
University of Cambridge

Computer S
ien
e Tripos Part IB

Lent Term 1996

Semanti
s of Programming Languages

Dr P. N. Benton

Contents

1 Introdu
tion 3

1.1 Formal Semanti
s : 3

1.2 Outline of Course : 4

1.3 A
knowledgements : 5

1.4 Re
ommended Reading : 5

2 Indu
tive De�nitions and Proofs 7

2.1 Indu
tive De�nitions : 7

2.1.1 Introdu
tion : 7

2.1.2 What do indu
tive de�nitions mean? : : : : : : : : : : : : : : : : : : 9

2.1.3 Upwards
hara
terisation of indu
tively de�ned sets : : : : : : : : : 11

2.1.4 Simultaneous indu
tive de�nitions : : : : : : : : : : : : : : : : : : : 13

2.1.5 Derivations : 13

2.1.6 Indu
tively de�ned fun
tions : 14

2.2 Indu
tive Proofs : 14

2.2.1 Mathemati
al indu
tion : 14

2.2.2 Rule indu
tion : 15

2.3 Exer
ises : 18

3 IMP and its Operational Semanti
s 20

3.1 The Syntax of IMP : 20

3.2 Transition Semanti
s of IMP : 22

3.2.1 States : 22

3.2.2 Operational semanti
s via transition relations : : : : : : : : : : : : : 23

3.2.3 Theorems about the transition semanti
s : : : : : : : : : : : : : : : 25

3.2.4 Evaluation sequen
es : 26

3.2.5 Implementing the transition semanti
s in ML : : : : : : : : : : : : : 28

3.3 Stru
tural Evaluation Relations for IMP : 31

3.3.1 Evaluation relations : 31

3.3.2 Equivalen
e of transition and evaluation semanti
s of IMP : : : : : : 33

3.3.3 Implementing the evaluation semanti
s in ML : : : : : : : : : : : : : 36

3.3.4 Semanti
 equivalen
e : 37

3.3.5 Congruen
es : 39

3.3.6 Semanti
 equivalen
e proofs as fun
tions (optional) : : : : : : : : : : 39

3.4 Exer
ises : 40

1

4 Denotational Semanti
s of IMP 44

4.1 Complete Partial Orders : 45

4.1.1 Partial orders : 45

4.1.2 Chains and least upper bounds : 45

4.1.3 Continuous fun
tions : 46

4.1.4 Binary produ
t of
pos : 47

4.1.5 Exponentation of
pos : 49

4.1.6 Lifting : 49

4.1.7 Conditionals : 50

4.1.8 Least �xed points : 50

4.1.9 Fixpoint indu
tion : 51

4.2 Denotational Semanti
s of IMP : 53

4.2.1 Semanti
s of integer and boolean expressions : : : : : : : : : : : : : 53

4.2.2 Semanti
s of
ommands : 54

4.3 Equivalen
e of the Denotational and Operational Semanti
s of IMP : : : : : 56

4.3.1 Adequa
y and full abstra
tion : 59

4.3.2 Compositionality and
ongruen
e : 60

4.4 Information, Continuity and Computability : : : : : : : : : : : : : : : : : : 60

4.5 Implementing the Denotational Semanti
s in ML : : : : : : : : : : : : : : : 63

4.6 Exer
ises : 64

5 Further Topi
s 67

5.1 Non-Determinism : 67

5.1.1 Transition semanti
s of non-determinism : : : : : : : : : : : : : : : : 68

5.1.2 An evaluation semanti
s for non-determinism : : : : : : : : : : : : : 68

5.1.3 Non-determinism and semanti
 equivalen
e : : : : : : : : : : : : : : 70

5.1.4 Denotational semanti
s for angeli
 non-determinism : : : : : : : : : 71

5.1.5 Errati
 non-determinism and the Egli-Milner order : : : : : : : : : : 72

5.2 Jumps and Continuations : 73

5.2.1 Continuation semanti
s of IMP : 74

5.2.2 Continuation semanti
s of IMP-with-exits : : : : : : : : : : : : : : : 75

5.2.3 An ML implementation of IMP-with-exits : : : : : : : : : : : : : : : 76

5.3 Axiomati
 Semanti
s of IMP : 79

5.3.1 Partial Corre
tness Assertions : 79

5.3.2 Hoare Logi
 : 81

5.3.3 Soundness of Hoare Logi
 : 81

A Semanti
 Equivalen
e Proofs as ML Fun
tions 84

2

Chapter 1

Introdu
tion

1.1 Formal Semanti
s

This
ourse is about understanding and reasoning about programs and programming lan-

guages. Any programming language
an be studied at a number of di�erent (but related)

levels, amongst whi
h it is
onvenient to distinguish:

Syntax The alphabet of symbols used to write programs and some des
ription (e.g. BNF)

of the way in whi
h those symbols may be
ombined to give well-formed expressions,

ommands, programs, et
. of the language.

Semanti
s The meaning of ea
h expression,
ommand, program, et
. This means some

des
ription of how programs behave when they are a
tually exe
uted.

Pragmati
s The way in whi
h the language is a
tually implemented (e.g.
ompiled or

interpreted, separate
ompilation, garbage
olle
tion) and used (e.g. typi
al pro-

gramming te
hniques, suitability for di�erent problem domains).

We shall be
on
erned with the se
ond of these aspe
ts { giving des
iptions of the run-time

behaviour of programs { and we shall use mathemati
al and logi
al methods to give these

des
riptions in a formal and rigorous way.

A formal semanti
s
an have many uses:

� It
an serve simply as a spe
i�
ation of how programs should behave. This is obvi-

ously of value to the
ompiler writer and, if the semanti
s is suÆ
iently readable, to

the programmer.

� The very a
t of trying to give a formal semanti
s
an help the language designer

to spot mistakes and ambiguities in an informal a

ount of how programs should

exe
ute.

� A formal semanti
s
an be used to obtain or verify reasoning prin
iples whi
h may

be used to prove that programs satisfy their spe
i�
ations or that two programs are

equivalent. This is vital if one wishes formally to verify or derive software, as is

in
reasingly done in, for example, `safety-
riti
al' appli
ations. Even if one does not

wish to go to the trouble and expense of giving a
ompletely formal proof of program

orre
tness, if programmers are aware of the reasoning prin
iples whi
h they would

use were they to attempt su
h a proof then the informal reasoning whi
h they use

whilst writing
ode is mu
h more likely to be sound.

3

� Sophisti
ated program analyses and transformations, su
h as those used in highly

optimising
ompilers, are not only veri�ed with repe
t to a formal semanti
s, but

are very often designed and expressed in terms of the semanti
s.

� A mathemati
al analysis of
omputational and programming language
onstru
ts

whi
h is independent of any parti
ular programming language allows one to sim-

plify and generalise. This then feeds ba
k into
omputer s
ien
e in the form of new

programming languages and language features. For example, ML and other similar

languages are based on the lambda
al
ulus, whi
h is a mathemati
al model of
om-

putation whi
h predates
omputer programming. Similarly, some implementations

of ML-like languages are based on a translation of programs into a language of
om-

binators, whi
h originally arose in mathemati
al logi
 and has sin
e been re�ned in

various ways to suit the needs of language designers and implementers.

� Finally, obtaining a deeper understanding of the basi
 nature of
omputation is a fas-

inating and worthwhile intelle
tual a
tivity in its own right. Fundamental s
ienti�

resear
h has a
ultural value beyond its immediate te
hnologi
al appli
ations.

Histori
ally, semanti
s have been given in three main styles:

Operational Semanti
s spe
i�es how programs should be exe
uted, for example by

giving a translation of programs into some simpler abstra
t ma
hine language. In

this
ourse we will use a style of operational semanti
s
alled stru
tural operational

semanti
s, due to Gordon Plotkin, in whi
h evaluation and transition relations are

de�ned dire
tly by indu
tion on the syntax of the language.

Denotational Semanti
s gives the meaning of programs as elements of some suitable

mathemati
al stru
ture. This style of semanti
s was pioneered by Christopher Stra-

hey and Dana S
ott in the late 60s and early 70s, making use of the theory of

ertain spe
ial partially ordered sets.

Axiomati
 Semanti
s de�nes the meaning of ea
h programming
onstru
t by giving

proof rules for it in some suitable program logi
. This style of semanti
s was intro-

du
ed by Robert Floyd and Tony Hoare. You will learn more about this in the Part

II
ourse on Spe
i�
ation and Veri�
ation.

Of
ourse, these di�erent styles of semanti
s ea
h have advantages and disadvantages for

parti
ular purposes. We shall
on
entrate on the �rst two styles and the relationships

between them, though there is some material in Chapter 5 on axiomati
 semanti
s.

1.2 Outline of Course

In this
ourse we will study the operational and denotational semanti
s of a simple imper-

ative programming language whi
h we
all IMP. Sin
e we will be making
onsiderable use

of indu
tion, we start by re
alling some basi
 material on indu
tive de�nitions and proofs.

We then de�ne the syntax of IMP and give it an operational semanti
s using transition

relations. Next we give an alternative presentation of the operational semanti
s in the

style known as `natural semanti
s' and relate this to the �rst semanti
s.

We then turn to the denotational semanti
s of IMP. After introdu
ing the basi
 mathe-

mati
al
on
epts whi
h we shall need, we show how IMP programs may be given meaning

4

as fun
tions between
ertain ordered sets and relate this to the operational semanti
s

whi
h we gave earlier.

Having studied the operational and denotational semanti
s of IMP in
onsiderable

detail, we then look brie
y at some slightly more advan
ed topi
s: how to treat a non-

deterministi
 version of IMP, how to use
ontinuations to give a denotational semanti
s to

a version of IMP with some non-lo
al
ontrol operators, and how to use the denotational

semanti
s of IMP to justify Floyd-Hoare logi
 proof rules for the language.

Finally, an appendix
ontains some material on a fun
tional view of proofs of semanti

equivalen
e. (This is highly non-examinable and merely in
luded be
ause I thought it

might be amusing.)

We will make
ontinual use of the ML programming language. This is be
ause ML

makes it possible (almost!) to implement dire
tly many of the mathemati
al ideas whi
h

we shall be using to understand IMP. It is hoped that this alternative, more
on
rete and

omputational, viewpoint will make understanding the mathemati
s easier. The use of ML

should, however, only be treated as an intuitive aid to understanding the real mathemati
al

semanti
s. Any more formal understanding of the relationship between IMP and the

various bits of ML whi
h we shall present would involve giving a mathemati
al semanti
s

to ML and this requires rather more sophisti
ated ideas than we shall need in order to deal

with IMP. Note that this is a slightly unusual use of a programming language. Whilst all

the ML
ode used in these notes will be made available for students to experiment with,

its real purpose is to be read, not exe
uted. That is, it is used primarily as a language for

human
ommuni
ation, and only in
identally as a language whereby people
an
ontrol

ma
hines.

The material on using ML to implement semanti
 ideas is all non-examinable.

At this point we should mention that ML itself does in fa
t have a
ompletely formally

spe
i�ed operational semanti
s (the De�nition of Standard ML). I strongly re
ommend

that you read the prefa
e to the De�nition and have at least a brief look at the rest of it,

so as to get some idea of how the ideas introdu
ed in this
ourse s
ale up to real-world

languages.

The prerequisites for the
ourse are merely IA Dis
rete Maths and some knowledge of

programming. An understanding of ML is also very desirable, but not absolutely essential

sin
e ML is only used as a metaphor for the more formal semanti
s.

1.3 A
knowledgements

Thanks to Andy Pitts, Gordon Plotkin and Glynn Winskel, all of whose le
ture notes I

have liberally plundered in writing this
ourse, and to Larry Paulson for permission to use

parsing and prettyprinting
ode from his book `ML for the Working Programmer' in the

programs a

ompanying the
ourse. Andrew Kennedy made some very useful
omments

on drafts of these notes. I have used John Reynolds's diagram ma
ros and Paul Taylor's

proof tree ma
ros.

1.4 Re
ommended Reading

Books

� G. Winskel The Formal Semanti
s of Programming Languages. MIT Press

1993. If you're going to buy a book on semanti
s, this is the one to get. Dr

5

Winskel used to le
ture this
ourse and the book is based in part on his le
ture

notes.

� R. D. Tennent Semanti
s of Programming Languages. Prenti
e Hall Interna-

tional 1991.

� M. Hennessy The Semanti
s of Programming Languages. Wiley 1990.

� R. Nielson and F. Nielson Semanti
s with Appli
ations. Wiley 1992.

� R. Harper, R. Milner and M. Tofte The De�nition of Standard ML. MIT Press

1990.

� R. Milner and M. Tofte Commentary on Standard ML. MIT Press 1991.

Papers et
.

� G. D. Plotkin A Stru
tural Approa
h to Operational Semanti
s. Report DAIMI

FN-19 Aarhus University 1981. Available as V105 604 in the CL library.

� G. Kahn Natural Semanti
s. In K. Fu
hi and M. Nivat (eds) Programming of

Future Generation Computers. North-Holland 1988.

6

Chapter 2

Indu
tive De�nitions and Proofs

This
hapter re
alls some mathemati
al ba
kground material (from the Dis
rete Mathe-

mati
s
ourse) whi
h we shall be using repeatedly in this
ourse.

2.1 Indu
tive De�nitions

2.1.1 Introdu
tion

Indu
tively de�ned sets arise throughout Computer S
ien
e. For example:

1. Ba
kus-Naur form (BNF) used in the de�nition of the
on
rete syntax of program-

ming languages, as in the following simple de�nition of binary numbers (with leading

zeros allowed):

hbiti ::= 0 j 1

hbini ::= hbiti j hbitihbini

whi
h says that a bit is either 0 or 1 and that a bin is either a bit or a bit followed

by a bin.

2. Indu
tive datatypes in ML, su
h as one
orresponding to the above BNF:

datatype BIT = Zero | One;

datatype BIN = Single of BIT | Bitstring of BIT*BIN;

or the type of binary trees with integers at the nodes:

datatype TREE = Empty | Node of int*TREE*TREE;

3. The de�nition of various logi
s as
olle
tions of inferen
e rules, su
h as the following

rule for introdu
ing
onjun
tion, whi
h should be read as `if from a set of assumptions

� you
an prove a formula A, and from the same set of assumptions you
an also

prove B, then from � you
an prove A ^B':

� ` A � ` B

^I

� ` A ^B

7

What all these examples have in
ommon is that a set S (of strings, datastru
tures or

provable sequents) is de�ned by a
olle
tion of rules all whi
h have the general form `if a

1

up to a

n

are all in the set then so is a', whi
h we will usually write as

a

1

2 S a

2

2 S � � � a

n

2 S

a 2 S

using the logi
al rule notation

hhypothesesi

hrulenamei

h
on
lusioni

so that the BNF example (whi
h is, of
ourse, two de�nitions)
ould be written as

0 2 bit 1 2 bit

to de�ne the set bit and

b 2 bit

b 2 bin

b 2 bit s 2 bin

bs 2 bin

to de�ne the set bin. Noti
e that we allow the
ase n = 0, i.e. no hypotheses. This simply

means that the
on
lusion holds un
onditionally. Su
h rules are sometimes
alled axioms.

Note also that rules may
ontain variables (e.g. b and s in the se
ond rule for bin above).

Su
h a rule should be thought of as a rule s
heme standing for the in�nite
olle
tion of all

rules arising by substituting atomi
 things for the variables.

1

We will also sometimes add

side
onditions to a rule s
heme; these
onstrain the meaning of the s
heme to the set of

substitution instan
es whi
h also satisfy the side
onditions.

In this
ourse we shall usually use the rule notation, rather than BNF, to de�ne

programming language syntax. A slight subtlety is that BNF is usually taken to de�ne

a set of strings (i.e.
on
rete syntax), whereas we shall always think of syntax as a set

of trees (i.e. abstra
t syntax). This allows us to avoid any issues relating to parsing,

whi
h are
ompletely irrelevant for this
ourse (though they are obviously important for

ompiler writers). Thus the set bin de�ned above should be thought of as
ontaining trees

like this:

2

0

1 0

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

Stri
tly speaking, this is not quite right sin
e we haven't said what `atomi
 things' one is allowed to

plug in for the variables. The
orre
t answer is that we
an only really make an indu
tive de�nition of a

subset S of some already existing set U , and the atoms are all the elements of U . In pra
ti
e, however,

it doesn't usually matter exa
tly what U is, as long as it's large enough to
ontain everything of interest

(in the
ase of binary numbers, for example, U
ould be the set of all �nite strings of ASCII
hara
ters,

or it might be all those together with all
ountably in�nite strings or whatever). We will usually omit all

mention of U , with the ta
it understanding that a suitable set
ould easily be found were anybody to press

us on the matter.

2

So when (to save time and paper) we write syntax in a linear way, the use of parentheses is a meta-

notation to indi
ate the intended tree stru
ture, rather than a proper part of the abstra
t syntax itself.

8

Given an inferen
e rule

a

1

2 S a

2

2 S � � � a

n

2 S

R

a 2 S

we say that a set S is
losed under R if

((a

1

2 S) ^ (a

2

2 S) ^ � � � ^ (a

n

2 S))) (a 2 S)

2.1.2 What do indu
tive de�nitions mean?

Consider the set of natural numbers f0; 1; 2; 3; : : :g. Another way to des
ribe this set,

without using `: : :', is by indu
tion. We take a
onstant symbol Z, whi
h we intend to

mean 0, and a unary fun
tion symbol S whi
h is intended to represent the su

essor

fun
tion (so S(Z) represents 1, S(S(Z)) represents 2 and so on). The following two rules

then
onstitute an indu
tive de�nition of the set N = fZ; S(Z); S(S(Z)); : : :g:

1. Z is a natural number. In symbols, Z 2 N, whi
h we
an
an also write as an

inferen
e rule with no hypotheses:

Z 2 N

2. If n is a natural number then S(n) is a natural number. We
an write this as

n 2 N) S(n) 2 N or as

n 2 N

S(n) 2 N

But how do these two rules spe
ify the set we intend, viz.fZ; S(Z); S(S(Z)); : : :g? After all,

the two rules are only
onditions whi
h we want N to satisfy, and there are many other sets

whi
h also satisfy both
onditions, su
h as N

0

= fZ; S(Z); S(S(Z)); : : : ;r; S(r); S(S(r)); : : :g

where r is just some arbitrary new symbol. The reason N

0

is not what we meant to de�ne

is that it
ontains a lot of extra junk whi
h doesn't need to be there (su
h as S(r)).

Note that N � N

0

{ when we make an indu
tive de�nition su
h as that given above, it is

understood to mean the least set (with respe
t to the subset ordering) satisfying all the

lauses of the de�nition. Formally:

De�nition 1 Given an indu
tive de�nition
omprising a set of rules R, R is said to

indu
tively de�ne the set S if

1. S is
losed under all the rules in R

2. For any S

0

su
h that S

0

is
losed under all the rules in R, S � S

0

.

It is not, however, immediately
lear that there is a unique smallest set satisfying any

indu
tive de�nition, i.e. that indu
tive de�nitions really do de�ne something.

Proposition 1 (Uniqueness) Given an indu
tive de�nition in the form of a set of rules

R, the set de�ned by R, if it exists, is unique.

9

Proof. Assume that S

1

and S

2

both satisfy the
onditions of De�nition 1 above. Be
ause

S

1

satis�es part 1 of the de�nition and S

2

satis�es part 2, we have S

1

� S

2

. A symmetri

argument yields S

2

� S

1

, so that S

1

= S

2

. 2

At this point it's
onvenient to introdu
e a new notion, that of the operator asso
iated

with a set of rules. If R is a set of rules, indexed by a set I:

R = fR

i

j i 2 Ig

where the rule R

i

has the form

h

i;1

h

i;2

� � � h

i;n

i

R

i

i

then �

R

is an operator whi
h takes sets to sets, de�ned by

�

R

(T) = f

i

j (h

i;1

2 T) ^ � � � ^ (h

i;n

i

2 T)g

The following two properties of � are immediate from the de�nition:

Lemma 2

1. For any set of rules R, �

R

is monotoni
. That is

if X � Y then �

R

(X) � �

R

(Y)

2. A set X is
losed under all the rules in R if and only if �

R

(X) � X. If this is the

ase, we say X is a pre�xed point of �

R

.

2

Lemma 3 If R is a set of rules and fS

i

j i 2 Ig is a
olle
tion of sets (indexed by the set

I) su
h that for ea
h i 2 I, S

i

is
losed under all the rules in R, then the set

T

i2I

S

i

is

also
losed under all the rules in R.

Proof.

8i:

\

j2I

S

j

� S

i

) 8i:�

R

(

\

j2I

S

j

) � �

R

(S

i

)

) 8i:�

R

(

\

j2I

S

j

) � S

i

) �

R

(

\

j2I

S

j

) �

\

i2I

S

i

where the �rst in
lusion is an obvious property of interse
tion, the �rst impli
ation follows

by monotoni
ity of �

R

, the se
ond by the fa
t that ea
h S

i

is a pre�xed point of �

R

and

the last by another property of interse
tion. 2

Proposition 4 (Existen
e) If R is a set of rules, then the set

S

def

=

\

fS

0

j S

0

is
losed under all the rules in Rg

is indu
tively de�ned by R.

10

Proof. By Lemma 3, S is
losed under all the rules in R and so satis�es part 1 of

De�nition 1. To see that it also satis�es part 2, let S

00

be
losed under all the rules in R.

It should then be obvious that sin
e S

00

2 fS

0

j S

0

losed under Rg, we have

S =

\

fS

0

j S

0

losed under Rg � S

00

as required. 2

So, taking Propositions 1 and 4 together, we see that indu
tive de�nitions really do

make sense. Proposition 4 says exa
tly that S =

T

fS

0

j �

R

(S

0

) � S

0

g is the least pre�xed

point of �

R

. It's worth noting the following:

Proposition 5 S =

T

fS

0

j �

R

(S

0

) � S

0

g is the least �xed point of �

R

. That is

1. �

R

(S) = S, and

2. If �

R

(S

00

) = S

00

then S � S

00

.

Proof.

1. We already know that �

R

(S) � S be
ause S is a pre�xed point. Thus we want to

show S � �

R

(S). Well, let Z = �

R

(S). By monotoni
ity applied to the fa
t that

Z � S we get that �

R

(Z) � Z and hen
e that Z 2 fS

0

j �

R

(S

0

) � S

0

g. Thus

T

fS

0

j �

R

(S

0

) � S

0

g � Z, i.e. S � �

R

(S), as required.

2. If S

00

is a �xed point, it is a pre�xed point and hen
e S � S

00

as S is the least pre�xed

point.

2

2.1.3 Upwards
hara
terisation of indu
tively de�ned sets

The way we have explained the meaning of indu
tive de�nitions is in some sense `down-

wards' { we start with a
olle
tion of
andidates for the meaning of the de�nition, whi
h

are, in general, too big; the true meaning is then extra
ted as the interse
tion of all the

andidates.

There is another way of des
ribing the set de�ned by an indu
tive de�nition whi
h

works from the bottom up. The intuitive idea is that one builds the set up in stages,

starting with the empty set and at ea
h stage adding in those extra things whi
h the

rules say have to be there as
onsequen
es of the previous stage. The set de�ned by the

indu
tive de�nition is then the limit of this
hain of su

essive approximations. In the

ase of the de�nition of natural numbers, for example, we build the
hain like this:

N

0

= fg start with the empty set

N

1

= fZg the rule for Z says add Z without any
ondition

N

2

= fZ; S(Z)g now the S rule says add S(Z) be
ause Z 2 N

1

.

.

.

N =

S

1

i=0

N

i

the (in�nite) limit is the union of all the (�nite) approximations

You should re
ognise this as the way in whi
h the
onstru
tion of the Herbrand universe

of a set of
lauses is explained in Dr Paulson's `Logi
 and Proof'
ourse. (Indeed, one view

of pure Prolog is that it is essentially a language for making indu
tive de�nitions.)

11

We
an make this intuitive a

ount more formal. If R is a set of rules, we de�ne the

hain of approximations (indu
tively!) like this:

S

0

= fg

S

n+1

= �

R

(S

n

)

Note that we are justi�ed in
alling this a
hain, sin
e Lemma 2 implies that

S

0

� S

1

� S

2

� � � �

(Why?) The limit is then simply

S

!

=

1

[

n=0

S

n

And this does a
tually work:

Proposition 6 Given a set of rules R, the set

S

!

def

=

1

[

n=0

�

n

R

(;)

is indu
tively de�ned by R.

Proof. There are two parts to De�nition 1 and we
he
k ea
h in turn. Firstly, we need

to
he
k that S

!

is
losed under all the rules in R. Take a typi
al rule

h

1

2 S � � � h

k

2 S

R

 2 S

and assume that h

i

2 S

!

for ea
h 1 � i � k. Then there must be some �nite approximation

S

m

su
h that h

i

2 S

m

for ea
h i. Then by the de�nition of �

R

,
 2 S

m+1

� S

!

and we're

done.

Now we have to
he
k the se
ond part of the de�nition, i.e. that S

!

is
ontained within

any other set,
all it T , whi
h is
losed under all the rules in R. We shall establish this

by mathemati
al indu
tion (whi
h we shall dis
uss in the next se
tion). Firstly note that

; = S

0

� T . This is the base
ase of the indu
tion. Now assume that S

m

� T . It's easy

to see that

S

m+1

= �

R

(S

m

)

� �

R

(T)

� T

where the last in
lusion follows from the fa
t that T is a pre�xed point for �

R

(Lemma 2,

part 2) and the middle one from the fa
t that S

m

� T and monotoni
ity (Lemma 2, part

1). So by mathemati
al indu
tion we have that S

n

� T for all n 2 N, and it's then
lear

that S

!

, being the union of all the S

n

s, is also
ontained in T as required. Thus S

!

is the

least pre�xed point, and is equal to the S we de�ned in the previous se
tion. 2

As another example, the meaning of the ML datatype of binary trees whi
h we gave

earlier

datatype TREE = Empty | Node of int*TREE*TREE;

12

an be built as the limit of the
hain of approximations whi
h starts

TREE

0

= ;

TREE

1

= fEmptyg

TREE

2

= fEmpty; Node(0; Empty; Empty); Node(1; Empty; Empty); : : :g

TREE

3

= fEmpty; Node(0; Empty; Empty); Node(1; Empty; Empty); : : :

Node(0; Node(0; Empty; Empty)); Node(1; Node(0; Empty; Empty)); : : :

.

.

.

g

.

.

.

2.1.4 Simultaneous indu
tive de�nitions

The ideas of the previous se
tion
an be generalised to the
ase where a
olle
tion of sets

S

1

; S

2

; : : : ; S

k

are de�ned by a set of rules whi
h ea
h look like

x

1

2 S

i

1

� � � x

n

2 S

i

n

x 2 S

i

For example, we might de�ne the syntax of integer and boolean expressions in some

(slightly C-like) language by rules in
luding the following:

n 2 Z

n 2 Iexp true 2 Bexp false 2 Bexp

e

1

2 Iexp e

2

2 Iexp

e

1

+ e

2

2 Iexp

b

1

2 Bexp b

2

2 Bexp

b

1

&&b

2

2 Bexp

b 2 Bexp e

1

2 Iexp e

2

2 Iexp

(b?e

1

: e

2

) 2 Iexp

e

1

2 Iexp e

2

2 Iexp

(e

1

= e

2

) 2 Bexp

Note that the integer expressions depend on the boolean expressions and vi
e-versa. The

formal meaning of su
h mutually dependent indu
tive de�nitions is a generalisation of

that of a single indu
tive de�nition, and is left as an exer
ise for the diligent reader.

2.1.5 Derivations

If the set S is de�ned by an indu
tive de�nition R = fR

i

j i 2 Ig then ea
h s 2 S is there

for a reason { this is the essen
e of the se
ond part of De�nition 1, ea
h su
h s is there

be
ause it is for
ed to be by some �nite number of appli
ations of rules in R. These
an

be written in a tree whi
h we
all a derivation of the statement s 2 S. For example, in

the
ase of our integer and boolean expressions, the following is a typi
al derivation:

3 2 Iexp 4 2 Iexp

(3 = 4) 2 Bexp 5 2 Iexp 6 2 Iexp

((3 = 4) ? 5 : 6) 2 Iexp

There may, in general, be more than one derivation that a parti
ular element belongs

to the set. This doesn't happen in our example above sin
e ea
h synta
ti
 form is the

on
lusion of exa
tly one rule.

13

Given a set of rulesR de�ning a set S, the set of derivations inR is itself an indu
tively

de�ned set. It is de�ned by the following two rules:

1. Any rule R 2 R with no hypotheses is a derivation.

2. If D

1

; : : : ;D

n

are derivations in R with
on
lusions h

1

2 S; : : : ; h

n

2 S respe
tively,

and R 2 R is a rule with hypotheses h

1

2 S through to h

n

2 S and
on
lusion
 2 S,

then the following is a derivation:

D

1

h

1

2 S
� � �

D

n

h

n

2 S

R

 2 S

2.1.6 Indu
tively de�ned fun
tions

Assume that S is indu
tively de�ned by R = fR

i

j i 2 Ig where

R

i

=

h

i;1

h

i;2

� � � h

i;n

i

R

i

i

and that furthermore there is a unique derivation for ea
h s 2 S. If T is any set, then

to de�ne a fun
tion f : S ! T , it suÆ
es for ea
h i to give f(

i

) in terms of the n

i

values f(h

i;1

); : : : ; f(h

i;n

i

).This is, of
ourse, the way in whi
h one de�nes fun
tions over

datatypes using pattern mat
hing and re
ursion in ML.

3

For example:

datatype NAT = Z | S of NAT;

fun double Z = Z

| double (S(n)) = S(S(double(n)));

2.2 Indu
tive Proofs

We now turn from de�ning sets to proving things about them.

2.2.1 Mathemati
al indu
tion

This means indu
tion over the natural numbers, and is somthing with whi
h you should

already be familiar. (Indeed, we have used it on
e already in these notes, to prove Propo-

sition 6.)

Proposition 7 (Mathemati
al Indu
tion) Suppose that P is some property of the

natural numbers, so P � N. If P is
losed under the following rules

0 2 P

n 2 P

n+ 1 2 P

then P is the whole of N.

3

This is a
tually a gross simpli�
ation, but never mind.

14

Proof. Suppose that the result is false, so that P is
losed under the rules but there is

some m 2 N su
h that m 62 P . We
an furthermore take m to be the smallest su
h number

(the `minimal
riminal'). Now, sin
e P is
losed under the �rst rule, we have that 0 2 P

so that m 6= 0. This means that m = m

0

+ 1 for some m

0

2 N. But now m

0

62 P (or else

m 2 P by the fa
t that P is
losed under the se
ond rule), and m

0

is stri
tly smaller than

m, whi
h
ontradi
ts the minimality of m. So no su
h m exists and P = N. 2

Here's a familiar and rather trivial example of a proof by mathemati
al indu
tion:

Proposition 8

8n:

n

X

i=0

i =

n(n+ 1)

2

Proof. Let P = fn j

P

n

i=0

i = n(n+ 1)=2g and we have to
he
k that P is
losed under

the two rules for zero and su

essor.

1. For zero, we
al
ulate

0

X

i=0

i = 0 = 0:(0 + 1)=2

so that 0 2 P .

2. For the su

essor rule, we assume n 2 P and then

n+1

X

i=0

i =

n

X

i=0

i+ (n+ 1)

=

n(n+ 1)

2

+ (n+ 1) by the indu
tive assumption

=

(n+ 1)((n+ 1) + 1)

2

so (n+ 1) 2 P .

Then applying Proposition 7, we get that P = N as required. 2

You should be able to see that the
onditions required of P for mathemati
al indu
tion

to be appli
able are
losely related to the indu
tive de�nition of the natural numbers in

terms of Z and S() whi
h we gave in Se
tion 2.1.2. This is no a

ident and generalises to

give an indu
tion prin
iple for any indu
tively de�ned set.

2.2.2 Rule indu
tion

Proposition 9 (Rule Indu
tion) Let the set S be indu
tively de�ned by a set of rules

R and P � S. Then if P is
losed under all the rules in R, P is the whole of S.

Proof. By the se
ond part of De�nition 1, whi
h says what it is for S to be indu
tively

de�ned by R, we have S � P . Then sin
e we assumed P � S we have P = S. 2

Mathemati
al indu
tion is just the spe
ial
ase of rule indu
tion whi
h arises when S

is N. In the
ase that rule indu
tion is applied to a set of synta
ti
 obje
ts, where there is

15

one rule for ea
h synta
ti

onstru
t, rule indu
tion is also known as stru
tural indu
tion

be
ause it be
omes an indu
tion over the synta
ti
 stru
ture of obje
ts in the set.

As an example, we will
onsider proving some things about fun
tions whi
h manipulate

lists in ML by stru
tural indu
tion { you will see more proofs like these in Dr Paulson's

IB
ourse on Foundations of Fun
tional Programming. Lists of integers are de�ned by the

following indu
tive datatype de
laration

4

:

datatype INTLIST = Nil | Cons of int*INTLIST;

Given this indu
tive de�nition, we
an de�ne the append fun
tion indu
tively like this:

(* append : INTLIST*INTLIST -> INLIST *)

fun append(Nil,ys) = ys

| append(Cons(x,xs),ys) = Cons(x,append(xs,ys));

Proposition 10 The append fun
tion is asso
iative. That is to say, for any xs,ys,zs:

append(xs; append(ys; zs)) = append(append(xs; ys); zs)

Proof. We prove this by stru
tural indu
tion on xs. There are two
ases:

1. If xs = Nil then

append(Nil; append(ys; zs)) = append(ys; zs)

= append(append(Nil; ys); zs)

2. If xs = Cons(w; ws) then

append(Cons(w; ws); append(ys; zs)) = Cons(w; append(ws; append(ys; zs)))

(indu
tion) = Cons(w; append(append(ws; ys); zs))

= append(Cons(w; append(ws; ys)); zs)

= append(append(Cons(w; ws); ys); zs)

2

Something to wat
h out for when doing any kind of indu
tion is that you will, to

make the proof work, sometimes have to prove something slightly stronger than the result

for whi
h you are really aiming. Here are some more indu
tively de�ned fun
tions to

manipulate lists:

(* reverse : INTLIST -> INTLIST *)

fun reverse Nil = Nil

| reverse (Cons(x,xs)) = append(reverse xs, Cons(x,Nil));

(* revapp : INLIST*INLIST -> INTLIST *)

fun revapp (Nil,ys) = ys

| revapp (Cons(x,xs),ys) = revapp(xs,Cons(x,ys));

(* rev : INTLIST -> INTLIST *)

fun rev xs = revapp (xs,Nil);

4

Of
ourse, lists are already built in to the language, but we'll pretend they aren't.

16

and let us suppose we want to prove the following by stru
tural indu
tion on lists:

Proposition 11

8xs 2 INTLIST: rev xs = reverse xs

One's �rst attempt at a proof would be to try to use stru
tural indu
tion on xs to

prove the result dire
tly. There are two syntax formation rules to
onsider

1. For Nil we observe that reverse Nil = Nil from the de�nition of reverse and

that

rev Nil = revapp (Nil; Nil)

= Nil

so that
ase is OK.

2. For Cons we have that for any x and xs

rev (Cons(x; xs)) = revapp (Cons(x; xs); Nil)

= revapp (xs; Cons(x; Nil))

and that

reverse (Cons(x; xs)) = append(reverse xs; Cons(x; Nil))

= append(rev xs; Cons(x; Nil)) by indu
tion

= append(revapp(xs; Nil); Cons(x; Nil))

but then we're stu
k. The problem is that the indu
tion hypothesis doesn't say

anything at all about revapp when its se
ond argument is non-Nil.

So we have to prove a stronger statement whi
h implies what we want:

Lemma 12

8xs: 8ys: revapp(xs; ys) = append(reverse xs; ys)

Proof. We prove this by indu
tion on xs:

1. In the
ase where xs is Nil we need to show

8ys: revapp(Nil; ys) = append(reverse Nil; ys)

The left-hand side (LHS) is equal to ys by the de�nition of revapp, whilst the RHS

is equal to append(Nil,ys) by the de�nition of reverse, and this is ys by the

de�nition of append.

2. In the
ase where xs is Cons(z,zs) we reason as follows

revapp(Cons(z; zs); ys) = revapp(zs; Cons(z; ys)) (defn. of revapp)

(indu
tion) = append(reverse zs; Cons(z; ys))

(defn. of append) = append(reverse zs; append(Cons(z; Nil); ys))

(Proposition 10) = append(append(reverse zs; Cons(z; Nil)); ys)

(defn. of reverse) = append(reverse(z; zs); ys)

17

2

Proposition 11 then follows immediately from Lemma 12. In a
ase like this it
an

require a
ertain amount of intelligen
e and experien
e (not to mention lu
k) to see exa
tly

what the stronger indu
tion hypothesis should be to make the proof go through. Indeed,

�nding the right hypothesis is sometimes referred to as the `aha!' or `eureka!' step in an

indu
tive proof sin
e it appears to be plu
ked magi
ally out of thin air, but on
e you have

it the rest of the proof is often fairly me
hani
al. A
ommon strategy for �nding indu
tion

hypotheses is to try a simple one and if the proof fails to go though, try to see why it fails,

and use that as guidan
e as to how the hypothesis should be strengthened. The problem

of �nding indu
tion hypotheses also shows up as the problem of �nding loop invariants

when proving properties of programs using Floyd-Hoare logi
 (see the Appendix and next

year's Spe
i�
ation and Veri�
ation
ourse).

2.3 Exer
ises

1. Given our indu
tive de�nition of N, give an indu
tive de�nition of the usual `less-

than' relation �� N � N.

2. What
an you say about the set de�ned by an set of rules whi
h doesn't
ontain any

axioms?

3. Can every set be de�ned by an indu
tive de�nition? Given a set S,
an it be that

the set R of rules de�ning S is not unique? For a given set of rules R,
an two

distin
t sets of rule s
hemes denote R?

4. Noti
e that we are quite happy to deal with indu
tive de�nitions whi
h have an

in�nite number of rules (remember that a rule s
heme is just shorthand for all its

substitution instan
es). All our rules are, however,
onstrained to have a �nite

number of hypotheses. Think about what would happen if we were to relax this

restri
tion. Do su
h de�nitions de�ne anything? What happens to the downward

(

T

)
onstru
tion? What about the upwards (

S

) one?

5. Work out the formal details of exa
tly what simultaneous indu
tive de�nitions mean

(Se
tion 2.1.4). If you don't already know, �nd out how to make mutually re
ursive

datatype de
larations in ML and think of some pra
ti
al examples.

6. Why, when de�ning fun
tions from S by indu
tion in Se
tion 2.1.6, did we insist

that every element of S had to have a unique derivation? Do elements of indu
tive

datatypes in ML always have unique derivations?

7. The Fibona

i numbers are de�ned indu
tively by

F

0

= 0 F

1

= 1 F

n+2

= F

n+1

+ F

n

Prove, by mathemati
al indu
tion, that

F

n

=

1

p

5

(�

n

�

^

�

n

)

where

� =

(1 +

p

5)

2

and

^

� = 1� �:

18

8. Given a set Prop of propositions, the set of
ontexts over Prop is de�ned by

[℄ 2 Ctxt

� 2 Ctxt A 2 Prop

�; A 2 Ctxt

So, intuitively, a
ontext is a �nite list of propositions, separated by
ommas. De�ne

a relation �� Ctxt � Ctxt by indu
tion su
h that � � �

0

just when � and �

0

are

the same list of propositions but in a di�erent order. (You may need to make use

of some auxiliary relations.) Prove that your relation � is an equivalen
e relation.

(Warning: this question is fairly tri
ky!)

9. Assume we are given a set of basi
 propositions Atom. Let Prop, the set of
onjun
-

tive propositions over Atom, be de�ned by

A 2 Atom

A 2 Prop

A 2 Prop B 2 Prop

A ^B 2 Prop

Now let Ctxt be the set of
ontexts over Prop and � be the equivalen
e relation

on
ontexts as in the previous question. The entailment relation `� Ctxt � Prop,

whi
h we write in�x, of a little logi
 is then de�ned as follows:

�; A ` A

� ` A � � �

0

�

0

` A

� ` A � ` B

� ` A ^B

� ` A ^B

� ` A

� ` A ^B

� ` B

Prove by indu
tion that the following are all admissible rules (i.e. adding them does

not make any di�eren
e to the set of derivable sequents):

(a)

� ` B

�; A ` B

(b)

(�; A); A ` B

�; A ` B

(
)

� ` A �; A ` B

� ` B

19

Chapter 3

IMP and its Operational

Semanti
s

3.1 The Syntax of IMP

Throughout this
ourse we shall work with a toy imperative programming language whi
h

we
all IMP. IMP is also sometimes
alled the language of while programs. The syntax of

IMP
omprises three sets (or synta
ti

ategories): Bexp for boolean-valued expressions,

Iexp for integer-valued expressions and Com for
ommands. These are de�ned indu
tively

in terms of some auxiliary sets

Z = f: : : ;�2;�1; 0; 1; 2; 3; : : :g the integers

B = ftrue; falseg the booleans

Iop = f+;�;�; : : :g some �nite set of integer operations

Bop = f=; >; : : :g some �nite set of boolean operators

Pvar = fx; y; : : :g some in�nite set of program variables

We will not worry too mu
h about exa
tly what operators are built in to the language.

The syntax of IMP is then de�ned indu
tively by the rules shown in Figure 3.1. We use

typewriter font (like this) for expressions in the language and math itali
 (like this) for

metavariables ranging over the various synta
ti

ategories and auxiliary sets.

If n 2 Z is an integer, we write n for the synta
ti
 IMP expression
orresponsing to

n. So, for example, 5 2 Z but 5 = 5 2 Iexp. Likewise, true 2 B is a boolean value,

whereas true = true 2 Bexp is the
orresponding IMP phrase. A similar
onvention is

used for the integer and boolean operations, so iop 2 Iop should be thought of as a proper

mathemati
al fun
tion iop:Z�Z! Z, whereas iop is the synta
ti
 name of that fun
tion

whi
h we use in the programming language. For example, � 2 Iop is the multipli
ation

fun
tion, but � = � is the textual symbol we use to indi
ate multipli
ation in IMP. Whilst

this might appear abstruse, it is not mere pedantry { these distin
tions between syntax

(5 2 Iexp) and semanti
s (5 2 Z) are absolutely
entral to this
ourse.

1

1

This is also dis
ussed in Dr Forster's Part II Philosophy le
tures as the `use-mention distin
tion' whi
h

o

urs in natural language. When we write a word (for simpli
ity, a noun) then we are normally using it {

we expe
t the reader mentally to dereferen
e the marks on the page to obtain (the idea of) the real-world

obje
t whi
h they denote. By using quotation marks, we
an mention the word, referring to the synta
ti

obje
t. The following two senten
es illustrate the idea:

20

(R1)

n 2 Z

n 2 Iexp

(R2)

x 2 Pvar

x 2 Iexp

(R3)

ie

1

2 Iexp ie

2

2 Iexp

iop 2 Iop

ie

1

iop ie

2

2 Iexp

(R4)

b 2 B

b 2 Bexp

(R5)

ie

1

2 Iexp ie

2

2 Iexp

bop 2 Bop

ie

1

bop ie

2

2 Bexp

(R6)

skip 2 Com

(R7)

ie 2 Iexp

x 2 Pvar

x := ie 2 Com

(R8)

C

1

2 Com C

2

2 Com

C

1

;C

2

2 Com

(R9)

be 2 Bexp C 2 Com

while be doC 2 Com

(R10)

be 2 Bexp C

1

2 Com C

2

2 Com

if be thenC

1

elseC

2

2 Com

Figure 3.1: The Syntax of IMP

The syntax of IMP is simple enough that you should be able to guess (informally) how

programs are supposed to behave. (We will shortly see how to formalise that behaviour.)

For example, the following program
omputes the fa
torial of 5, leaving the result in the

variable r:

x := 5;(r := 1; (while x>1 do (r := r*x; x := x-1)))

We
an also express the syntax of IMP as ML datatypes (using the builtin type string

to represent Pvar, int to represent Z and bool for B):

datatype IOP = Plus | Times | Minus;

datatype IEXP = N of int | Pvar of string | Iop of IOP*IEXP*IEXP;

datatype BOP = Equal | Greater;

datatype BEXP = B of bool | Bop of BOP*IEXP*IEXP;

datatype COM = Skip | Assign of string*IEXP | Seq of COM*COM |

If of BEXP*COM*COM | While of BEXP*COM;

Noti
e that the distin
tion between integers and IMP numerals whi
h we made su
h a

Philosophers are all very ri
h.

\Philosophers" is a word with twelve letters.

This kind of distin
tion is important in many dis
iplines. The (often rather
omplex) interplay of signi�er

and signi�ed, sign and referent, is at the heart of mu
h work in philosophy, metamathemati
s, linguisti
s

and even so
iology. Whilst this is
learly all well outside the s
ope of these le
tures, you should at least

be aware that it is A Very Important Idea.

21

fuss about earlier shows up quite
learly in the ML
ode, with the pla
e of the underline

operation taken by the
onstru
tor N(). Thus 5:int, but N(5):IEXP.

2

3.2 Transition Semanti
s of IMP

In this se
tion we give IMP an operational semanti
s using a transition relation whi
h

expresses how a
ommand or expression su

essively rewrites, or evolves, to another. This

is similar to the �-redu
tion relation for the �-
al
ulus (IB Foundations of Fun
tional

Programming) or the labelled transitions used to de�ne the dynami
 behaviour of CCS

agents or Pi Cal
ulus pro
esses (Part II Con
urren
y Theory and the Pi Cal
ulus). One

di�eren
e is that how an IMP phrase behaves depends not just on the phrase itself, but

also on the values
urrently held in ea
h of the program variables. Similarly, the behaviour

of a
ommand
onsists not just of rewriting to a new phrase, but may also involve
hanges

to some of the variables.

3.2.1 States

We will refer to an assignment of an integer value to ea
h program variable as a state.

Formally, we de�ne the set of all states by

States

def

= Pvar! Z

so a state is a fun
tion from variable names to integers. If S 2 States, x 2 Pvar and

S(x) = n then n is the integer stored in variable x in state S.

If S 2 States,x 2 Pvar and n 2 Z then we write S[n=x℄ for the state S with x updated

to n. In symbols

(S[n=x℄)(y)

def

=

(

n if y = x

S(y) otherwise

for all y 2 Pvar.

We
an
ode states in ML in several ways. The one whi
h mimi
s the mathemati
al

treatment most
losely uses ML fun
tions:

type STATES = string -> int;

(* update : STATES*string*int -> STATES *)

fun update (S,x,n) = fn y => if y=x then n else S(y);

but this has the slight disadvantage (for intera
tive experimentation) that states are then

not printable values. For this reason alone, we will instead let states be (�nite) partial

fun
tions from strings to integers. These
an then be represented by asso
iation lists

(whi
h
an be printed):

2

The observant and pi
ky reader will also noti
e that the analogous distin
tion for integer and boolean

operations still exists in the ML
ode, but has been reversed by
omparison with the mathemati
al treat-

ment. In the ML, an term of type IOP is the name of an operation whi
h will be mapped to the operation

itself by a fun
tion iopmeaning whi
h we will give later on. This
ontrasts with the mathemati
s, where

an element of Iop is the a
tual operation, whi
h
an be mapped to its name by applying the underline

fun
tion. There's no signi�
ant di�eren
e { it's just a matter of what is taken as basi
 and what is derived.

22

type STATES = (string*int) list;

(* lookup : string*STATES -> int *)

ex
eption Lookup;

fun lookup(x,[℄) = raise Lookup

| lookup(x,(y,v)::pairs) = if x=y then v else lookup(x,pairs);

(* update : STATES*string*int -> STATES *)

fun update (S,x,n) =
ase S of

[℄ => [(x,n)℄

| ((y,v)::pairs) => if x=y then (x,n)::pairs

else (y,v)::(update (pairs,x,n));

3.2.2 Operational semanti
s via transition relations

We now indu
tively de�ne three relations:

!

I

� (Iexp� States)� (Iexp� States)

!

B

� (Bexp� States)� (Bexp� States)

!

C

� (Com� States)� (Com� States)

by the rules shown in Figure 3.2 where we write, for example,

hC;Si !

C

hC

0

; S

0

i

instead of

((C;S); (C

0

; S

0

)) 2!

C

whi
h should be read as `in state S the
ommand C
an make a one-step transition to

the
ommand C

0

and new state S

0

' (and similarly for integer and boolean expressions).

We will sometimes simply write ! for any of !

I

;!

B

;!

C

, sin
e whi
h relation is meant

is usually
lear from
ontext. We will
all a pair he; Si of a phrase (an expression or a

ommand) and a state a
on�guration.

Notes on Figure 3.2:

1. We have left out some fairly obvious side-
onditions for reasons of spa
e. For exam-

ple, rule (!

I

�1) has the side
ondition that x 2 Pvar.

2. In rule (!

I

�4), n

1

iop n

2

denotes
 where
 2 Z is the result of applying the a
tual

mathemati
al operation iop:Z�Z! Z to the integers n

1

and n

2

. For example, one

of the instan
es of this rule is h5+ 3; Si !

I

h8; Si (for any S).

3. Similarly, in rule (!

B

�3), n

1

bop n

2

stands for whi
hever of true or false
orre-

sponds to the value of the fun
tion bop:Z� Z! ftrue; falseg when it is applied to

the two integers n

1

and n

2

.

4. The rules divide into two
lasses. Those with no hypotheses are the ones whi
h do

real
omputational work, whilst the others are there to show exa
tly how a transition

on a subphrase
auses a transition on the larger phrase of whi
h it is a part. For

example, (!

I

�1) and (!

I

�4) make real progress, whereas the other two integer

expression rules do not.

23

(!

I

�1)

hx; Si !

I

hS(x); Si

(!

I

�2)

hie

1

; Si !

I

hie

0

1

; S

0

i

hie

1

iop ie

2

; Si !

I

hie

0

1

iop ie

2

; S

0

i

(!

I

�3)

hie; Si !

I

hie

0

; S

0

i

hn iop ie; Si !

I

hn iop ie

0

; S

0

i

(!

I

�4)

hn

1

iop n

2

; Si !

I

hn

1

iop n

2

; Si

(!

B

�1)

hie

1

; Si !

I

hie

0

1

; S

0

i

hie

1

bop ie

2

; Si !

B

hie

0

1

bop ie

2

; S

0

i

(!

B

�2)

hie; Si !

I

hie

0

; S

0

i

hn bop ie; Si !

B

hn bop ie

0

; S

0

i

(!

B

�3)

hn

1

bop n

2

; Si !

I

hn

1

bop n

2

; Si

(!

C

�1)

hie; Si !

I

hie

0

; S

0

i

hx:=ie; Si !

C

hx:=ie

0

; S

0

i

(!

C

�2)

hx:=n; Si !

C

hskip; S[n=x℄i

(!

C

�3)

hC

1

; Si !

C

hC

0

1

; S

0

i

hC

1

; C

2

; Si !

C

hC

0

1

; C

2

; S

0

i

(!

C

�4)

hskip;C;Si !

C

hC;Si

(!

C

�5)

hbe; Si !

B

hbe

0

; S

0

i

hif be thenC

1

elseC

2

; Si !

C

hif be

0

thenC

1

elseC

2

; S

0

i

(!

C

�6)

hif true thenC

1

elseC

2

; Si !

C

hC

1

; Si

(!

C

�7)

hif false thenC

1

elseC

2

; Si !

C

hC

2

; Si

(!

C

�8)

hwhile be doC;Si !

C

hif be then (C ; while be doC) else skip; Si

Figure 3.2: One-Step Transition Semanti
s of IMP

24

5. Following on from the last point, the rules (!

I

�2) and (!

I

�3) spe
ify the evaluation

order for integer expressions as being stri
tly left-to-right { the �rst operand must

be a numeral before any transitions on the se
ond operand
an o

ur. For some

appli
ations, this might be regarded as overspe
i�
ation (see the Exer
ises).

Here is an example of a simple derivation of an instan
e of the transition relation,

where we assume that the state S is su
h that S(y) = 3:

(!

I

�1)

hy; Si !

I

h3; Si

(!

C

�1)

hy := y+ (3+ 4); Si !

C

hy := 3+ (3+ 4); Si

You should similarly be able verify ea
h of the following subsequent steps in the exe
ution

of this
ommand:

hy := 3+ (3+ 4); Si !

C

hy := 3+ 7; Si !

C

hy := 10; Si !

C

hskip; S[10=y℄i

As a more involved example, assume that S 2 States satis�es S(x) = 2 and S(r) = 60

and let C = (while x > 1 doC

1

) where C

1

= (r := r � x ; x := x� 1). Ea
h of the following

transitions
an be justi�ed by a short proof using the rules of the transition semanti
s

(rather tedious Exer
ise).

hC;Si !

C

hif x > 1 then (C

1

; C) else skip; Si

!

C

hif 2 > 1 then (C

1

; C) else skip; Si

!

C

hif true then (C

1

; C) else skip; Si

!

C

hC

1

; C;Si

!

C

h(r := 60 � x ; x := x� 1) ; C;Si

!

C

h(r := 60 � 2 ; x := x� 1) ; C;Si

!

C

h(r := 120 ; x := x� 1) ; C;Si

!

C

h(skip ; x := x� 1) ; C;S[120=r℄i

!

C

hx := x� 1 ; C;S[120=r℄i

!

C

hx := 2� 1 ; C;S[120=r℄i

!

C

hx := 1 ; C;S[120=r℄i

!

C

hskip ; C;S[120=r℄[1=x℄i

!

C

hC;S[120=r℄[1=x℄i

!

C

hif x > 1 then (C

1

; C) else skip; S[120=r℄[1=x℄i

!

C

hif 1 > 1 then (C

1

; C) else skip; S[120=r℄[1=x℄i

!

C

hif false then (C

1

; C) else skip; S[120=r℄[1=x℄i

!

C

hskip; S[120=r℄[1=x℄i

3.2.3 Theorems about the transition semanti
s

The transition semanti
s is good for more than just spe
ifying what the result of a par-

ti
ular program should be. We
an also use it to prove statements about programs in

general. Here's one simple example:

Proposition 13 (IMP expressions have no side-e�e
ts) If either

hie; Si !

I

hie

0

; S

0

i or hbe; Si !

B

hbe

0

; S

0

i

then S = S

0

. In other words, evaluation of integer and boolean expressions has no e�e
t

on the state.

25

Proof. This follows by rule indu
tion, �rst on the de�nition of !

I

and then on that of

!

B

, and is left as an exer
ise. 2

Commands, on the other hand,
an
hange the state (rule (!

C

�2)). Proposition 13

means that we
ould have given an alternative set of de�nitions for the transition semanti
s

in whi
h the relations !

I

and !

B

were given as subsets of (Iexp � States) � Iexp and

(Bexp� States)� Bexp respe
tively.

Theorem 14 (Transitions are deterministi
) For any phrases (expressions or
om-

mands) e,e

0

,e

00

and any states S,S

0

,S

00

, if

he; Si ! he

0

; S

0

i and he; Si ! he

00

; S

00

i

then e

0

= e

00

and S

0

= S

00

.

Proof. This follows by stru
tural indu
tion on e. In any proof of he; Si ! he

0

; S

0

i, the

last rule used is uniquely determined by the stru
ture of e. For example, suppose that

e = (e

1

iop e

2

) and that the result holds for e

1

and e

2

. Then there are three
ases to

onsider:

� If e

1

= n

1

and e

2

= n

2

are both
onstants then the last rule used in a proof of

he; Si !

I

he

0

; S

0

i or of he; Si !

I

he

00

; S

00

i must be (!

I

�4) and hen
e e

0

= e

1

iop e

2

=

e

00

and S

0

= S = S

00

.

� If e

1

= n

1

is a
onstant but e

2

is not then the last rule used in any proof of he; Si !

must be (!

I

�3) so that the two proofs must look like

(!

I

�3)

he

2

; Si !

I

he

0

2

; S

0

i

hn

1

iop e

2

; Si !

I

hn

1

iop e

0

2

; S

0

i

(!

I

�3)

he

2

; Si !

I

he

00

2

; S

00

i

hn

1

iop e

2

; Si !

I

hn

1

iop e

00

2

; S

00

i

Then by the indu
tion hypothesis applied to e

2

, we must have e

0

2

= e

00

2

and S

0

= S

00

,

and hen
e

e

0

= (n

1

iop e

0

2

) = (n

1

iop e

00

2

) = e

00

as required.

� e

1

is not a
onstant. Then the last rule used must have been (!

I

�2) and we reason

mu
h as in the previous
ase that e

0

= e

00

and S

0

= S

00

.

Ea
h of the other
ases for the stru
ture of e
an be dealt with in a similar manner, and

we leave them as Exer
ises. 2

3.2.4 Evaluation sequen
es

A
on�guration he; Si is said to be terminal if there is no he

0

; S

0

i su
h that he; Si ! he

0

; S

0

i.

A moment's inspe
tion of the transition rules shows that the terminal
on�gurations are

pre
isely

hn; Si htrue; Si hfalse; Si hskip; Si

An in�nite evaluation sequen
e for he; Si is an in�nite
hain of one-step transitions:

he; Si = he

0

; S

0

i ! he

1

; S

1

i ! he

2

; S

2

i ! � � �

26

where for all i, he

i

; S

i

i is not terminal.

A �nite evaluation sequen
e for he; Si is �nite
hain

he; Si = he

0

; S

0

i ! he

1

; S

1

i ! he

2

; S

2

i ! � � � ! he

n

; S

n

i

with he

n

; S

n

i terminal. Evaluation sequen
es are also
alled tra
es (whi
h roughly mat
hes

the way in whi
h the word `tra
ing' is used in the
ontext of debugging to refer to examining

the sequen
e of indermediate states during a parti
ular run of a program).

By Theorem 14, ea
h he; Si has a unique evaluation sequen
e whi
h is either in�nite

or else terminates with a terminal
on�guration he

n

; S

n

i whi
h is uniquely determined by

he; Si. In fa
t we
an be a bit more pre
ise:

Lemma 15 (Expressions always terminate) If e 2 Iexp [Bexp then for any S 2

States, he; Si has a �nite evaluation sequen
e.

Proof. Stru
tural indu
tion (Exer
ise). 2

The previous lemma, together with Proposition 13, means that we
an de�ne evaluation

fun
tions for expressions

Ieval : Iexp! (States! Z)

Beval : Bexp! (States! B)

by

Ieval(ie)(S) = the unique n 2 Z st. hie; Si !

�

I

hn; Si.

Beval(be)(S) = the unique b 2 B st. hbe; Si !

�

B

hb; Si.

(Re
all that !

�

is the re
exive transitive
losure of !, de�ned by the following indu
tive

rules:

x!

�

x

x!

�

y y ! z

x!

�

z

)

In
ontrast to the situation for expressions,
ommands
an have in�nite evaluation

sequen
es. For example, if C = while true do skip then

hC;Si !

C

hif true then (skip ; C) else skip; Si

!

C

hskip ; C;Si

!

C

hC;Si

!

C

� � � and so on for ever

However, if hC;Si does have a �nite evaluation sequen
e, say

hC;Si !

�

C

hskip; S

0

i

then by Theorem 14 we know that S

0

is uniquely determined by C and S, so that C

determines a partial fun
tion from states to states:

Ceval : Com! (States * States)

Ceval(C)(S) =

(

the unique S

0

st. hC;Si !

�

C

hskip; S

0

i if it exists

unde�ned, otherwise

27

For example, if C is the fa
torial program

C = r := 1; (while x > 1 do (r := r � x; x := x� 1))

then Ceval(C) is the (total) fun
tion States! States given by

S 7!

(

S[n!=r℄[1=x℄ if n > 1

S[1=r℄ if n � 1

where n = S(x).

We should remark at this point that although IMP is a long way from being a pra
ti
al

programming language, it is Turing powerful. This means that for any partial re
ursive

fun
tion f :Z* Z, there is an IMP
ommand C whi
h
omputes f in the sense that for all

states S, Ceval(C)(S) is de�ned i� f(S(x)) is de�ned and in that
ase Ceval(C)(S)(y) =

f(S(x)). (See the Exer
ises at the end of the Chapter.)

3.2.5 Implementing the transition semanti
s in ML

To implement the transition semanti
s in ML, we rely on some of the mathemati
al results

whi
h we have just proved. In parti
ular, the one-step transition relations are all a
tually

partial fun
tions be
ause every non-terminal
on�guration he; Si has a unique su

essor.

We simply
ode these partial fun
tions as ML fun
tions istep, bstep and
step (for

integer expressions, boolean expressions and
ommands, respe
tively) in a way whi
h

dire
tly expresses the rules in Figure 3.2:

(* iopmeaning : IOP -> ((int*int)->int) *)

fun iopmeaning iop (x:int,y:int) =
ase iop of

Plus => x+y

| Times => x*y

| Minus => x-y;

(* bopmeaning : BOP -> ((int*int)->bool) *)

fun bopmeaning bop (x:int,y:int) =
ase bop of

Equal => x=y

| Greater => x>y;

(* istep : IEXP*STATES -> IEXP *)

fun istep(ie,S:STATES) =
ase ie of

Pvar(name) => N(lookup(name,S))

| Iop(iop,N(n1),N(n2)) => N(iopmeaning iop (n1,n2))

| Iop(iop,N(n1),ie2) => let val ie2' = istep(ie2,S)

in Iop(iop,N(n1),ie2')

end

| Iop(iop,ie1,ie2) => let val ie1' = istep(ie1,S)

in Iop(iop,ie1',ie2)

end;

(* bstep : BEXP*STATES -> BEXP *)

fun bstep (be,S:STATES) =
ase be of

Bop(bop,N(n1),N(n2)) => B(bopmeaning bop (n1,n2))

28

| Bop(bop,N(n1),ie2) => let val ie2' = istep(ie2,S)

in Bop(bop,N(n1),ie2')

end

| Bop(bop,ie1,ie2) => let val ie1' = istep(ie1,S)

in Bop(bop,ie1',ie2)

end;

(*
step : COM*STATES -> COM*STATES *)

fun
step (
om,S:STATES) =
ase
om of

Assign(name,N(n)) => (Skip,update(S,name,n))

| Assign(name,ie) => let val ie' = istep(ie,S)

in (Assign(name,ie'), S)

end

| Seq(Skip,C) => (C,S)

| Seq(C1,C2) => let val (C1',S') =
step(C1,S)

in (Seq(C1',C2),S')

end

| If(B(true),C1,C2) => (C1,S)

| If(B(false),C1,C2) => (C2,S)

| If(be,C1,C2) => let val be' = bstep(be,S)

in (If(be',C1,C2), S)

end

| While(be,C) => (If(be,Seq(C,While(be,C)),Skip), S);

You should be able to see that ea
h
lause of the de�nition of (say)
step
orresponds

to exa
tly one of the transition rules, though we have to use some intelligen
e in ordering

the
lauses.

3

On
e we've got the one-step transitions, de�ning the ML versions of the

fun
tions Ieval,Beval and Ceval is straightforward, as we just keep applying the su

essor

operation until we rea
h a terminal
on�guration:

(* ieval : IEXP -> (STATES -> int) *)

fun ieval (N(n)) (S:STATES) = n

| ieval ie S = let val ie' = istep(ie,S)

in ieval ie' S

end;

(* beval : BEXP -> (STATES -> bool) *)

fun beval (B(b)) (S:STATES) = b

| beval be S = let val be' = bstep (be,S)

in beval be' S

end;

(*
eval : COM -> (STATES -> STATES) *)

fun
eval Skip (S:STATES) = S

|
eval C S = let val (C',S') =
step (C,S)

in
eval C' S'

3

There are no
lauses for terminal
on�gurations, just as there are no transition rules for them in the

semanti
s { attempting to
ompute the su

essor of su
h a
on�guration will simply raise an un
aught

mat
h ex
eption.

29

end;

Note that the evaluation fun
tions are tail-re
ursive, so that iterative IMP programs will

exe
ute in
onstant ML sta
k spa
e. Here's an example of using the ML
ode to exe
ute

an IMP program:

- (* initial state - everything is undefined *)

= val (S:STATES) = [℄;

> val S = [℄ : STATES

- (* example fa
torial
al
ulation *)

= val fa
tprog = Seq(Assign("x",N(5)),Seq(Assign("r",N(1)),

= While(Bop(Greater,Pvar("x"),N(1)),

= Seq(Assign("r",Iop(Times,Pvar("r"),Pvar("x"))),

= Assign("x",Iop(Minus,Pvar("x"),N(1)))))));

> val fa
tprog = Seq(Assign ("x", N 5), ...) : COM

-
eval fa
tprog S;

> [("x",1),("r",120)℄ : STATES

In fa
t, the ML
ode whi
h a

ompanies this
ourse in
ludes simple parsers and pretty-

printers for IMP programs (based on
ode for Dr Paulson's book \ML for the Working

Programmer"). This means you don't have to type programs in the extremely messy form

used above, but
an instead do this:

4

- val fibprog = read
om "\

=\ last := 0; next := 1; n := 8;\

=\ while n>0 do\

=\ next := last+next;\

=\ last := next-last;\

=\ n := n-1\

=\ endwhile";

> val fibprog = Seq(Assign("last",N 0), ... : COM

-
eval fibprog S;

> [("last",21),("next",34),("n",0)℄ : STATES

There are also fun
tions to parse expressions (readiexp and readbexp) and to print

phrases (pr
om, priexp and prbexp).

Attempting to
ompute
eval C S in the
ase that hC;Si has an in�nite evaluation

sequen
e (that is, in the
ase that Ceval(C)(S) is unde�ned) will
ause ML to fail to

terminate. Be
ause of the unde
idability of the halting problem, there is in general no

way to predi
t when this will happen.

4

The
on
rete syntax of IMP whi
h the parser implements in
ludes mandatory endif and endwhile

keywords whi
h are used in the obvious way. The default behaviour of sequential
omposition (i.e. ;) is

to asso
iate to the right, as is that of arithmeti
 operations (whi
h also have the normal pre
eden
es).

For both
ommands and arithmeti
 operators, parentheses may be used to override the default groupings.

Whether or not you have to type the rather unpleasant n
ontinuation
hara
ters to break string literals

over more than one line depends on what version of ML you use.

30

3.3 Stru
tural Evaluation Relations for IMP

3.3.1 Evaluation relations

The transition semanti
s of the previous se
tion allowed us to de�ne the evaluation re-

lations Ieval,Beval and Ceval in terms of the re
exive transitive
losures of the one-step

transition relations!

I

,!

B

and!

C

. In this se
tion we shall show that these relations
an

be des
ribed dire
tly by a set of rules whi
h follow the synta
ti
 stru
ture of IMP phrases.

This kind of operational semanti
s, whi
h is sometimes
alled `natural semanti
s', is often

more
onvenient to work with than the transition semanti
s.

We will de�ne three evaluation relations

)

I

� Iexp� States� Z

)

B

� Bexp� States� B

)

C

� Com� States � States

and we will write

ie; S)

I

n instead of (ie; S; n) 2)

I

be; S)

B

b instead of (be; S; b) 2)

B

C;S)

C

S

0

instead of (C;S; S

0

) 2)

C

The evaluation relations are de�ned by the indu
tive rules shown in Figure 3.3, where

on
e again we have left out some obvious side-
onditions.

Here is the same simple example as we gave on page 25, but done using the evaluation,

rather than the transition, semanti
s. Assume that S is su
h that S(y) = 3, then:

()

I

�2)

y; S)

I

3

()

I

�1)

3; S)

I

3

()

I

�1)

4; S)

I

4

()

I

�3)

3+ 4; S)

I

7

()

I

�3)

y+ (3+ 4); S)

I

10

()

C

�2)

y := y+ (3+ 4); S)

C

S[10=y℄

Note that there is just one derivation for the entire evaluation of the
ommand. This is

in
ontrast to the situation for the transition semanti
s, where every individual transition

is justi�ed by its own derivation.

Exer
ise: Assume that S 2 States satis�es S(x) = 2 and S(r) = 60 and let C =

(while x > 1 do C

1

) where C

1

= (r := r � x ; x := x� 1). Produ
e a derivation like that

above whi
h proves

C;S)

C

S[120=r℄[1=x℄

The evaluation semanti
s is mu
h less `�ne-grained' than the transition semanti
s and

this style is sometimes
alled big step operational semanti
s, by
ontrast with the small

step style of the transition semanti
s. Certain low-level features whi
h are made expli
it

in the small-step semanti
s are thus hidden in the big-step semanti
s. The most obvious

is that, as we remarked on page 25, the transition semanti
s spe
i�es that the evaluation

of integer expressions pro
eeds in a stri
t left-to-right order. This is not the
ase for the

evaluation semanti
s, sin
e rule ()

I

�3) simply amounts to saying `to evaluate ie

1

iop ie

2

,

31

()

I

�1)

n; S)

I

n

()

I

�2)

x; S)

I

S(x)

ie

1

; S)

I

n

1

ie

2

; S)

I

n

2

()

I

�3)

(ie

1

iop ie

2

); S)

I

n

1

iop n

2

()

B

�1)

b; S)

B

b

ie

1

; S)

I

n

1

ie

2

; S)

I

n

2

()

B

�2)

(ie

1

bop ie

2

); S)

B

n

1

bop n

2

()

C

�1)

skip; S)

C

S

ie; S)

I

n

()

C

�2)

x := ie; S)

C

S[n=x℄

C

1

; S)

C

S

0

C

2

; S

0

)

C

S

00

()

C

�3)

C

1

; C

2

; S)

C

S

00

be; S)

B

true C

1

; S)

C

S

0

()

C

�4)

if be then C

1

elseC

2

; S)

C

S

0

be; S)

B

false C

2

; S)

C

S

0

()

C

�5)

if be thenC

1

elseC

2

; S)

C

S

0

be; S)

B

false

()

C

�6)

while be do C;S)

C

S

be; S)

B

true C;S)

C

S

0

while be doC;S

0

)

C

S

00

()

C

�7)

while be doC;S)

C

S

00

Figure 3.3: Evaluation Semanti
s of IMP

32

evaluate ie

1

and ie

2

and
ombine the results with iop'. In general, how mu
h di�eren
e

this makes will depend on the �ne details of the language; whether we are interested in

the extra low-level details provided by the transition semanti
s will depend on what we

are using the semanti
s for.

3.3.2 Equivalen
e of transition and evaluation semanti
s of IMP

Now we have two di�erent operational semanti
s for IMP, the obvious question to ask

(parti
ularly in view of the remarks at the end of the last se
tion) is whether or not they

agree. In this se
tion we shall prove that they do.

Theorem 16 For all ie 2 Iexp, be 2 Bexp,C 2 Com, S; S

0

2 States, n 2 Z and b 2 B ,

hie; Si !

�

I

hn; Si if and only if ie; S)

I

n

hbe; Si !

�

B

hb; Si if and only if be; S)

B

b

hC;Si !

�

C

hskip; S

0

i if and only if C;S)

C

S

0

Proof. Firstly note that for ea
h of the three
lauses of the theorem, we have to prove

both a left-to-right and a right-to-left impli
ation. The broad stru
ture of the proof is as

follows:

1. Prove the right-to-left impli
ations by rule indu
tion for).

2. Use rule indu
tion for ! to show that

hie; Si !

I

hie

0

; Si and ie

0

; S)

I

n implies ie; S)

I

n

hbe; Si !

B

hbe

0

; Si and be

0

; S)

B

b implies be; S)

B

b

hC;Si !

C

hC

0

; S

0

i and C

0

; S

0

)

C

S

00

implies C;S)

C

S

00

3. Dedu
e the left-to-right impli
ations from 2.

Proof of 1. Sin
e)

I

,)

B

and)

C

are indu
tively de�ned by the rules shown in Fig-

ure 3.3, it suÆ
es to show that the subsets

f(ie; S; n) j hie; Si !

�

I

hn; Sig � Iexp� States� Z

f(be; S; b) j hbe; Si !

�

B

hb; Sig � Bexp� States� B

f(C;S; S

0

) j hC;Si !

�

C

hskip; S

0

ig � Com� States � States

are
losed under all these rules. We will just
he
k the
ase of rule ()

C

�7) (sin
e it

is the most interesting) and leave the remaining
ases as Exer
ises.

So, suppose that the hypotheses of ()

C

�7) are in the sets. I.e. we assume the

following three things:

(a) hbe; Si !

�

B

htrue; Si

(b) hC;Si !

�

C

hskip; S

0

i

(
) hwhile be do C;S

0

i !

�

C

hskip; S

00

i

33

and we have to show that the
on
lusion of ()

C

�7) is in the set, i.e. that

hwhile be doC;Si !

�

C

hskip; S

00

i

Well, writing C

1

for while be do C we
an reason as follows:

hC

1

; Si !

C

hif be then C ; C

1

else skip; Si by (!

C

�8)

!

�

C

hif true thenC ; C

1

else skip; Si by (a) and several (!

C

�5)s

!

C

hC ; C

1

; Si by (!

C

�6)

!

�

C

hskip ; C

1

; S

0

i by (b) and several (!

C

�3)s

!

C

hC

1

; S

0

i by (!

C

�4)

!

�

C

hskip; S

00

i by (
)

as required.

Proof of 2. This follows by rule indu
tion on ea
h of the relations !

I

,!

B

and !

C

.

De�ne three relations

;

I

� (Iexp� States)� (Iexp� States)

;

B

� (Bexp� States)� (Bexp� States)

;

C

� (Com� States)� (Com� States)

as follows:

(ie; S);

I

(ie

0

; S

0

) i� S = S

0

and 8n 2 Z:(ie

0

; S)

I

n implies ie; S)

I

n)

(be; S);

B

(be

0

; S

0

) i� S = S

0

and 8b 2 B :(be

0

; S)

B

b implies be; S)

B

b)

(C;S);

C

(C

0

; S

0

) i� 8S

00

2 States:(C

0

; S

0

)

C

S

00

implies C;S)

C

S

00

)

Then 2: is equivalent to proving hie; Si !

I

hie

0

; S

0

i implies (ie; S) ;

I

(ie

0

; S

0

) and

similarly for boolean expressions and
ommands. This follows by rule indu
tion if

we
an show that ;

I

, ;

B

and ;

C

are
losed under the rules de�ning !

I

,!

B

and

!

C

respe
tively. We will just
he
k the
ase of rule (!

C

�8) and leave the other 14

ases as Exer
ises.

Sin
e (!

C

�8) has no hypotheses, we just have to show that

(while be doC;S);

C

(if be then (C ; while be doC) else skip; S)

Writing C

1

for while be do C this means showing that for all S

00

2 States if

if be then (C ; C

1

) else skip; S)

C

S

00

(3.1)

then

C

1

; S)

C

S

00

(3.2)

But if (3.1) holds then it
an only have been dedu
ed by applying ()

C

�4) or ()

C

�5),

and we
onsider ea
h possibility in turn.

Case ()

C

�4) The derivation looks like this

D

1

be; S)

B

true

D

2

C ; C

1

; S)

C

S

00

()

C

�4)

if be then (C ; C

1

) else skip; S)

C

S

00

34

but the subderivation D

2

an only end in an instan
e of ()

C

�3), so we must

have

D

1

be; S)

B

true

D

3

C;S)

C

S

0

D

4

C

1

; S

0

)

C

S

00

()

C

�3)

C ; C

1

; S)

C

S

00

()

C

�4)

if be then (C ; C

1

) else skip; S)

C

S

00

for some intermediate state S

0

. Given all that, it's easy to see that we
an

derive (3.2) like this

D

1

be; S)

B

true

D

3

C;S)

C

S

0

D

4

while be do C;S

0

)

C

S

00

()

C

�7)

while be do C;S)

C

S

00

as required.

Case ()

C

�5) In this
ase the derivation of (3.1) looks like

D

1

be; S)

B

false

D

2

skip; S)

C

S

00

()

C

�5)

if be then (C ; C

1

) else skip; S)

C

S

00

but then D

2

an only be an instan
e of ()

C

�1) so S = S

00

and the derivation is

D

1

be; S)

B

false

()

C

�1)

skip; S)

C

S

()

C

�5)

if be then (C ; C

1

) else skip; S)

C

S

so that we
an apply ()

C

�6) like this

D

1

be; S)

B

false

()

C

�6)

while be doC;S)

C

S

to dedu
e (3.2) as required.

Proof of 3. It is easy to see that ea
h of the relations ;

I

, ;

B

and ;

C

de�ned in the

proof of 2: is re
exive and transitive, simply be
ause logi
al impli
ation is re
exive

and transitive. Furthermore, 2: says that !

I

�;

I

, !

B

�;

B

and !

I

�;

I

; thus,

be
ause the re
exive transitive
losure of a relation R is the smallest re
exive and

transitive relation
ontaining R, we have

hie; Si !

�

I

hie

0

; S

0

i implies (ie; S);

I

(ie

0

; S

0

)

hbe; Si !

�

B

hbe

0

; S

0

i implies (be; S);

B

(be

0

; S

0

)

hC;Si !

�

C

hC

0

; S

0

i implies (C;S);

C

(C

0

; S

0

)

So, if hie; Si !

�

I

hn; Si then (ie; S);

I

(n; S) and hen
e by the de�nition of ;

I

8m 2 Z:(n; S)

I

m implies ie; S)

I

m)

35

Taking m = n and using rule ()

I

�1) gives ie; S)

I

n as required. Similarly, if

hbe; Si !

�

B

hb; Si we get that (be; S) ;

B

(b; S) and we
an use ()

B

�1) and the

de�nition of ;

B

to dedu
e be; S)

B

b. Finally, mu
h the same reasoning applies

to
ommands, so that if hC;Si !

�

C

hskip; S

0

i then (C;S) ;

C

(skip; S

0

) so by the

de�nition of ;

C

and rule ()

C

�1) we have C;S)

C

S

0

.

2

The full proof of Theorem 16, �lling in all the
ases we missed out in parts 1: and 2:,

is obviously fairly lengthy but it doesn't involve any more
on
epts { it's just a matter

of
he
king a lot more
ases. The important thing is to understand and remember the

broad outline, as you should then be able to �ll in the details yourself without any great

diÆ
ulty.

3.3.3 Implementing the evaluation semanti
s in ML

Translating the big-step evaluation semanti
s into ML is even easier than was the
ase for

the small-step transition semanti
s. On
e again, we rely on the fa
t that the evaluation

relations are a
tually partial fun
tions (this follows from the equivalent fa
t for the tran-

sition semanti
s and the equivalen
e of the big-step and small-step semanti
s whi
h we

just proved). As we have previously remarked, the inferen
e rules de�ning the evaluation

relations do not spe
ify an evaluation order for expressions, but we do have to pi
k one in

order to translate the rules into ML
ode.

(* bigstepi : IEXP -> (STATES -> int) *)

fun bigstepi ie (S:STATES) =
ase ie of

N(n) => n

| Pvar(x) => lookup(x,S)

| Iop(iop,ie1,ie2) => let val n1 = bigstepi ie1 S

val n2 = bigstepi ie2 S

in

iopmeaning iop (n1,n2)

end;

(* bigstepb : BEXP -> (STATES -> bool) *)

fun bigstepb be (S:STATES) =
ase be of

B(b) => b

| Bop(bop,ie1,ie2) => let val n1 = bigstepi ie1 S

val n2 = bigstepi ie2 S

in

bopmeaning bop (n1,n2)

end;

(* bigstep
 : COM -> (STATES -> STATES) *)

fun bigstep
 C (S:STATES) =
ase C of

Skip => S

| Assign(x,ie) => let val n = bigstepi ie S

in update(S,x,n)

end

36

| Seq(C1,C2) => let val S' = bigstep
 C1 S

in bigstep
 C2 S'

end

| If(be,C1,C2) => if (bigstepb be S)

then bigstep
 C1 S

else bigstep
 C2 S

| While(be,C1) => if (bigstepb be S)

then let val S' = bigstep
 C1 S

in bigstep
 C S'

end

else S;

This gives a very natural interpreter for IMP programs. The fun
tions bigstepi,bigstepb

and bigstep
 have, of
ourse, exa
tly the same input/output behaviour as their small-step

equivalents ieval, beval and
eval.

3.3.4 Semanti
 equivalen
e

One of the reasons for studying semanti
s whi
h we mentioned in the introdu
tion was to

have a pre
ise notion of when one
ommand is equivalent to another. We are now in a

position to de�ne su
h a notion.

If C

1

and C

2

are IMP
ommands, then we say C

1

and C

2

are semanti
ally equivalent,

and write C

1

� C

2

if for all states S and S

0

Ceval(C

1

)(S) is de�ned and equal to S

0

if and only if

Ceval(C

2

)(S) is de�ned and equal to S

0

Whilst Ceval was de�ned in terms of the small-step semanti
s, in view of Theorem 16

we obviously have

C

1

� C

2

i� 8S; S

0

2 States:(C

1

; S)

C

S

0

� C

2

; S)

C

S

0

)

It's
lear that the relation �� Com� Com is an equivalen
e relation, i.e. it is re
exive,

symmetri
 and transitive. Here's an example of an interesting equivalen
e:

Proposition 17 For any three
ommands C,C

0

,C

00

(if be thenC elseC

0

) ; C

00

� if be then (C ; C

00

) else (C

0

; C

00

)

Proof. Let

C

1

= (if be thenC else C

0

) ; C

00

C

2

= if be then (C ; C

00

) else (C

0

; C

00

)

There are two things to prove, �rstly that if C

1

; S)

C

S

0

then C

2

; S)

C

S

0

and se
ondly

that if C

2

; S)

C

S

0

then C

1

; S)

C

S

0

and we prove ea
h in turn.

If C

1

; S)

C

S

0

then the dedu
tion of that fa
t must have ended in an instan
e of rule

()

C

�3):

D

1

if be thenC elseC

0

; S)

C

S

00

D

2

C

00

; S

00

)

C

S

0

()

C

�3)

(if be thenC elseC

0

) ; C

00

; S)

C

S

0

37

for some state S

00

. There are then two possibilities for the last rule used in D

1

, viz. ()

C

�4)

and ()

C

�5). If the last rule was ()

C

�4) then the derivation must look like

D

3

be; S)

B

true

D

4

C;S)

C

S

00

()

C

�4)

if be thenC elseC

0

; S)

C

S

00

D

2

C

00

; S

00

)

C

S

0

()

C

�3)

(if be thenC elseC

0

) ; C

00

; S)

C

S

0

and so we
an form the following derivation

D

3

be; S)

B

true

D

4

C;S)

C

S

00

D

2

C

00

; S

00

)

C

S

0

()

C

�3)

C ; C

00

; S)

C

S

0

()

C

�4)

if be then (C ; C

00

) else (C

0

; C

00

); S)

C

S

0

to show that C

2

; S)

C

S

0

as required. The
ase where the last rule of D

1

is ()

C

�5) is

similar, and omitted. Thus we have proved the �rst part of the proposition.

Similarly, starting with C

2

; S)

C

S

0

we
an dedu
e C

1

; S)

C

S

0

. Hen
e C

1

� C

2

, as

required. 2

Proposition 18 For an
ommands C

1

,C

2

and boolean expression be,

if C

1

� C

2

then while be do C

1

� while be do C

2

Proof. We have to show that if while be do C

1

; S)

C

S

0

then while be do C

2

; S)

C

S

0

for any states S and S

0

. On
e we've done that, it's
lear that the
onverse holds too, just

by symmetry.

The proof is by indu
tion on the derivation D of while be do C

1

; S)

C

S

0

. There are

two
ases for the last rule applied in D, viz. ()

C

�6) and ()

C

�7). If the last rule applied

was ()

C

�6), then D looks like this:

D

1

be; S)

B

false

()

C

�6)

while be do C

1

; S)

C

S

so that S = S

0

. In this
ase, we
an obviously form D

0

, deriving while be do C

2

; S)

C

S

0

like this:

D

1

be; S)

B

false

()

C

�6)

while be do C

2

; S)

C

S

If, on the other hand, the last rule used in D was ()

C

�7), then D looks like

D

1

be; S)

B

true

D

2

C

1

; S)

C

S

00

D

3

while be do C

1

; S

00

)

C

S

0

()

C

�7)

while be do C

1

; S)

C

S

0

for some state S

00

. In this
ase, we
an apply the assumption that C

1

� C

2

to dedu
e

from D

2

that there must be a D

0

2

proving C

2

; S)

C

S

00

. We
an also apply the indu
tion

38

hypothesis to D

3

to obtain a derivation D

0

3

whi
h proves whilebedoC

1

; S

00

)

C

S

0

. Putting

these bits together we
an form D

0

to be

D

1

be; S)

B

true

D

0

2

C

2

; S)

C

S

00

D

0

3

while be do C

2

; S

00

)

C

S

0

()

C

�7)

while be do C

2

; S)

C

S

0

deriving while be doC

2

; S)

C

S

0

as required. 2

3.3.5 Congruen
es

There is an obvious question to be asked here whi
h has
onsiderable impli
ations for

how useful this notion of semanti
 equivalen
e is in pra
ti
e. The most obvious reason

for having a notion of equivalen
e is so that one
an repla
e some
ommand C

1

with an

equivalent (but, let us say, more eÆ
ient)
ommand C

2

in a larger program and know that

the program would still give the same results (though, we hope, more qui
kly). However

we do not yet know that this is sound.

We
an express the property we want by introdu
ing the notion of a
ommand
ontext,

whi
h is usually written C[℄ and de�ned slightly informally to be `a
ommand with a hole

in it'. In other words, a
ommand
ontext is just like a
ommand, ex
ept that it
an also

ontain one or more holes, whi
h are written [℄, as sub
ommands. If C[℄ is a
ommand

ontext and C

1

is a
ommand, then C[C

1

℄ is the
ommand whi
h results from repla
ing all

the o

uren
es of the hole [℄ in C[℄ with C

1

. Now if R is a binary equivalen
e relation on

ommands, we say that R is a
ongruen
e if for all C[℄, C

1

and C

2

, if (C

1

; C

2

) 2 R then

(C[C

1

℄; C[C

2

℄) 2 R. Another way of saying this is that R is a
ongruen
e if it is preserved

by all the
onstru
ts of the
ommand syntax. (Exer
ise: Why are the two de�nitions

equivalent?)

What we want to know is that our semanti
 equivalen
e relation � is a
ongruen
e,

as that then allows us to `substitute equals for equals'. Lu
kily, it turns out that � is a

ongruen
e for IMP programs. The theorem
an be proved dire
tly from the operational

semanti
s, and Proposition 18 is a
tually one of the steps in the proof (this is developed

further in the Exer
ises), but it will also follow from the results of the next
hapter. The

Part II Con
urren
y Theory
ourse develops these ideas further { for
on
urrent pro
esses

there are many natural notions of equivalen
e, some of whi
h are
ongruen
es and some

of whi
h are not.

3.3.6 Semanti
 equivalen
e proofs as fun
tions (optional)

If you study the proofs of Propositions 17 and 18, and have done some of the exer
ises

on semanti
 equivalen
e then you should be able to see that the proofs all have a similar

form. There are always two impli
ations (for the two parts of the de�nition of semanti

equivalen
e), ea
h of whi
h has the form

if C

1

; S)

C

S

0

then C

2

; S)

C

S

0

These are proved by looking at the possible derivations of C

1

; S)

C

S

0

and showing that for

ea
h one we
an
onstru
t a derivation of C

2

; S)

C

S

0

. For some of the proofs
on
erning

looping
onstru
ts, this
onstru
tion requires stru
tural indu
tion on the derivation of

C

1

; S)

C

S

0

, whereas for simpler
ases (like Proposition 17) it's just a matter of splitting

39

the ea
h derivation of C

1

; S)

C

S

0

into a small number of subderivations whi
h
an be

reassembled to give a derivation of C

2

; S)

C

S

0

. In any
ase, one
an view the proof that

(any instan
e of) C

1

is semanti
ally equivalent to (the
orresponding instan
e of) C

2

as

a pair of fun
tions whi
h take derivations to derivations { given a derivation about C

1

,

one fun
tion returns the derivation of the same thing about C

2

(and the other fun
tion

does the
onverse). In the
ase that the proof requires stru
tural indu
tion on derivations

the fun
tions whi
h express the proof will themselves be de�ned indu
tively. In the
ase

where the proof relies on an assumption that two
ommands are equivalent, the fun
tion

orresponding to the proof will take as extra arguments the fun
tions whi
h witness that

equivalen
e.

All this
an be formalised in ML, but the details are rather too messy to in
lude here.

Appendix A
ontains further details, and the
ode is available ele
troni
ally for those who

would really like to play with it.

3.4 Exer
ises

1. Che
k that you
an give derivations in the one step transition semanti
s for ea
h of

the transitions in the example on page 25.

2. Do the proof of Proposition 13, that IMP expressions have no side-e�e
ts.

3. Complete the proof of Theorem 14, that transitions are deterministi
.

4. Prove Lemma 15, that the evaluation of expressions always terminates.

5. How would you
hange the one-step transition semanti
s to spe
ify a right-to-left,

rather than a left-to-right evaluation order? How would you write the rules so that

the evaluation order is unspe
i�ed and, for example, all the following sequen
es are

allowed?

h10; Si

h3 + 7; Si

h(0 + 3) + 7; Si

h(0 + (1 + 2)) + 7; Si

h(0 + (1 + 2)) + (3 + 4); Si

h(0 + 3) + (3 + 4); Si

h3 + (3 + 4); Si

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

?

?

?

?

X

X

X

X

X

X

X

X

X

X

X

X

Xz

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

Prove that in this
ase, although the one-step transition relations !

I

and !

B

are

no longer deterministi
, the evaluation relations Ieval, Beval and Ceval whi
h are

de�ned in terms of them are still deterministi
.

40

6. Produ
e a derivation in the big-step evaluation semanti
s for the example on page 31.

7. Finish the proof of Theorem 16, showing the equivalen
e of the small-step and big-

step semanti
s for IMP.

8. There is a lot of
hoi
e about what
onstitutes a `small step' in the transition se-

manti
s. Formulate a di�erent version in whi
h expressions all evaluate in just one

step, but
ommands still generally take lots of little steps.

9. Show that for all C 2 Com,

C ; skip � C � skip ; C

10. Show that for all
ommands C

1

,C

2

,C

3

(C

1

; C

2

) ; C

3

� C

1

; (C

2

; C

3

)

11. Give examples of be 2 Bexp and C

1

; C

2

; C

3

2 Com for whi
h

C1 ; (if be thenC

2

else C

3

) 6� if be then (C

1

; C

2

) else (C

1

; C

3

)

12. Suppose be; S)

B

true. Prove that there is no S

0

2 States su
h that

while be do skip; S)

C

S

0

13. Complete the proof that � is a
ongruen
e using the evaluation semanti
s. In other

words, show that if C

1

� C

2

then:

(a) (C

1

; C) � (C

2

; C) and (C ; C

1

) � (C ; C

2

).

(b) (if be thenC elseC

1

) � (if be thenC elseC

2

) and (if be thenC

1

elseC) �

(if be thenC

2

elseC).

14. Prove that for any be 2 Bexp and C 2 Com

while be do C � if be then (C ; while be do C) else skip

(You
an do this in two natural ways { one is a dire
t proof from the evaluation

semanti
s and the other uses the transition semanti
s.)

15. Augment the rules de�ning Bexp with

be 2 Bexp

not(be) 2 Bexp

and extend the relation)

B

by the rule

be; S)

B

b

()

B

�3)

not(be))

B

:b

where :true = false and :false = true.

41

Now augment the rules de�ning Com with

C 2 Com be 2 Bexp

(repeatC until be) 2 Com

The intended meaning of (repeat C until be) is `repeatedly exe
ute C until the

ondition be evaluates to true'. Extend the evaluation relation)

C

by adding some

rules whi
h express this intention. Prove, using your new de�nition of)

C

, that for

any C and be

(repeatC until be) � C ; (while not(be) do C)

16. Augment the
ommands of IMP with the following two new
onstru
ts

be 2 Bexp

exitif(be) 2 Com

C

1

2 Com C

2

2 Com

(C

1

orelseC

2

) 2 Com

The intended meaning of exitif(be) is to abort exe
ution at the
urrent state just

in
ase be evaluates to true. The intended meaning of C

1

orelse C

2

is to exe
ute

C

1

until either it terminates normally (in whi
h
ase C

2

is ignored
ompletely), or

until exe
ution is aborted as above, in whi
h
ase C

2

is exe
uted. This is made

pre
ise by adding to the evaluation relations)

B

,)

I

and)

C

, the new relation

*� Com� States� States (pronoun
ed `aborts at') with the following new rules:

be; S)

B

true

exitif(be); S * S

be; S)

B

false

exitif(be); S)

C

S

C

1

; S * S

0

(C

1

; C

2

); S * S

0

C

1

; S)

C

S

0

C

2

; S

0

* S

00

(C

1

; C

2

); S * S

00

be; S)

B

true C

1

; S * S

0

if be thenC

1

elseC

2

; S * S

0

be; S)

B

false C

2

; S * S

0

if be thenC

1

elseC

2

; S * S

0

be; S)

B

true C;S * S

0

while be doC;S * S

0

be; S)

B

true C;S)

C

S

0

while be do C;S

0

* S

00

while be do C;S * S

00

C

1

; S)

C

S

0

(C

1

orelseC

2

); S)

C

S

0

C

1

; S * S

0

C

2

; S

0

)

C

S

00

(C

1

orelseC

2

); S)

C

S

00

C

1

; S * S

0

C

2

; S

0

* S

00

(C

1

orelseC

2

); S * S

00

(a) For the new language, the old de�nition of � still makes sense, but it is no

longer a
ongruen
e. Why not? Re�ne the de�nition of semanti
 equivalen
e

of
ommands to repair this.

42

(b) Call a
ommand C unex
eptional if C;S * S

0

holds for no states S; S

0

. For

su
h a C, show that (if be then C

0

else C) is semanti
ally equivalent to an

expression built from be,C and C

0

using just exitif, orelse and ;.

(
) Use the new language to de�ne a ma
ro exit and a new form of while
onstru
t

with the property that exit will abort the smallest su
h en
losing new while

loop.

17. If you know how to program in Prolog, experiment with implementing the two kinds

of operational semanti
s for IMP in Prolog, rather than ML. What are the advantages

and disadvantages of this approa
h?

18. Prove that IMP is Turing-powerful, by pi
king your favourite model of
omputation

from the Computation Theory
ourse (Turing ma
hines, register ma
hines or partial

re
ursive fun
tions) and showing how to simulate it in IMP.

43

Chapter 4

Denotational Semanti
s of IMP

The aim of this
hapter is to present a di�erent style of semanti
s for IMP in whi
h

the meanings of IMP phrases are given dire
tly as (stati
) mathemati
al obje
ts, rather

than in terms of operational rules whi
h express (dynami
ally) how evaluation pro
eeds.

This approa
h has several payo�s. One is that we will be able to see straight away that

the semanti
s is
ompositional. This means that the meaning of any phrase is determined

solely by the meaning of its subphrases, and will show, amongst other things, that semanti

equivalen
e is a
ongruen
e (
f. the remarks and exer
ises at the end of the last
hapter).

Another major advantage of the denotational approa
h is that it gives an independent

mathemati
al meaning to the synta
ti

onstru
ts of our language. This enables one to

ompare the semanti
s of di�erent languages and to identify the key
on
epts underlying

them. For example, the way in whi
h we will give a meaning to while-loops in IMP turns

out to use the same te
hniques as are needed to give a denotational semanti
s to re
ursive

fun
tions in more sophisti
ated languages than IMP.

The mathemati
al spa
es in whi
h we will �nd the meanings of IMP phrases are
ertain

kinds of partially ordered sets,
alled
omplete partial orders or domains. These stru
tures

are
entral to denotational semanti
s and
an be used to treat nearly all programming

language features you will meet. In parti
ular, they
an be used to give semanti
s to

fun
tional languages like ML and Haskell and to non-determinism and parallelism.

1

From the point of view of this
ourse of le
tures, there is a slight pedagogi
al diÆ
ulty

aused by the fa
t that our language IMP is so very trivial (no interesting datatypes,

no pro
edures, no higher-order fun
tions) that it is a
tually possible to explain its de-

notational semanti
s just in terms of partial fun
tions between sets and without expli
it

mention of
omplete partial orders at all. However, sin
e this naive approa
h does not

s
ale up to more interesting languages, I will jump straight in to using the more general

ma
hinery of
omplete partial orders to give the semanti
s of IMP.

2

1

A
tually there are still some things that the standard theory of domains doesn't deal with very ni
ely.

These in
lude dealing with sequentiality,
omputability and with `fairness'. Denotational semanti
s is still

an a
tive resear
h area, though the material in this
ourse has been pretty stable and standard sin
e the

seventies.

2

And anyway, this is the only way I
an set any interesting exer
ises or exam questions... :-)

44

4.1 Complete Partial Orders

4.1.1 Partial orders

A binary relation v on a set D is a partial order if it is

re
exive 8d 2 D: d v d

transitive 8d; d

0

; d

00

2 D: d v d

0

^ d

0

v d

00

) d v d

00

anti-symmetri
 8d; d

0

2 D: d v d

0

^ d

0

v d) d = d

0

.

A pair (D;v� D � D) for whi
h v is a partial order is
alled a partially ordered set,

or poset for short. D is then
alled the underlying set, or
arrier, of the poset. We will

frequently abuse notation by just referring to `the poset D' and using v to denote the

partial order on a variety of di�eret posets.

The least element, or bottom, of a poset D, if it exists, is an element ? 2 D su
h that

8d 2 D:? v d

Note that, by anti-symmetry, the bottom element of a poset, if it exists, is unique. If ?

and ?

0

were two bottoms then we'd have ? v ?

0

and ?

0

v ? and hen
e ? = ?

0

. We will

sometimes use subs
ripts to distinguish the bottoms of di�erent
pos, but will also feel

free to omit them.

4.1.2 Chains and least upper bounds

If (D;v) is a poset, then a (
ountable)
hain
 in D is a fun
tion
:N ! D su
h that

8n 2 N:
(n) v
(n+ 1):

(0) v
(1) v
(2) v � � �

If
 is a
hain, we will usually write

n

rather than
(n).

An upper bound for a
hain
 in D is an element d 2 D whi
h dominates all the

elements of the
hain:

8n 2 N:

n

v d

Clearly, for a given
hain, there may be no upper bound or there may be many upper

bounds. The least upper bound

F

1

n=0

n

of the
hain
, if it exists, is an upper bound

whi
h is v all other upper bounds:

8d 2 D:

1

G

n=0

n

!

v d () (8n 2 N:

n

v d)

Least upper bounds are also known as lubs (for obvious reasons) or sups (sup is short for

supremum, so sups is short for suprema (mixing English and Latin plurals)). Least upper

bounds, like bottoms, are unique if they exist as a trivial
onsequen
e of the fa
t that v

is antisymmetri
.

A
omplete partial order, or
po for short, is a poset whi
h has least upper bounds for

all (
ountable)
hains. We will also sometimes refer to
pos as domains.

3

Examples:

3

What we are
alling a
po is often
alled an !-
po in the literature, the ! indi
ating that only lubs

of
ountable
hains are required to exist. Many authors also require
pos to have a least element, and

would refer to our potentially bottomless ones as predomains. Even more
onfusingly, the term `domain'

is frequently taken to mean a
po with some parti
ular more
ompli
ated extra stru
ture, whi
h we will

have no need of here.

45

1. If X is any set, then the powerset of X

P(X)

def

= fS j S � Xg

ordered by � is a
po. The lub of a
hain S

0

� S

1

� � � � is the union

S

1

n=0

S

n

. The

po (P(X);�) also has a least element: the empty set ; � X.

2. For any sets X and Y , the set X * Y of partial fun
tions from X to Y

X * Y

def

= ff 2 P(X � Y) j 8x 2 X:8y; y

0

2 Y: (x; y) 2 f ^ (x; y

0

) 2 f) y = y

0

g

ordered by � is a
po with lubs of
hains given by union and least element the empty

set (i.e. the always unde�ned partial fun
tion), just as in 1.

3. For any set X, de�ning v to be the equality relation on X, i.e. x v x

0

() x = x

0

,

makes X into a
po,
alled the dis
rete
po on X. Note that any
hain
 in (X;=)

is
onstant,

0

=

1

= � � �, and so trivially has a least upper bound

0

. (X;=) has a

bottom just when X has pre
isely one element.

4. Let
 = N [f1g (where1 is just a suggestive name for some element distin
t from

all those in N), and de�ne v on
 by

x v x

0

() (x; x

0

2 N ^ x � x

0

) _ (x

0

=1)

Then
 is a
po whi
h may be pi
tured like this:

0

1

2

n

n+ 1

1

.

.

.

.

.

.

.

.

4.1.3 Continuous fun
tions

If (D;v

D

) and (E;v

E

) are
pos, and f :D ! E is a fun
tion between their underlying

sets, then f is monotoni
 if it preserves order:

8d; d

0

2 D: d v

D

d

0

) f(d) v

E

f(d

0

)

It is
ontinuous if it is monotoni
 and also preserves least upper bounds of all
hains in

D:

f

1

G

n=0

n

!

=

1

G

n=0

f(

n

) (4.1)

46

Note that f Æ
:N ! E is a
hain be
ause f is monotoni
.

A
tually, one half of Equation 4.1 follows dire
tly from monotoni
ity, sin
e for any

m 2 N

m

v

D

1

G

n=0

n

by the de�nition of upper bounds, so monotoni
ity gives

f(

m

) v

E

f

1

G

n=0

n

!

whi
h says f (

F

1

n=0

n

) is an upper bound for the
hain f Æ
. Therefore, it is w

E

the least

upper bound:

1

G

m=0

f(

m

) v

E

f

1

G

n=0

n

!

whi
h means that Equation 4.1 holds i�

f

1

G

n=0

n

!

v

1

G

n=0

f(

n

)

You should
he
k (Exer
ise) that

1. For any
po D, the identity fun
tion id

D

def

=�d 2 D:d : D ! D is always
ontinuous.

4

2. If f :D ! E and g:E ! F are
ontinuous then the
omposition

g Æ f

def

= �d 2 D:g(f(d)) : D ! F

is
ontinuous.

3. If X is a dis
rete
po, then any fun
tion f :X ! D is
ontinuous.

4.1.4 Binary produ
t of
pos

If D

1

and D

2

are
pos, then their binary produ
t D

1

�D

2

has as underlying set

D

1

�D

2

= f(d

1

; d

2

) j d

1

2 D

1

^ d

2

2 D

2

g

with the partial order

(d

1

; d

2

) v (d

0

1

; d

0

2

) () d

1

v d

0

1

^ d

2

v d

0

2

It's easy to
he
k that this is a
po, with least upper bounds
al
ulated `
ompontentwise'.

If
 : N ! D

1

�D

2

is given by

n

= (

0

n

;

00

n

) then

1

G

n=0

n

=

1

G

n=0

0

n

;

1

G

n=0

00

n

!

If D and E both have bottoms, then so does D �E, viz. the pair (?

D

;?

E

).

4

Re
all that �x 2 A:e, where e is some expression possibly involving the variable x, means `the fun
tion

whi
h sends any a 2 A to e[a=x℄'. It's essentially the same as fn (x:A)=>e in ML.

47

There are
ontinuous proje
tion fun
tions fst:D

1

�D

2

! D

1

and snd:D

1

�D

2

! D

2

given by fst(d

1

; d

2

) = d

1

and snd(d

1

; d

2

) = d

2

.

Given
ontinuous fun
tions f

1

:E ! D

1

and f

2

:E ! D

2

, we get a
ontinuous fun
tion

hf

1

; f

2

i:E ! D

1

�D

2

de�ned by hf

1

; f

2

i(e) = (f

1

(e); f

2

(e)). This obviously satis�es the

pair of equations

fst Æ hf

1

; f

2

i = f

1

snd Æ hf

1

; f

2

i = f

2

whi
h we
an summarise in a diagram:

E

D

1

D

1

�D

2

D

2

�

fst

-

snd

Z

Z

Z

Z

Z

Z

Z

Z

Z}

f

1

�

�

�

�

�

�

�

�

�>

f

2

6

hf

1

; f

2

i

Given f

1

:E

1

! D

1

and f

2

:E

2

! D

2

ontinuous, we de�ne the
ontinuous fun
tion

f

1

� f

2

:E

1

� E

2

! D

1

�D

2

to be hf

1

Æ fst; f

2

Æ sndi. In other words (f

1

� f

2

)(e

1

; e

2

) =

(f

1

(e

1

); f

2

(e

2

)).

For example, if
 is the
po de�ned at the end of Se
tion 4.1.2,then
�
 is the
po

whi
h we
an draw like this:

(0; 0)

(1; 0)

(2; 0)

(0; 1)

(1; 1)

(2; 1)

(0; 2)

(1; 2)

(2; 2)

(0;1)

(1;1)

(2;1)

(1; 0)

(1; 1)

(1; 2)

(1;1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

48

4.1.5 Exponentation of
pos

If D and E are
pos, then the exponential, or (
ontinuous) fun
tion spa
e,
po [D ! E℄

has as underlying set

ff :D ! E j f is
ontinuousg

with the order

f v f

0

() 8d 2 D: f(d) v f

0

(d)

Note that we use mu
h the same notation for the set of all fun
tions between two sets and

the
po of all
ontinuous fun
tions between two
pos. If X and Y are sets, regarded as

dis
rete
pos, then the exponential
po [X ! Y ℄ is just the dis
rete
po on the set of all

fun
tions from X to Y .

You should
he
k that [D ! E℄ really is a
po, with lubs of
hains
al
ulated `point-

wise':

1

G

n=0

f

n

= �d 2 D:

1

G

n=0

f

n

(d)

!

If E has a bottom, then [D ! E℄ has a bottom, given by ?

[D!E℄

= �d 2 D:?

E

, the

onstant ?

E

fun
tion (whi
h is easily seen to be
ontinuous).

The evaluation fun
tion ev: [D ! E℄ �D ! E is the
ontinuous fun
tion de�ned by

ev(f; d) = f(d).

Given a
ontinuous g:F�D ! E, there is a
ontinuous fun
tion
ur(g):F ! [D ! E℄,

alled the Currying of g, where for ea
h x 2 F ,
ur(g)(x) = �d 2 D: g(x; d). Thus
ur(g)

satis�es g = ev Æ (
ur(g)� id), whi
h we may draw as a diagram:

[D ! E℄�D

F �D E

-

g

?

ur(g) � id

�

�

�

�

�

�

�

�

�>

ev

4.1.6 Lifting

Given a
po D, the lifted
po D

?

is obtained by adding a new bottom element below all

those in D. Formally, the underlying set of D

?

is

f[d℄ j d 2 Dg [f?g

with the order

x v x

0

() (x = ?) _ (9d; d

0

2 D: x = [d℄ ^ x

0

= [d

0

℄ ^ d v d

0

)

where [�℄ is a formal fun
tion to `mark' all the elements of D in su
h a way as to make

them distin
t from the new ?, so for any d; d

0

2 D ([d℄ = [d

0

℄) d = d

0

and ? 6= [d℄.

Clearly, D

?

has a bottom ?. The fun
tion [�℄:D ! D

?

is
ontinuous and order-

re
e
ting, in the sense that

[d℄ v [d

0

℄) d v d

0

49

If f :D ! E is
ontinuous and E has a bottom, then we
an lift f to get a
ontinuous

fun
tion f

�

:D

?

! E de�ned by

f

�

(x)

def

=

(

f(d) if x = [d℄ for some d 2 D

? if x = ?

So that f = f

�

Æ [�℄ whi
h
an be drawn as

D

D

?

E

6

[�℄

�

�

�

�

�

�

�

�

�>

f

-

f

�

The operation f 7! f

�

is itself a
ontinuous fun
tion

(�)

�

: [D ! E℄! [D

?

! E℄

For example, if B is the set ftrue; falseg, regarded as a dis
rete
po,then the
po B

?

(whi
h is not dis
rete) looks like

?

[true℄ [false℄

J

J

J

J

J

J

A
po like this, whi
h is the lift of a dis
rete
po, is said to be
at. For a
at
po,

x v x

0

() (x = ?) _ (x = x

0

).

4.1.7 Conditionals

Regarding B = ftrue; falseg as a dis
rete
po, for ea
h
po D there is a
ontinuous fun
tion

B�D�D ! D
alled the
onditional fun
tion for D, whose value at (b; d

1

; d

2

) 2 B�D�D

is

(b) d

1

j d

2

)

def

=

(

d

1

if b = true

d

2

if b = false

4.1.8 Least �xed points

Suppose D is a
po with a bottom, ?, and f :D ! D is a
ontinuous fun
tion. Consider

the sequen
e of elements of D

?; f(?); f(f(?)) = f

2

(?); f

3

(?); : : :

We have

? v f(?) by de�nition of bottom

f(?) v f(f(?)) = f

2

(?) by montoni
ity and previous line

f

2

(?) v f

3

(?) for the same reason

50

and so on. Thus

? v f(?) v f

2

(?) v f

3

(?) v � � �

is a
hain in D, and therefore has a least upper bound:

�x(f)

def

=

1

G

n=0

f

n

(?)

where, indu
tively, f

0

(?) = ? and f

n+1

(?) = f(f

n

(?)).

Sin
e f is
ontinuous, we have

f(�x(f)) =

1

G

n=0

f(f

n

(?))

=

1

G

n=0

f

n+1

(?)

But

F

1

n=0

f

n+1

(?) is the lub of the
hain f(?) v f

2

(?) v � � � and this is
learly the same

as the lub of the
hain ? v f(?) v f

2

(?) v � � �. In other words

f(�x(f)) = �x(f)

so �x(f) is a �xed point of f .

More generally, a pre�xed point of f is an element d 2 D su
h that f(d) v d. Given

su
h a d, we
an reason as follows:

? v d sin
e ? is bottom, so

f(?) v f(d) v d as f monotone & d pre�xed point

f

2

(?) v f(d) v d for the same reason

et
. Thus 8n 2 N: f

n

(d) v d, whi
h means that d is an upper bound for the
hain

ff

n

(?) j n 2 Ng. So d is w the least upper bound of that
hain, i.e.

�x(f) =

1

G

n=0

f

n

(?) v d

whi
h means that �x(f) is the least element of the set of all pre�xed points of f . In

parti
ular, it is also the least �xed point of f .

5

In fa
t the operation f 7! �x(f) a
tually determines a
ontinuous fun
tion �x: [D !

D℄! D.

4.1.9 Fixpoint indu
tion

There is a useful te
hnique for proving properties of least �xed points, due to S
ott and

de Bakker, whi
h is
alled �xpoint indu
tion (or sometimes S
ott indu
tion). Assume that

5

Of
ourse, this all looks very familiar { it appears to be essentially the same as the arguments we used

right at the start of these notes to justify indu
tive de�nitions. In fa
t, there are some slight di�eren
es.

Previously we showed (in the `downwards'
onstru
tion) that any monotone fun
tion on a
omplete latti
e

(i.e. a set with greatest lower bounds of all subsets, whi
h in that
ase were interse
tions) has a least �xed

point. Here we have just shown that a
ontinuous fun
tion (whi
h is rather more than just a monotone

fun
tion) over a
po with a ? (whi
h is rather less than a
omplete latti
e) has a least �xed point.

51

D is a
po with a bottom and that f :D ! D is a
ontinuous fun
tion. Then if P (�) is a

parti
ular kind of predi
ate over D, we
an dedu
e P (�x(f)) by showing

P (?)

and

P (x)

P (f(x))

But what is the spe
ial
ondition whi
h P (�) has to satisfy to make this valid? We
an

�nd the answer just by trying to prove that the indu
tion prin
iple above is sound, and

seeing what we have to assume about P (�) to make the proof go through. So we'll assume

that we've shown the two things above and try to dedu
e P (�x(f)).

Re
all that �x(f) =

F

1

n=0

f

n

(?). So we start by observing that as we've assumed

that P (?) holds, we have that P (f

0

(?)) holds. Now assume that P (f

n

(?)) holds. By

the se
ond rule above, this means that P (f(f

n

(?))) holds. But that's just P (f

n+1

(?)).

Hen
e we
an
on
lude by mathemati
al indu
tion that P (f

n

(?)) holds for all n. But

what we want to know is that P (

F

1

n=0

f

n

(?)) holds. To make this leap, we have to know

that P itself has a spe
ial property. Clearly, a suÆ
ient
ondition on P is that whenever

x

0

v x

1

v � � � is a
hain in D su
h that for all n, P (x

n

) holds, P (

F

1

n=0

x

n

) holds. In

words, whenever we have a
hain, all of whose elements satisfy P , the limit of the
hain

also satis�es P . A predi
ate with this property is said to be in
lusive or
hain-
losed, and

we have just shown

Theorem 19 (Fixpoint Indu
tion) If D is a
po with a bottom, f :D ! D is a
on-

tinuous fun
tion and P (�) is an in
lusive predi
ate on D, then

(P (?) and 8x 2 D: P (x)) P (f(x))) implies P (�x(f))

2

(Of
ourse, we
an, as usual, identify a predi
ate on D with the subset of elements of D

whi
h satisfy it, so we
an speak of in
lusive subsets, rather than predi
ates.)

As it stands, Theorem 19 doesn't seem to be very useful. After all,
he
king that a

predi
ate is in
lusive looks like quite a lot of work, in general; so all we save ourselves by

appealing to the �xpoint indu
tion theorem is a little appli
ation of ordinary mathemati
al

indu
tion. The reason that the method is useful is that we
an often save ourselves the

bother of expli
itly
he
king from �rst prin
iples that a parti
ular predi
ate is in
lusive.

This is be
ause there are a whole range of ways in whi
h we
an build in
lusive predi
ates

from other in
lusive predi
ates. Hen
e we
an often tell that a predi
ate is in
lusive just by

looking at it and seeing that it's made up from \in
lusivity-preserving" operations (mu
h

as we
an often tell that a fun
tion is
ontinuous just by inspe
tion be
ause we know

things like `
omposition preserves
ontinuity'). This is developed further in the Exer
ises.

Here's an example of a proof by �xpoint indu
tion:

Theorem 20 If D and E are
pos with bottom, f :D ! E is a stri
t
ontinuous fun
tion

(i.e. f(?) = ?) and h:D ! D and g:E ! E are
ontinuous fun
tions with f Æh = g Æ f ,

then

�x(g) = f(�x(h))

Proof. We will prove �x(g) = f(�x(h) by proving that the left hand side is v the right

hand side and vi
e versa. Firstly

f(�x(h)) = f(h(�x(h))) defn. of �xpoint

= g(f(�x(h))) assumption

52

So f(�x(h)) is a �xpoint of g, and hen
e �x(g) v f(�x(h)) by minimality of least �xed

points.

Now we use �xpoint indu
tion to prove the reverse inequality. We take the predi
ate

P (x) over D to be

P (x)

def

= (f(x) v �x(g))

whi
h is an in
lusive predi
ate (Exer
ise). Then we need to
he
k �rstly that P (?) holds.

This means
he
king f(?) v �x(g) whi
h is immediate sin
e we assumed that f was stri
t,

so f(?) = ? v �x(g). Next we need to
he
k that under the hypothesis that P (x) holds,

we
an dedu
e P (h(x)) holds. So the hypothesis is that f(x) v �x(g) and we reason as

follows:

f(h(x)) = g(f(x)) assumption

v g(�x(g)) monotoni
ity of g and hypothesis

= �x(g) defn. of �xpoint

So P (h(x)) holds as required, and we
an use Theorem 19 to dedu
e P (�x(h)), i.e. that

f(�x(h)) v �x(g) as required. 2

You
an �nd more interesting Exer
ises on �xpoint indu
tion in past examination

questions (e.g. 1993 Paper 8 Question 10).

4.2 Denotational Semanti
s of IMP

Having dealt with the mathemati
al preliminaries, we
an now give the denotational se-

manti
s of our language using
pos.

4.2.1 Semanti
s of integer and boolean expressions

We de�ne fun
tions

[[�℄℄ : Iexp! (States! Z)

[[�℄℄ : Bexp! (States! B)

by indu
tion on the stru
ture of expressions.

6

You
an pronoun
e [[e℄℄ as `the meaning of

e', and the de�nitions are as follows, for any S 2 States:

Constants For n 2 Z, b 2 B

[[n℄℄(S)

def

= n

[[b℄℄(S)

def

= b

Variables For x 2 Pvar

[[x℄℄(S)

def

= S(x)

6

The symbols [[and ℄℄ are
alled semanti
 bra
kets and part of their purpose is to emphasize that what's

inside them is to be treated as a pie
e of syntax, rather than a mathemati
al expression. Sin
e we already

have some
onventions (involving underlining and the use of di�erent typefa
es) for this, that aspe
t is not

quite so important for us.

53

Compound expressions For iop 2 Iop, bop 2 Bop, ie

1

; ie

2

2 Iexp

[[ie

1

iop ie

2

℄℄(S)

def

= ([[ie

1

℄℄(S)) iop ([[ie

2

℄℄(S))

[[ie

1

bop ie

2

℄℄(S)

def

= ([[ie

1

℄℄(S)) bop ([[ie

2

℄℄(S))

Proposition 21 For all ie 2 Iexp, be 2 Bexp, S 2 States, n 2 Z, b 2 B :

ie; S)

I

n () [[ie℄℄(S) = n

be; S)

B

b () [[be℄℄(S) = b

In other words, the [[�℄℄ fun
tions are identi
al to the operationally de�ned fun
tions Ieval

and Beval.

Proof. This is an elementary stru
tural indu
tion, and is left as an Exer
ise. 2

So the meaning of an expression is a (total) fun
tion from States to whi
hever of Z

and B is appropriate. We
an regard States,Z and B as dis
rete
pos, in whi
h
ase the

fun
tions are trivially
ontinuous.

4.2.2 Semanti
s of
ommands

Giving a semanti
s to
ommands is more
ompli
ated than giving a semanti
s to ex-

pressions. This is be
ause we have to deal with two (
losely related) extra features of

ommands: potential non-termination and looping
onstru
ts. Re
all that for
ommand

C, we de�ned Ceval(C) to be a partial fun
tion States * States. An alternative way to

express this partiality is by taking total fun
tions into the
at
po States

?

:

Proposition 22 For any sets X and Y , there is a bije
tive
orresponden
e between the

set (X * Y) of partial fun
tions from X to Y and the elements of the
po [X ! Y

?

℄

(where we regard X and Y as dis
rete
pos).

Proof. Firstly note that any fun
tion from X to the underlying set of Y

?

is
ontinuous,

be
ause X is dis
rete.

We de�ne a fun
tion I from (X * Y) to the underlying set of [X ! Y

?

℄ by, for

f 2 (X * Y), x 2 X

I(f)(x)

def

=

(

[f(x)℄ if f(x) is de�ned

? otherwise

The inverse fun
tion I

�1

sends g:X ! Y

?

to I

�1

(g):X * Y where for any x 2 X,

I

�1

(g)(x) is de�ned i� g(x) = [y℄ for some y 2 Y , and in this
ase I

�1

(g)(x) = y.

Clearly I

�1

(I(f)) = f and I(I

�1

(g)) = g. 2

Note that the
ompletely unde�ned partial fun
tion
orresponds to the
onstantly

? fun
tion (�x 2 X: ?):X ! Y

?

. When we de�ne the denotation of a
ommand as

a
ontinuous fun
tion from States ! States

?

, non-termination of the
ommand will be

represented by its denotation returning ?.

We
an now de�ne

[[�℄℄:Com! [States! States

?

℄

by indu
tion on the stru
ture of
ommands. The meaning of any
ommand will be a

(trivially)
ontinuous fun
tion from the dis
rete
po States to the
at
po States

?

.

54

Skip

[[skip℄℄

def

= �S 2 States:[S℄

Assignment If x 2 Pvar and ie 2 Iexp then the meaning of the assignment x := ie in

a state S is the element of States

?

orresponding to the state S updated to send

the variable x to the integer [[ie℄℄(S) (with apologies for the overloading of square

bra
kets):

[[x := ie℄℄

def

= �S 2 States:[S[[[ie℄℄(S)=x℄℄

Sequen
ing For C

1

; C

2

2 Com we have [[C

1

℄℄:States ! States

?

and [[C

2

℄℄:States !

States

?

and we want to
ompose them together, for whi
h we need to use the (�)

�

operation (Se
tion 4.1.6)

States States

?

States

?

-

[[C

1

℄℄

-

([[C

2

℄℄)

�

So we de�ne

[[C

1

; C

2

℄℄

def

= �S 2 States:[[C

2

℄℄

�

([[C

1

℄℄(S))

Conditionals For be 2 Bexp, C

1

; C

2

2 Com we
an give the meaning of ifbethenC

1

elseC

2

using the
ontinuous
onditional fun
tion whi
h we de�ned in Se
tion 4.1.7:

[[if be thenC

1

elseC

2

℄℄

def

= �S 2 States: ([[be℄℄(S)) [[C

1

℄℄(S) j [[C

2

℄℄(S))

While-loops This is where we need the interesting bit of the order stru
ture of
pos.

Re
all that (
f. the transition semanti
s and the exer
ises at the end of the last

hapter)

while be do C � if be then (C ; while be do C) else skip

We want the denotation of the
ommand on the left to be equal to that of the

ommand on the right. If we write f 2 [States ! States

?

℄ for the as yet unknown

denotation of while be do C, this means that we want f to satisfy

f = �S 2 States:([[be℄℄(S)) f

�

([[C℄℄(S)) j [S℄)

The expression on the right is a
ontinuous fun
tion of f , whi
h means that we
an

�nd an f satsifying the equation by taking the least �xed point of that fun
tion.

[[while be doC℄℄

def

= �x(�)

where �: [States! States

?

℄! [States! States

?

℄ is de�ned by

�

def

= �f 2 [States! States

?

℄:�S 2 States:([[be℄℄(S)) f

�

([[C℄℄(S)) j [S℄)

The fa
t that for any
ommand C, [[C℄℄ is indeed a well-de�ned
ontinuous fun
tion is

relatively easy to see. The only thing that might not be
ompletely obvious is that the

operation � whi
h we used to de�ne the meaning of while
ommands is
ontinuous, but

this
an be seen from the fa
t that it is built up out of
ontinuity-preserving operations.

Alternatively, you
an prove it from �rst prin
iples (Exer
ise). To know that �x(�) exists

55

we also need to know that � is an operator on a domain with a least element, whi
h it is,

sin
e [States! States

?

℄ has as least element the
onstantly ? fun
tion.

It is worth trying to understand just how the denotation of while
ommands is
on-

stru
ted. Assume that there is some
ommand
 su
h that [[
℄℄ = �S 2 States:?, then

[[whilebedoC℄℄ = �x(�) 2 [States! States

?

℄ is
onstru
ted as the least upper bound of a

hain of fun
tions f :N ! [States! States

?

℄, starting with the
onstant bottom fun
tion:

f

n

: States! States

?

f

0

= �S 2 States:?

= [[
℄℄

f

1

= �(f

0

)

= �S 2 States:([[be℄℄(S)) f

�

0

([[C℄℄(S)) j [S℄)

= �S 2 States:([[be℄℄(S)) ? j [S℄)

= [[if be then
 else skip℄℄

f

2

= �(f

1

)

= �S 2 States:([[be℄℄(S)) f

�

1

([[C℄℄(S)) j [S℄)

= [[if be then (C ; if be then
 else skip) else skip℄℄

f

3

= �(f

2

)

= �S 2 States:([[be℄℄(S)) f

�

2

([[C℄℄(S)) j [S℄)

= [[if be then (C ; if be then (C ; if be then
 else skip) else skip) else skip℄℄

f

4

= �(f

3

)

= and so on...

So the limit of this
hain, whi
h is the denotation of the while
ommand is (morally)

equal to the denotation of its in�nite unfolding in terms of if statements. Ea
h of the f

i

is the denotation of a �nite approximation to the while
ommand whi
h behaves like the

while
ommand for up to i iterations and then fails to terminate.

4.3 Equivalen
e of the Denotational and Operational Se-

manti
s of IMP

Theorem 23 For all ie 2 Iexp,be 2 Bexp,C 2 Com,n 2 Z,b 2 B and S; S

0

2 States:

1. ie; S)

I

n if and only if [[ie℄℄(S) = n.

2. be; S)

B

b if and only if [[be℄℄(S) = b.

3. C;S)

C

S

0

if and only if [[C℄℄(S) = [S

0

℄.

In other words, the denotational [[�℄℄ fun
tions are equal to the operationally de�ned

fun
tions Ieval,Beval and Ceval (where in the third
ase we regard Ceval as a fun
tion

Com! [States! States

?

℄ using the bije
tion of Proposition 22).

Proof. The �rst two parts are just Proposition 21. For part 3., we have two dire
tions to

prove. The left-to-right dire
tion is proved by rule indu
tion for)

C

, whilst the right-to-

left dire
tion is shown by stru
tural indu
tion on C.

56

For the left-to-right dire
tion, we want to show that

f(C;S; S

0

) j [[C℄℄(S) = [S

0

℄g � Com� States� States

is
losed under the rules de�ning)

C

, using parts 1. and 2. of the theorem for those rules

whose hypotheses involve)

B

or)

I

. We just deal with the
ase of rule ()

C

�7) and leave

the other rules as Exer
ises.

Suppose that C is while be do C

0

and that

(a) [[be℄℄(S) = true

(b) [[C

0

℄℄(S) = [S

0

℄

(
) [[C℄℄(S

0

) = [S

00

℄

for some states S; S

0

; S

00

. We have to prove that [[C℄℄(S) = [S

00

℄. Now, by the de�nition of

the denotational semanti
s, [[C℄℄ = �x(�) where

� = �g:�S:([[be℄℄(S)) g

�

([[C

0

℄℄(S)) j [S℄)

By the dis
ussion in Se
tion 4.1.8,

[[C℄℄ = �x(�) = �(�x(�)) = �([[C℄℄)

so that

[[C℄℄(S) = [[be℄℄(S)) [[C℄℄

�

([[C

0

℄℄(S)) j [S℄

= true) [[C℄℄

�

([S

0

℄) j [S℄ by (a) and (b)

= [[C℄℄

�

([S

0

℄) by de�nition of)j

= [[C℄℄(S

0

) by de�nition of (�)

�

= [S

00

℄ by (
)

as required.

For the right-to-left dire
tion we use indu
tion on the stru
ture of C. As usual, the

interesting
ase is when C is while be do C

0

and we
onsider this
ase in detail and leave

the others as Exer
ises. In this
ase we want to show that

8S; S

0

:[[C℄℄(S) = [S

0

℄ implies C;S)

C

S

0

(4.2)

on the indu
tive assumption that

8S; S

0

:[[C

0

℄℄(S) = [S

0

℄ implies C

0

; S)

C

S

0

(4.3)

Now, (4.2) is equivalent to

[[C℄℄ v Ceval(C) in [States! States

?

℄ (4.4)

where,

Ceval(C)(S)

def

=

(

[S

0

℄ if C;S)

C

S

0

for some S

0

? otherwise

57

But by the de�nition, [[C℄℄ = �x(�) and that means, by the dis
ussion in Se
tion 4.1.8,

that we
an dedu
e (4.4) if we
an show Ceval(C) to be a pre�xed point of �, as it is then

w the least pre�xed point. In other words, we want to show

�(Ceval(C)) v Ceval(C) (4.5)

i.e. that whenever �(Ceval(C))(S) 6= ? then �(Ceval(C))(S) = Ceval(C)(S). But

�(Ceval(C))(S) =

�

[[be℄℄(S)) (Ceval(C))

�

([[C

0

℄℄(S)) j [S℄

�

so if �(Ceval(C))(S) 6= ? then there are two possibilities:

1. Either [[be℄℄(S) = true and (Ceval(C))

�

([[C

0

℄℄(S)) 6= ?, or

2. [[be℄℄(S) = false.

We
onsider ea
h
ase in turn:

1. In this
ase we have

? 6= (Ceval(C))

�

([[C

0

℄℄(S)) =

(

Ceval(C)(S

0

) if [[C

0

℄℄(S) = [S

0

℄

? otherwise

So we must have [[C

0

℄℄(S) = [S

0

℄ and Ceval(C)(S

0

) = [S

00

℄ for some S; S

00

. Then by

(4.3) and the de�nition of Ceval we have

C

0

; S)

C

S

0

and C;S

0

)

C

S

00

We are assuming that [[be℄℄ = true so that by Part 2. of the Theorem (whi
h was

part of Proposition 21) we have

be; S)

B

true

whi
h taken with the two instan
es of)

C

above, allows us to apply ()

C

�7) to

obtain C;S)

C

S

00

and hen
e

�(Ceval(C))(S) = [S

00

℄ = Ceval(C)(S)

as required.

2. In the
ase that [[be℄℄(S) = false, then by Part 2. of the Theorem, be; S)

B

false and

so by applying rule ()

C

�6) we get

C;S)

C

S

and hen
e

�(Ceval(C))(S) = [S℄ = Ceval(C)(S)

as required.

So in either
ase, we get �(Ceval(C))(S) 6= ? implies �(Ceval(C))(S) = Ceval(C)(S) for

all S 2 States and thus we have established (4.5) and hen
e (4.2) as explained above. 2

Theorem 23 immediately implies that the operational and denotational notions of

equivalen
e
oin
ide:

Corollary 24 For any C

1

; C

2

2 Com

C

1

� C

2

() [[C

1

℄℄ = [[C

2

℄℄

2

58

4.3.1 Adequa
y and full abstra
tion

We have been rather fortunate here { the
orresponden
e between the denotational and

operational semanti
s is very a

urate. For more
ompli
ated languages, it is very diÆ
ult

to a
hieve su
h a pre
ise mat
h. However, for many purposes a pre
ise
orresponden
e is

not stri
tly ne
essary. For example, suppose we wish to use the denotational semanti
s to

dedu
e that two
ommands are semanti
ally equivalent. In other words, we plan to show

that the two
ommands have the same denotation and dedu
e that they will behave the

same operationally. For this to be a valid pro
edure, we only need to know the right-to-left

dire
tion of Corollary 24, viz.

[[C

1

℄℄ = [[C

2

℄℄) C

1

� C

2

A semanti
s with this property (denotational equality implies operational equality) is

said to be adequate. A semanti
s whi
h satis�es both dire
tions of Corollary 24 (so that

operational equality implies denotational equality as well as vi
e-versa) is said to be fully

abstra
t.

Of
ourse, if our semanti
s is adequate but not fully abstra
t, we might fail to prove a

true fa
t C

1

� C

2

using the denotational semanti
s. But for a good semanti
s this won't

happen very often, and in any
ase, we don't expe
t to be able to prove all true equiva-

len
es, simply be
ause of the in
ompleteness theorem (or the insolvability of the halting

problem, a

ording to taste). Note that an adequate but non-fully abstra
t semanti
s

is no good at all for proving semanti
 inequivalen
es, but that showing inequivalen
es

dire
tly from the operational semanti
s is usually easy (for example, for IMP, to show

that two
ommands are inequivalent we just have to give one state on whi
h they behave

di�erently).

So why is it hard to �nd fully abstra
t denotational semanti
s for many interesting

languages? Part of the answer is that denotational models usually
ontain some points

whi
h are not the denotation of any program phrase. Now this does not in itself
ause a

failure of full abstra
tion: after all, there are
ontinuous fun
tions from States to States

?

whi
h are not the denotation of any IMP
ommand (Exer
ise: why? Find one.), but our

semanti
s for IMP is fully abstra
t. The problem arises when two semanti
ally equivalent

phrases have denotations whi
h are di�erent, but are only di�erent be
ause of the presen
e

of the extra elements in the semanti
s. For example, we might have two fun
tions whi
h

behave the same on all arguments whi
h are the denotation of a term in the language, but

whi
h give di�erent results on some argument whi
h is not the denotation of any term.

Examining just how this o

urs
an give fairly deep insights into the stru
ture of the

language in question. For example, a straightforward denotational semanti
s for a little

fun
tional language turns out not to be fully abstra
t be
ause all the fun
tions de�nable

in the language are sequential { they
an be
omputed without any parallelism or time-

sli
ing. The model
ontains fun
tions whi
h
annot be so
omputed, su
h as `parallel or',

whi
h is the
ontinuous fun
tion por: B

?

� B

?

! B

?

de�ned by

por(x; y) =

8

>

<

>

:

[true℄ if x = [true℄ or y = [true℄

[false℄ if x = [false℄ and y = [false℄

? otherwise

You should be able to see that to implement a fun
tion with this behaviour requires

some parallelism, be
ause on a sequential ma
hine the fun
tion has to look at one of

its arguments �rst, and if that fails to terminate, the appli
ation as a whole will fail to

59

terminate, even if the other argument would have returned [true℄. And in fa
t it turns

out that adding a parallel or
onstant to the language makes the simple semanti
s fully

abstra
t. The alternative, re�ning the de�nitions of domains and
ontinuous fun
tions so

as to get full abstra
tion for the sequential language is an extremely
hallenging problem

(whi
h has re
ently been solved, after a fashion).

4.3.2 Compositionality and
ongruen
e

The denotational semanti
s we have given for IMP has a very interesting property, whi
h

is that the meaning of any phrase is given in terms of the meaning of its subphrases (go

ba
k and look!). We
all this property of the semanti
s
ompositionality, and it is a highly

desirable feature of a semanti
s. We
an use the fa
t that the denotational semanti
s is

ompositional to give a sli
k proof of the fa
t that semanti
 equivalen
e is a
ongruen
e

(you should have already proved this dire
tly from the operational semanti
s when doing

the Exer
ises at the end of the last
hapter):

Corollary 25 (Semanti

ongruen
e) For any C

1

; C

2

2 Com and C[�℄ a `
ommand

with a hole in it',

C

1

� C

2

implies C[C

1

℄ � C[C

2

℄

Proof. Be
ause [[�℄℄ is
ompositional, it's obvious that [[C

1

℄℄ = [[C

2

℄℄ implies that [[C[C

1

℄℄℄ =

[[C[C

2

℄℄℄ and the result then follows from Corollary 24 (just using the adequa
y dire
tion).

2

4.4 Information, Continuity and Computability

We have given the semanti
s of IMP
ommands in terms of
ontinuous fun
tions between

pos. It seems worth trying to give some slightly more intuitive explanation of why
pos

and
ontinuous fun
tions were
hosen, and work, for this purpose.

Cpos and
ontinuous fun
tions are not a priori obviously the pla
e to look for the

meanings of programs. One's �rst thought would be to just take sets and fun
tions. This

doesn't quite work for a number of reasons:

1. Non-termination. If [[A℄℄ were the set asso
iated with a type A, and [[B℄℄ that asso-

iated with a type B, then taking [[A! B℄℄ to be ([[A℄℄! [[B℄℄), the set of fun
tions

between [[A℄℄ and [[B℄℄ would not a

ount for the possibility of non-termination. (You

should know from Computation Theory that the possibility of non-termination is a

entral part of all Turing-powerful
omputational paradigms.)

2. Re
ursion. Looping or re
ursive language
onstru
ts su
h as re
ursive fun
tion def-

initions in ML or while loops in IMP naturally lead to the denotation of
ertain

expressions being de�ned in a re
ursive way. If the denotation of a program expres-

sion e is a fun
tion f : [[A℄℄ ! [[B℄℄ then this means de�ning f to be a solution to an

equation f = �(f) where � is some fun
tion from ([[A℄℄! [[B℄℄) to itself. We simply

annot �nd solutions to arbitrary su
h equations if we allow all set-theoreti
 fun
-

tions for �. We feel somehow that we shouldn't have to solve arbitrary equations,

sin
e there are vastly fewer
omputable fun
tions and these are the only ones whi
h

give rise to equations whi
h we absolutely have to be able to solve. Furthermore,

60

some equations may have more than one solution (e.g. f = f has any fun
tion at

all as a solution), and we need some way to pi
k the one of those solutions whi
h

orresponds to what the operational semanti
s a
tually gives.

3. Re
ursive domain equations. As well as re
ursively de�ned elements of domains,

we also have to deal with situations where the domains themselves are re
ursively

de�ned. IMP is too simple to require this, but it shows up in the semanti
s for

ML's re
ursive datatypes or in the
ase of the untyped lambda
al
ulus, whi
h was

the original reason for Dana S
ott's introdu
tion of domain theory in the late 60s.

Roughly speaking, the argument goes as follows: in the untyped lambda
al
ulus

every term is a fun
tion whi
h
an be applied to any other term and return a term.

So if D is the set representing the meanings of untyped lambda terms, we would

have to have D = (D ! D). In fa
t, we'd be
ontent with D

�

=

(D ! D) (repla
ing

equality with isomorphism), but even this has only a trivial solution if we take

(D ! D) to be the set of all fun
tions from the set D to itself. The problem is

that (D ! D) is always of stri
tly larger
ardinality (size) than D whenever D

has more than one element.

7

By adding some order stru
ture to D, and restri
ting

the meaning of (D ! D) to those fun
tions whi
h respe
t that order stru
ture it

is possible to �nd solutions to the equation and hen
e to �nd a semanti
s for the

untyped lambda
al
ulus.

So the reasons for introdu
ing all the te
hni
al ma
hinery of order and
ontinuity were

initially very pragmati
 { we just wanted something like a set, but sets wouldn't a
tually

work be
ause they had too many fun
tions between them. So we added some stru
ture

and
ut down the fun
tion spa
e to fun
tions that preserved the stru
ture so that we

ould solve re
ursive domain equations (and re
ursive element equations). After the fa
t,

however, we
an develop an informal story whi
h relates the order stru
ture to an intuitive

idea of information, and
ontinuity to
omputability. This analogy between
ontinuity and

omputability is not pre
ise, but we
an
ertainly argue informally that any
omputable

fun
tion should be
ontinuous.

Firstly, just
onsider non-termination. The idea of adding a new element to represent

non-termination seems simple enough, but why not just take a set-theoreti
 union? Well,

onsider a fun
tion f :N [f?g ! N [f?g. If f(?) = [n℄ then that means that when

the argument of f fails to terminate, then f returns the natural number n. Now if f is

supposed to be the meaning of a
omputer program, then this must mean that f([m℄) = [n℄

for allm 2 N, sin
e f
ould not have de
ided what to do when given ? as input by looking

at its input, seeing that it failed to terminate, and then returning [n℄ { that would take

for ever! So f must return [n℄ for any input. So ? represents less information than [m℄,

and if the fun
tion is given more information as input, it must give more information as

output, whi
h we
an express by putting an order on N [f?g to give N

?

, and restri
ting

attention to monotone fun
tions.

As another example,
onsider a
omputer program or system F whi
h takes �nite and

in�nite streams of 0s and 1s as input and returns a 0 or a 1. There are many su
h systems.

One of them just returns a 0 without reading any input. Another returns 1 straight away.

One of them reads one
hara
ter from the input and returns that, whereas another negates

the �rst
hara
ter. One returns a 1 as soon as it has seen more than 42 1s in the input, one

7

By a simple diagonalisation argument of the sort you should have met in Dis
rete Maths and in

Computation Theory.

61

ounts all the ones in the input and returns 0 or 1 a

ording to whether the total is a prime

number, and so on. There are some
onstraints on the possible behaviours, however. One

of these is that if F outputs a value before it's seen all of the input, then it
annot retra
t

that on the basis of any subsequent input. We
an use ? as a `don't know' element on

the input and the output and there is then a natural information order imposed on them

both. For the output side we get f0; 1g

?

, reading ? as `F hasn't produ
ed an answer yet'

and 0 (resp. 1) as `F has printed a 0 (resp. 1)'. The order on the input is more interesting

and starts like this:

?

[℄[0;? [1;?

[0℄ [0; 0;? [0; 1;? [1℄ [1; 0;? [1; 1;?

[0; 0℄ [0; 1℄ [1; 0℄ [1; 1℄

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

where, for example ? means we haven't seen any of the input yet, [0;? means that we've

seen a zero but we don't know what
omes next and [0℄ means that we've seen a zero and

then an end-of-stream marker. Note that the information ordering is essentially a pre�x

ordering. You should be able to
onvin
e yourself that any implementable F has to be

monotoni
 with respe
t to this ordering.

What about
ontinuity? Take, for example, the in
reasing
hain one obtains by aways

taking the right-hand bran
h in the input domain. This is

? v [1;? v [1; 1;? v [1; 1; 1;? v � � � v [1; 1; 1; : : :℄

where the limit is the in�nite stream of 1s, whi
h we
an also write as 1

!

. Continuity

imposes the extra restri
tion on F that it
annot return ? at all the �nite stages and

then suddenly return 0 or 1 at the in�nite limit 1

!

. This is surely reasonable, sin
e F
an

only know that it is being presented with an in�nite stream of 1s after waiting an in�nite

amount of time.

This is not, of
ourse, a truly
ompelling argument that
omputable maps are
on-

tinuous, but it does give some idea of how we
an rationalise the fa
t that domains and

ontinuous maps suit the purposes of semanti
s. You should note that the other impli
a-

tion
ertainly doesn't hold { there are
learly many non-
omputable fun
tions in [N ! N

?

℄,

sin
e any partial fun
tion N * N at all gives rise to su
h a
ontinuous fun
tion. Continuity

only really starts to
ut things down at higher types.

62

4.5 Implementing the Denotational Semanti
s in ML

It is relatively easy to produ
e a rather impre
ise translation of the
lauses de�ning [[�℄℄

into ML fun
tions. We
annot, however, really re
e
t the subtleties of the distin
tions we

make between, for example, States and States

?

in the ML
ode, sin
e all ML types already

ontain the possibility of non-termination, and one
annot in any
ase write programs

whi
h manipulate non-termination like any other value. Thus the best we
an do is to write

some ML
ode whi
h has, morally, the same denotational semanti
s as IMP programs,

rather than being that semanti
s. The ML
ode is
loser to an alternative presentation of

the semanti
s in whi
h we do not make lifting expli
it, and instead make the denotation

of a
ommand be a stri
t
ontinuous fun
tion from States

?

to States

?

(see Exer
ise 17).

It is virtually the same as the implementation of the big step evaluation semanti
s:

(* Denotational Semanti
s of IMP *)

(* denotei : IEXP -> (STATES -> int) *)

fun denotei ie (S:STATES) =
ase ie of

N(n) => n

| Pvar(x) => lookup(x,S)

| Iop(iop,ie1,ie2) => let val n1 = denotei ie1 S

val n2 = denotei ie2 S

in

iopmeaning iop (n1,n2)

end;

(* denoteb : BEXP -> (STATES -> bool) *)

fun denoteb be (S:STATES) =
ase be of

B(b) => b

| Bop(bop,ie1,ie2) => let val n1 = denotei ie1 S

val n2 = denotei ie2 S

in

bopmeaning bop (n1,n2)

end;

(* Fixpoint
ombinator *)

fun fix f x = f (fix f) x;

(* denote
 : COM -> (STATES -> STATES) *)

fun denote
 C (S:STATES) =
ase C of

Skip => S

| Assign(x,ie) => let val n = denotei ie S

in update(S,x,n)

end

| Seq(C1,C2) => let val S' = denote
 C1 S

in denote
 C2 S'

end

| If(be,C1,C2) => if (denoteb be S)

then denote
 C1 S

else denote
 C2 S

63

| While(be,C1) =>

let val phi = fn f => fn S'=> if (denoteb be S')

then f (denote
 C1 S')

else S'

in (fix phi) S

end;

4.6 Exer
ises

1. Let X and Y be sets, regarded as dis
rete
pos. Show that a fun
tion f :X

?

! Y

?

is
ontinuous if and only if one of the following holds:

(a) f is stri
t. That is, f(?) = ?.

(b) f is
onstant. 8x 2 X

?

:f(x) = f(?).

2. Suppose that v is a partial order on a set X and that f :X ! X is a monotone

fun
tion. Show that x

0

2 X is a �xed point of f if both the following two
onditions

hold:

(a) x

0

v f(x

0

)

(b) 8x 2 X:(x v f(x)) x v x

0

).

3. Suppose that D,E and F are
pos, and that f :D �E ! F is a fun
tion satisfying

(a) For all d 2 D, �y 2 E:f(d; y) is a
ontinuous fun
tion E ! F ,

(b) For all e 2 E, �x 2 D:f(x; e) is a
ontinuous fun
tion D ! F .

Is it the
ase that f is itself a
ontinuous fun
tion from the produ
t
po D � E to

F ?

4. Show that the fun
tion ev: [D ! E℄�D ! E of Se
tion 4.1.5 is
ontinuous.

5. Let D be a
po with a least element. Show that the fun
tion �x: [D ! D℄ ! D of

Se
tion 4.1.8 is
ontinuous.

6. Let
 be the
po in the Examples at the end of Se
tion 4.1.2 and 1 a one-element

po. Show that the exponential
po [
! (1)

?

℄ is in bije
tion with
 itself.

7. Look again at Proposition 22. What is the the order relation on the set of partial

fun
tions (X * Y) whi
h is indu
ed from the order relation v on the
po [X ! Y

?

℄

under the bije
tion I?

8. We say that two
pos D and E are isomorphi
, and write D

�

=

E if there are

ontinuous fun
tions �:D ! E and :E ! D whi
h are mutually inverse, so that

� Æ is the identity fun
tion on E and Æ � is the identity on D. Prove or disprove

ea
h of the following statements:

(a) For any
pos A and B, A�B

�

=

B �A.

(b) For any
pos A and B, (A�B)

?

�

=

A

?

�B

?

.

(
) For any
pos A, B and C, A� (B � C)

�

=

(A�B)� C.

64

(d) For any
pos A and B, [A! B℄

?

�

=

[A! B

?

℄.

(e) For any
pos A, B and C, [(A�B)! C℄

�

=

[A! [B ! C℄℄.

(f) For any
pos A and B, [A

?

! B℄

�

=

B � [A! B℄.

9. Show that for any d 2 D, if we de�ne P � D by P = fx 2 D j x v dg, then P is an

in
lusive subset of D.

10. Show that an arbitrary interse
tion of in
lusive subsets of a
poD is itself an in
lusive

subset of D. In other words, assume that for all i 2 I, P

i

is an in
lusive subset of D

and then prove that

T

i2I

P

i

is an in
lusive subset of D.

11. Show that the union of two in
lusive subsets of D is in
lusive. Dedu
e that any �nite

union of in
lusive subsets is in
lusive. Give an example to show that an in�nite union

of in
lusive subsets need not be in
lusive (hint: start by just thinking of the simplest

example you
an of a non-in
lusive subset of a
po).

12. Show that if f :D ! E is a
ontinuous fun
tion between two
pos, and P is an

in
lusive subset of E, then f

�1

(P) is an in
lusive subset of D (where, of
ourse,

f

�1

(P) = fd 2 D j f(d) 2 Pg). So in
lusive subsets are
losed under inverse

images of
ontinuous fun
tions. How about dire
t images? In other words, if P is

an in
lusive subset of D, is f(P) always an in
lusive subset of E?

13. Do the proof of Proposition 21, showing the equivalen
e of the denotational fun
-

tions [[�℄℄ with the operationally de�ned evaluation relations for integer and boolean

expressions.

14. Complete the proof of Theorem 23 by

(a) Showing that the set

f(C;S; S

0

) j [[C℄℄(S) = [S

0

℄g � Com� States� States

is
losed under the rules ()

C

�1) to ()

C

�6) of the evaluation semanti
s.

(b) Completing the proof by indu
tion on the stru
ture of C that

8S; S

0

:[[C℄℄(S) = [S

0

℄ implies C;S)

C

S

0

15. Let �: [N ! N

?

℄! [N ! N

?

℄ be the fun
tion whi
h sends g:N ! N

?

to the fun
tion

�(g):N ! N

?

de�ned by

�(g)(n)

def

=

(

[1℄ if n = 0

(�m:[m� n℄)

�

(g(n� 1)) otherwise

for all n 2 N. What is the fun
tion �(�x 2 N:?)? What is �

n

(�x 2 N:?)? What is

�x(�)?

16. Think what would happen in the previous question if we were to repla
e N and N

?

by Z and Z

?

. How many �xed points are there of the new version of �? Whi
h

is the least �xed point? Whi
h one
orresponds to the real behaviour of the usual

de�nition of a very familar ML fun
tion?

65

17. We have made a `modern'
hoi
e about how we should treat lifting in giving the

denotational semanti
s of IMP. In parti
ular, we
hose to work with
pos whi
h

do not ne
essarily have a bottom, and to make the denotation of a
ommand be

a
ontinuous fun
tion from States to States

?

. This meant that we had to use the

(�)

�

operation to
ompose the denotation of two
ommands. There is an alternative

presentation, whi
h is the one used in mu
h of the literature, in whi
h we never

use
pos without a bottom, and make the semanti
s of
ommands be stri
t
ontin-

uous fun
tions from States

?

to States

?

. In this presentation the interpretation of

sequen
ing is just ordinary fun
tional
omposition. Work out the rest of the details

of the semanti
s of IMP in this form. Compare it with the other semanti
s and with

the ML implementation of the denotational semanti
s.

66

Chapter 5

Further Topi
s

We have now
overed the semanti
s of IMP fairly thoroughly. The aim of this
hapter is

to give a brief, and rather informal, sket
h of how we
an give semanti
s to a
ouple of

interesting extensions of IMP, and how Floyd-Hoare logi
 (that is, an axiomati
 semanti
s)

for IMP may be interpreted and proved sound using the denotational semanti
s we have

already given. All the material in this
hapter is non-examinable, in the sense that you

will not be assumed to know it. Some of these topi
s have, however, arisen in previous

years' questions, and in any
ase it is important to be aware that giving semanti
s to more

sophisti
ated programming languages
an be
onsiderably more
omplex and subtle (not

to mention interesting) than was the
ase for IMP.

5.1 Non-Determinism

IMP is a
ompletely deterministi
 language: in a given state, the result of evaluating a

parti
ular expression is unique and the result of exe
uting any
ommand (either a �nal

state or non-termination) is also unique. We proved this for the small-step semanti
s

in Theorem 14, and it is also impli
it in the fa
t that, for example, the denotation of a

ommand is given as a fun
tion from States to States

?

. Non-determinism is interesting

for a variety of reasons. Firstly, adding non-deterministi

onstru
ts to a language
an,

perhaps surprisingly, lead to
learer programs. This is be
ause one
an avoid having to

overspe
ify some aspe
ts of an algorithm. For example, a program whi
h operates on two

streams of input data might be expressed as non-deterministi
ally
hoosing whi
h stream

to look at next if the order in whi
h items are pi
ked for pro
essing is unimportant.

Se
ondly, non-determinism is a natural
onsequen
e of
on
urren
y (though there is more

to
on
urren
y than non-determinism). For example, suppose that we were to extend IMP

with a
ommand form C

1

k C

2

whi
h is supposed to exe
ute C

1

and C

2

in parallel. What

would be the e�e
t of (X := 1) k (X := 2)? Assuming that assignments are atomi
, the

result will be that X has the value 1 or the value 2, depending on the order in whi
h the

pro
esses run; the programmer must generally assume that either order is possible.

Finally, non-determinism arises even in modelling deterministi
 systems, if we wish to

abstra
t away from
ertain low-level details. One interesting example of this phenomenon

o

urs when des
ribing stati
 analyses, su
h as are often performed by optimising
ompilers

to dis
over program properties whi
h
an be used to
ompile more eÆ
ient
ode. The

analysis is sometimes done by
omputing an approximate semanti
s of the program in

whi
h it is assumed that, for example, a value of type int might have any integer value

67

at all. Thus semanti
 te
hniques designed for non-deterministi
 languages are useful in

modelling the stati
 analysis, even when the language being analysed is deterministi
.

5.1.1 Transition semanti
s of non-determinism

We now
onsider extending IMP with a non-deterministi

hoi
e
onstru
t. The rules for

forming
ommands (Figure 3.1) are extended with

C

1

2 Com C

2

2 Com

C

1

or C

2

2 Com

and the intended behaviour of C

1

or C

2

is that it non-deterministi
ally behaves either like

C

1

or like C

2

. Here's how to extend the small-step transition semanti
s (Figure 3.2) to

ope with
hoi
e:

hC

1

or C

2

; Si !

C

hC

1

; Si hC

1

or C

2

; Si !

C

hC

2

; Si

These two axioms simply say that C

1

or C

2

an make a single step to be
ome C

1

, and

that it also
an make a transition to be
ome C

2

. Note that this means that the transition

relation !

C

on
on�gurations now has to be a general relation, be
ause a
on�guration

an have more than one immediate su

essor. Previously, !

C

was a
tually a partial

fun
tion (for example, we exploited this fa
t when de�ning
step in ML).

This apparently trivial extension of IMP is a
tually rather more interesting than it

might at �rst appear. Previously, a given
on�guration (i.e. pair of a
ommand and a state)

ould behave in just two ways - it
ould have a �nite evaluation sequen
e,
orresponding

to termination, or it
ould have an in�nite evaluation sequen
e,
orresponding to non-

termination. But with the addition of non-deterministi

hoi
e, the possibilities are ri
her

{ not only
an a
ommand have several possible �nite evaluation sequen
es, but it
an

have a mixture of some �nite and some in�nite evaluation sequen
es. This leads to some

hoi
e in how to formulate the big-step and denotational semanti
s.

5.1.2 An evaluation semanti
s for non-determinism

The obvious way to give a big-step semanti
s to our extended language is to add the

following two rules to those in Figure 3.3 with

C

1

; S)

C

S

0

C

1

or C

2

; S)

C

S

0

C

2

; S)

C

S

0

C

1

or C

2

; S)

C

S

0

And indeed, given these two rules, there is still a
orresponden
e between the small-step

and the big-step semanti
s (Exer
ise):

Theorem 26 When the syntax, transition semanti
s and evaluation semanti
s of IMP

are extended as above, the equivalen
e of Theorem 16, viz.

hC;Si !

�

C

hskip; S

0

i if and only if C;S)

C

S

0

remains valid. 2

68

But this is not quite the whole story. Think about how non-termination is treated in the

two styles of operational semanti
s. In the transition semanti
s, we
an expli
itly express

what it is for a
on�guration to lead to a non-terminating
omputation: there is an in�nite

sequen
e of one step-transitions

hC;Si !

C

hC

0

; S

0

i !

C

hC

00

; S

00

i !

C

� � �

(whi
h we
an write hC;Si !

!

C

). In the big-step evaluation semanti
s, by
ontrast, non-

termination is simply re
e
ted by the absen
e of a derivation of a terminating evaluation.

Before we added non-determinism, this was perfe
tly adequate:

Theorem 27 For deterministi
 IMP, for any
ommand C and state S

hC;Si !

!

C

if and only if 6 9S

0

: C; S)

C

S

0

2

But for non-deterministi
 IMP, the theorem above is false. For example, for any S

h(skip) or (while true do skip); Si !

!

C

but also

(skip) or (while true do skip); S)

C

S

So the big-step semanti
s only really
aptures what we might think of as \positive" in-

formation: it just tells us the set of terminating behaviours of a
on�guration; thus it

annot distinguish a
ommand whi
h always terminates in a given state from one whi
h

sometimes terminates in that state and sometimes fails to terminate. Whether we
are

about this distin
tion depends on the use we are making of the semanti
s.

One way to make the big-step semanti
s more a

urate is to add a \may-diverge"

predi
ate on
on�gurations *� (Com � States), but it is not immediately
lear how to

de�ne *. It is not too hard to write down some plausible looking rules, su
h as

be; S)

B

true C;S)

C

S

0

while be doC;S

0

*

while be doC;S *

but it is rather harder to see what those rules are supposed to mean. They
ertainly

don't
onstitute an indu
tive de�nition of *, be
ause if one tries to use them to derive the

divergen
e of a parti
ular
ommand, one ends up trying to
onstru
t in�nite derivations.

For example, if we try to prove

while true do skip *

the derivation must end with

true; S)

B

true skip; S)

C

S while true do skip; S *

while true do skip; S *

where the �nal assumption is the same as the
on
lusion. It turns out that we
an make

sense of the rules de�ning the divergen
e predi
ate if we understand them as a
o-indu
tive

de�nition. The notion of
o-indu
tive de�nition is essentially dual to that of indu
tive

de�nition (it is de�ned using a greatest, rather than a least, �xed point), but it would,

unfortunately, take us too far beyond the s
ope of this
ourse to investigate it in more

detail.

1

1

A theory of operational semanti
s de�ned using a mixture of indu
tive and
o-indu
tive evaluation

and divergen
e relations has been developed by the Cousots, under the name GSOS

1

. See, for example,

P. Cousot and R. Cousot. Indu
tive de�nitions, semanti
s and abstra
t interpretation. In Pro
eedings of

the ACM Conferen
e on Prin
ples of Programming Languages. 1991.

69

5.1.3 Non-determinism and semanti
 equivalen
e

The
ombination of non-determinism and non-termination whi
h we have in the extended

version of IMP leads to a range of di�erent notions of when two
ommmands should be

onsidered equivalent. Let
 be while true do skip and
onsider the following three

ommands:

1. x := 1

2. (x := 1) or

3.

Whi
h of these should be
onsidered equivalent? There are several reasonable positions

to take:

Plotkin says none of them are equivalent, be
ause

1. always terminates

2.
an terminate and
an fail to terminate

3. always fails to terminate

This point of view is sometimes referred to as errati
 non-determinism.

Hoare says 1 and 2 are equivalent, and di�erent from 3, be
ause they have the same

set of possible observable results. This is referred to as angeli
, or relational non-

determinism; it is also the semanti
s behind partial
orre
tness assertions (see Se
-

tion 5.3).

Smyth says 2 and 3 are equivalent, and di�erent from 1, be
ause they
an both fail to

terminate and so we
an guarantee nothing of either of them. This is
alled the

demoni
 (`what
an go wrong, will go wrong') view of non-determinism and is the

semanti
s for total
orre
tness assertions.

So the simple big-step step semanti
s whi
h we gave above
orresponds to angeli
 non-

determinism. If, as before, we write C

1

� C

2

to mean

8S; S

0

: C

1

; S)

C

S

0

i� C

2

; S)

C

S

0

then we have

(x := 1) � ((x := 1) or
) 6�

These di�erent notions of when
ommands should be
onsidered equivalent
orrespond

to di�erent notions of what we
an observe of programs. The idea that di�erent notions

of observation yield di�erent equivalen
es on program phrases arises in many areas of

semanti
s, and you will meet it again in the Part II
ourse on Con
urren
y and the Pi

Cal
ulus. When we give a denotational semanti
s to a language, we generally have to

de
ide whi
h notion of equivalen
e we wish to model sin
e we would like two
ommands to

be equivalent just when their denotations are equal (though this ideal is sometimes rather

diÆ
ult to attain).

70

5.1.4 Denotational semanti
s for angeli
 non-determinism

It is fairly straightforward to give a denotational semanti
s to non-deterministi
 IMP whi
h

aptures the angeli
 view of non-determinism. Re
all that P(States), ordered by in
lusion,

is a
omplete partial order. We will take the denotation of a
ommand to be a fun
tion

from States to P(States). (Sin
e States is dis
rete, all su
h fun
tions are
ontinuous.)

It is worth noting in passing that there are several equivalent ways of presenting the

domain [States! P(States)℄ whi
h we
ould have used instead:

1. [States ! P(States)℄

�

=

P(States � States) whi
h is the
po of relations between

states. This is why the semanti
s we shall given is often
alled the relational seman-

ti
s.

2. If we write P

+

(States) for the
po of non-empty subsets of States, then [States !

P(States)℄

�

=

[States ! (P

+

(States))

?

℄, sin
e (P

+

(States))

?

�

=

P(States). This ad-

vantage of this view is that it makes expli
it the fa
t that we are dealing with both

non-determinism and non-termination at the same time.

3. We
an also
ombine non-determinism and non-termination in the other order.

If D is a
po, we write P

H

(D) for the
po of non-empty, downwards-
losed and

limit-
losed subsets of D ordered by in
lusion, where S is downwards-
losed if

x v y 2 S) x 2 S, and S is limit-
losed if whenever hx

n

i is a
hain in D

su
h that 8n: x

n

2 S then

F

x

n

2 S. Given this notation, we have [States !

P(States)℄

�

=

[States ! P

H

(States

?

)℄ sin
e P(States)

�

=

P

H

(States

?

). Observe also

that P

H

(States) = P

+

(States) (be
ause States is dis
rete), so we
ould have used

P

H

rather than P

+

in 2. P

H

(D) is
alled the Hoare (or relational) powerdomain of

D.

It is an instru
tive Exer
ise to
he
k that the assertions made above are
orre
t, i.e. that

the things
laimed to be
pos really are
pos, and all the
laimed isomorphisms really

hold.

Before we
an present the angeli
 denotational semanti
s of non-deterministi
 IMP, we

need one new pie
e of notation. If X and Y are sets and f :X ! P(Y) is a fun
tion, then

we write f

[

:P(X) ! P(Y) for the fun
tion whi
h sends A � X to

S

a2A

f(a). (Compare

this with the de�nition of (�)

�

given in Se
tion 4.1.6.) It is a simple Exer
ise to
he
k that

f

[

is always
ontinuous, if we regard P(X) and P(Y) as
pos.

The relational semanti
s of non-deterministi
 IMP is shown in Figure 5.1. Note the

way in whi
h we use singleton set formation f�g in the pla
es where we used the lift-

ing [�℄ operation in the semanti
s of deterministi
 IMP, and that the �xpoint in the

semanti
s of while-loops is well-de�ned be
ause [States ! P(States)℄ is a
po with a

bottom element, namely the
onstant emptyset fun
tion �S 2 States:;. In fa
t the

angeli
 denotational semanti
s has mu
h the same `shape' as the deterministi
 denota-

tional semanti
s of Chapter 4. The di�eren
e is that we have used the powerset opera-

tion P(�) in pla
e of the lifting operation (�)

?

. The pre
ise
orresponden
e is as follows:

Deterministi
 semanti
s Non-deterministi
 semanti
s

[States! States

?

℄ [States! P(States)℄

[S℄ f Sg

f

�

:States

?

! States

?

f

[

:P(States)! P(States)

The new language feature is the
hoi
e operation, whi
h we model using the union

operation on P(States). This semanti
s is both adequate and fully abstra
t for the angeli

71

[[skip℄℄(S) = fSg

[[x := ie℄℄(S) = fS[[[ie℄℄(S)=x℄g

[[C

1

; C

2

℄℄(S) = [[C

2

℄℄

[

([[C

1

℄℄(S))

[[if be thenC

1

elseC

2

℄℄(S) = [[be℄℄(S)) [[C

1

℄℄(S) j [[C

2

℄℄(S)

[[while be do C℄℄(S) = �x(�)

where �: [States! P(States)℄! [States! P(States)℄ is de�ned by

�(f)(S) = [[be℄℄(S)) f

[

([[C℄℄(S)) j fSg

[[C

1

or C

2

℄℄(S) = ([[C

1

℄℄(S)) [([[C

2

℄℄(S))

Figure 5.1: Angeli
 Semanti
s of Non-Deterministi
 IMP

notion of equivalen
e (
he
king this is left as an Exer
ise for the reader, but I believe it's

orre
t: : :):

Theorem 28 For all non-deterministi
 IMP
ommands C

1

and C

2

C

1

�

=

C

2

i� [[C

1

℄℄ = [[C

2

℄℄

2

5.1.5 Errati
 non-determinism and the Egli-Milner order

It is also possible to give a denotational semanti
s whi
h models the more re�ned notion

of equivalen
e given by the errati
 view of non-determinism. The basi
 idea is that we

want to de�ne the meaning of a
ommand to be a fun
tion from States to P

P

(States

?

),

where P

P

(States

?

) is some
po made up out of subsets of States

?

but whi
h
aptures the

errati
 notion of when two sets of possible out
omes are equivalent. We
an motivate the

onstru
tion by
onsidering an interesting example program:

x := 0 ; a := 0 ; while a = 0 do ((x := x+ 1) or (a := 1))

If we write the state as the pair (S(x); S(a)), the possible exe
ution sequen
es of this

ommand look like this:

(0; 0) ! (1; 0) ! (2; 0) ! � � �

#

(0; 1) (1; 1) (2; 1) � � �

So the possible behaviours are to terminate with S(x) = n and S(a) = 1 for any n 2 N or

to fail to terminate. The fa
t that non-termination must be a possibility
an be seen as a

onsequen
e of K�onig's Lemma { any in�nite, �nitely bran
hing tree has an in�nite path

(IA Dis
rete Maths). What does this have to do with modelling errati
 non-determinism?

It tells us that any in�nite set in P

P

(States

?

) should also
ontain ?. So we take the

72

underlying set of P

P

(States

?

) to be all non-empty subsets of States

?

whi
h are either

�nite or
ontain ?.

What order relation should we put on this
olle
tion of subsets in order to get a
po?

We've got two order relations to
ombine: the v ordering on States

?

and the � ordering

on P(States

?

). The natural way to
ombine these is to say that we move up in the order

from a subset A if every element of A is in
reased, possibly to a set of larger elements.

The resulting order is
alled the Egli-Milner order v

EM

. More formally, A v

EM

B i� for

all x 2 A there exists a non-empty subset B

x

of B su
h that

1. 8y 2 B

x

: x v y

2. B =

S

x2A

B

x

Equivalently:

A v

EM

B i� 1: 8x 2 A:9y 2 B:x v y

and 2: 8y 2 B:9x 2 A:x v y

This order relation turns out to be
losely related to the important notion of bisimulation

whi
h you will meet in the Part II Con
urren
y
ourse. The
po (P

P

(States

?

);v

EM

) whi
h

is
onstru
ted by taking non-empty subsets of States

?

whi
h are either �nite or
ontain

?, together with the Egli-Milner order, is
alled the Plotkin powerdomain of States

?

. You

should
he
k that this really is a
po and may like to try drawing (a �nite part of!) its

Hasse diagram.

By taking [[C℄℄ to be in [States ! P

P

(States

?

)℄, we
an de�ne a denotational seman-

ti
s for non-deterministi
 IMP whi
h models the equivalen
e on
ommands given by the

errati
 view of non-determinism. We omit the details of this semanti
s, but its de�nition

looks mu
h like that whi
h we gave for angeli
 non-determinism, though using a di�erent

powerdomain.

5.2 Jumps and Continuations

Most imperative programming languages have some
onstru
ts whi
h allow non-lo
al

hanges in the
ow of
ontrol. This
an mean anything from a
ompletely unrestri
ted

goto
ommand to more stru
tured operations su
h as ex
eptions, break
ommands for

exiting loop bodies, an abort
ommand whi
h terminates exe
ution immediately, or even

more sophisti
ated
ontrol
onstru
ts su
h as built-in ba
ktra
king. You should have al-

ready seen (in Exer
ise 16 on page 42) how, with a little bit of ingenuity, one
an extend

an operational semanti
s to des
ribe some
onstru
ts of this kind. But how
an we give

a denotational semanti
s to jumps? After all, mathemati
al fun
tions just
apture an

input/output relation, and all the di�erent
lasses of jump we have just mentioned seem,

at least at �rst sight, to involve some notion of `program point'.

There is a general te
hnique for giving semanti
s to non-lo
al
ontrol operations, whi
h

is due, independently, to Christopher Wadsworth and Lo
kwood Morris, following an idea

of Mazurkiewi
z published in 1970. The simplest form of the idea is that the meaning of

a
ommand should be a (
urried) fun
tion of two arguments. One argument is the usual

state, but the other is a fun
tion whi
h represents what is to be done with the �nal state

after the
ommand has terminated in order to give the result of the whole program. This

fun
tion is
alled a
ontinuation. Noti
e that the idea of
ontinuations is inherently higher-

order: we rely on being able to pass fun
tions as arguments in the denotational semanti
s,

even if the language we are modelling does not
ontain expli
it higher-order features. The

73

idea of
ontinuation is an important one, whi
h has now spread far beyond the semanti
s

ommunity. Continuation passing is a widely-used fun
tional programming te
hnique and

is also at the heart of many modern
ompilers, su
h as that for Standard ML of New Jersey.

Indeed, SML/NJ even extends the SML language with expli
it support for
ontinuation-

based programming, in the form of the
all-with-
urrent-
ontinuation (
all

) primitive.

Continuations are also a topi
 of some ex
iting
urrent resear
h, as they appear to arise

naturally in the
ontext of extra
ting programs from proofs in
lassi
al logi
.

5.2.1 Continuation semanti
s of IMP

We will demonstrate the use of
ontinuations by �rst
onsidering how to give a
ontinuation

based semanti
s to IMP with no extensions. We �x some set A of answers, whi
h will be

the set from whi
h the results of whole programs will be drawn. It doesn't mu
h matter

exa
tly what A is, and you
an, if you like, simply take A to be States, so that the �nal

result of a program is just the �nal state in whi
h it terminates. Now, de�ne the
po Cont

of
ontinuations to be [States ! A

?

℄, so that a
ontinuation is a fun
tion whi
h for ea
h

state yields either a �nal answer or non-termination. The
ontinuation semanti
s gives the

meaning of ea
h
ommand as a fun
tion taking a
ontinuation and a state and returning

an answer (or bottom):

[[C℄℄: (Cont! (States! A

?

))

Note that this is equivalent to either of

[[C℄℄:Cont! Cont or [[C℄℄: (States! A

?

)! (States! A

?

):

Now, think about the denotation of the skip
ommand in this form. It will take a

ontinuation k 2 [States ! A

?

℄ and a state S 2 States, and it has to return an answer.

Obviously, the only thing it
an do to produ
e an answer is to apply k to S. So

[[skip℄℄ = �k 2 Cont:�S 2 States: k(S)

and this is indeed intuitively the right thing to do, as k is supposed to be what is done to

the state resulting from exe
uting skip in the state S in order to return an answer, and

the state after exe
uting skip in state S is just S.

The interesting
ase of the
ontinuation semanti
s is that for sequential
omposition

of
ommands. Here it helps to think �rst about what ([[C℄℄ k) means for C a
ommand

and k a
ontinuation. This is a partial appli
ation, of type States! A

?

. It is a fun
tion

whi
h takes a state as argument and then returns the answer you get from �rst running

C in that state and then applying k to the state in whi
h C terminates. But States! A

?

is also the type of
ontinuations, so ([[C℄℄ k) is itself a
ontinuation { it's a `what to do

do next' whi
h
omprises �rst doing whatever C does and then doing whatever k does.

How does that tell us what [[C

1

; C

2

℄℄ k S should be? The idea here is that we want to

exe
ute C

1

in state S, and then exe
ute C

2

and �nally apply the
ontinuation to the state

that results. In other words, we just want to run C

1

in the state S with the
ontinuation

([[C

2

℄℄ k)! Thus

[[C

1

; C

2

℄℄ = �k 2 Cont:�S 2 States: [[C

1

℄℄ ([[C

2

℄℄ k) S

This is the pons asinorum of
ontinuations; on
e you have
rossed it, the rest follows fairly

easily. The full
ontinuation-passing semanti
s of IMP is shown in Figure 5.2. Note that

74

[[skip℄℄ k S = k(S)

[[x := ie℄℄ k S = k(S[[[ie℄℄(S)=x℄)

[[C

1

; C

2

℄℄ k S = [[C

1

℄℄ ([[C

2

℄℄ k) S

[[if be then C

1

elseC

2

℄℄ k S = [[be℄℄(S)) [[C

1

℄℄ k S j [[C

2

℄℄ k S

[[while be doC℄℄ = �x(�)

where �: (Cont! Cont)! (Cont! Cont) is given by

� = �f :Cont! Cont:�k:Cont:�S:States:[[be℄℄(S)) [[C℄℄ (f k) S j k(S)

Figure 5.2: Continuation Semanti
s of IMP

to
al
ulate the result of a whole program, we now have to supply an initial state and an

initial
ontinuation k

0

. The initial
ontinuation might simply be the lift of the identity

fun
tion (k

0

= �S 2 States:[S℄), if we take A to be States, or it might extra
t the value

of some distinguished result variable r (so k

0

= �S 2 States:[S(r)℄), if we took A = N.

This, you may be thinking, is all very well, but we already had a perfe
tly satisfa
tory

semanti
s for IMP. But now assume that the set A
ontains a distinguished error value

(so perhaps A = States [fErrorg), and we wish to add a new
ommand abort whi
h,

when exe
uted, will immediately terminate the program and return this error value. It is

absolutely trivial to add this to our
ontinuation semanti
s:

[[abort℄℄ k S = [Error℄

so the abort
ommand simply throws away the
ontinuation whi
h it is given (i.e. it

dis
ards `the rest of the program'), and returns (the lift of) the error value. It is sometimes

said that the most powerful thing a
ommand
an do with a
ontinuation is to ignore it.

5.2.2 Continuation semanti
s of IMP-with-exits

Now let's
onsider a more interesting example, whi
h is a slight variant of the IMP-

with-exits language whi
h was introdu
ed in Exer
ise 16 on page 42. We add two new

ommand forms: exit and (C

1

orelse C

2

) to the syntax of IMP. The intended behaviour

of (C

1

orelse C

2

) is that it exe
utes exa
tly like C

1

unless C

1

hits an exit
ommand, in

whi
h
ase further exe
ution of C

1

is abandoned and C

2

is exe
uted starting in the state

at whi
h C

1

en
ountered the exit. If C

1

does not en
ounter an exit then C

2

is ignored.

An exit
ommand without an en
losing orelse behaves like abort.

We
an give a
ontinuation semanti
s to this language by making the denotation of

ea
h
ommand be a fun
tion whi
h takes two
ontinuations as well as a state, and returns

an answer. The intuitive idea is that the �rst
ontinuation is the ordinary default
on-

tinuation whi
h is to be applied if the
ommand terminates normally (`su

ess'), and the

se
ond
ontinuation is the
ontinuation to be applied if the
ommand en
ounters an exit

(`failure'). Thus

[[C℄℄ : (Cont! (Cont! (States! A

?

)))

This semanti
s is shown in Figure 5.3.

The interesting point here is the symmetry between the pair skip and `;' and the pair

exit and orelse. The skip
ommand simply su

eeds, so it applies the su

ess
ontinu-

ation to the
urrent state. The
omposite C

1

;C

2

behaves as C

1

with su

ess
ontinuation

75

[[skip℄℄ k

1

k

2

S = k

1

(S)

[[C

1

; C

2

℄℄ k

1

k

2

S = [[C

1

℄℄ ([[C

2

℄℄ k

1

k

2

) k

2

S

[[exit℄℄ k

1

k

2

S = k

2

(S)

[[C

1

orelseC

2

℄℄ k

1

k

2

S = [[C

1

℄℄ k

1

([[C

2

℄℄ k

1

k

2

) S

[[abort℄℄ k

1

k

2

S = [Err℄

[[if be thenC

1

elseC

2

℄℄ k

1

k

2

S = [[be℄℄(S)) [[C

1

℄℄ k

1

k

2

S j [[C

2

℄℄ k

1

k

2

S

[[while be do C℄℄ = �x(�)

where �: (Cont! (Cont! Cont))! (Cont! (Cont! Cont)) is given by

� = �f:�k

1

:�k

2

:�S:[[be℄℄(S)) [[C℄℄ (f k

1

k

2

) k

2

S j k

1

(S)

Figure 5.3: Continuation Semanti
s of IMP-with-exits

([[C

2

℄℄ k

1

k

2

) and failure
ontinuation k

2

. Thus, if C

1

su

eeds it will subsequently do C

2

and then k

1

or k

2

a

ording to whether or not C

2

su

eeds. If C

1

fails, however, C

2

is

ignored and the failure
ontinuation k

2

is invoked.

The exit
ommand simply fails, so it applies the failure
ontinuation to the
urrent

state. The
ommand C

1

orelse C

2

behaves as C

1

with su

ess
ontinuation k

1

and fail-

ure
ontinuation ([[C

2

℄℄ k

1

k

2

). Thus, if C

1

su

eeds, C

2

will be ignored and the su

ess

ontinuation k

1

will be invoked. If C

1

fails, then C

2

will be exe
uted, followed by k

1

or k

2

depending on whether or not C

2

su

eeds.

To ensure that an exit without an en
losing orelse should behave like abort, we

simply have to make the initial failure
ontinuation whi
h is supplied to an entire program

be k

f

= �S 2 States:[Err℄.

5.2.3 An ML implementation of IMP-with-exits

Finally, here's a fairly dire
t implementation of the semanti
s of IMP-with-exits as ML

ode. This
onstitutes a
omplete working interpreter for the language. (You may like to

extend the IMP parser fun
tions to deal with the extended language.) Compare this
ode

with the mathemati
al semanti
s in Figure 5.3 and see how well they
orrespond.

datatype IOP = Plus | Times | Minus;

datatype IEXP = N of int | Pvar of string | Iop of IOP*IEXP*IEXP;

datatype BOP = Equal | Greater;

datatype BEXP = B of bool | Bop of BOP*IEXP*IEXP;

datatype COM = Skip | Assign of string*IEXP | Seq of COM*COM |

If of BEXP*COM*COM | While of BEXP*COM |

Abort | Exit | Orelse of COM*COM;

(* -----------------------

States

*)

type STATES = (string*int) list;

76

(* lookup : string*STATES -> int *)

ex
eption Lookup;

fun lookup(x,[℄) = raise Lookup

| lookup(x,(y,v)::pairs) = if x=y then v else lookup(x,pairs);

(* update : STATES*string*int -> STATES *)

fun update (S,x,n) =
ase S of

[℄ => [(x,n)℄

| ((y,v)::pairs) => if x=y then (x,n)::pairs

else (y,v)::(update (pairs,x,n));

(* iopmeaning : IOP -> ((int*int)->int) *)

fun iopmeaning iop (x:int,y:int) =
ase iop of

Plus => x+y

| Times => x*y

| Minus => x-y;

(* bopmeaning : BOP -> ((int*int)->bool) *)

fun bopmeaning bop (x:int,y:int) =
ase bop of

Equal => x=y

| Greater => x>y;

(* types of answers and
ontinuations *)

datatype A = OK of int | Error;

type CONT = STATES -> A;

(* initial state - everything is undefined *)

val (S:STATES) = [℄;

(* initial
ontinuation returns the value of the variable r *)

val (k:CONT) = fn S => OK(lookup("r",S));

(* error
ontinuation *)

val (ek:CONT) = fn S => Error;

(* denotei : IEXP -> (STATES -> int) *)

fun denotei ie (S:STATES) =
ase ie of

N(n) => n

| Pvar(x) => lookup(x,S)

| Iop(iop,ie1,ie2) => let val n1 = denotei ie1 S

val n2 = denotei ie2 S

in

iopmeaning iop (n1,n2)

end;

(* denoteb : BEXP -> (STATES -> bool) *)

fun denoteb be (S:STATES) =
ase be of

77

B(b) => b

| Bop(bop,ie1,ie2) => let val n1 = denotei ie1 S

val n2 = denotei ie2 S

in

bopmeaning bop (n1,n2)

end;

(* denote
 : COM -> CONT -> CONT -> STATES -> A *)

fun denote
 C (k1:CONT) (k2:CONT) (S:STATES) =
ase C of

Skip => k1 S

| Assign(x,ie) => let val n = denotei ie S

in k1 (update(S,x,n))

end

| Seq(C1,C2) => denote
 C1 (denote
 C2 k1 k2) k2 S

| If(be,C1,C2) => if (denoteb be S)

then denote
 C1 k1 k2 S

else denote
 C2 k1 k2 S

| While(be,C1) => if (denoteb be S)

then denote
 C1 (denote
 C k1 k2) k2 S

else k1 S

| Abort => Error

| Exit => k2 S

| Orelse(C1,C2) => denote
 C1 k1 (denote
 C2 k1 k2) S;

(* run
 runs a
ommand with initial state and
ontinuations *)

fun run

 = denote

 k ek S;

Here are a
ouple of simple examples of this implementation of IMP-with-exits in use:

- (* define
1 to be r:=0; (skip orelse r:=1) *)

= val
1 = Seq(Assign("r",N 0), Orelse(Skip,Assign("r",N 1)));

> val v1 = ... : COM

- run

1;

> OK 0 : A

- (* define
2 to be r:=0; (exit orelse r:=1) *)

= val
2 = Seq(Assign("r",N 0), Orelse(Exit,Assign("r",N 1)));

> val
2 = ... : COM

- run

2;

> OK 1 : A

- (* define
3 to be

= r:=0;

= while true do

= (r:=r+1;

= if r>7 then exit else skip))

= orelse skip

= to demonstrate breaking out of an otherwise infinite loop

= *)

78

= val
3 = Seq(Assign("r",N 0), Orelse(While(B true,

= Seq(Assign("r",Iop(Plus,Pvar "r",N 1)),

= If(Bop(Greater,Pvar "r",N 7),Exit,Skip))),Skip));

> val
3 = ... : COM

- run

3;

> OK 8 : A

5.3 Axiomati
 Semanti
s of IMP

This se
tion
ontains a brief a

ount of how the Floyd-Hoare rules for proving properties of

IMP programs may be justi�ed in terms of the denotational semanti
s. It is not
ompletely

detailed and rigorous, but it should give a good idea of how denotational semanti
s
an

be used to justify reasoning prin
iples for program veri�
ation. You will learn a lot more

about Floyd-Hoare logi
 in the Part II
ourse Spe
i�
ation and Veri�
ation.

5.3.1 Partial Corre
tness Assertions

The general form of a partial
orre
tness statement is

fPg C fQg

whi
h means `if one exe
utes the
ommand C starting in a state whi
h satis�es P , then if

the
ommand terminates it will do so in a state satisfying Q'. A typi
al example of a valid

partial
orre
tness statement about an IMP program would be the following, asserting

that a program to
al
ulate greatest
ommon divisors is
orre
t:

fX = x ^ Y = y ^ 1 � x ^ 1 � yg

whileX 6= Y do (ifX � Y then Y := Y �X elseX :=X � Y)

fX = g
d(x; y)g

We
ould also develop a theory of total
orre
tness statements of the form [P ℄ C [Q℄,

meaning `if the
ommand C is started in a state satisfying P then it will terminate in a

state satisfying Q', but we will not do so here.

We �rst have to introdu
e a language in whi
h to formulate assertions about states.

These will be de�ned in terms of an auxiliary set of integer variables Ivar. We will now

use lower-
ase letters for elements of Ivar and upper-
ase for program variables (elements

of Pvar). The set Aexp of arithmeti
 expressions is de�ned indu
tively by the following

rules:

n 2 Z

n 2 Aexp

X 2 Pvar

X 2 Aexp

i 2 Ivar

i 2 Aexp

a

1

2 Aexp a

2

2 Aexp

a

1

+ a

2

2 Aexp

a

1

2 Aexp a

2

2 Aexp

a

1

� a

2

2 Aexp

a

1

2 Aexp a

2

2 Aexp

a

1

� a

2

2 Aexp

It is important that the set of integer expressions Iexp of IMP is
ontained within the set

Aexp, but this is easily seen to be true.

We
an now de�ne the set of assertions Assn in terms of these arithmeti
 expressions.

These assertions are made up of logi
al
ombinations of atomi
 assertions about arithmeti

79

expressions:

true 2 Assn false 2 Assn

a

1

2 Aexp a

2

2 Aexp

a

1

� a

2

2 Assn

A

1

2 Assn A

2

2 Assn

A

1

^A

2

2 Assn

A 2 Assn

:A 2 Assn

i 2 Ivar A 2 Assn

8i:A 2 Assn

We will feel free to use other logi
al
onne
tives in assertions, regarding them as synta
ti

sugar for
ombinations of the basi
 ones given above. For example, if a

1

; a

2

2 Aexp

then (a

1

= a

2

) 2 Assn

def

=(a

1

� a

2

) ^ (a

2

� a

1

). Similarly, if A 2 Assn and i 2 Ivar

then (9i:A) 2 Assn

def

=:(8i::A). Note that Bexp, the set of boolean expressions in our

programming language, is a subset of Assn (modulo some synta
ti
 sugar).

This small language of assertions is ri
h enough to
ode up a very wide range of

predi
ates. As an Exer
ise, you might like to try expressing X = g
d(x; y) in Assn.

If S 2 States and A 2 Assn, we now want to de�ne a notion of S satisfying the

assertion A. This depends on knowing the meaning of arithmeti
 expressions, whi
h in

turn will depend on some assignment of integer values for all the integer variables and all

the program variables. So, let an interpretation I 2 Interp be a fun
tion from Ivar to Z,

and we
an then de�ne

[[�℄℄:Aexp! (Interp! (States! Z))

as follows

[[n℄℄(I)(S) = n

[[X℄℄(I)(S) = S(X)

[[i℄℄(I)(S) = I(i)

[[a

1

+ a

2

℄℄(I)(S) = [[a

1

℄℄(I)(S) + [[a

2

℄℄(I)(S)

[[a

1

� a

2

℄℄(I)(S) = [[a

1

℄℄(I)(S) � [[a

2

℄℄(I)(S)

[[a

1

� a

2

℄℄(I)(S) = [[a

1

℄℄(I)(S) � [[a

2

℄℄(I)(S)

Using this, we
an then de�ne when state S 2 States satis�es an assertion A under an

interpretation I, whi
h we write S j=

I

A, by indu
tion on the stru
ture of A as follows:

S j=

I

true

[[a

0

℄℄(I)(S) � [[a

1

℄℄(I)(S)

S j=

I

(a

0

� a

1

)

S j=

I

A

1

S j=

I

A

2

S j=

I

A

1

^A

2

S 6j=

I

A

S j=

I

:A

8n 2 Z: S j=

I[n=i℄

A

S j=

I

8i:A

And we
an extend the notion of satisfa
tion to elements of States

?

by letting the unde�ned

state satisfy every assertion. We will feel free to overload the use of the j= notation to

refer to elements of States or of States

?

without
omment.

S j=

I

A

[S℄ j=

I

A

? j=

I

A

80

Now, if A;B 2 Assn and C 2 Com we
an de�ne the notion of when the partial

orre
tness assertion

fAg C fBg

is valid by de�ning

j= fAg C fBg

to mean

8I 2 Interp: 8S 2 States: (S j=

I

A) [[C℄℄(S) j=

I

B)

In other words, fAgC fBg is a valid partial
orre
tness assertion if for any interpretation

I and for any state S whi
h satis�es the assertion A, the denotation of C applied to

state S is a state (possibly ?) satisfying B. Note that we now have a
ompletely formal

notion of when a partial
orre
tness assertion is valid, de�ned in terms of the denotational

semanti
s. We will be able to use this to prove that a logi
 for deriving partial
orre
tness

assertions is sound (dedu
es only valid assertions), rather than just de
iding that all the

rules look intuitively plausible.

We will also use the notion of validity for assertions. If A 2 Assn then write j= A to

mean that for all S 2 States and for all I 2 Interp, S j=

I

A.

5.3.2 Hoare Logi

We now give some proof rules for deriving partial
orre
tness statements about IMP

programs. There is one rule for ea
h
ommand
onstru
t and one logi
al rule. The rule

for assignment uses the notion of substituting an integer expression into an assertion whi
h

is de�ned in a fairly obvious way.

fAgskipfAg fA[ie=X℄gX := iefAg

fAgC

1

fA

0

g fA

0

gC

2

fA

00

g

fAgC

1

; C

2

fA

00

g

fA ^ begC

1

fA

0

g fA ^ :begC

2

fA

0

g

fAgif be thenC

1

elseC

2

fA

0

g

fA ^ begCfAg

fAgwhile be do CfA ^ :beg

j= (A) A

0

) fA

0

gCfB

0

g j= (B

0

) B)

fAgCfBg

We write ` fAgCfBg when fAgCfBg is derivable using the above rules.

5.3.3 Soundness of Hoare Logi

We aim to prove formally that the logi
 given in the previous se
tion is sound, that is, all

the theorems ` fAgCfBg whi
h
an be derived in the logi
 are valid. The full proof of

this fa
t relies on a
ouple of simple lemmas
on
erning substitution, both of whi
h are

proved by stru
tural indu
tion.

Lemma 29 If X 2 Pvar and a; a

0

2 Aexp then for all I 2 Interp and S 2 States

[[a[a

0

=X℄℄℄(I)(S) = [[a℄℄(I)(S[[[a

0

℄℄(I)(S)=X℄)

2

81

Lemma 30 For any I 2 Interp,A 2 Assn,X 2 Pvar, ie 2 Iexp and S 2 States

S j=

I

A[ie=X℄ () S[[[ie℄℄(S)=X℄ j=

I

B

2

We will also need to know that the meanings of assertions are in
lusive predi
ates,

whi
h is an obvious
onsequen
e of the fa
t that States

?

is a
at
po:

Lemma 31 If
:N ! States

?

is a
hain in States

?

, I 2 Interp and A 2 Assn then

�

8n 2 N:

n

j=

I

A

�

)

1

G

n=0

n

j=

I

A

2

We
an now formulate our main result

Theorem 32 (Soundness) For any A;B 2 Assn and C 2 Com, if ` fAgCfBg then

j= fAgCfBg.

Proof. This follows by rule indu
tion on the rules of Hoare logi
. We have to show for

ea
h rule that if the hypotheses are valid then so is the
on
lusion. We will only
onsider

the
ase of the rule for while
ommands here, and leave the other rules as Exer
ises. (We

will not a
tually need Lemmas 29 and 30 for the
ase we
onsider here, but you will need

them for some of the other
ases.)

So assume that the hypothesis of the while rule is valid, i.e. that j= fA^begCfAg. We

wish to prove that the
on
lusion of the rule is also valid, i.e. that j= fAgwhilebedoCfA^

:beg. Re
all that [[while be do C℄℄ = �x� where

�

def

= �f 2 [States! States

?

℄:�S 2 States:([[be℄℄(S)) f

�

([[C℄℄(S)) j [S℄)

So we have to show that for any state S and interpretation I, if S j=

I

A then

1

G

n=0

�

n

(�S

0

2 States:?)

!

(S) j=

I

A ^ :be

whi
h, by the de�nition of lubs in fun
tion spa
es is equivalent to

1

G

n=0

�

n

(�S

0

2 States:?)(S)

!

j=

I

A ^ :be

We will show by mathemati
al indu
tion that for all n 2 N and for all S 2 States, if

S j=

I

A then

�

n

(�S

0

2 States:?)(S) j=

I

A ^ :be

from whi
h the result follows by Lemma 31. (This
ould have been presented as an example

of �xpoint indu
tion.)

For the base
ase of the indu
tion, we just have

�

0

(�S

0

2 States:?)(S) = ? j=

I

A ^ :be

82

Now for the indu
tion step, writing f

n

for �

n

(�S

0

2 States:?) we need to show

8S 2 States: S j=

I

A) f

n+1

(S) j=

I

A ^ :be

whi
h means showing that if S j=

I

A then

([[be℄℄(S)) f

�

n

([[C℄℄(S)) j [S℄) j=

I

A ^ :be

Now there are two possibilities:

1. If [[be℄℄(S) = false then f

n+1

(S) = [S℄ and we have [S℄ j=

I

A and [S℄ j=

I

:be and

hen
e f

n+1

(S) j=

I

A ^ :be as required.

2. If [[be℄℄(S) = true then f

n+1

(S) = f

�

n

([[C℄℄(S)). By our assumption about the hypoth-

esis of the while rule being valid, we know that [[C℄℄(S) j=

I

A be
ause S j=

I

be and

S j=

I

A. Hen
e by indu
tion, f

�

n

([[C℄℄(S)) j= A ^ :be as required.

2

An obvious question to ask is whether
ompleteness, whi
h is the
onverse to soundness,

holds { do the Hoare logi
 rules prove all valid partial
orre
tness assertions? It turns out

that they do, but with an important
aveat. Noti
e that the logi
al rule

j= (A) A

0

) fA

0

gCfB

0

g j= (B

0

) B)

fAgCfBg

is phrased in terms of the validity of the assertions A) A

0

and B

0

) B, rather than

their provability. If we a
tually want to use Hoare logi
 to prove things about programs

then we have to give a proof system for assertions as well, and su
h a system
an never be

omplete by G�odel's In
ompleteness Theorem. Thus if we had a

ess to an ora
le whi
h

ould magi
ally de
ide the truth of statements of the form j= A, then we
ould prove all

valid partial
orre
tness assertions using Hoare logi
. Sin
e we do not have su
h an ora
le,

we have to make do with a logi
 for deriving statements ` A, and this prevents us from

being able to prove all the valid partial
orre
tness assertions. We
an therefore say that

Hoare logi
 is relatively
omplete.

For more realisti
 IMP-like programming languages, su
h as Algol, it has been shown

that there is not even a relatively
omplete Hoare logi
, so the usefulness of the
on
ept

of relative
ompleteness is rather limited.

83

Appendix A

Semanti
 Equivalen
e Proofs as

ML Fun
tions

This appendix
ontains some very optional material whi
h
on
erns the way in whi
h

onstru
tive proofs of semanti
 equivalen
es
an be seen in terms of fun
tions mapping

derivations in the evaluation semanti
s to other derivations.

We will give a brief outline of how this idea
an be made
on
rete by de�ning ML

fun
tions whi
h map derivations to derivations. The details are rather unpleasant, but it's

worth at least noting that it
an be done.

Firstly, we have to de
ide how to represent derivations in the evaluation semanti
s in

ML. As we have mentioned in Chapter 2, the set of derivations is itself an indu
tively

de�ned set and we shall
ode this set as an indu
tive ML datatype with one
onstru
tor

for ea
h rule in the semanti
s. (A
tually, we'll need three datatypes,
orresponding to the

three evaluation relations.)

What should we store at ea
h node in the tree? If we
onsider a rule like ()

C

�3),

it's
lear that we'll need to store the two subderivations whi
h derive C

1

; S)

C

S

0

and

C

2

; S

0

)

C

S

00

, but what else? A
tually, nothing else. This is be
ause the
on
lusion of

the rule, viz. C

1

;C

2

; S)

C

S

00

is
ompletely determined by the
on
lusions of the two

subderivations and the fa
t that we know we are applying rule ()

C

�3). For a rule like

()

C

�4) we will need to know the two subderivations and what the else-bran
h, C

2

, of

the if-statement is, sin
e that does not appear in either of the subderivations. Applying

similar reasoning to ea
h rule, we get the following datatypes for evaluation derivations

(you will need to refer to Figure 3.3 to have any
han
e of understanding this!):

datatype IDER = Ir1 of int*STATES | Ir2 of string*STATES |

Ir3 of IOP*IDER*IDER;

datatype BDER = Br1 of bool*STATES | Br2 of BOP*IDER*IDER;

datatype CDER = Cr1 of STATES | Cr2 of string*IDER | Cr3 of CDER*CDER |

Cr4 of BDER*CDER*COM | Cr5 of BDER*CDER*COM |

Cr6 of BDER*COM | Cr7 of BDER*CDER*CDER;

84

For example, this derivation

()

B

�1)

true; [℄)

B

true

()

I

�1)

1; [℄)

I

1

()

C

�2)

x := 1; [℄)

C

[x = 1℄

()

C

�4)

if true then x := 1 else x := 2; [℄)

C

[x = 1℄

()

I

�1)

0; [x = 1℄)

I

0

()

C

�2)

y := 0; [x = 1℄)

C

[x = 1 y = 0℄

()

C

�3)

(if true then x := 1 else x := 2) ; y := 0; [℄)

C

[x = 1 y = 0℄

is
oded as this element of the ML datatype CDER:

Cr3 (Cr4 (Br1 (true,[℄),Cr2 ("x",Ir1 (1,[℄)),Assign ("x",N 2)),Cr2 ("y",

Ir1 (0,[("x",1)℄)))

There is still a slight problem with our representation of derivations { there are many

elements of the datatypes whi
h do not
orrespond to valid derivations in the semanti
s.

This is be
ause there is no way to enfor
e the restri
tions
aused by the fa
t that sub-

derivations of a given derivation usually have to agree with ea
h other in some way. For

example, in the
ase of ()

C

�3), the state at whi
h C

1

ends up as the
on
lusion of the

�rst subderivation has to be the same as the state in whi
h C

2

is started in the
on
lusion

of the se
ond subderivation. We
annot express this in the ML datatype, so we will have

to
he
k that it is true using a fun
tion whi
h traverses a putative derivation tree and

he
ks that it is well-formed.

1

The following fun
tions will extra
t the
on
lusions of a

derivation and
he
k that it is well-formed, raising the ex
eption BadDer if it is not. Note

that we have to use an auxiliary fun
tion to test whether two states, represented as lists,

are equal sin
e the order of the bindings in the two lists might be di�erent.

fun forall [℄ p = true

| forall (x::xs) p = (p x) andalso (forall xs p);

fun eqstate (S1,S2) = (forall S1 (fn x => x mem S2))

andalso

(forall S2 (fn x => x mem S1));

ex
eption BadDer;

(* i
on
 : IDER -> IEXP*STATES*int *)

fun i
on
 d =
ase d of

Ir1(n,S:STATES) => (N n,S,n)

| Ir2(x,S) => (Pvar x,S,lookup(x,S) handle Lookup => raise BadDer)

| Ir3(iop,d1,d2) => let val (ie1,S1,n1) = i
on
 d1

val (ie2,S2,n2) = i
on
 d2

in if eqstate(S1,S2)

then (Iop(iop,ie1,ie2),S1,iopmeaning iop (n1,n2))

1

The problem is that ML's type system is not powerful enough to express these restri
tions. There are

mu
h more powerful type theories whi
h
an
ope with this sort of thing, and it is these more powerful

systems whi
h form the basis of many automated theorem provers. In su
h systems one really does give

formal proofs by de�ning fun
tions in a way whi
h is not entirely unrelated to the rather rough-and-ready

ML
ode we give here. The key idea is the `propositions-as-types' analogy whi
h is dis
ussed (albeit not at

a suÆ
iently advan
ed level to deal with the kind of proofs we're
on
erned with here) in Dr Pitts's Part

II
ourse on Types.

85

else raise BadDer

end;

(* b
on
 : BDER -> BEXP*STATES*bool *)

fun b
on
 d =
ase d of

Br1(b,S:STATES) => (B b,S,b)

| Br2(bop,d1,d2) => let val (ie1,S1,n1) = i
on
 d1

val (ie2,S2,n2) = i
on
 d2

in if eqstate(S1,S2)

then (Bop(bop,ie1,ie2),S1,bopmeaning bop (n1,n2))

else raise BadDer

end;

(*

on
 : CDER -> COM*STATES*STATES *)

fun

on
 d =
ase d of

Cr1(S:STATES) => (Skip,S,S)

| Cr2(x,d1) => let val (ie,S,n) = i
on
 d1

in (Assign(x,ie),S,update(S,x,n))

end

| Cr3(d1,d2) => let val (C1,S,S1) =

on
 d1

val (C2,S2,S3) =

on
 d2

in if eqstate(S1,S2)

then (Seq(C1,C2),S,S3)

else raise BadDer

end

| Cr4(bd,
d,C2) => let val (be,S1,b) = b
on
 bd

val (C1,S2,S3) =

on

d

in if eqstate(S1,S2) andalso (b=true)

then (If(be,C1,C2),S1,S3)

else raise BadDer

end

| Cr5(bd,
d,C1) => let val (be,S1,b) = b
on
 bd

val (C2,S2,S3) =

on

d

in if eqstate(S1,S2) andalso (b=false)

then (If(be,C1,C2),S1,S3)

else raise BadDer

end

| Cr6(bd,C) => let val (be,S,b) = b
on
 bd

in if (b=false)

then (While(be,C),S,S)

else raise BadDer

end

| Cr7(bd,d1,d2) => let val (be,S1,b) = b
on
 bd

val (C,S2,S3) =

on
 d1

val (C',S4,S5) =

on
 d2

in if (b=true) andalso

eqstate(S1,S2) andalso

eqstate(S3,S4) andalso

86

(C' = While(be,C))

then

(C',S1,S5)

else raise BadDer

end;

We
an use this to extra
t the
on
lusion of the derivation we gave earlier and to
he
k

that it is well-formed:

-

on
 (Cr3 (Cr4 (Br1 (true,[℄),Cr2 ("x",Ir1 (1,[℄)),Assign ("x",N 2)),

= Cr2 ("y",Ir1 (0,[("x",1)℄))));

> (Seq (If (B(true),Assign("x",N 1),Assign ("x",N 2)),Assign ("y",N 0)),

[℄,

[("x",1),("y",0)℄) : COM*STATES*STATES

So now what about
oding proofs as ML fun
tions? We will start by
onsidering half

of the proof of Proposition 17, the impli
ation that says if

(if be thenC elseC

0

) ; C

00

; S)

C

S

0

(A.1)

then

if be then (C ; C

00

) else (C ; C

00

); S)

C

S

0

(A.2)

Our fun
tion to
ode the proof of this impli
ation will take as input a derivation of A.1

and return a derivation of A.2. Any derivation of A.1 must end with an appli
ation of

()

C

�3) and we then
onsider
ases a

ording to the last rule used in the derivation of the

�rst hypothesis of that appli
ation of ()

C

�3) to de
ide how to build a derivation of A.2.

This is expressed by the following ML
ode:

(* ifseqproof : CDER -> CDER *)

fun ifseqproof (Cr3(d1,d2)) =

let val (C3,_,_) =

on
 d2 in

ase d1 of

Cr4(bd,
d1,C2) => Cr4(bd,Cr3(
d1,d2),Seq(C2,C3))

| Cr5(bd,
d2,C1) => Cr5(bd,Cr3(
d2,d2),Seq(C1,C3))

end;

Note that ifseqproof doesn't make any attempt to
he
k that its input is a valid deriva-

tion of an instan
e of A.1, though it will raise an un
aught ex
eption (either mat
h or

BadDer) in most su
h
ases. Now let's see ifseqproof in a
tion by applying it to the ML

term
oding the derivation we gave earlier:

- ifseqproof (Cr3 (Cr4 (Br1 (true,[℄),Cr2 ("x",Ir1 (1,[℄)),

= Assign ("x",N 2)),Cr2 ("y",Ir1 (0,[("x",1)℄))));

> Cr4 (Br1 (true,[℄),Cr3 (Cr2 ("x",Ir1 (1,[℄)),Cr2 ("y",Ir1

(0,[("x",1)℄))),Seq (Assign ("x",N 2),Assign ("y",N 0))) : CDER

and this is indeed the term of type CDER whi
h
odes the derivation

()

B

�1)

true; [℄)

B

true

()

I

�1)

1; [℄)

I

1

()

C

�2)

x := 1; [℄)

C

[x = 1℄

()

I

�1)

0; [x = 1℄)

I

0

()

C

�2)

y := 0; [x = 1℄)

C

[x = 1 y = 0℄

()

C

�3)

x := 1 ; y := 0; [℄)

C

[x = 1 y = 0℄

()

C

�4)

if true then (x := 1 ; y := 0) else (x := 2 ; y := 0); [℄)

C

[x = 1 y = 0℄

87

as we would expe
t.

It is important to realise that writing su
h an ML fun
tion does not
onstitute a

mathemati
al proof, sin
e we have given no formal justi�
ation that the ML
ode a
tually

does what we intuitively think it does. The fun
tion ifseqproof merely expresses the

idea of the formal proof of Proposition 17. However, thinking in terms of fun
tions
an

be a useful way to understand and to
ome up with this kind of proof.

What about the proof of Proposition 18? We will just prove half of the equivalen
e:

8S; S

0

2 States: if while be doC

1

; S)

C

S

0

then while be do C

2

; S)

C

S

0

(A.3)

under the assumption that C

1

� C

2

. In fa
t, to prove A.3,it suÆ
es to assume just half

of the equivalen
e of C

1

and C

2

viz.

8S; S

0

2 States: if C

1

; S)

C

S

0

then C

2

; S)

C

S

0

(A.4)

The fun
tion
oding the proof of A.3 will map derivations of the `if' part to derivations of

the `then' part, but it will also need to take an extra argument whi
h
odes the assumption

A.4. That argument will itself be a fun
tion f whi
h takes derivations of C

1

; S)

C

S

0

to derivations of C

2

; S)

C

S

0

(the jargon word is that f is a realizer for the impli
ation

A.4). So, to sum up, the fun
tion while
ongproof whi
h we want to de�ne will, for any

be,C

1

,C

2

,S and S

0

, take as input

1. A derivation d of while be doC

1

; S)

C

S

0

.

2. A fun
tion f from derivations to derivations whi
h maps a derivation of C

1

; S

00

)

C

S

000

to a derivation of C

2

; S

00

)

C

S

000

, for any S

00

and S

000

.

and it will return a derivation of while be do C

2

; S)

C

S

0

. In fa
t, for a trivial te
hni
al

reason, while
ongproof also has to take the
ommand C

2

as input

2

, thus the
ode ends

up looking like this:

(* while
ongproof : CDER * COM * (CDER -> CDER) -> CDER *)

fun while
ongproof (d:CDER,C2,f:CDER->CDER) =

ase d of

Cr6(bd,C1) => Cr6(bd,C2)

| Cr7(bd,d1,d2) => let val d2' = while
ongproof (d2,C2,f)

val d1' = f d1

in

Cr7(bd,d1',d2')

end;

Noti
e how while
ongproof uses re
ursion in the
ase that the derivation d ends with

an appli
ation of ()

C

�7), and that this
orresponds exa
tly to the use of indu
tion in

the real proof of Proposition 18. Note also how f is used to transform the derivation of

the se
ond hypothesis of ()

C

�7) { this is the part in the proof where we appeal to the

assumption that C

1

� C

2

.

For example, let's take C

1

and C

2

to be instan
es of the equivalen
e of Proposition 17

2

This is just be
ause in the
ase that the derivation 1. above uses ()

C

�6), we need to return an

appli
ation of ()

C

�6) whi
h
ontains C

2

, but we don't a
tually have it in our hand, and we
an't use f to

get it be
ause we don't have any derivation about C

1

to supply as input to f.

88

(* these two are equivalent by ifseqproof *)

val
1 = read
om "if x=1 then y:=y+2 else y:=y+1 endif;x:=x-1";

val
2 = read
om "if x=1 then y:=y+2;x:=x-1 else y:=y+1;x:=x-1 endif";

(* embed them in a while
ommand *)

val
1' = While(Bop(Greater,Pvar "x",N 0),
1);

val
2' = While(Bop(Greater,Pvar "x",N 0),
2);

(* We want to show
1' equivalent to
2',

so start with derivation of
1' doing something

NB. maked
 : COM -> (STATES -> CDER) just

exe
utes a
ommand in a given state and

returns the entire derivation asso
iated

with that run.

*)

val d1 = maked

1' [("y",0),("x",2)℄;

(* Now we
an apply the proof to get a derivation of

2' doing the same thing. Note the use of ifseqproof

as a witness/realizer that
1 is equivalent to
2.

*)

val d2 = while
ongproof(d1,
2,ifseqproof);

We end up with d1 being a derivation that
1

0

; [y = 0 x = 2℄)

C

[y = 3 x = 0℄ and

d2 the derivation that
2

0

; [y = 0 x = 2℄)

C

[y = 3 x = 0℄ whi
h is what we wanted.

Unfortunately, the a
tual derivations are rather too large to be worth in
luding here

(around 3 feet wide).

89

