element
cpo. Show that the exponential cpo [— (1)] is in bijection with € itself.

Look again at Proposition 22. What is the the order relation on the set of partial
functions (X — Y') which is induced from the order relation C on the cpo [X — Y]]
under the bijection I?

We say that two cpos D and FE are isomorphic, and write D = FE if there are
continuous functions ¢: D — E and : E — D which are mutually inverse, so that
¢ o is the identity function on F and 1 o ¢ is the identity on D. Prove or disprove
each of the following statements:

(a) For any cpos A and B, Ax B =2 B x A.

(b) For any cpos A and B, (Ax B), =& A, x B].

(c) For any cpos A, Band C, Ax (Bx(C) 2 (Ax B) xC.

64

10.

11.

12.

13.

14.

15.

16.

(d) For any cpos A and B, [A — B|, = [A— Bj].
(e) For any cpos A, Band C, [([Ax B) - C] =2 [A— [B — (]].
(f) For any cpos A and B, [A; - B] =2 B x[A— B].

Show that for any d € D, if we define P C D by P ={z € D |z C d}, then P is an
inclusive subset of D.

Show that an arbitrary intersection of inclusive subsets of a cpo D is itself an inclusive
subset of D. In other words, assume that for all 4 € I, P; is an inclusive subset of D
and then prove that ;<7 P; is an inclusive subset of D.

Show that the union of two inclusive subsets of D is inclusive. Deduce that any finite
union of inclusive subsets is inclusive. Give an example to show that an infinite union
of inclusive subsets need not be inclusive (hint: start by just thinking of the simplest
example you can of a non-inclusive subset of a cpo).

Show that if f: D — FE is a continuous function between two cpos, and P is an
inclusive subset of F, then f~!'(P) is an inclusive subset of D (where, of course,
fY(P) = {d € D | f(d) € P}). So inclusive subsets are closed under inverse
images of continuous functions. How about direct images? In other words, if P is
an inclusive subset of D, is f(P) always an inclusive subset of E?

Do the proof of Proposition 21, showing the equivalence of the denotational func-
tions [—] with the operationally defined evaluation relations for integer and boolean
expressions.

Complete the proof of Theorem 23 by

(a) Showing that the set
{(C,S,8") | [C](S) =[]} C Com x States x States

is closed under the rules (=¢-1) to (=¢-6) of the evaluation semantics.

(b) Completing the proof by induction on the structure of C' that
VS, 8" [C](S) =[S"] implies C,S =¢ S’

Let ®:[N — N] = [N — N, | be the function which sends g: N — N to the function
®(g):N — N defined by

def 1] ifn=0
®(g)(n) = { (Am.[m x n])*(g(n — 1)) otherwise

for all n € N. What is the function ®(Az € N.L)? What is ®"(Az € N.L)? What is
fix(®)?

Think what would happen in the previous question if we were to replace N and N
by Z and Z . How many fixed points are there of the new version of ®? Which
is the least fixed point? Which one corresponds to the real behaviour of the usual
definition of a very familar ML function?

65

17. We have made a ‘modern’ choice about how we should treat lifting in giving the
denotational semantics of IMP. In particular, we chose to work with cpos which
do not necessarily have a bottom, and to make the denotation of a command be
a continuous function from States to States|. This meant that we had to use the
(-)* operation to compose the denotation of two commands. There is an alternative
presentation, which is the one used in much of the literature, in which we never
use cpos without a bottom, and make the semantics of commands be strict contin-
uous functions from States; to States;. In this presentation the interpretation of
sequencing is just ordinary functional composition. Work out the rest of the details
of the semantics of IMP in this form. Compare it with the other semantics and with
the ML implementation of the denotational semantics.

66

Chapter 5

Further Topics

We have now covered the semantics of IMP fairly thoroughly. The aim of this chapter is
to give a brief, and rather informal, sketch of how we can give semantics to a couple of
interesting extensions of IMP, and how Floyd-Hoare logic (that is, an axiomatic semantics)
for IMP may be interpreted and proved sound using the denotational semantics we have
already given. All the material in this chapter is non-examinable, in the sense that you
will not be assumed to know it. Some of these topics have, however, arisen in previous
years’ questions, and in any case it is important to be aware that giving semantics to more
sophisticated programming languages can be considerably more complex and subtle (not
to mention interesting) than was the case for IMP.

5.1 Non-Determinism

IMP is a completely deterministic language: in a given state, the result of evaluating a
particular expression is unique and the result of executing any command (either a final
state or non-termination) is also unique. We proved this for the small-step semantics
in Theorem 14, and it is also implicit in the fact that, for example, the denotation of a
command is given as a function from States to States|. Non-determinism is interesting
for a variety of reasons. Firstly, adding non-deterministic constructs to a language can,
perhaps surprisingly, lead to clearer programs. This is because one can avoid having to
overspecify some aspects of an algorithm. For example, a program which operates on two
streams of input data might be expressed as non-deterministically choosing which stream
to look at next if the order in which items are picked for processing is unimportant.
Secondly, non-determinism is a natural consequence of concurrency (though there is more
to concurrency than non-determinism). For example, suppose that we were to extend IMP
with a command form Cy || Co which is supposed to execute C; and Cs in parallel. What
would be the effect of (X :=1) || (X :=2)? Assuming that assignments are atomic, the
result will be that X has the value 1 or the value 2, depending on the order in which the
processes run; the programmer must generally assume that either order is possible.
Finally, non-determinism arises even in modelling deterministic systems, if we wish to
abstract away from certain low-level details. One interesting example of this phenomenon
occurs when describing static analyses, such as are often performed by optimising compilers
to discover program properties which can be used to compile more efficient code. The
analysis is sometimes done by computing an approximate semantics of the program in
which it is assumed that, for example, a value of type int might have any integer value

67

at all. Thus semantic techniques designed for non-deterministic languages are useful in
modelling the static analysis, even when the language being analysed is deterministic.

5.1.1 Transition semantics of non-determinism

We now consider extending IMP with a non-deterministic choice construct. The rules for
forming commands (Figure 3.1) are extended with

C, € Com Cy € Com
C1 or Cy € Com

and the intended behaviour of C; or (s is that it non-deterministically behaves either like
Cy or like C5. Here’s how to extend the small-step transition semantics (Figure 3.2) to
cope with choice:

(Cl or CQ,S) —C (Cl,S> (Cl or CQ,S) —C (CQ,S>

These two axioms simply say that C or Co can make a single step to become C', and
that it also can make a transition to become Cy. Note that this means that the transition
relation —¢ on configurations now has to be a general relation, because a configuration
can have more than one immediate successor. Previously, —¢ was actually a partial
function (for example, we exploited this fact when defining cstep in ML).

This apparently trivial extension of IMP is actually rather more interesting than it
might at first appear. Previously, a given configuration (i.e. pair of a command and a state)
could behave in just two ways - it could have a finite evaluation sequence, corresponding
to termination, or it could have an infinite evaluation sequence, corresponding to non-
termination. But with the addition of non-deterministic choice, the possibilities are richer
— not only can a command have several possible finite evaluation sequences, but it can
have a mixture of some finite and some infinite evaluation sequences. This leads to some
choice in how to formulate the big-step and denotational semantics.

5.1.2 An evaluation semantics for non-determinism

The obvious way to give a big-step semantics to our extended language is to add the
following two rules to those in Figure 3.3 with

1,8 =0 S Oy, S =0 S
Cl or CQ,S =C S’ Cl or CQ,S =C S’

And indeed, given these two rules, there is still a correspondence between the small-step
and the big-step semantics (Exercise):

Theorem 26 When the syntaz, transition semantics and evaluation semantics of IMP
are extended as above, the equivalence of Theorem 16, viz.

(C,S) —¢ (skip, ") if and only if C,S =¢ S’

remains valid. O

68

But this is not quite the whole story. Think about how non-termination is treated in the
two styles of operational semantics. In the transition semantics, we can explicitly express
what it is for a configuration to lead to a non-terminating computation: there is an infinite
sequence of one step-transitions

(Ca S) —C (Cl,S,> —C (Cuasﬂ> —C

(which we can write (C,S) —¢). In the big-step evaluation semantics, by contrast, non-
termination is simply reflected by the absence of a derivation of a terminating evaluation.
Before we added non-determinism, this was perfectly adequate:

Theorem 27 For deterministic IMP, for any command C and state S
(C,S) =& if and only if AS'.C,8 =0 8

But for non-deterministic IMP, the theorem above is false. For example, for any S
((skip) or (while true do skip),S) —¢

but also
(skip) or (while true do skip),S =¢ S

So the big-step semantics only really captures what we might think of as “positive” in-
formation: it just tells us the set of terminating behaviours of a configuration; thus it
cannot distinguish a command which always terminates in a given state from one which
sometimes terminates in that state and sometimes fails to terminate. Whether we care
about this distinction depends on the use we are making of the semantics.

One way to make the big-step semantics more accurate is to add a “may-diverge”
predicate on configurations #C (Com x States), but it is not immediately clear how to
define). It is not too hard to write down some plausible looking rules, such as

be, S =p true C,S=c S8 while bedo C, S f
whilebedo C,S 1

but it is rather harder to see what those rules are supposed to mean. They certainly
don’t constitute an inductive definition of 1}, because if one tries to use them to derive the
divergence of a particular command, one ends up trying to construct infinite derivations.
For example, if we try to prove

while true do skip f

the derivation must end with
true, S =p true skip,S =¢ S while true do skip, S

while true do skip, S 1

where the final assumption is the same as the conclusion. It turns out that we can make
sense of the rules defining the divergence predicate if we understand them as a co-inductive
definition. The notion of co-inductive definition is essentially dual to that of inductive
definition (it is defined using a greatest, rather than a least, fixed point), but it would,
unfortunately, take us too far beyond the scope of this course to investigate it in more
detail.!

'A theory of operational semantics defined using a mixture of inductive and co-inductive evaluation
and divergence relations has been developed by the Cousots, under the name GSOS®. See, for example,
P. Cousot and R. Cousot. Inductive definitions, semantics and abstract interpretation. In Proceedings of
the ACM Conference on Princples of Programming Languages. 1991.

69

5.1.3 Non-determinism and semantic equivalence

The combination of non-determinism and non-termination which we have in the extended
version of IMP leads to a range of different notions of when two commmands should be
considered equivalent. Let 2 be while true do skip and consider the following three
commands:

1. z:=1
2. (z:=1) or Q
3. Q

Which of these should be considered equivalent? There are several reasonable positions
to take:

Plotkin says none of them are equivalent, because

1. always terminates
2. can terminate and can fail to terminate

3. always fails to terminate
This point of view is sometimes referred to as erratic non-determinism.

Hoare says 1 and 2 are equivalent, and different from 3, because they have the same
set of possible observable results. This is referred to as angelic, or relational non-
determinism; it is also the semantics behind partial correctness assertions (see Sec-
tion 5.3).

Smyth says 2 and 3 are equivalent, and different from 1, because they can both fail to
terminate and so we can guarantee nothing of either of them. This is called the
demonic (‘what can go wrong, will go wrong’) view of non-determinism and is the
semantics for total correctness assertions.

So the simple big-step step semantics which we gave above corresponds to angelic non-
determinism. If, as before, we write C; =~ C5 to mean

VS, S.Ch, S =c S iff Oy S =c S

then we have
(z:=1) = ((z:=1)or Q) % Q

These different notions of when commands should be considered equivalent correspond
to different notions of what we can observe of programs. The idea that different notions
of observation yield different equivalences on program phrases arises in many areas of
semantics, and you will meet it again in the Part II course on Concurrency and the Pi
Calculus. When we give a denotational semantics to a language, we generally have to
decide which notion of equivalence we wish to model since we would like two commands to
be equivalent just when their denotations are equal (though this ideal is sometimes rather
difficult to attain).

70

5.1.4 Denotational semantics for angelic non-determinism

Tt is fairly straightforward to give a denotational semantics to non-deterministic IMP which
captures the angelic view of non-determinism. Recall that P(States), ordered by inclusion,
is a complete partial order. We will take the denotation of a command to be a function
from States to P(States). (Since States is discrete, all such functions are continuous.)

It is worth noting in passing that there are several equivalent ways of presenting the
domain [States — P(States)] which we could have used instead:

1. [States — P(States)] = P(States x States) which is the cpo of relations between
states. This is why the semantics we shall given is often called the relational seman-
tics.

2. If we write Pt (States) for the cpo of non-empty subsets of States, then [States —
P(States)] = [States — (P (States))], since (P (States)); = P(States). This ad-
vantage of this view is that it makes explicit the fact that we are dealing with both
non-determinism and non-termination at the same time.

3. We can also combine non-determinism and non-termination in the other order.
If D is a cpo, we write Py (D) for the cpo of non-empty, downwards-closed and
limit-closed subsets of D ordered by inclusion, where S is downwards-closed if
zr CyeS=xe€lsS, and S is limit-closed if whenever (z,) is a chain in D
such that Vn.z,, € S then ||z, € S. Given this notation, we have [States —
P(States)] = [States — Py (States))| since P(States) = P (States;). Observe also
that Py (States) = P+ (States) (because States is discrete), so we could have used
Py rather than PT in 2. Py (D) is called the Hoare (or relational) powerdomain of
D.

It is an instructive Exercise to check that the assertions made above are correct, i.e. that
the things claimed to be cpos really are cpos, and all the claimed isomorphisms really
hold.

Before we can present the angelic denotational semantics of non-deterministic IMP, we
need one new piece of notation. If X and Y are sets and f: X — P(Y) is a function, then
we write f>:P(X) — P(Y) for the function which sends A C X to U,c4 f(a). (Compare
this with the definition of (-)* given in Section 4.1.6.) It is a simple Exercise to check that
f? is always continuous, if we regard P(X) and P(Y) as cpos.

The relational semantics of non-deterministic IMP is shown in Figure 5.1. Note the
way in which we use singleton set formation {-} in the places where we used the lift-
ing [-] operation in the semantics of deterministic IMP, and that the fixpoint in the
semantics of while-loops is well-defined because [States — P(States)] is a cpo with a
bottom element, namely the constant emptyset function AS € States.). In fact the
angelic denotational semantics has much the same ‘shape’ as the deterministic denota-
tional semantics of Chapter 4. The difference is that we have used the powerset opera-
tion P(-) in place of the lifting operation (). The precise correspondence is as follows:

Deterministic semantics Non-deterministic semantics

[States — States | [States — P(States)]

[S] { S}
f*: States; — States| f?:P(States) — P(States)

The new language feature is the choice operation, which we model using the union
operation on P(States). This semantics is both adequate and fully abstract for the angelic

71

[skipl(S) = {S}
[z:=1e](S) = {S[[e](S)/x]}
[C1;Co](S) = [P (ICI(S))
[if be then C; else Co](S) = [be](S) = [C1](S) | [C2](S)
[while be do C](S) = fix(P)
where ®: [States — P(States)] — [States — P(States)] is defined by
©(f)(S) = [bel(S) = f(IC1(S)) | {S}

[Cior C5](5) = ([C1](S)) U ([C2](S))

Figure 5.1: Angelic Semantics of Non-Deterministic IMP

notion of equivalence (checking this is left as an Exercise for the reader, but I believe it’s
correct. ..):

Theorem 28 For all non-deterministic IMP commands C; and Cy

C1 =0 iff [Ci] =[]

5.1.5 Erratic non-determinism and the Egli-Milner order

It is also possible to give a denotational semantics which models the more refined notion
of equivalence given by the erratic view of non-determinism. The basic idea is that we
want to define the meaning of a command to be a function from States to Pp(States|),
where Pp(States,) is some cpo made up out of subsets of States; but which captures the
erratic notion of when two sets of possible outcomes are equivalent. We can motivate the
construction by considering an interesting example program:

z:=0;a:=0;whilea=0do ((z:=z+1) or (a:=1))

If we write the state as the pair (S(z), S(a)), the possible execution sequences of this
command look like this:

0,0) = (1,0) = (2,0) —
i 3 i
(0,1) (1,1) (2,1)

So the possible behaviours are to terminate with S(z) =n and S(a) = 1 for any n € N or
to fail to terminate. The fact that non-termination must be a possibility can be seen as a
consequence of Konig’s Lemma, — any infinite, finitely branching tree has an infinite path
(IA Discrete Maths). What does this have to do with modelling erratic non-determinism?
It tells us that any infinite set in Pp(States;) should also contain L. So we take the

72

underlying set of Pp(States;) to be all non-empty subsets of States; which are either
finite or contain L.

What order relation should we put on this collection of subsets in order to get a cpo?
We’ve got two order relations to combine: the C ordering on States; and the C ordering
on P(States;). The natural way to combine these is to say that we move up in the order
from a subset A if every element of A is increased, possibly to a set of larger elements.
The resulting order is called the Fgli-Milner order Egps. More formally, A CEgas B iff for
all z € A there exists a non-empty subset B, of B such that

1.Vye B,z Cy
2. B=Ugeca Bs

Equivalently:
ACgy B iff 1. V:EEAElyEB.IEy
and 2. Vye Badre AxCy

This order relation turns out to be closely related to the important notion of bisimulation
which you will meet in the Part IT Concurrency course. The cpo (Pp(States;), Cgas) which
is constructed by taking non-empty subsets of States; which are either finite or contain
1, together with the Egli-Milner order, is called the Plotkin powerdomain of States;. You
should check that this really is a cpo and may like to try drawing (a finite part of!) its
Hasse diagram.

By taking [C] to be in [States — Pp(States,)], we can define a denotational seman-
tics for non-deterministic IMP which models the equivalence on commands given by the
erratic view of non-determinism. We omit the details of this semantics, but its definition
looks much like that which we gave for angelic non-determinism, though using a different
powerdomain.

5.2 Jumps and Continuations

Most imperative programming languages have some constructs which allow non-local
changes in the flow of control. This can mean anything from a completely unrestricted
goto command to more structured operations such as exceptions, break commands for
exiting loop bodies, an abort command which terminates execution immediately, or even
more sophisticated control constructs such as built-in backtracking. You should have al-
ready seen (in Exercise 16 on page 42) how, with a little bit of ingenuity, one can extend
an operational semantics to describe some constructs of this kind. But how can we give
a denotational semantics to jumps? After all, mathematical functions just capture an
input/output relation, and all the different classes of jump we have just mentioned seem,
at least at first sight, to involve some notion of ‘program point’.

There is a general technique for giving semantics to non-local control operations, which
is due, independently, to Christopher Wadsworth and Lockwood Morris, following an idea
of Mazurkiewicz published in 1970. The simplest form of the idea is that the meaning of
a command should be a (curried) function of two arguments. One argument is the usual
state, but the other is a function which represents what is to be done with the final state
after the command has terminated in order to give the result of the whole program. This
function is called a continuation. Notice that the idea of continuations is inherently higher-
order: we rely on being able to pass functions as arguments in the denotational semantics,
even if the language we are modelling does not contain explicit higher-order features. The

73

idea of continuation is an important one, which has now spread far beyond the semantics
community. Continuation passing is a widely-used functional programming technique and
is also at the heart of many modern compilers, such as that for Standard ML of New Jersey.
Indeed, SML/NJ even extends the SML language with explicit support for continuation-
based programming, in the form of the call-with-current-continuation (callcc) primitive.
Continuations are also a topic of some exciting current research, as they appear to arise
naturally in the context of extracting programs from proofs in classical logic.

5.2.1 Continuation semantics of IMP

We will demonstrate the use of continuations by first considering how to give a continuation
based semantics to IMP with no extensions. We fix some set A of answers, which will be
the set from which the results of whole programs will be drawn. It doesn’t much matter
exactly what A is, and you can, if you like, simply take A to be States, so that the final
result of a program is just the final state in which it terminates. Now, define the cpo Cont
of continuations to be [States — A], so that a continuation is a function which for each
state yields either a final answer or non-termination. The continuation semantics gives the
meaning of each command as a function taking a continuation and a state and returning
an answer (or bottom):

[C]: (Cont — (States — A.))
Note that this is equivalent to either of

[C]: Cont — Cont or [C]:(States — A,) — (States — A}).

Now, think about the denotation of the skip command in this form. It will take a
continuation k € [States — A] and a state S € States, and it has to return an answer.
Obviously, the only thing it can do to produce an answer is to apply k to S. So

[skip] = Ak € Cont.AS € States. k(S)

and this is indeed intuitively the right thing to do, as k is supposed to be what is done to
the state resulting from executing skip in the state S in order to return an answer, and
the state after executing skip in state S is just S.

The interesting case of the continuation semantics is that for sequential composition
of commands. Here it helps to think first about what ([C] k) means for C' a command
and k a continuation. This is a partial application, of type States — A . It is a function
which takes a state as argument and then returns the answer you get from first running
C in that state and then applying & to the state in which C terminates. But States — A |
is also the type of continuations, so ([C] k) is itself a continuation — it’s a ‘what to do
do next’ which comprises first doing whatever C does and then doing whatever & does.
How does that tell us what [C; ; C2] k S should be? The idea here is that we want to
execute Ciin state S, and then execute C5 and finally apply the continuation to the state

that results. In other words, we just want to run C; in the state S with the continuation
([[02]] k)' Thus

[Cy;C3] = Ak € Cont.\S € States. [C1] ([C2] k) S

This is the pons asinorum of continuations; once you have crossed it, the rest follows fairly
easily. The full continuation-passing semantics of IMP is shown in Figure 5.2. Note that

74

[skip] kS = k(S)
[z:=ie] kS E(S[[ie](S)/x])
[C1;Co] kS [Ci] ([C2] k) S
[if be then Cy else O] kS = [be](S) = [Ci] kS |[C2] kS
[whilebedo O] = fix(®)
where ®: (Cont — Cont) — (Cont — Cont) is given by
® = \f:Cont — Cont.\k: Cont.\S: States.[be](S) = [C] (f k) S | k(S)

Figure 5.2: Continuation Semantics of IMP

to calculate the result of a whole program, we now have to supply an initial state and an
initial continuation ky. The initial continuation might simply be the lift of the identity
function (kg = AS € States.[S]), if we take A to be States, or it might extract the value
of some distinguished result variable r (so kg = AS € States.[S(r)]), if we took A = N.

This, you may be thinking, is all very well, but we already had a perfectly satisfactory
semantics for IMP. But now assume that the set A contains a distinguished error value
(so perhaps A = States U {Error}), and we wish to add a new command abort which,
when executed, will immediately terminate the program and return this error value. It is
absolutely trivial to add this to our continuation semantics:

[abort] kS = [Error]

so the abort command simply throws away the continuation which it is given (i.e. it
discards ‘the rest of the program’), and returns (the lift of) the error value. It is sometimes
said that the most powerful thing a command can do with a continuation is to ignore it.

5.2.2 Continuation semantics of IMP-with-exits

Now let’s consider a more interesting example, which is a slight variant of the IMP-
with-exits language which was introduced in Exercise 16 on page 42. We add two new
command forms: exit and (C; orelse C5) to the syntax of IMP. The intended behaviour
of (Cy orelse () is that it executes exactly like C; unless Cy hits an exit command, in
which case further execution of C; is abandoned and () is executed starting in the state
at which C encountered the exit. If C'| does not encounter an exit then Cs is ignored.
An exit command without an enclosing orelse behaves like abort.

We can give a continuation semantics to this language by making the denotation of
each command be a function which takes two continuations as well as a state, and returns
an answer. The intuitive idea is that the first continuation is the ordinary default con-
tinuation which is to be applied if the command terminates normally (‘success’), and the
second continuation is the continuation to be applied if the command encounters an exit
(‘failure’). Thus

IC]: (Cont — (Cont — (States — A1)))

This semantics is shown in Figure 5.3.

The interesting point here is the symmetry between the pair skip and ¢;’ and the pair
exit and orelse. The skip command simply succeeds, so it applies the success continu-
ation to the current state. The composite C; ; Cy behaves as C; with success continuation

75

[[Skip]] kl kQ S = kl (S)
[[01 H 02]] kl kg S [[Cl]] ([[02]] kl kg) kg S
[[exit]] k1 ko S kQ(S)
[[01 orelse 02]] kl kg S = [[Cl]] /{1 ([[02]] kl k2) S
[abort] ki ko S [Err]
[[if be then (' else 02]] ki ko S = [[be]](S) = [[01]] ki ko S | [[02]] ki ko S
[while bedo C] = fix(®)
where ®: (Cont — (Cont — Cont)) — (Cont — (Cont — Cont)) is given by
O = Af Mk Ak AS.Jbe](S) = [C] (f k1 ko) k2 S | k1(S)

Figure 5.3: Continuation Semantics of IMP-with-exits

([C2] k1 ko) and failure continuation ky. Thus, if C} succeeds it will subsequently do Cy
and then kq or ko according to whether or not Cy succeeds. If C fails, however, C5 is
ignored and the failure continuation ko is invoked.

The exit command simply fails, so it applies the failure continuation to the current
state. The command C orelse C5 behaves as C; with success continuation &k and fail-
ure continuation ([C3] k1 k2). Thus, if C; succeeds, Cy will be ignored and the success
continuation k; will be invoked. If C fails, then Cy will be executed, followed by kq or ko
depending on whether or not Cy succeeds.

To ensure that an exit without an enclosing orelse should behave like abort, we
simply have to make the initial failure continuation which is supplied to an entire program
be ky = AS € States.[Err].

5.2.3 An ML implementation of IMP-with-exits

Finally, here’s a fairly direct implementation of the semantics of IMP-with-exits as ML
code. This constitutes a complete working interpreter for the language. (You may like to
extend the IMP parser functions to deal with the extended language.) Compare this code
with the mathematical semantics in Figure 5.3 and see how well they correspond.

datatype IOP = Plus | Times | Minus;
datatype IEXP = N of int | Pvar of string | Iop of IOP*IEXP*IEXP;

datatype BOP = Equal | Greater;
datatype BEXP = B of bool | Bop of BOP*IEXP*IEXP;

datatype COM = Skip | Assign of string*IEXP | Seq of COM*COM |
If of BEXP*COM+COM | While of BEXP*COM |
Abort | Exit | Orelse of COM*COM;

*)
type STATES = (string*int) list;

76

(* lookup : string*STATES -> int *)
exception Lookup;
fun lookup(x,[]) = raise Lookup
| lookup(x,(y,v)::pairs) = if x=y then v else lookup(x,pairs);

(* update : STATES*string*int -> STATES *)
fun update (S,x,n) = case S of
1 => [(x,n)]
| ((y,v)::pairs) => if x=y then (x,n)::pairs
else (y,v)::(update (pairs,x,n));

(* iopmeaning : IOP -> ((int*int)->int) *)

fun iopmeaning iop (x:int,y:int) = case iop of
Plus => x+y

| Times => xxy

| Minus => x-y;

(* bopmeaning : BOP -> ((int*int)->bool) x*)

fun bopmeaning bop (x:int,y:int) = case bop of
Equal => x=y

| Greater => x>y;

(* types of answers and continuations *)
datatype A = 0K of int | Error;
type CONT = STATES -> A;

(* initial state - everything is undefined *)
val (S:STATES) = [];

(* initial continuation returns the value of the variable r *)
val (k:CONT) = fn S => O0K(lookup("r",S));

(* error continuation *)
val (ek:CONT) = fn S => Error;

(* denotei : IEXP -> (STATES -> int) *)
fun denotei ie (S:STATES) = case ie of
N(n) =>n
| Pvar(x) => lookup(x,S)
| Top(iop,iel,ie2) => let val nl
val n2

denotei iel S
denotei ie2 S

in
iopmeaning iop (n1,n2)
end;

(* denoteb : BEXP -> (STATES -> bool) x)
fun denoteb be (S:STATES) = case be of

7

B(b) => b

| Bop(bop,iel,ie2) => let val nl = denotei iel S
val n2 = denotei ie2 S
in
bopmeaning bop (nl1,n2)
end;

(* denotec : COM -> CONT -> CONT -> STATES -> A %)
fun denotec C (k1:CONT) (k2:CONT) (S:STATES) = case C of
Skip => k1 S
| Assign(x,ie) => let val n = denotei ie S
in k1 (update(S,x,n))
end
| Seq(C1,C2) => denotec C1 (denotec C2 k1 k2) k2 S
| If(be,C1,C2) => if (denoteb be S)
then denotec C1 k1 k2 S
else denotec C2 k1 k2 S
| While(be,C1) => if (denoteb be S)
then denotec C1 (denotec C ki1 k2) k2 S
else k1 S
| Abort => Error
| Exit => k2 S
| Orelse(C1,C2) => denotec C1 k1 (denotec C2 k1 k2) S;

(* runc runs a command with initial state and continuations *)
fun runc ¢ = denotec ¢ k ek S;

Here are a couple of simple examples of this implementation of IMP-with-exits in use:

- (* define cl to be r:=0; (skip orelse r:=1) x)

= val cl = Seq(Assign("r",N 0), Orelse(Skip,Assign("r",N 1)));
> val vl = : COM

- runc cli;

>0K 0 : A

- (* define c2 to be r:=0; (exit orelse r:=1) x*)

= val c2 = Seq(Assign("r",N 0), Orelse(Exit,Assign("r",N 1)));
>val c2 = ... : COM

- runc c2;

>0K1 : A

- (x define c3 to be

= r:=0;

= while true do

= (r:=r+1;

= if r>7 then exit else skip))

= orelse skip

= to demonstrate breaking out of an otherwise infinite loop
= %)

78

= val c3 = Seq(Assign("r",N 0), Orelse(While(B true,
= Seq(Assign("r",Iop(Plus,Pvar "r",N 1)),

= If(Bop(Greater,Pvar "r",N 7),Exit,Skip))),Skip));
>val ¢c3 = ... : COM

- runc c3;

>0K 8 : A

5.3 Axiomatic Semantics of IMP

This section contains a brief account of how the Floyd-Hoare rules for proving properties of
IMP programs may be justified in terms of the denotational semantics. It is not completely
detailed and rigorous, but it should give a good idea of how denotational semantics can
be used to justify reasoning principles for program verification. You will learn a lot more
about Floyd-Hoare logic in the Part IT course Specification and Verification.

5.3.1 Partial Correctness Assertions

The general form of a partial correctness statement is

{P}c{e}

which means ‘if one executes the command C starting in a state which satisfies P, then if
the command terminates it will do so in a state satisfying (Q’. A typical example of a valid
partial correctness statement about an IMP program would be the following, asserting
that a program to calculate greatest common divisors is correct:

(X =2zAY =yAl<zAl<y)
while X #Y do (if X <Y thenY :=Y — X else X:=X —Y)
{X = ged(z,y)}

We could also develop a theory of total correctness statements of the form [P] C' [Q)],
meaning ‘if the command C is started in a state satisfying P then it will terminate in a
state satisfying @’, but we will not do so here.

We first have to introduce a language in which to formulate assertions about states.
These will be defined in terms of an auxiliary set of integer variables Ivar. We will now
use lower-case letters for elements of Ivar and upper-case for program variables (elements
of Pvar). The set Aexp of arithmetic expressions is defined inductively by the following
rules:

nezl X € Pvar 1 € Ivar
n € Aexp X € Aexp i € Aexp

a1 € Aexp as € Aexp ay € Aexp as € Aexp ap € Aexp as € Aexp

a1 + as € Aexp a1 — as € Aexp a1 X ag € Aexp

It is important that the set of integer expressions Iexp of IMP is contained within the set
Aexp, but this is easily seen to be true.

We can now define the set of assertions Assn in terms of these arithmetic expressions.
These assertions are made up of logical combinations of atomic assertions about arithmetic

79

expressions:

a1 € Aexp as € Aexp

true € Assn false € Assn a; < ay € Assn

Ay € Assn Ay € Assn A € Assn 1 € Ivar A € Assn
Ay N Ay € Assn -A € Assn Vi.A € Assn

We will feel free to use other logical connectives in assertions, regarding them as syntactic
sugar for combinations of the basic ones given above. For example, if a1,a9 € Aexp
then (a1 = a9) € Assndéf(al < a9) A (ag < ap). Similarly, if A € Assn and i € Ivar
then (Ji.A) € Assndéf—u(Vi.—'A). Note that Bexp, the set of boolean expressions in our
programming language, is a subset of Assn (modulo some syntactic sugar).

This small language of assertions is rich enough to code up a very wide range of
predicates. As an Exercise, you might like to try expressing X = ged(z,y) in Assn.

If S € States and A € Assn, we now want to define a notion of S satisfying the
assertion A. This depends on knowing the meaning of arithmetic expressions, which in
turn will depend on some assignment of integer values for all the integer variables and all
the program variables. So, let an interpretation I € Interp be a function from Ivar to Z,
and we can then define

[—]: Aexp — (Interp — (States — Z))

as follows
[2](1)(S) =n
[XI(I)(S) = S(X)
[](1)(S) = 1(i)
[a1 + a2](1)(S) = [ar](I)(S) + [a=](1)(S)
[a1 — a2](I)(S) = [a1](1)(S) — [a=](1)(S)
[a1 x a2](1)(S) = [ar](I)(S) x [a2](I)(S)

Using this, we can then define when state S € States satisfies an assertion A under an
interpretation I, which we write S =" A, by induction on the structure of A as follows:

[ao](1)(S) < [a](1)(S)

S):I true S):I (ap < ay)
SEA SE' A S A
S A AA S -4

vn e 7.8 =i 4
S = viA

And we can extend the notion of satisfaction to elements of States| by letting the undefined
state satisfy every assertion. We will feel free to overload the use of the = notation to
refer to elements of States or of States| without comment.

SELA
[S]E" A LA

80

Now, if A,B € Assn and C' € Com we can define the notion of when the partial
correctness assertion

{4} C{B}
is valid by defining
={A} C{B}
to mean

VI € Interp. VS € States. (S =" A = [C](S) &' B)

In other words, {A} C' {B} is a valid partial correctness assertion if for any interpretation
I and for any state S which satisfies the assertion A, the denotation of C' applied to
state S is a state (possibly L) satisfying B. Note that we now have a completely formal
notion of when a partial correctness assertion is valid, defined in terms of the denotational
semantics. We will be able to use this to prove that a logic for deriving partial correctness
assertions is sound (deduces only valid assertions), rather than just deciding that all the
rules look intuitively plausible.

We will also use the notion of validity for assertions. If A € Assn then write = A to
mean that for all S € States and for all I € Interp, S =T A.

5.3.2 Hoare Logic

We now give some proof rules for deriving partial correctness statements about IMP
programs. There is one rule for each command construct and one logical rule. The rule
for assignment uses the notion of substituting an integer expression into an assertion which
is defined in a fairly obvious way.

{Alskip{A} {(Alie/X]}X = ie{ A}
(AYCH{AY {ANC{A"Y {AAbIC{A} {AA—be}Co{A'}
{A}Cl ; CQ{A”} {A}if be then (' else CQ{AI}
{A Abe}CLA} L (A= A) {AYC{B} (B = B)
{A}while be do C{A A —be} {A}C{B}

We write - {A}C{B} when {A}C{B} is derivable using the above rules.

5.3.3 Soundness of Hoare Logic

We aim to prove formally that the logic given in the previous section is sound, that is, all
the theorems + {A}C{B} which can be derived in the logic are valid. The full proof of
this fact relies on a couple of simple lemmas concerning substitution, both of which are
proved by structural induction.

Lemma 29 If X € Pvar and a,a’ € Aexp then for all I € Interp and S € States

[ala/XTHI)(S) = [al(D(STa’T(T)(S)/X])

81

Lemma 30 For any I € Interp,A € Assn,X € Pvar, ie € lexp and S € States
S =l Alie/X] < S[[ie](S)/X] = B
O

We will also need to know that the meanings of assertions are inclusive predicates,
which is an obvious consequence of the fact that States, is a flat cpo:

Lemma 31 If ¢:N — States| is a chain in States|, I € Interp and A € Assn then

o0
(vneNe, E' 4) = ["4
n=0

We can now formulate our main result

Theorem 32 (Soundness) For any A,B € Assn and C € Com, if v {A}C{B} then
= {AC{B}.

Proof. This follows by rule induction on the rules of Hoare logic. We have to show for
each rule that if the hypotheses are valid then so is the conclusion. We will only consider
the case of the rule for while commands here, and leave the other rules as Exercises. (We
will not actually need Lemmas 29 and 30 for the case we consider here, but you will need
them for some of the other cases.)

So assume that the hypothesis of the while rule is valid, i.e. that = {AAbe}C{A}. We
wish to prove that the conclusion of the rule is also valid, i.e. that = {A}whilebedo C{AA
—be}. Recall that [while be do C] = fix® where

o © \f € [States — States| |.AS € States.([be](S) = f*([C](S)) | [S])

So we have to show that for any state S and interpretation I, if S =" A then

<|_| (NS’ € States.J.)) (S) =1 AA-be

n=0

which, by the definition of lubs in function spaces is equivalent to

(El O"(\S' € States.J.)(S))):I A A —be

n=0

We will show by mathematical induction that for all n € N and for all S € States, if
S ! A then
d"(\S' € States. 1)(S) =1 A A —be

from which the result follows by Lemma 31. (This could have been presented as an example
of fixpoint induction.)
For the base case of the induction, we just have

dO(\S’ € States. L)(S) = L =T AA-be

82

Now for the induction step, writing f,, for ®"(\S’ € States.) we need to show
VS € States. S =1 A = f1(S) =T A A —be

which means showing that if S =/ A then

([bed(S) = fr([C1S) | [S]) =" AN —be
Now there are two possibilities:

1. If [be](S) = false then f,,1(S) = [S] and we have [S] ! A and [S] ! —be and
hence f,,+1(S) ! A A —be as required.

2. If [be](S) = true then f,11(S) = fE([C](S)). By our assumption about the hypoth-
esis of the while rule being valid, we know that [C](S) =! A because S |=! be and
S = A. Hence by induction, f([C](S)) | A A —be as required.

a

An obvious question to ask is whether completeness, which is the converse to soundness,
holds — do the Hoare logic rules prove all valid partial correctness assertions? It turns out
that they do, but with an important caveat. Notice that the logical rule

FA=4) {A}C{B'} [(B'=B)
{AYC{B}

is phrased in terms of the validity of the assertions A = A’ and B’ = B, rather than
their provability. If we actually want to use Hoare logic to prove things about programs
then we have to give a proof system for assertions as well, and such a system can never be
complete by Godel’s Incompleteness Theorem. Thus if we had access to an oracle which
could magically decide the truth of statements of the form = A, then we could prove all
valid partial correctness assertions using Hoare logic. Since we do not have such an oracle,
we have to make do with a logic for deriving statements - A, and this prevents us from
being able to prove all the valid partial correctness assertions. We can therefore say that
Hoare logic is relatively complete.

For more realistic IMP-like programming languages, such as Algol, it has been shown
that there is not even a relatively complete Hoare logic, so the usefulness of the concept
of relative completeness is rather limited.

83

Appendix A

Semantic Equivalence Proofs as
ML Functions

This appendix contains some very optional material which concerns the way in which
constructive proofs of semantic equivalences can be seen in terms of functions mapping
derivations in the evaluation semantics to other derivations.

We will give a brief outline of how this idea can be made concrete by defining ML
functions which map derivations to derivations. The details are rather unpleasant, but it’s
worth at least noting that it can be done.

Firstly, we have to decide how to represent derivations in the evaluation semantics in
ML. As we have mentioned in Chapter 2, the set of derivations is itself an inductively
defined set and we shall code this set as an inductive ML, datatype with one constructor
for each rule in the semantics. (Actually, we’ll need three datatypes, corresponding to the
three evaluation relations.)

What should we store at each node in the tree? If we consider a rule like (=¢ -3),
it’s clear that we’ll need to store the two subderivations which derive C1,S =¢ S’ and
Cy,S" =¢ §”, but what else? Actually, nothing else. This is because the conclusion of
the rule, viz. C1;C,S =¢ S” is completely determined by the conclusions of the two
subderivations and the fact that we know we are applying rule (=¢ -3). For a rule like
(=c¢ -4) we will need to know the two subderivations and what the else-branch, Cs, of
the if-statement is, since that does not appear in either of the subderivations. Applying
similar reasoning to each rule, we get the following datatypes for evaluation derivations
(you will need to refer to Figure 3.3 to have any chance of understanding this!):

datatype IDER = Irl of int*STATES | Ir2 of string*STATES |

Ir3 of IOP*IDER*IDER;

datatype BDER = Brl of bool*STATES | Br2 of BOP*IDER*IDER;

datatype CDER = Crl of STATES | Cr2 of string*IDER | Cr3 of CDER*CDER |
Cr4 of BDER*CDER*COM | Cr5 of BDER*CDER*COM |

Cr6 of BDER*COM | Cr7 of BDER*CDER*CDER;

84

For example, this derivation

(=r-1)
1,]=r1
(=51 (=c2) — (=)
true,[| =B true x:=1,[=c[z=1] 0,[x=1]=70
. (=c-4)
if truethenx:=1lelsex:=2,[| =¢ [z = 1] y=0,z=1=czx=1y=0]

(if truethenx:=1lelsex:=2);y:=0,[|=>c [z =1y =0]
is coded as this element of the ML datatype CDER:

Cr3 (Cr4 (Brl (true,[]),Cr2 ("x",Irl (1,[])),Assign ("x",N 2)),Cr2 ("y",
Iri (0,[("x",1)1)))

There is still a slight problem with our representation of derivations — there are many
elements of the datatypes which do not correspond to valid derivations in the semantics.
This is because there is no way to enforce the restrictions caused by the fact that sub-
derivations of a given derivation usually have to agree with each other in some way. For
example, in the case of (=¢ -3), the state at which Cy ends up as the conclusion of the
first subderivation has to be the same as the state in which C5 is started in the conclusion
of the second subderivation. We cannot express this in the ML datatype, so we will have
to check that it is true using a function which traverses a putative derivation tree and
checks that it is well-formed.! The following functions will extract the conclusions of a
derivation and check that it is well-formed, raising the exception BadDer if it is not. Note
that we have to use an auxiliary function to test whether two states, represented as lists,
are equal since the order of the bindings in the two lists might be different.

fun forall [] p = true
| forall (x::xs) p = (p x) andalso (forall xs p);

fun eqstate (S1,52) = (forall S1 (fn x => x mem S2))
andalso
(forall S2 (fn x => x mem S1));
exception BadDer;

(* iconc : IDER —> IEXP*STATES*int *)
fun iconc d = case d of
Iri(n,S:STATES) => (N n,S,n)
| Ir2(x,S) => (Pvar x,S,lookup(x,S) handle Lookup => raise BadDer)
| Ir3(iop,d1,d2) => let val (iel,S1,nl) = iconc di
val (ie2,S2,n2) = iconc d2
in if eqgstate(S1,S2)

then (Iop(iop,iel,ie2),S1,iopmeaning iop (nl,n2))

!The problem is that ML’s type system is not powerful enough to express these restrictions. There are
much more powerful type theories which can cope with this sort of thing, and it is these more powerful
systems which form the basis of many automated theorem provers. In such systems one really does give
formal proofs by defining functions in a way which is not entirely unrelated to the rather rough-and-ready
ML code we give here. The key idea is the ‘propositions-as-types’ analogy which is discussed (albeit not at
a sufficiently advanced level to deal with the kind of proofs we're concerned with here) in Dr Pitts’s Part
IT course on Types.

85

else raise BadDer
end;

(* bconc : BDER -> BEXP*STATES*bool *)
fun bconc d = case d of
Bri(b,S:STATES) => (B b,S,b)
| Br2(bop,d1,d2) => let val (iel,S1,nl) = iconc di
val (ie2,S2,n2) = iconc d2
in if eqgstate(S1,S2)
then (Bop(bop,iel,ie2),S1,bopmeaning bop (nl,n2))
else raise BadDer
end;

(* cconc : CDER —> COM*STATES*STATES *)
fun cconc d = case d of
Cr1(S:STATES) => (Skip,S,S)
| Cr2(x,d1) => let val (ie,S,n) = iconc di
in (Assign(x,ie),S,update(S,x,n))
end
| Cr3(d1,d2) => let val (C1,S,S1)
val (C2,52,S83)
in if eqgstate(S1,S2)
then (Seq(C1,C2),5,83)
else raise BadDer
end
| Cr4(bd,cd,C2) => let val (be,S1,b) = bconc bd
val (C1,52,S3) cconc cd
in if eqgstate(S1,S2) andalso (b=true)
then (If(be,C1,C2),S1,S3)
else raise BadDer
end
| Cr5(bd,cd,C1) => let val (be,S1,b) = bconc bd
val (C2,52,S3) cconc cd
in if egstate(S1,S2) andalso (b=false)
then (If(be,C1,C2),S1,S83)
else raise BadDer
end
| Cr6(bd,C) => let val (be,S,b) = bconc bd
in if (b=false)
then (While(be,C),S,S)
else raise BadDer
end
| Cr7(bd,d1,d2) => let val (be,S1,b) = bconc bd
val (C,S2,S3) cconc di
val (C’,S54,S5) = cconc d2
in if (b=true) andalso
egstate(S1,S2) andalso
eqstate(S3,54) andalso

cconc di
cconc d2

86

(¢’ = While(be,C))
then
(c’,81,85)
else raise BadDer
end;

We can use this to extract the conclusion of the derivation we gave earlier and to check
that it is well-formed:

- cconc (Cr3 (Cr4 (Brl (true,[]),Cr2 ("x",Irl (1,[])),Assign ("x",N 2)),
Cr2 ("y",Ir1 (0,[("x",1)1))));

(Seq (If (B(true),Assign("x",N 1),Assign ("x",N 2)),Assign ("y",N 0)),
1,

[("x",1),("y",0)]) : COM+STATES*STATES

A\

So now what about coding proofs as ML functions? We will start by considering half
of the proof of Proposition 17, the implication that says if

(if bethen Celse C');C", S =¢ S’ (A.1)

then

if bethen (C'; C") else (C;C"),S =¢ S’ (A.2)
Our function to code the proof of this implication will take as input a derivation of A.1
and return a derivation of A.2. Any derivation of A.1 must end with an application of
(=¢-3) and we then consider cases according to the last rule used in the derivation of the
first hypothesis of that application of (=¢-3) to decide how to build a derivation of A.2.
This is expressed by the following ML code:

(x ifseqproof : CDER -> CDER x)
fun ifseqgproof (Cr3(di,d2)) =
let val (C3,_,_) = cconc d2 in
case dl of
Cr4(bd,cdl,C2) => Cr4(bd,Cr3(cdl,d2),Seq(C2,C3))
| Cr5(bd,cd2,C1) => Cr5(bd,Cr3(cd2,d2),Seq(C1,C3))
end;

Note that ifseqproof doesn’t make any attempt to check that its input is a valid deriva-
tion of an instance of A.1, though it will raise an uncaught exception (either match or
BadDer) in most such cases. Now let’s see ifseqproof in action by applying it to the ML
term coding the derivation we gave earlier:

- ifseqproof (Cr3 (Cr4 (Brl (true,[]),Cr2 ("x",Irl (1,[1)),
Assign ("x",N 2)),Cr2 ("y",Irl (0,[("x",1)1))));

Cr4 (Brl1 (true,[1),Cr3 (Cr2 ("x",Ir1l (1,[1)),Cr2 ("y",Irl
(0,[("x",1)1))),Seq (Assign ("x",N 2),Assign ("y",N 0))) : CDER

and this is indeed the term of type CDER which codes the derivation

\4

— (=11) —— (=11
1,[]:>[]. 0,[1‘:1]:>[0
(=c-2)
x:=1,[] =c [z =1] y=0,z=1=¢cx=1y=0]
(=s51)
true, [| =p true x:=1;y:=0,[|=cz=1y=0]
(=c-4)

if truethen (x:=1;y:=0)else(x:=2;y:=0),[| =c [z =1y =10]

87

as we would expect.

It is important to realise that writing such an ML function does not constitute a
mathematical proof, since we have given no formal justification that the ML code actually
does what we intuitively think it does. The function ifseqgproof merely expresses the
idea of the formal proof of Proposition 17. However, thinking in terms of functions can
be a useful way to understand and to come up with this kind of proof.

What about the proof of Proposition 187 We will just prove half of the equivalence:

VS, S" € States. if whilebedo C1,S =¢ S’ then whilebedo Cy, S =¢S5 (A.3)

under the assumption that Cy ~ Cs. In fact, to prove A.3,it suffices to assume just half
of the equivalence of C; and Cy wviz.

VS, S’ € States. if C1,S =¢ S' then Oy, S =¢ S (A.4)

The function coding the proof of A.3 will map derivations of the ‘if’ part to derivations of
the ‘then’ part, but it will also need to take an extra argument which codes the assumption
A.4. That argument will itself be a function £ which takes derivations of Cy,S =¢ S’
to derivations of Co,S =¢ S’ (the jargon word is that £ is a realizer for the implication
A.4). So, to sum up, the function whilecongproof which we want to define will, for any
be,C1,C5,S and S’, take as input

1. A derivation d of while bedo C;,S =¢ S.

2. A function f from derivations to derivations which maps a derivation of C1,S5” =¢
S" to a derivation of Cy, S” =< §", for any S” and S".

and it will return a derivation of while be do Cs, S =¢ S’. In fact, for a trivial technical
reason, whilecongproof also has to take the command Cs as input?, thus the code ends
up looking like this:

(* whilecongproof : CDER * COM * (CDER -> CDER) -> CDER *)
fun whilecongproof (d:CDER,C2,f:CDER->CDER) =
case d of
Cr6(bd,C1) => Cr6(bd,C2)
| Cr7(bd,d1,d2) => let val d2’
val di1’

whilecongproof (d2,C2,f)
f di

in
Cr7(bd,d1’,d2’)
end;

Notice how whilecongproof uses recursion in the case that the derivation d ends with
an application of (=¢ -7), and that this corresponds exactly to the use of induction in
the real proof of Proposition 18. Note also how f is used to transform the derivation of
the second hypothesis of (= -7) — this is the part in the proof where we appeal to the
assumption that Cy ~ Cs.

For example, let’s take C'y and (5 to be instances of the equivalence of Proposition 17

*This is just because in the case that the derivation 1. above uses (=¢ -6), we need to return an
application of (=¢-6) which contains C2, but we don’t actually have it in our hand, and we can’t use £ to
get it because we don’t have any derivation about C; to supply as input to f.

88

(* these two are equivalent by ifsegproof *)
val ¢l = readcom "if x=1 then y:=y+2 else y:=y+1 endif;x:=x-1";
val c2

readcom "if x=1 then y:=y+2;x:=x-1 else y:=y+1;x:=x-1 endif";

(* embed them in a while command *)
val cl1’ = While(Bop(Greater,Pvar "x",N 0),cl);
val c¢2’ = While(Bop(Greater,Pvar "x",N 0),c2);

(* We want to show cl’ equivalent to c2’,
so start with derivation of cl1’ doing something
NB. makedc : COM -> (STATES -> CDER) just
executes a command in a given state and
returns the entire derivation associated
with that run.

*)

val d1 = makedc c1’ [("y",0),("x",2)];

(* Now we can apply the proof to get a derivation of
c2’ doing the same thing. Note the use of ifseqgproof
as a witness/realizer that cl is equivalent to c2.

*)

val d2 = whilecongproof(dl,c2,ifseqproof);

We end up with d1 being a derivation that c1’,[y = 02z = 2] =¢ [y = 3 =z = 0] and
d2 the derivation that c2',[y = 0 x = 2] =¢ [y = 3 £ = 0] which is what we wanted.
Unfortunately, the actual derivations are rather too large to be worth including here
(around 3 feet wide).

89

