
University of Cambridge

Computer Siene Tripos Part IB

Lent Term 1996

Semantis of Programming Languages

Dr P. N. Benton

Contents

1 Introdution 3

1.1 Formal Semantis : 3

1.2 Outline of Course : 4

1.3 Aknowledgements : 5

1.4 Reommended Reading : 5

2 Indutive De�nitions and Proofs 7

2.1 Indutive De�nitions : 7

2.1.1 Introdution : 7

2.1.2 What do indutive de�nitions mean? : : : : : : : : : : : : : : : : : : 9

2.1.3 Upwards haraterisation of indutively de�ned sets : : : : : : : : : 11

2.1.4 Simultaneous indutive de�nitions : : : : : : : : : : : : : : : : : : : 13

2.1.5 Derivations : 13

2.1.6 Indutively de�ned funtions : 14

2.2 Indutive Proofs : 14

2.2.1 Mathematial indution : 14

2.2.2 Rule indution : 15

2.3 Exerises : 18

3 IMP and its Operational Semantis 20

3.1 The Syntax of IMP : 20

3.2 Transition Semantis of IMP : 22

3.2.1 States : 22

3.2.2 Operational semantis via transition relations : : : : : : : : : : : : : 23

3.2.3 Theorems about the transition semantis : : : : : : : : : : : : : : : 25

3.2.4 Evaluation sequenes : 26

3.2.5 Implementing the transition semantis in ML : : : : : : : : : : : : : 28

3.3 Strutural Evaluation Relations for IMP : 31

3.3.1 Evaluation relations : 31

3.3.2 Equivalene of transition and evaluation semantis of IMP : : : : : : 33

3.3.3 Implementing the evaluation semantis in ML : : : : : : : : : : : : : 36

3.3.4 Semanti equivalene : 37

3.3.5 Congruenes : 39

3.3.6 Semanti equivalene proofs as funtions (optional) : : : : : : : : : : 39

3.4 Exerises : 40

1

4 Denotational Semantis of IMP 44

4.1 Complete Partial Orders : 45

4.1.1 Partial orders : 45

4.1.2 Chains and least upper bounds : 45

4.1.3 Continuous funtions : 46

4.1.4 Binary produt of pos : 47

4.1.5 Exponentation of pos : 49

4.1.6 Lifting : 49

4.1.7 Conditionals : 50

4.1.8 Least �xed points : 50

4.1.9 Fixpoint indution : 51

4.2 Denotational Semantis of IMP : 53

4.2.1 Semantis of integer and boolean expressions : : : : : : : : : : : : : 53

4.2.2 Semantis of ommands : 54

4.3 Equivalene of the Denotational and Operational Semantis of IMP : : : : : 56

4.3.1 Adequay and full abstration : 59

4.3.2 Compositionality and ongruene : 60

4.4 Information, Continuity and Computability : : : : : : : : : : : : : : : : : : 60

4.5 Implementing the Denotational Semantis in ML : : : : : : : : : : : : : : : 63

4.6 Exerises : 64

5 Further Topis 67

5.1 Non-Determinism : 67

5.1.1 Transition semantis of non-determinism : : : : : : : : : : : : : : : : 68

5.1.2 An evaluation semantis for non-determinism : : : : : : : : : : : : : 68

5.1.3 Non-determinism and semanti equivalene : : : : : : : : : : : : : : 70

5.1.4 Denotational semantis for angeli non-determinism : : : : : : : : : 71

5.1.5 Errati non-determinism and the Egli-Milner order : : : : : : : : : : 72

5.2 Jumps and Continuations : 73

5.2.1 Continuation semantis of IMP : 74

5.2.2 Continuation semantis of IMP-with-exits : : : : : : : : : : : : : : : 75

5.2.3 An ML implementation of IMP-with-exits : : : : : : : : : : : : : : : 76

5.3 Axiomati Semantis of IMP : 79

5.3.1 Partial Corretness Assertions : 79

5.3.2 Hoare Logi : 81

5.3.3 Soundness of Hoare Logi : 81

A Semanti Equivalene Proofs as ML Funtions 84

2

Chapter 1

Introdution

1.1 Formal Semantis

This ourse is about understanding and reasoning about programs and programming lan-

guages. Any programming language an be studied at a number of di�erent (but related)

levels, amongst whih it is onvenient to distinguish:

Syntax The alphabet of symbols used to write programs and some desription (e.g. BNF)

of the way in whih those symbols may be ombined to give well-formed expressions,

ommands, programs, et. of the language.

Semantis The meaning of eah expression, ommand, program, et. This means some

desription of how programs behave when they are atually exeuted.

Pragmatis The way in whih the language is atually implemented (e.g. ompiled or

interpreted, separate ompilation, garbage olletion) and used (e.g. typial pro-

gramming tehniques, suitability for di�erent problem domains).

We shall be onerned with the seond of these aspets { giving desiptions of the run-time

behaviour of programs { and we shall use mathematial and logial methods to give these

desriptions in a formal and rigorous way.

A formal semantis an have many uses:

� It an serve simply as a spei�ation of how programs should behave. This is obvi-

ously of value to the ompiler writer and, if the semantis is suÆiently readable, to

the programmer.

� The very at of trying to give a formal semantis an help the language designer

to spot mistakes and ambiguities in an informal aount of how programs should

exeute.

� A formal semantis an be used to obtain or verify reasoning priniples whih may

be used to prove that programs satisfy their spei�ations or that two programs are

equivalent. This is vital if one wishes formally to verify or derive software, as is

inreasingly done in, for example, `safety-ritial' appliations. Even if one does not

wish to go to the trouble and expense of giving a ompletely formal proof of program

orretness, if programmers are aware of the reasoning priniples whih they would

use were they to attempt suh a proof then the informal reasoning whih they use

whilst writing ode is muh more likely to be sound.

3

� Sophistiated program analyses and transformations, suh as those used in highly

optimising ompilers, are not only veri�ed with repet to a formal semantis, but

are very often designed and expressed in terms of the semantis.

� A mathematial analysis of omputational and programming language onstruts

whih is independent of any partiular programming language allows one to sim-

plify and generalise. This then feeds bak into omputer siene in the form of new

programming languages and language features. For example, ML and other similar

languages are based on the lambda alulus, whih is a mathematial model of om-

putation whih predates omputer programming. Similarly, some implementations

of ML-like languages are based on a translation of programs into a language of om-

binators, whih originally arose in mathematial logi and has sine been re�ned in

various ways to suit the needs of language designers and implementers.

� Finally, obtaining a deeper understanding of the basi nature of omputation is a fas-

inating and worthwhile intelletual ativity in its own right. Fundamental sienti�

researh has a ultural value beyond its immediate tehnologial appliations.

Historially, semantis have been given in three main styles:

Operational Semantis spei�es how programs should be exeuted, for example by

giving a translation of programs into some simpler abstrat mahine language. In

this ourse we will use a style of operational semantis alled strutural operational

semantis, due to Gordon Plotkin, in whih evaluation and transition relations are

de�ned diretly by indution on the syntax of the language.

Denotational Semantis gives the meaning of programs as elements of some suitable

mathematial struture. This style of semantis was pioneered by Christopher Stra-

hey and Dana Sott in the late 60s and early 70s, making use of the theory of

ertain speial partially ordered sets.

Axiomati Semantis de�nes the meaning of eah programming onstrut by giving

proof rules for it in some suitable program logi. This style of semantis was intro-

dued by Robert Floyd and Tony Hoare. You will learn more about this in the Part

II ourse on Spei�ation and Veri�ation.

Of ourse, these di�erent styles of semantis eah have advantages and disadvantages for

partiular purposes. We shall onentrate on the �rst two styles and the relationships

between them, though there is some material in Chapter 5 on axiomati semantis.

1.2 Outline of Course

In this ourse we will study the operational and denotational semantis of a simple imper-

ative programming language whih we all IMP. Sine we will be making onsiderable use

of indution, we start by realling some basi material on indutive de�nitions and proofs.

We then de�ne the syntax of IMP and give it an operational semantis using transition

relations. Next we give an alternative presentation of the operational semantis in the

style known as `natural semantis' and relate this to the �rst semantis.

We then turn to the denotational semantis of IMP. After introduing the basi mathe-

matial onepts whih we shall need, we show how IMP programs may be given meaning

4

as funtions between ertain ordered sets and relate this to the operational semantis

whih we gave earlier.

Having studied the operational and denotational semantis of IMP in onsiderable

detail, we then look briey at some slightly more advaned topis: how to treat a non-

deterministi version of IMP, how to use ontinuations to give a denotational semantis to

a version of IMP with some non-loal ontrol operators, and how to use the denotational

semantis of IMP to justify Floyd-Hoare logi proof rules for the language.

Finally, an appendix ontains some material on a funtional view of proofs of semanti

equivalene. (This is highly non-examinable and merely inluded beause I thought it

might be amusing.)

We will make ontinual use of the ML programming language. This is beause ML

makes it possible (almost!) to implement diretly many of the mathematial ideas whih

we shall be using to understand IMP. It is hoped that this alternative, more onrete and

omputational, viewpoint will make understanding the mathematis easier. The use of ML

should, however, only be treated as an intuitive aid to understanding the real mathematial

semantis. Any more formal understanding of the relationship between IMP and the

various bits of ML whih we shall present would involve giving a mathematial semantis

to ML and this requires rather more sophistiated ideas than we shall need in order to deal

with IMP. Note that this is a slightly unusual use of a programming language. Whilst all

the ML ode used in these notes will be made available for students to experiment with,

its real purpose is to be read, not exeuted. That is, it is used primarily as a language for

human ommuniation, and only inidentally as a language whereby people an ontrol

mahines.

The material on using ML to implement semanti ideas is all non-examinable.

At this point we should mention that ML itself does in fat have a ompletely formally

spei�ed operational semantis (the De�nition of Standard ML). I strongly reommend

that you read the prefae to the De�nition and have at least a brief look at the rest of it,

so as to get some idea of how the ideas introdued in this ourse sale up to real-world

languages.

The prerequisites for the ourse are merely IA Disrete Maths and some knowledge of

programming. An understanding of ML is also very desirable, but not absolutely essential

sine ML is only used as a metaphor for the more formal semantis.

1.3 Aknowledgements

Thanks to Andy Pitts, Gordon Plotkin and Glynn Winskel, all of whose leture notes I

have liberally plundered in writing this ourse, and to Larry Paulson for permission to use

parsing and prettyprinting ode from his book `ML for the Working Programmer' in the

programs aompanying the ourse. Andrew Kennedy made some very useful omments

on drafts of these notes. I have used John Reynolds's diagram maros and Paul Taylor's

proof tree maros.

1.4 Reommended Reading

Books

� G. Winskel The Formal Semantis of Programming Languages. MIT Press

1993. If you're going to buy a book on semantis, this is the one to get. Dr

5

Winskel used to leture this ourse and the book is based in part on his leture

notes.

� R. D. Tennent Semantis of Programming Languages. Prentie Hall Interna-

tional 1991.

� M. Hennessy The Semantis of Programming Languages. Wiley 1990.

� R. Nielson and F. Nielson Semantis with Appliations. Wiley 1992.

� R. Harper, R. Milner and M. Tofte The De�nition of Standard ML. MIT Press

1990.

� R. Milner and M. Tofte Commentary on Standard ML. MIT Press 1991.

Papers et.

� G. D. Plotkin A Strutural Approah to Operational Semantis. Report DAIMI

FN-19 Aarhus University 1981. Available as V105 604 in the CL library.

� G. Kahn Natural Semantis. In K. Fuhi and M. Nivat (eds) Programming of

Future Generation Computers. North-Holland 1988.

6

Chapter 2

Indutive De�nitions and Proofs

This hapter realls some mathematial bakground material (from the Disrete Mathe-

matis ourse) whih we shall be using repeatedly in this ourse.

2.1 Indutive De�nitions

2.1.1 Introdution

Indutively de�ned sets arise throughout Computer Siene. For example:

1. Bakus-Naur form (BNF) used in the de�nition of the onrete syntax of program-

ming languages, as in the following simple de�nition of binary numbers (with leading

zeros allowed):

hbiti ::= 0 j 1

hbini ::= hbiti j hbitihbini

whih says that a bit is either 0 or 1 and that a bin is either a bit or a bit followed

by a bin.

2. Indutive datatypes in ML, suh as one orresponding to the above BNF:

datatype BIT = Zero | One;

datatype BIN = Single of BIT | Bitstring of BIT*BIN;

or the type of binary trees with integers at the nodes:

datatype TREE = Empty | Node of int*TREE*TREE;

3. The de�nition of various logis as olletions of inferene rules, suh as the following

rule for introduing onjuntion, whih should be read as `if from a set of assumptions

� you an prove a formula A, and from the same set of assumptions you an also

prove B, then from � you an prove A ^B':

� ` A � ` B

^I

� ` A ^B

7

What all these examples have in ommon is that a set S (of strings, datastrutures or

provable sequents) is de�ned by a olletion of rules all whih have the general form `if a

1

up to a

n

are all in the set then so is a', whih we will usually write as

a

1

2 S a

2

2 S � � � a

n

2 S

a 2 S

using the logial rule notation

hhypothesesi

hrulenamei

honlusioni

so that the BNF example (whih is, of ourse, two de�nitions) ould be written as

0 2 bit 1 2 bit

to de�ne the set bit and

b 2 bit

b 2 bin

b 2 bit s 2 bin

bs 2 bin

to de�ne the set bin. Notie that we allow the ase n = 0, i.e. no hypotheses. This simply

means that the onlusion holds unonditionally. Suh rules are sometimes alled axioms.

Note also that rules may ontain variables (e.g. b and s in the seond rule for bin above).

Suh a rule should be thought of as a rule sheme standing for the in�nite olletion of all

rules arising by substituting atomi things for the variables.

1

We will also sometimes add

side onditions to a rule sheme; these onstrain the meaning of the sheme to the set of

substitution instanes whih also satisfy the side onditions.

In this ourse we shall usually use the rule notation, rather than BNF, to de�ne

programming language syntax. A slight subtlety is that BNF is usually taken to de�ne

a set of strings (i.e. onrete syntax), whereas we shall always think of syntax as a set

of trees (i.e. abstrat syntax). This allows us to avoid any issues relating to parsing,

whih are ompletely irrelevant for this ourse (though they are obviously important for

ompiler writers). Thus the set bin de�ned above should be thought of as ontaining trees

like this:

2

0

1 0

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

Stritly speaking, this is not quite right sine we haven't said what `atomi things' one is allowed to

plug in for the variables. The orret answer is that we an only really make an indutive de�nition of a

subset S of some already existing set U , and the atoms are all the elements of U . In pratie, however,

it doesn't usually matter exatly what U is, as long as it's large enough to ontain everything of interest

(in the ase of binary numbers, for example, U ould be the set of all �nite strings of ASCII haraters,

or it might be all those together with all ountably in�nite strings or whatever). We will usually omit all

mention of U , with the tait understanding that a suitable set ould easily be found were anybody to press

us on the matter.

2

So when (to save time and paper) we write syntax in a linear way, the use of parentheses is a meta-

notation to indiate the intended tree struture, rather than a proper part of the abstrat syntax itself.

8

Given an inferene rule

a

1

2 S a

2

2 S � � � a

n

2 S

R

a 2 S

we say that a set S is losed under R if

((a

1

2 S) ^ (a

2

2 S) ^ � � � ^ (a

n

2 S))) (a 2 S)

2.1.2 What do indutive de�nitions mean?

Consider the set of natural numbers f0; 1; 2; 3; : : :g. Another way to desribe this set,

without using `: : :', is by indution. We take a onstant symbol Z, whih we intend to

mean 0, and a unary funtion symbol S whih is intended to represent the suessor

funtion (so S(Z) represents 1, S(S(Z)) represents 2 and so on). The following two rules

then onstitute an indutive de�nition of the set N = fZ; S(Z); S(S(Z)); : : :g:

1. Z is a natural number. In symbols, Z 2 N, whih we an an also write as an

inferene rule with no hypotheses:

Z 2 N

2. If n is a natural number then S(n) is a natural number. We an write this as

n 2 N) S(n) 2 N or as

n 2 N

S(n) 2 N

But how do these two rules speify the set we intend, viz.fZ; S(Z); S(S(Z)); : : :g? After all,

the two rules are only onditions whih we want N to satisfy, and there are many other sets

whih also satisfy both onditions, suh as N

0

= fZ; S(Z); S(S(Z)); : : : ;r; S(r); S(S(r)); : : :g

where r is just some arbitrary new symbol. The reason N

0

is not what we meant to de�ne

is that it ontains a lot of extra junk whih doesn't need to be there (suh as S(r)).

Note that N � N

0

{ when we make an indutive de�nition suh as that given above, it is

understood to mean the least set (with respet to the subset ordering) satisfying all the

lauses of the de�nition. Formally:

De�nition 1 Given an indutive de�nition omprising a set of rules R, R is said to

indutively de�ne the set S if

1. S is losed under all the rules in R

2. For any S

0

suh that S

0

is losed under all the rules in R, S � S

0

.

It is not, however, immediately lear that there is a unique smallest set satisfying any

indutive de�nition, i.e. that indutive de�nitions really do de�ne something.

Proposition 1 (Uniqueness) Given an indutive de�nition in the form of a set of rules

R, the set de�ned by R, if it exists, is unique.

9

Proof. Assume that S

1

and S

2

both satisfy the onditions of De�nition 1 above. Beause

S

1

satis�es part 1 of the de�nition and S

2

satis�es part 2, we have S

1

� S

2

. A symmetri

argument yields S

2

� S

1

, so that S

1

= S

2

. 2

At this point it's onvenient to introdue a new notion, that of the operator assoiated

with a set of rules. If R is a set of rules, indexed by a set I:

R = fR

i

j i 2 Ig

where the rule R

i

has the form

h

i;1

h

i;2

� � � h

i;n

i

R

i

i

then �

R

is an operator whih takes sets to sets, de�ned by

�

R

(T) = f

i

j (h

i;1

2 T) ^ � � � ^ (h

i;n

i

2 T)g

The following two properties of � are immediate from the de�nition:

Lemma 2

1. For any set of rules R, �

R

is monotoni. That is

if X � Y then �

R

(X) � �

R

(Y)

2. A set X is losed under all the rules in R if and only if �

R

(X) � X. If this is the

ase, we say X is a pre�xed point of �

R

.

2

Lemma 3 If R is a set of rules and fS

i

j i 2 Ig is a olletion of sets (indexed by the set

I) suh that for eah i 2 I, S

i

is losed under all the rules in R, then the set

T

i2I

S

i

is

also losed under all the rules in R.

Proof.

8i:

\

j2I

S

j

� S

i

) 8i:�

R

(

\

j2I

S

j

) � �

R

(S

i

)

) 8i:�

R

(

\

j2I

S

j

) � S

i

) �

R

(

\

j2I

S

j

) �

\

i2I

S

i

where the �rst inlusion is an obvious property of intersetion, the �rst impliation follows

by monotoniity of �

R

, the seond by the fat that eah S

i

is a pre�xed point of �

R

and

the last by another property of intersetion. 2

Proposition 4 (Existene) If R is a set of rules, then the set

S

def

=

\

fS

0

j S

0

is losed under all the rules in Rg

is indutively de�ned by R.

10

Proof. By Lemma 3, S is losed under all the rules in R and so satis�es part 1 of

De�nition 1. To see that it also satis�es part 2, let S

00

be losed under all the rules in R.

It should then be obvious that sine S

00

2 fS

0

j S

0

losed under Rg, we have

S =

\

fS

0

j S

0

losed under Rg � S

00

as required. 2

So, taking Propositions 1 and 4 together, we see that indutive de�nitions really do

make sense. Proposition 4 says exatly that S =

T

fS

0

j �

R

(S

0

) � S

0

g is the least pre�xed

point of �

R

. It's worth noting the following:

Proposition 5 S =

T

fS

0

j �

R

(S

0

) � S

0

g is the least �xed point of �

R

. That is

1. �

R

(S) = S, and

2. If �

R

(S

00

) = S

00

then S � S

00

.

Proof.

1. We already know that �

R

(S) � S beause S is a pre�xed point. Thus we want to

show S � �

R

(S). Well, let Z = �

R

(S). By monotoniity applied to the fat that

Z � S we get that �

R

(Z) � Z and hene that Z 2 fS

0

j �

R

(S

0

) � S

0

g. Thus

T

fS

0

j �

R

(S

0

) � S

0

g � Z, i.e. S � �

R

(S), as required.

2. If S

00

is a �xed point, it is a pre�xed point and hene S � S

00

as S is the least pre�xed

point.

2

2.1.3 Upwards haraterisation of indutively de�ned sets

The way we have explained the meaning of indutive de�nitions is in some sense `down-

wards' { we start with a olletion of andidates for the meaning of the de�nition, whih

are, in general, too big; the true meaning is then extrated as the intersetion of all the

andidates.

There is another way of desribing the set de�ned by an indutive de�nition whih

works from the bottom up. The intuitive idea is that one builds the set up in stages,

starting with the empty set and at eah stage adding in those extra things whih the

rules say have to be there as onsequenes of the previous stage. The set de�ned by the

indutive de�nition is then the limit of this hain of suessive approximations. In the

ase of the de�nition of natural numbers, for example, we build the hain like this:

N

0

= fg start with the empty set

N

1

= fZg the rule for Z says add Z without any ondition

N

2

= fZ; S(Z)g now the S rule says add S(Z) beause Z 2 N

1

.

.

.

N =

S

1

i=0

N

i

the (in�nite) limit is the union of all the (�nite) approximations

You should reognise this as the way in whih the onstrution of the Herbrand universe

of a set of lauses is explained in Dr Paulson's `Logi and Proof' ourse. (Indeed, one view

of pure Prolog is that it is essentially a language for making indutive de�nitions.)

11

We an make this intuitive aount more formal. If R is a set of rules, we de�ne the

hain of approximations (indutively!) like this:

S

0

= fg

S

n+1

= �

R

(S

n

)

Note that we are justi�ed in alling this a hain, sine Lemma 2 implies that

S

0

� S

1

� S

2

� � � �

(Why?) The limit is then simply

S

!

=

1

[

n=0

S

n

And this does atually work:

Proposition 6 Given a set of rules R, the set

S

!

def

=

1

[

n=0

�

n

R

(;)

is indutively de�ned by R.

Proof. There are two parts to De�nition 1 and we hek eah in turn. Firstly, we need

to hek that S

!

is losed under all the rules in R. Take a typial rule

h

1

2 S � � � h

k

2 S

R

 2 S

and assume that h

i

2 S

!

for eah 1 � i � k. Then there must be some �nite approximation

S

m

suh that h

i

2 S

m

for eah i. Then by the de�nition of �

R

, 2 S

m+1

� S

!

and we're

done.

Now we have to hek the seond part of the de�nition, i.e. that S

!

is ontained within

any other set, all it T , whih is losed under all the rules in R. We shall establish this

by mathematial indution (whih we shall disuss in the next setion). Firstly note that

; = S

0

� T . This is the base ase of the indution. Now assume that S

m

� T . It's easy

to see that

S

m+1

= �

R

(S

m

)

� �

R

(T)

� T

where the last inlusion follows from the fat that T is a pre�xed point for �

R

(Lemma 2,

part 2) and the middle one from the fat that S

m

� T and monotoniity (Lemma 2, part

1). So by mathematial indution we have that S

n

� T for all n 2 N, and it's then lear

that S

!

, being the union of all the S

n

s, is also ontained in T as required. Thus S

!

is the

least pre�xed point, and is equal to the S we de�ned in the previous setion. 2

As another example, the meaning of the ML datatype of binary trees whih we gave

earlier

datatype TREE = Empty | Node of int*TREE*TREE;

12

an be built as the limit of the hain of approximations whih starts

TREE

0

= ;

TREE

1

= fEmptyg

TREE

2

= fEmpty; Node(0; Empty; Empty); Node(1; Empty; Empty); : : :g

TREE

3

= fEmpty; Node(0; Empty; Empty); Node(1; Empty; Empty); : : :

Node(0; Node(0; Empty; Empty)); Node(1; Node(0; Empty; Empty)); : : :

.

.

.

g

.

.

.

2.1.4 Simultaneous indutive de�nitions

The ideas of the previous setion an be generalised to the ase where a olletion of sets

S

1

; S

2

; : : : ; S

k

are de�ned by a set of rules whih eah look like

x

1

2 S

i

1

� � � x

n

2 S

i

n

x 2 S

i

For example, we might de�ne the syntax of integer and boolean expressions in some

(slightly C-like) language by rules inluding the following:

n 2 Z

n 2 Iexp true 2 Bexp false 2 Bexp

e

1

2 Iexp e

2

2 Iexp

e

1

+ e

2

2 Iexp

b

1

2 Bexp b

2

2 Bexp

b

1

&&b

2

2 Bexp

b 2 Bexp e

1

2 Iexp e

2

2 Iexp

(b?e

1

: e

2

) 2 Iexp

e

1

2 Iexp e

2

2 Iexp

(e

1

= e

2

) 2 Bexp

Note that the integer expressions depend on the boolean expressions and vie-versa. The

formal meaning of suh mutually dependent indutive de�nitions is a generalisation of

that of a single indutive de�nition, and is left as an exerise for the diligent reader.

2.1.5 Derivations

If the set S is de�ned by an indutive de�nition R = fR

i

j i 2 Ig then eah s 2 S is there

for a reason { this is the essene of the seond part of De�nition 1, eah suh s is there

beause it is fored to be by some �nite number of appliations of rules in R. These an

be written in a tree whih we all a derivation of the statement s 2 S. For example, in

the ase of our integer and boolean expressions, the following is a typial derivation:

3 2 Iexp 4 2 Iexp

(3 = 4) 2 Bexp 5 2 Iexp 6 2 Iexp

((3 = 4) ? 5 : 6) 2 Iexp

There may, in general, be more than one derivation that a partiular element belongs

to the set. This doesn't happen in our example above sine eah syntati form is the

onlusion of exatly one rule.

13

Given a set of rulesR de�ning a set S, the set of derivations inR is itself an indutively

de�ned set. It is de�ned by the following two rules:

1. Any rule R 2 R with no hypotheses is a derivation.

2. If D

1

; : : : ;D

n

are derivations in R with onlusions h

1

2 S; : : : ; h

n

2 S respetively,

and R 2 R is a rule with hypotheses h

1

2 S through to h

n

2 S and onlusion 2 S,

then the following is a derivation:

D

1

h

1

2 S
� � �

D

n

h

n

2 S

R

 2 S

2.1.6 Indutively de�ned funtions

Assume that S is indutively de�ned by R = fR

i

j i 2 Ig where

R

i

=

h

i;1

h

i;2

� � � h

i;n

i

R

i

i

and that furthermore there is a unique derivation for eah s 2 S. If T is any set, then

to de�ne a funtion f : S ! T , it suÆes for eah i to give f(

i

) in terms of the n

i

values f(h

i;1

); : : : ; f(h

i;n

i

).This is, of ourse, the way in whih one de�nes funtions over

datatypes using pattern mathing and reursion in ML.

3

For example:

datatype NAT = Z | S of NAT;

fun double Z = Z

| double (S(n)) = S(S(double(n)));

2.2 Indutive Proofs

We now turn from de�ning sets to proving things about them.

2.2.1 Mathematial indution

This means indution over the natural numbers, and is somthing with whih you should

already be familiar. (Indeed, we have used it one already in these notes, to prove Propo-

sition 6.)

Proposition 7 (Mathematial Indution) Suppose that P is some property of the

natural numbers, so P � N. If P is losed under the following rules

0 2 P

n 2 P

n+ 1 2 P

then P is the whole of N.

3

This is atually a gross simpli�ation, but never mind.

14

Proof. Suppose that the result is false, so that P is losed under the rules but there is

some m 2 N suh that m 62 P . We an furthermore take m to be the smallest suh number

(the `minimal riminal'). Now, sine P is losed under the �rst rule, we have that 0 2 P

so that m 6= 0. This means that m = m

0

+ 1 for some m

0

2 N. But now m

0

62 P (or else

m 2 P by the fat that P is losed under the seond rule), and m

0

is stritly smaller than

m, whih ontradits the minimality of m. So no suh m exists and P = N. 2

Here's a familiar and rather trivial example of a proof by mathematial indution:

Proposition 8

8n:

n

X

i=0

i =

n(n+ 1)

2

Proof. Let P = fn j

P

n

i=0

i = n(n+ 1)=2g and we have to hek that P is losed under

the two rules for zero and suessor.

1. For zero, we alulate

0

X

i=0

i = 0 = 0:(0 + 1)=2

so that 0 2 P .

2. For the suessor rule, we assume n 2 P and then

n+1

X

i=0

i =

n

X

i=0

i+ (n+ 1)

=

n(n+ 1)

2

+ (n+ 1) by the indutive assumption

=

(n+ 1)((n+ 1) + 1)

2

so (n+ 1) 2 P .

Then applying Proposition 7, we get that P = N as required. 2

You should be able to see that the onditions required of P for mathematial indution

to be appliable are losely related to the indutive de�nition of the natural numbers in

terms of Z and S() whih we gave in Setion 2.1.2. This is no aident and generalises to

give an indution priniple for any indutively de�ned set.

2.2.2 Rule indution

Proposition 9 (Rule Indution) Let the set S be indutively de�ned by a set of rules

R and P � S. Then if P is losed under all the rules in R, P is the whole of S.

Proof. By the seond part of De�nition 1, whih says what it is for S to be indutively

de�ned by R, we have S � P . Then sine we assumed P � S we have P = S. 2

Mathematial indution is just the speial ase of rule indution whih arises when S

is N. In the ase that rule indution is applied to a set of syntati objets, where there is

15

one rule for eah syntati onstrut, rule indution is also known as strutural indution

beause it beomes an indution over the syntati struture of objets in the set.

As an example, we will onsider proving some things about funtions whih manipulate

lists in ML by strutural indution { you will see more proofs like these in Dr Paulson's

IB ourse on Foundations of Funtional Programming. Lists of integers are de�ned by the

following indutive datatype delaration

4

:

datatype INTLIST = Nil | Cons of int*INTLIST;

Given this indutive de�nition, we an de�ne the append funtion indutively like this:

(* append : INTLIST*INTLIST -> INLIST *)

fun append(Nil,ys) = ys

| append(Cons(x,xs),ys) = Cons(x,append(xs,ys));

Proposition 10 The append funtion is assoiative. That is to say, for any xs,ys,zs:

append(xs; append(ys; zs)) = append(append(xs; ys); zs)

Proof. We prove this by strutural indution on xs. There are two ases:

1. If xs = Nil then

append(Nil; append(ys; zs)) = append(ys; zs)

= append(append(Nil; ys); zs)

2. If xs = Cons(w; ws) then

append(Cons(w; ws); append(ys; zs)) = Cons(w; append(ws; append(ys; zs)))

(indution) = Cons(w; append(append(ws; ys); zs))

= append(Cons(w; append(ws; ys)); zs)

= append(append(Cons(w; ws); ys); zs)

2

Something to wath out for when doing any kind of indution is that you will, to

make the proof work, sometimes have to prove something slightly stronger than the result

for whih you are really aiming. Here are some more indutively de�ned funtions to

manipulate lists:

(* reverse : INTLIST -> INTLIST *)

fun reverse Nil = Nil

| reverse (Cons(x,xs)) = append(reverse xs, Cons(x,Nil));

(* revapp : INLIST*INLIST -> INTLIST *)

fun revapp (Nil,ys) = ys

| revapp (Cons(x,xs),ys) = revapp(xs,Cons(x,ys));

(* rev : INTLIST -> INTLIST *)

fun rev xs = revapp (xs,Nil);

4

Of ourse, lists are already built in to the language, but we'll pretend they aren't.

16

and let us suppose we want to prove the following by strutural indution on lists:

Proposition 11

8xs 2 INTLIST: rev xs = reverse xs

One's �rst attempt at a proof would be to try to use strutural indution on xs to

prove the result diretly. There are two syntax formation rules to onsider

1. For Nil we observe that reverse Nil = Nil from the de�nition of reverse and

that

rev Nil = revapp (Nil; Nil)

= Nil

so that ase is OK.

2. For Cons we have that for any x and xs

rev (Cons(x; xs)) = revapp (Cons(x; xs); Nil)

= revapp (xs; Cons(x; Nil))

and that

reverse (Cons(x; xs)) = append(reverse xs; Cons(x; Nil))

= append(rev xs; Cons(x; Nil)) by indution

= append(revapp(xs; Nil); Cons(x; Nil))

but then we're stuk. The problem is that the indution hypothesis doesn't say

anything at all about revapp when its seond argument is non-Nil.

So we have to prove a stronger statement whih implies what we want:

Lemma 12

8xs: 8ys: revapp(xs; ys) = append(reverse xs; ys)

Proof. We prove this by indution on xs:

1. In the ase where xs is Nil we need to show

8ys: revapp(Nil; ys) = append(reverse Nil; ys)

The left-hand side (LHS) is equal to ys by the de�nition of revapp, whilst the RHS

is equal to append(Nil,ys) by the de�nition of reverse, and this is ys by the

de�nition of append.

2. In the ase where xs is Cons(z,zs) we reason as follows

revapp(Cons(z; zs); ys) = revapp(zs; Cons(z; ys)) (defn. of revapp)

(indution) = append(reverse zs; Cons(z; ys))

(defn. of append) = append(reverse zs; append(Cons(z; Nil); ys))

(Proposition 10) = append(append(reverse zs; Cons(z; Nil)); ys)

(defn. of reverse) = append(reverse(z; zs); ys)

17

2

Proposition 11 then follows immediately from Lemma 12. In a ase like this it an

require a ertain amount of intelligene and experiene (not to mention luk) to see exatly

what the stronger indution hypothesis should be to make the proof go through. Indeed,

�nding the right hypothesis is sometimes referred to as the `aha!' or `eureka!' step in an

indutive proof sine it appears to be pluked magially out of thin air, but one you have

it the rest of the proof is often fairly mehanial. A ommon strategy for �nding indution

hypotheses is to try a simple one and if the proof fails to go though, try to see why it fails,

and use that as guidane as to how the hypothesis should be strengthened. The problem

of �nding indution hypotheses also shows up as the problem of �nding loop invariants

when proving properties of programs using Floyd-Hoare logi (see the Appendix and next

year's Spei�ation and Veri�ation ourse).

2.3 Exerises

1. Given our indutive de�nition of N, give an indutive de�nition of the usual `less-

than' relation �� N � N.

2. What an you say about the set de�ned by an set of rules whih doesn't ontain any

axioms?

3. Can every set be de�ned by an indutive de�nition? Given a set S, an it be that

the set R of rules de�ning S is not unique? For a given set of rules R, an two

distint sets of rule shemes denote R?

4. Notie that we are quite happy to deal with indutive de�nitions whih have an

in�nite number of rules (remember that a rule sheme is just shorthand for all its

substitution instanes). All our rules are, however, onstrained to have a �nite

number of hypotheses. Think about what would happen if we were to relax this

restrition. Do suh de�nitions de�ne anything? What happens to the downward

(

T

) onstrution? What about the upwards (

S

) one?

5. Work out the formal details of exatly what simultaneous indutive de�nitions mean

(Setion 2.1.4). If you don't already know, �nd out how to make mutually reursive

datatype delarations in ML and think of some pratial examples.

6. Why, when de�ning funtions from S by indution in Setion 2.1.6, did we insist

that every element of S had to have a unique derivation? Do elements of indutive

datatypes in ML always have unique derivations?

7. The Fibonai numbers are de�ned indutively by

F

0

= 0 F

1

= 1 F

n+2

= F

n+1

+ F

n

Prove, by mathematial indution, that

F

n

=

1

p

5

(�

n

�

^

�

n

)

where

� =

(1 +

p

5)

2

and

^

� = 1� �:

18

8. Given a set Prop of propositions, the set of ontexts over Prop is de�ned by

[℄ 2 Ctxt

� 2 Ctxt A 2 Prop

�; A 2 Ctxt

So, intuitively, a ontext is a �nite list of propositions, separated by ommas. De�ne

a relation �� Ctxt � Ctxt by indution suh that � � �

0

just when � and �

0

are

the same list of propositions but in a di�erent order. (You may need to make use

of some auxiliary relations.) Prove that your relation � is an equivalene relation.

(Warning: this question is fairly triky!)

9. Assume we are given a set of basi propositions Atom. Let Prop, the set of onjun-

tive propositions over Atom, be de�ned by

A 2 Atom

A 2 Prop

A 2 Prop B 2 Prop

A ^B 2 Prop

Now let Ctxt be the set of ontexts over Prop and � be the equivalene relation

on ontexts as in the previous question. The entailment relation `� Ctxt � Prop,

whih we write in�x, of a little logi is then de�ned as follows:

�; A ` A

� ` A � � �

0

�

0

` A

� ` A � ` B

� ` A ^B

� ` A ^B

� ` A

� ` A ^B

� ` B

Prove by indution that the following are all admissible rules (i.e. adding them does

not make any di�erene to the set of derivable sequents):

(a)

� ` B

�; A ` B

(b)

(�; A); A ` B

�; A ` B

()

� ` A �; A ` B

� ` B

19

Chapter 3

IMP and its Operational

Semantis

3.1 The Syntax of IMP

Throughout this ourse we shall work with a toy imperative programming language whih

we all IMP. IMP is also sometimes alled the language of while programs. The syntax of

IMP omprises three sets (or syntati ategories): Bexp for boolean-valued expressions,

Iexp for integer-valued expressions and Com for ommands. These are de�ned indutively

in terms of some auxiliary sets

Z = f: : : ;�2;�1; 0; 1; 2; 3; : : :g the integers

B = ftrue; falseg the booleans

Iop = f+;�;�; : : :g some �nite set of integer operations

Bop = f=; >; : : :g some �nite set of boolean operators

Pvar = fx; y; : : :g some in�nite set of program variables

We will not worry too muh about exatly what operators are built in to the language.

The syntax of IMP is then de�ned indutively by the rules shown in Figure 3.1. We use

typewriter font (like this) for expressions in the language and math itali (like this) for

metavariables ranging over the various syntati ategories and auxiliary sets.

If n 2 Z is an integer, we write n for the syntati IMP expression orresponsing to

n. So, for example, 5 2 Z but 5 = 5 2 Iexp. Likewise, true 2 B is a boolean value,

whereas true = true 2 Bexp is the orresponding IMP phrase. A similar onvention is

used for the integer and boolean operations, so iop 2 Iop should be thought of as a proper

mathematial funtion iop:Z�Z! Z, whereas iop is the syntati name of that funtion

whih we use in the programming language. For example, � 2 Iop is the multipliation

funtion, but � = � is the textual symbol we use to indiate multipliation in IMP. Whilst

this might appear abstruse, it is not mere pedantry { these distintions between syntax

(5 2 Iexp) and semantis (5 2 Z) are absolutely entral to this ourse.

1

1

This is also disussed in Dr Forster's Part II Philosophy letures as the `use-mention distintion' whih

ours in natural language. When we write a word (for simpliity, a noun) then we are normally using it {

we expet the reader mentally to dereferene the marks on the page to obtain (the idea of) the real-world

objet whih they denote. By using quotation marks, we an mention the word, referring to the syntati

objet. The following two sentenes illustrate the idea:

20

(R1)

n 2 Z

n 2 Iexp

(R2)

x 2 Pvar

x 2 Iexp

(R3)

ie

1

2 Iexp ie

2

2 Iexp

iop 2 Iop

ie

1

iop ie

2

2 Iexp

(R4)

b 2 B

b 2 Bexp

(R5)

ie

1

2 Iexp ie

2

2 Iexp

bop 2 Bop

ie

1

bop ie

2

2 Bexp

(R6)

skip 2 Com

(R7)

ie 2 Iexp

x 2 Pvar

x := ie 2 Com

(R8)

C

1

2 Com C

2

2 Com

C

1

;C

2

2 Com

(R9)

be 2 Bexp C 2 Com

while be doC 2 Com

(R10)

be 2 Bexp C

1

2 Com C

2

2 Com

if be thenC

1

elseC

2

2 Com

Figure 3.1: The Syntax of IMP

The syntax of IMP is simple enough that you should be able to guess (informally) how

programs are supposed to behave. (We will shortly see how to formalise that behaviour.)

For example, the following program omputes the fatorial of 5, leaving the result in the

variable r:

x := 5;(r := 1; (while x>1 do (r := r*x; x := x-1)))

We an also express the syntax of IMP as ML datatypes (using the builtin type string

to represent Pvar, int to represent Z and bool for B):

datatype IOP = Plus | Times | Minus;

datatype IEXP = N of int | Pvar of string | Iop of IOP*IEXP*IEXP;

datatype BOP = Equal | Greater;

datatype BEXP = B of bool | Bop of BOP*IEXP*IEXP;

datatype COM = Skip | Assign of string*IEXP | Seq of COM*COM |

If of BEXP*COM*COM | While of BEXP*COM;

Notie that the distintion between integers and IMP numerals whih we made suh a

Philosophers are all very rih.

\Philosophers" is a word with twelve letters.

This kind of distintion is important in many disiplines. The (often rather omplex) interplay of signi�er

and signi�ed, sign and referent, is at the heart of muh work in philosophy, metamathematis, linguistis

and even soiology. Whilst this is learly all well outside the sope of these letures, you should at least

be aware that it is A Very Important Idea.

21

fuss about earlier shows up quite learly in the ML ode, with the plae of the underline

operation taken by the onstrutor N(). Thus 5:int, but N(5):IEXP.

2

3.2 Transition Semantis of IMP

In this setion we give IMP an operational semantis using a transition relation whih

expresses how a ommand or expression suessively rewrites, or evolves, to another. This

is similar to the �-redution relation for the �-alulus (IB Foundations of Funtional

Programming) or the labelled transitions used to de�ne the dynami behaviour of CCS

agents or Pi Calulus proesses (Part II Conurreny Theory and the Pi Calulus). One

di�erene is that how an IMP phrase behaves depends not just on the phrase itself, but

also on the values urrently held in eah of the program variables. Similarly, the behaviour

of a ommand onsists not just of rewriting to a new phrase, but may also involve hanges

to some of the variables.

3.2.1 States

We will refer to an assignment of an integer value to eah program variable as a state.

Formally, we de�ne the set of all states by

States

def

= Pvar! Z

so a state is a funtion from variable names to integers. If S 2 States, x 2 Pvar and

S(x) = n then n is the integer stored in variable x in state S.

If S 2 States,x 2 Pvar and n 2 Z then we write S[n=x℄ for the state S with x updated

to n. In symbols

(S[n=x℄)(y)

def

=

(

n if y = x

S(y) otherwise

for all y 2 Pvar.

We an ode states in ML in several ways. The one whih mimis the mathematial

treatment most losely uses ML funtions:

type STATES = string -> int;

(* update : STATES*string*int -> STATES *)

fun update (S,x,n) = fn y => if y=x then n else S(y);

but this has the slight disadvantage (for interative experimentation) that states are then

not printable values. For this reason alone, we will instead let states be (�nite) partial

funtions from strings to integers. These an then be represented by assoiation lists

(whih an be printed):

2

The observant and piky reader will also notie that the analogous distintion for integer and boolean

operations still exists in the ML ode, but has been reversed by omparison with the mathematial treat-

ment. In the ML, an term of type IOP is the name of an operation whih will be mapped to the operation

itself by a funtion iopmeaning whih we will give later on. This ontrasts with the mathematis, where

an element of Iop is the atual operation, whih an be mapped to its name by applying the underline

funtion. There's no signi�ant di�erene { it's just a matter of what is taken as basi and what is derived.

22

type STATES = (string*int) list;

(* lookup : string*STATES -> int *)

exeption Lookup;

fun lookup(x,[℄) = raise Lookup

| lookup(x,(y,v)::pairs) = if x=y then v else lookup(x,pairs);

(* update : STATES*string*int -> STATES *)

fun update (S,x,n) = ase S of

[℄ => [(x,n)℄

| ((y,v)::pairs) => if x=y then (x,n)::pairs

else (y,v)::(update (pairs,x,n));

3.2.2 Operational semantis via transition relations

We now indutively de�ne three relations:

!

I

� (Iexp� States)� (Iexp� States)

!

B

� (Bexp� States)� (Bexp� States)

!

C

� (Com� States)� (Com� States)

by the rules shown in Figure 3.2 where we write, for example,

hC;Si !

C

hC

0

; S

0

i

instead of

((C;S); (C

0

; S

0

)) 2!

C

whih should be read as `in state S the ommand C an make a one-step transition to

the ommand C

0

and new state S

0

' (and similarly for integer and boolean expressions).

We will sometimes simply write ! for any of !

I

;!

B

;!

C

, sine whih relation is meant

is usually lear from ontext. We will all a pair he; Si of a phrase (an expression or a

ommand) and a state a on�guration.

Notes on Figure 3.2:

1. We have left out some fairly obvious side-onditions for reasons of spae. For exam-

ple, rule (!

I

�1) has the side ondition that x 2 Pvar.

2. In rule (!

I

�4), n

1

iop n

2

denotes where 2 Z is the result of applying the atual

mathematial operation iop:Z�Z! Z to the integers n

1

and n

2

. For example, one

of the instanes of this rule is h5+ 3; Si !

I

h8; Si (for any S).

3. Similarly, in rule (!

B

�3), n

1

bop n

2

stands for whihever of true or false orre-

sponds to the value of the funtion bop:Z� Z! ftrue; falseg when it is applied to

the two integers n

1

and n

2

.

4. The rules divide into two lasses. Those with no hypotheses are the ones whih do

real omputational work, whilst the others are there to show exatly how a transition

on a subphrase auses a transition on the larger phrase of whih it is a part. For

example, (!

I

�1) and (!

I

�4) make real progress, whereas the other two integer

expression rules do not.

23

(!

I

�1)

hx; Si !

I

hS(x); Si

(!

I

�2)

hie

1

; Si !

I

hie

0

1

; S

0

i

hie

1

iop ie

2

; Si !

I

hie

0

1

iop ie

2

; S

0

i

(!

I

�3)

hie; Si !

I

hie

0

; S

0

i

hn iop ie; Si !

I

hn iop ie

0

; S

0

i

(!

I

�4)

hn

1

iop n

2

; Si !

I

hn

1

iop n

2

; Si

(!

B

�1)

hie

1

; Si !

I

hie

0

1

; S

0

i

hie

1

bop ie

2

; Si !

B

hie

0

1

bop ie

2

; S

0

i

(!

B

�2)

hie; Si !

I

hie

0

; S

0

i

hn bop ie; Si !

B

hn bop ie

0

; S

0

i

(!

B

�3)

hn

1

bop n

2

; Si !

I

hn

1

bop n

2

; Si

(!

C

�1)

hie; Si !

I

hie

0

; S

0

i

hx:=ie; Si !

C

hx:=ie

0

; S

0

i

(!

C

�2)

hx:=n; Si !

C

hskip; S[n=x℄i

(!

C

�3)

hC

1

; Si !

C

hC

0

1

; S

0

i

hC

1

; C

2

; Si !

C

hC

0

1

; C

2

; S

0

i

(!

C

�4)

hskip;C;Si !

C

hC;Si

(!

C

�5)

hbe; Si !

B

hbe

0

; S

0

i

hif be thenC

1

elseC

2

; Si !

C

hif be

0

thenC

1

elseC

2

; S

0

i

(!

C

�6)

hif true thenC

1

elseC

2

; Si !

C

hC

1

; Si

(!

C

�7)

hif false thenC

1

elseC

2

; Si !

C

hC

2

; Si

(!

C

�8)

hwhile be doC;Si !

C

hif be then (C ; while be doC) else skip; Si

Figure 3.2: One-Step Transition Semantis of IMP

24

5. Following on from the last point, the rules (!

I

�2) and (!

I

�3) speify the evaluation

order for integer expressions as being stritly left-to-right { the �rst operand must

be a numeral before any transitions on the seond operand an our. For some

appliations, this might be regarded as overspei�ation (see the Exerises).

Here is an example of a simple derivation of an instane of the transition relation,

where we assume that the state S is suh that S(y) = 3:

(!

I

�1)

hy; Si !

I

h3; Si

(!

C

�1)

hy := y+ (3+ 4); Si !

C

hy := 3+ (3+ 4); Si

You should similarly be able verify eah of the following subsequent steps in the exeution

of this ommand:

hy := 3+ (3+ 4); Si !

C

hy := 3+ 7; Si !

C

hy := 10; Si !

C

hskip; S[10=y℄i

As a more involved example, assume that S 2 States satis�es S(x) = 2 and S(r) = 60

and let C = (while x > 1 doC

1

) where C

1

= (r := r � x ; x := x� 1). Eah of the following

transitions an be justi�ed by a short proof using the rules of the transition semantis

(rather tedious Exerise).

hC;Si !

C

hif x > 1 then (C

1

; C) else skip; Si

!

C

hif 2 > 1 then (C

1

; C) else skip; Si

!

C

hif true then (C

1

; C) else skip; Si

!

C

hC

1

; C;Si

!

C

h(r := 60 � x ; x := x� 1) ; C;Si

!

C

h(r := 60 � 2 ; x := x� 1) ; C;Si

!

C

h(r := 120 ; x := x� 1) ; C;Si

!

C

h(skip ; x := x� 1) ; C;S[120=r℄i

!

C

hx := x� 1 ; C;S[120=r℄i

!

C

hx := 2� 1 ; C;S[120=r℄i

!

C

hx := 1 ; C;S[120=r℄i

!

C

hskip ; C;S[120=r℄[1=x℄i

!

C

hC;S[120=r℄[1=x℄i

!

C

hif x > 1 then (C

1

; C) else skip; S[120=r℄[1=x℄i

!

C

hif 1 > 1 then (C

1

; C) else skip; S[120=r℄[1=x℄i

!

C

hif false then (C

1

; C) else skip; S[120=r℄[1=x℄i

!

C

hskip; S[120=r℄[1=x℄i

3.2.3 Theorems about the transition semantis

The transition semantis is good for more than just speifying what the result of a par-

tiular program should be. We an also use it to prove statements about programs in

general. Here's one simple example:

Proposition 13 (IMP expressions have no side-e�ets) If either

hie; Si !

I

hie

0

; S

0

i or hbe; Si !

B

hbe

0

; S

0

i

then S = S

0

. In other words, evaluation of integer and boolean expressions has no e�et

on the state.

25

Proof. This follows by rule indution, �rst on the de�nition of !

I

and then on that of

!

B

, and is left as an exerise. 2

Commands, on the other hand, an hange the state (rule (!

C

�2)). Proposition 13

means that we ould have given an alternative set of de�nitions for the transition semantis

in whih the relations !

I

and !

B

were given as subsets of (Iexp � States) � Iexp and

(Bexp� States)� Bexp respetively.

Theorem 14 (Transitions are deterministi) For any phrases (expressions or om-

mands) e,e

0

,e

00

and any states S,S

0

,S

00

, if

he; Si ! he

0

; S

0

i and he; Si ! he

00

; S

00

i

then e

0

= e

00

and S

0

= S

00

.

Proof. This follows by strutural indution on e. In any proof of he; Si ! he

0

; S

0

i, the

last rule used is uniquely determined by the struture of e. For example, suppose that

e = (e

1

iop e

2

) and that the result holds for e

1

and e

2

. Then there are three ases to

onsider:

� If e

1

= n

1

and e

2

= n

2

are both onstants then the last rule used in a proof of

he; Si !

I

he

0

; S

0

i or of he; Si !

I

he

00

; S

00

i must be (!

I

�4) and hene e

0

= e

1

iop e

2

=

e

00

and S

0

= S = S

00

.

� If e

1

= n

1

is a onstant but e

2

is not then the last rule used in any proof of he; Si !

must be (!

I

�3) so that the two proofs must look like

(!

I

�3)

he

2

; Si !

I

he

0

2

; S

0

i

hn

1

iop e

2

; Si !

I

hn

1

iop e

0

2

; S

0

i

(!

I

�3)

he

2

; Si !

I

he

00

2

; S

00

i

hn

1

iop e

2

; Si !

I

hn

1

iop e

00

2

; S

00

i

Then by the indution hypothesis applied to e

2

, we must have e

0

2

= e

00

2

and S

0

= S

00

,

and hene

e

0

= (n

1

iop e

0

2

) = (n

1

iop e

00

2

) = e

00

as required.

� e

1

is not a onstant. Then the last rule used must have been (!

I

�2) and we reason

muh as in the previous ase that e

0

= e

00

and S

0

= S

00

.

Eah of the other ases for the struture of e an be dealt with in a similar manner, and

we leave them as Exerises. 2

3.2.4 Evaluation sequenes

A on�guration he; Si is said to be terminal if there is no he

0

; S

0

i suh that he; Si ! he

0

; S

0

i.

A moment's inspetion of the transition rules shows that the terminal on�gurations are

preisely

hn; Si htrue; Si hfalse; Si hskip; Si

An in�nite evaluation sequene for he; Si is an in�nite hain of one-step transitions:

he; Si = he

0

; S

0

i ! he

1

; S

1

i ! he

2

; S

2

i ! � � �

26

where for all i, he

i

; S

i

i is not terminal.

A �nite evaluation sequene for he; Si is �nite hain

he; Si = he

0

; S

0

i ! he

1

; S

1

i ! he

2

; S

2

i ! � � � ! he

n

; S

n

i

with he

n

; S

n

i terminal. Evaluation sequenes are also alled traes (whih roughly mathes

the way in whih the word `traing' is used in the ontext of debugging to refer to examining

the sequene of indermediate states during a partiular run of a program).

By Theorem 14, eah he; Si has a unique evaluation sequene whih is either in�nite

or else terminates with a terminal on�guration he

n

; S

n

i whih is uniquely determined by

he; Si. In fat we an be a bit more preise:

Lemma 15 (Expressions always terminate) If e 2 Iexp [Bexp then for any S 2

States, he; Si has a �nite evaluation sequene.

Proof. Strutural indution (Exerise). 2

The previous lemma, together with Proposition 13, means that we an de�ne evaluation

funtions for expressions

Ieval : Iexp! (States! Z)

Beval : Bexp! (States! B)

by

Ieval(ie)(S) = the unique n 2 Z st. hie; Si !

�

I

hn; Si.

Beval(be)(S) = the unique b 2 B st. hbe; Si !

�

B

hb; Si.

(Reall that !

�

is the reexive transitive losure of !, de�ned by the following indutive

rules:

x!

�

x

x!

�

y y ! z

x!

�

z

)

In ontrast to the situation for expressions, ommands an have in�nite evaluation

sequenes. For example, if C = while true do skip then

hC;Si !

C

hif true then (skip ; C) else skip; Si

!

C

hskip ; C;Si

!

C

hC;Si

!

C

� � � and so on for ever

However, if hC;Si does have a �nite evaluation sequene, say

hC;Si !

�

C

hskip; S

0

i

then by Theorem 14 we know that S

0

is uniquely determined by C and S, so that C

determines a partial funtion from states to states:

Ceval : Com! (States * States)

Ceval(C)(S) =

(

the unique S

0

st. hC;Si !

�

C

hskip; S

0

i if it exists

unde�ned, otherwise

27

For example, if C is the fatorial program

C = r := 1; (while x > 1 do (r := r � x; x := x� 1))

then Ceval(C) is the (total) funtion States! States given by

S 7!

(

S[n!=r℄[1=x℄ if n > 1

S[1=r℄ if n � 1

where n = S(x).

We should remark at this point that although IMP is a long way from being a pratial

programming language, it is Turing powerful. This means that for any partial reursive

funtion f :Z* Z, there is an IMP ommand C whih omputes f in the sense that for all

states S, Ceval(C)(S) is de�ned i� f(S(x)) is de�ned and in that ase Ceval(C)(S)(y) =

f(S(x)). (See the Exerises at the end of the Chapter.)

3.2.5 Implementing the transition semantis in ML

To implement the transition semantis in ML, we rely on some of the mathematial results

whih we have just proved. In partiular, the one-step transition relations are all atually

partial funtions beause every non-terminal on�guration he; Si has a unique suessor.

We simply ode these partial funtions as ML funtions istep, bstep and step (for

integer expressions, boolean expressions and ommands, respetively) in a way whih

diretly expresses the rules in Figure 3.2:

(* iopmeaning : IOP -> ((int*int)->int) *)

fun iopmeaning iop (x:int,y:int) = ase iop of

Plus => x+y

| Times => x*y

| Minus => x-y;

(* bopmeaning : BOP -> ((int*int)->bool) *)

fun bopmeaning bop (x:int,y:int) = ase bop of

Equal => x=y

| Greater => x>y;

(* istep : IEXP*STATES -> IEXP *)

fun istep(ie,S:STATES) = ase ie of

Pvar(name) => N(lookup(name,S))

| Iop(iop,N(n1),N(n2)) => N(iopmeaning iop (n1,n2))

| Iop(iop,N(n1),ie2) => let val ie2' = istep(ie2,S)

in Iop(iop,N(n1),ie2')

end

| Iop(iop,ie1,ie2) => let val ie1' = istep(ie1,S)

in Iop(iop,ie1',ie2)

end;

(* bstep : BEXP*STATES -> BEXP *)

fun bstep (be,S:STATES) = ase be of

Bop(bop,N(n1),N(n2)) => B(bopmeaning bop (n1,n2))

28

| Bop(bop,N(n1),ie2) => let val ie2' = istep(ie2,S)

in Bop(bop,N(n1),ie2')

end

| Bop(bop,ie1,ie2) => let val ie1' = istep(ie1,S)

in Bop(bop,ie1',ie2)

end;

(* step : COM*STATES -> COM*STATES *)

fun step (om,S:STATES) = ase om of

Assign(name,N(n)) => (Skip,update(S,name,n))

| Assign(name,ie) => let val ie' = istep(ie,S)

in (Assign(name,ie'), S)

end

| Seq(Skip,C) => (C,S)

| Seq(C1,C2) => let val (C1',S') = step(C1,S)

in (Seq(C1',C2),S')

end

| If(B(true),C1,C2) => (C1,S)

| If(B(false),C1,C2) => (C2,S)

| If(be,C1,C2) => let val be' = bstep(be,S)

in (If(be',C1,C2), S)

end

| While(be,C) => (If(be,Seq(C,While(be,C)),Skip), S);

You should be able to see that eah lause of the de�nition of (say) step orresponds

to exatly one of the transition rules, though we have to use some intelligene in ordering

the lauses.

3

One we've got the one-step transitions, de�ning the ML versions of the

funtions Ieval,Beval and Ceval is straightforward, as we just keep applying the suessor

operation until we reah a terminal on�guration:

(* ieval : IEXP -> (STATES -> int) *)

fun ieval (N(n)) (S:STATES) = n

| ieval ie S = let val ie' = istep(ie,S)

in ieval ie' S

end;

(* beval : BEXP -> (STATES -> bool) *)

fun beval (B(b)) (S:STATES) = b

| beval be S = let val be' = bstep (be,S)

in beval be' S

end;

(* eval : COM -> (STATES -> STATES) *)

fun eval Skip (S:STATES) = S

| eval C S = let val (C',S') = step (C,S)

in eval C' S'

3

There are no lauses for terminal on�gurations, just as there are no transition rules for them in the

semantis { attempting to ompute the suessor of suh a on�guration will simply raise an unaught

math exeption.

29

end;

Note that the evaluation funtions are tail-reursive, so that iterative IMP programs will

exeute in onstant ML stak spae. Here's an example of using the ML ode to exeute

an IMP program:

- (* initial state - everything is undefined *)

= val (S:STATES) = [℄;

> val S = [℄ : STATES

- (* example fatorial alulation *)

= val fatprog = Seq(Assign("x",N(5)),Seq(Assign("r",N(1)),

= While(Bop(Greater,Pvar("x"),N(1)),

= Seq(Assign("r",Iop(Times,Pvar("r"),Pvar("x"))),

= Assign("x",Iop(Minus,Pvar("x"),N(1)))))));

> val fatprog = Seq(Assign ("x", N 5), ...) : COM

- eval fatprog S;

> [("x",1),("r",120)℄ : STATES

In fat, the ML ode whih aompanies this ourse inludes simple parsers and pretty-

printers for IMP programs (based on ode for Dr Paulson's book \ML for the Working

Programmer"). This means you don't have to type programs in the extremely messy form

used above, but an instead do this:

4

- val fibprog = readom "\

=\ last := 0; next := 1; n := 8;\

=\ while n>0 do\

=\ next := last+next;\

=\ last := next-last;\

=\ n := n-1\

=\ endwhile";

> val fibprog = Seq(Assign("last",N 0), ... : COM

- eval fibprog S;

> [("last",21),("next",34),("n",0)℄ : STATES

There are also funtions to parse expressions (readiexp and readbexp) and to print

phrases (prom, priexp and prbexp).

Attempting to ompute eval C S in the ase that hC;Si has an in�nite evaluation

sequene (that is, in the ase that Ceval(C)(S) is unde�ned) will ause ML to fail to

terminate. Beause of the undeidability of the halting problem, there is in general no

way to predit when this will happen.

4

The onrete syntax of IMP whih the parser implements inludes mandatory endif and endwhile

keywords whih are used in the obvious way. The default behaviour of sequential omposition (i.e. ;) is

to assoiate to the right, as is that of arithmeti operations (whih also have the normal preedenes).

For both ommands and arithmeti operators, parentheses may be used to override the default groupings.

Whether or not you have to type the rather unpleasant n ontinuation haraters to break string literals

over more than one line depends on what version of ML you use.

30

3.3 Strutural Evaluation Relations for IMP

3.3.1 Evaluation relations

The transition semantis of the previous setion allowed us to de�ne the evaluation re-

lations Ieval,Beval and Ceval in terms of the reexive transitive losures of the one-step

transition relations!

I

,!

B

and!

C

. In this setion we shall show that these relations an

be desribed diretly by a set of rules whih follow the syntati struture of IMP phrases.

This kind of operational semantis, whih is sometimes alled `natural semantis', is often

more onvenient to work with than the transition semantis.

We will de�ne three evaluation relations

)

I

� Iexp� States� Z

)

B

� Bexp� States� B

)

C

� Com� States � States

and we will write

ie; S)

I

n instead of (ie; S; n) 2)

I

be; S)

B

b instead of (be; S; b) 2)

B

C;S)

C

S

0

instead of (C;S; S

0

) 2)

C

The evaluation relations are de�ned by the indutive rules shown in Figure 3.3, where

one again we have left out some obvious side-onditions.

Here is the same simple example as we gave on page 25, but done using the evaluation,

rather than the transition, semantis. Assume that S is suh that S(y) = 3, then:

()

I

�2)

y; S)

I

3

()

I

�1)

3; S)

I

3

()

I

�1)

4; S)

I

4

()

I

�3)

3+ 4; S)

I

7

()

I

�3)

y+ (3+ 4); S)

I

10

()

C

�2)

y := y+ (3+ 4); S)

C

S[10=y℄

Note that there is just one derivation for the entire evaluation of the ommand. This is

in ontrast to the situation for the transition semantis, where every individual transition

is justi�ed by its own derivation.

Exerise: Assume that S 2 States satis�es S(x) = 2 and S(r) = 60 and let C =

(while x > 1 do C

1

) where C

1

= (r := r � x ; x := x� 1). Produe a derivation like that

above whih proves

C;S)

C

S[120=r℄[1=x℄

The evaluation semantis is muh less `�ne-grained' than the transition semantis and

this style is sometimes alled big step operational semantis, by ontrast with the small

step style of the transition semantis. Certain low-level features whih are made expliit

in the small-step semantis are thus hidden in the big-step semantis. The most obvious

is that, as we remarked on page 25, the transition semantis spei�es that the evaluation

of integer expressions proeeds in a strit left-to-right order. This is not the ase for the

evaluation semantis, sine rule ()

I

�3) simply amounts to saying `to evaluate ie

1

iop ie

2

,

31

()

I

�1)

n; S)

I

n

()

I

�2)

x; S)

I

S(x)

ie

1

; S)

I

n

1

ie

2

; S)

I

n

2

()

I

�3)

(ie

1

iop ie

2

); S)

I

n

1

iop n

2

()

B

�1)

b; S)

B

b

ie

1

; S)

I

n

1

ie

2

; S)

I

n

2

()

B

�2)

(ie

1

bop ie

2

); S)

B

n

1

bop n

2

()

C

�1)

skip; S)

C

S

ie; S)

I

n

()

C

�2)

x := ie; S)

C

S[n=x℄

C

1

; S)

C

S

0

C

2

; S

0

)

C

S

00

()

C

�3)

C

1

; C

2

; S)

C

S

00

be; S)

B

true C

1

; S)

C

S

0

()

C

�4)

if be then C

1

elseC

2

; S)

C

S

0

be; S)

B

false C

2

; S)

C

S

0

()

C

�5)

if be thenC

1

elseC

2

; S)

C

S

0

be; S)

B

false

()

C

�6)

while be do C;S)

C

S

be; S)

B

true C;S)

C

S

0

while be doC;S

0

)

C

S

00

()

C

�7)

while be doC;S)

C

S

00

Figure 3.3: Evaluation Semantis of IMP

32

evaluate ie

1

and ie

2

and ombine the results with iop'. In general, how muh di�erene

this makes will depend on the �ne details of the language; whether we are interested in

the extra low-level details provided by the transition semantis will depend on what we

are using the semantis for.

3.3.2 Equivalene of transition and evaluation semantis of IMP

Now we have two di�erent operational semantis for IMP, the obvious question to ask

(partiularly in view of the remarks at the end of the last setion) is whether or not they

agree. In this setion we shall prove that they do.

Theorem 16 For all ie 2 Iexp, be 2 Bexp,C 2 Com, S; S

0

2 States, n 2 Z and b 2 B ,

hie; Si !

�

I

hn; Si if and only if ie; S)

I

n

hbe; Si !

�

B

hb; Si if and only if be; S)

B

b

hC;Si !

�

C

hskip; S

0

i if and only if C;S)

C

S

0

Proof. Firstly note that for eah of the three lauses of the theorem, we have to prove

both a left-to-right and a right-to-left impliation. The broad struture of the proof is as

follows:

1. Prove the right-to-left impliations by rule indution for).

2. Use rule indution for ! to show that

hie; Si !

I

hie

0

; Si and ie

0

; S)

I

n implies ie; S)

I

n

hbe; Si !

B

hbe

0

; Si and be

0

; S)

B

b implies be; S)

B

b

hC;Si !

C

hC

0

; S

0

i and C

0

; S

0

)

C

S

00

implies C;S)

C

S

00

3. Dedue the left-to-right impliations from 2.

Proof of 1. Sine)

I

,)

B

and)

C

are indutively de�ned by the rules shown in Fig-

ure 3.3, it suÆes to show that the subsets

f(ie; S; n) j hie; Si !

�

I

hn; Sig � Iexp� States� Z

f(be; S; b) j hbe; Si !

�

B

hb; Sig � Bexp� States� B

f(C;S; S

0

) j hC;Si !

�

C

hskip; S

0

ig � Com� States � States

are losed under all these rules. We will just hek the ase of rule ()

C

�7) (sine it

is the most interesting) and leave the remaining ases as Exerises.

So, suppose that the hypotheses of ()

C

�7) are in the sets. I.e. we assume the

following three things:

(a) hbe; Si !

�

B

htrue; Si

(b) hC;Si !

�

C

hskip; S

0

i

() hwhile be do C;S

0

i !

�

C

hskip; S

00

i

33

and we have to show that the onlusion of ()

C

�7) is in the set, i.e. that

hwhile be doC;Si !

�

C

hskip; S

00

i

Well, writing C

1

for while be do C we an reason as follows:

hC

1

; Si !

C

hif be then C ; C

1

else skip; Si by (!

C

�8)

!

�

C

hif true thenC ; C

1

else skip; Si by (a) and several (!

C

�5)s

!

C

hC ; C

1

; Si by (!

C

�6)

!

�

C

hskip ; C

1

; S

0

i by (b) and several (!

C

�3)s

!

C

hC

1

; S

0

i by (!

C

�4)

!

�

C

hskip; S

00

i by ()

as required.

Proof of 2. This follows by rule indution on eah of the relations !

I

,!

B

and !

C

.

De�ne three relations

;

I

� (Iexp� States)� (Iexp� States)

;

B

� (Bexp� States)� (Bexp� States)

;

C

� (Com� States)� (Com� States)

as follows:

(ie; S);

I

(ie

0

; S

0

) i� S = S

0

and 8n 2 Z:(ie

0

; S)

I

n implies ie; S)

I

n)

(be; S);

B

(be

0

; S

0

) i� S = S

0

and 8b 2 B :(be

0

; S)

B

b implies be; S)

B

b)

(C;S);

C

(C

0

; S

0

) i� 8S

00

2 States:(C

0

; S

0

)

C

S

00

implies C;S)

C

S

00

)

Then 2: is equivalent to proving hie; Si !

I

hie

0

; S

0

i implies (ie; S) ;

I

(ie

0

; S

0

) and

similarly for boolean expressions and ommands. This follows by rule indution if

we an show that ;

I

, ;

B

and ;

C

are losed under the rules de�ning !

I

,!

B

and

!

C

respetively. We will just hek the ase of rule (!

C

�8) and leave the other 14

ases as Exerises.

Sine (!

C

�8) has no hypotheses, we just have to show that

(while be doC;S);

C

(if be then (C ; while be doC) else skip; S)

Writing C

1

for while be do C this means showing that for all S

00

2 States if

if be then (C ; C

1

) else skip; S)

C

S

00

(3.1)

then

C

1

; S)

C

S

00

(3.2)

But if (3.1) holds then it an only have been dedued by applying ()

C

�4) or ()

C

�5),

and we onsider eah possibility in turn.

Case ()

C

�4) The derivation looks like this

D

1

be; S)

B

true

D

2

C ; C

1

; S)

C

S

00

()

C

�4)

if be then (C ; C

1

) else skip; S)

C

S

00

34

but the subderivation D

2

an only end in an instane of ()

C

�3), so we must

have

D

1

be; S)

B

true

D

3

C;S)

C

S

0

D

4

C

1

; S

0

)

C

S

00

()

C

�3)

C ; C

1

; S)

C

S

00

()

C

�4)

if be then (C ; C

1

) else skip; S)

C

S

00

for some intermediate state S

0

. Given all that, it's easy to see that we an

derive (3.2) like this

D

1

be; S)

B

true

D

3

C;S)

C

S

0

D

4

while be do C;S

0

)

C

S

00

()

C

�7)

while be do C;S)

C

S

00

as required.

Case ()

C

�5) In this ase the derivation of (3.1) looks like

D

1

be; S)

B

false

D

2

skip; S)

C

S

00

()

C

�5)

if be then (C ; C

1

) else skip; S)

C

S

00

but then D

2

an only be an instane of ()

C

�1) so S = S

00

and the derivation is

D

1

be; S)

B

false

()

C

�1)

skip; S)

C

S

()

C

�5)

if be then (C ; C

1

) else skip; S)

C

S

so that we an apply ()

C

�6) like this

D

1

be; S)

B

false

()

C

�6)

while be doC;S)

C

S

to dedue (3.2) as required.

Proof of 3. It is easy to see that eah of the relations ;

I

, ;

B

and ;

C

de�ned in the

proof of 2: is reexive and transitive, simply beause logial impliation is reexive

and transitive. Furthermore, 2: says that !

I

�;

I

, !

B

�;

B

and !

I

�;

I

; thus,

beause the reexive transitive losure of a relation R is the smallest reexive and

transitive relation ontaining R, we have

hie; Si !

�

I

hie

0

; S

0

i implies (ie; S);

I

(ie

0

; S

0

)

hbe; Si !

�

B

hbe

0

; S

0

i implies (be; S);

B

(be

0

; S

0

)

hC;Si !

�

C

hC

0

; S

0

i implies (C;S);

C

(C

0

; S

0

)

So, if hie; Si !

�

I

hn; Si then (ie; S);

I

(n; S) and hene by the de�nition of ;

I

8m 2 Z:(n; S)

I

m implies ie; S)

I

m)

35

Taking m = n and using rule ()

I

�1) gives ie; S)

I

n as required. Similarly, if

hbe; Si !

�

B

hb; Si we get that (be; S) ;

B

(b; S) and we an use ()

B

�1) and the

de�nition of ;

B

to dedue be; S)

B

b. Finally, muh the same reasoning applies

to ommands, so that if hC;Si !

�

C

hskip; S

0

i then (C;S) ;

C

(skip; S

0

) so by the

de�nition of ;

C

and rule ()

C

�1) we have C;S)

C

S

0

.

2

The full proof of Theorem 16, �lling in all the ases we missed out in parts 1: and 2:,

is obviously fairly lengthy but it doesn't involve any more onepts { it's just a matter

of heking a lot more ases. The important thing is to understand and remember the

broad outline, as you should then be able to �ll in the details yourself without any great

diÆulty.

3.3.3 Implementing the evaluation semantis in ML

Translating the big-step evaluation semantis into ML is even easier than was the ase for

the small-step transition semantis. One again, we rely on the fat that the evaluation

relations are atually partial funtions (this follows from the equivalent fat for the tran-

sition semantis and the equivalene of the big-step and small-step semantis whih we

just proved). As we have previously remarked, the inferene rules de�ning the evaluation

relations do not speify an evaluation order for expressions, but we do have to pik one in

order to translate the rules into ML ode.

(* bigstepi : IEXP -> (STATES -> int) *)

fun bigstepi ie (S:STATES) = ase ie of

N(n) => n

| Pvar(x) => lookup(x,S)

| Iop(iop,ie1,ie2) => let val n1 = bigstepi ie1 S

val n2 = bigstepi ie2 S

in

iopmeaning iop (n1,n2)

end;

(* bigstepb : BEXP -> (STATES -> bool) *)

fun bigstepb be (S:STATES) = ase be of

B(b) => b

| Bop(bop,ie1,ie2) => let val n1 = bigstepi ie1 S

val n2 = bigstepi ie2 S

in

bopmeaning bop (n1,n2)

end;

(* bigstep : COM -> (STATES -> STATES) *)

fun bigstep C (S:STATES) = ase C of

Skip => S

| Assign(x,ie) => let val n = bigstepi ie S

in update(S,x,n)

end

36

| Seq(C1,C2) => let val S' = bigstep C1 S

in bigstep C2 S'

end

| If(be,C1,C2) => if (bigstepb be S)

then bigstep C1 S

else bigstep C2 S

| While(be,C1) => if (bigstepb be S)

then let val S' = bigstep C1 S

in bigstep C S'

end

else S;

This gives a very natural interpreter for IMP programs. The funtions bigstepi,bigstepb

and bigstep have, of ourse, exatly the same input/output behaviour as their small-step

equivalents ieval, beval and eval.

3.3.4 Semanti equivalene

One of the reasons for studying semantis whih we mentioned in the introdution was to

have a preise notion of when one ommand is equivalent to another. We are now in a

position to de�ne suh a notion.

If C

1

and C

2

are IMP ommands, then we say C

1

and C

2

are semantially equivalent,

and write C

1

� C

2

if for all states S and S

0

Ceval(C

1

)(S) is de�ned and equal to S

0

if and only if

Ceval(C

2

)(S) is de�ned and equal to S

0

Whilst Ceval was de�ned in terms of the small-step semantis, in view of Theorem 16

we obviously have

C

1

� C

2

i� 8S; S

0

2 States:(C

1

; S)

C

S

0

� C

2

; S)

C

S

0

)

It's lear that the relation �� Com� Com is an equivalene relation, i.e. it is reexive,

symmetri and transitive. Here's an example of an interesting equivalene:

Proposition 17 For any three ommands C,C

0

,C

00

(if be thenC elseC

0

) ; C

00

� if be then (C ; C

00

) else (C

0

; C

00

)

Proof. Let

C

1

= (if be thenC else C

0

) ; C

00

C

2

= if be then (C ; C

00

) else (C

0

; C

00

)

There are two things to prove, �rstly that if C

1

; S)

C

S

0

then C

2

; S)

C

S

0

and seondly

that if C

2

; S)

C

S

0

then C

1

; S)

C

S

0

and we prove eah in turn.

If C

1

; S)

C

S

0

then the dedution of that fat must have ended in an instane of rule

()

C

�3):

D

1

if be thenC elseC

0

; S)

C

S

00

D

2

C

00

; S

00

)

C

S

0

()

C

�3)

(if be thenC elseC

0

) ; C

00

; S)

C

S

0

37

for some state S

00

. There are then two possibilities for the last rule used in D

1

, viz. ()

C

�4)

and ()

C

�5). If the last rule was ()

C

�4) then the derivation must look like

D

3

be; S)

B

true

D

4

C;S)

C

S

00

()

C

�4)

if be thenC elseC

0

; S)

C

S

00

D

2

C

00

; S

00

)

C

S

0

()

C

�3)

(if be thenC elseC

0

) ; C

00

; S)

C

S

0

and so we an form the following derivation

D

3

be; S)

B

true

D

4

C;S)

C

S

00

D

2

C

00

; S

00

)

C

S

0

()

C

�3)

C ; C

00

; S)

C

S

0

()

C

�4)

if be then (C ; C

00

) else (C

0

; C

00

); S)

C

S

0

to show that C

2

; S)

C

S

0

as required. The ase where the last rule of D

1

is ()

C

�5) is

similar, and omitted. Thus we have proved the �rst part of the proposition.

Similarly, starting with C

2

; S)

C

S

0

we an dedue C

1

; S)

C

S

0

. Hene C

1

� C

2

, as

required. 2

Proposition 18 For an ommands C

1

,C

2

and boolean expression be,

if C

1

� C

2

then while be do C

1

� while be do C

2

Proof. We have to show that if while be do C

1

; S)

C

S

0

then while be do C

2

; S)

C

S

0

for any states S and S

0

. One we've done that, it's lear that the onverse holds too, just

by symmetry.

The proof is by indution on the derivation D of while be do C

1

; S)

C

S

0

. There are

two ases for the last rule applied in D, viz. ()

C

�6) and ()

C

�7). If the last rule applied

was ()

C

�6), then D looks like this:

D

1

be; S)

B

false

()

C

�6)

while be do C

1

; S)

C

S

so that S = S

0

. In this ase, we an obviously form D

0

, deriving while be do C

2

; S)

C

S

0

like this:

D

1

be; S)

B

false

()

C

�6)

while be do C

2

; S)

C

S

If, on the other hand, the last rule used in D was ()

C

�7), then D looks like

D

1

be; S)

B

true

D

2

C

1

; S)

C

S

00

D

3

while be do C

1

; S

00

)

C

S

0

()

C

�7)

while be do C

1

; S)

C

S

0

for some state S

00

. In this ase, we an apply the assumption that C

1

� C

2

to dedue

from D

2

that there must be a D

0

2

proving C

2

; S)

C

S

00

. We an also apply the indution

38

hypothesis to D

3

to obtain a derivation D

0

3

whih proves whilebedoC

1

; S

00

)

C

S

0

. Putting

these bits together we an form D

0

to be

D

1

be; S)

B

true

D

0

2

C

2

; S)

C

S

00

D

0

3

while be do C

2

; S

00

)

C

S

0

()

C

�7)

while be do C

2

; S)

C

S

0

deriving while be doC

2

; S)

C

S

0

as required. 2

3.3.5 Congruenes

There is an obvious question to be asked here whih has onsiderable impliations for

how useful this notion of semanti equivalene is in pratie. The most obvious reason

for having a notion of equivalene is so that one an replae some ommand C

1

with an

equivalent (but, let us say, more eÆient) ommand C

2

in a larger program and know that

the program would still give the same results (though, we hope, more quikly). However

we do not yet know that this is sound.

We an express the property we want by introduing the notion of a ommand ontext,

whih is usually written C[℄ and de�ned slightly informally to be `a ommand with a hole

in it'. In other words, a ommand ontext is just like a ommand, exept that it an also

ontain one or more holes, whih are written [℄, as subommands. If C[℄ is a ommand

ontext and C

1

is a ommand, then C[C

1

℄ is the ommand whih results from replaing all

the ourenes of the hole [℄ in C[℄ with C

1

. Now if R is a binary equivalene relation on

ommands, we say that R is a ongruene if for all C[℄, C

1

and C

2

, if (C

1

; C

2

) 2 R then

(C[C

1

℄; C[C

2

℄) 2 R. Another way of saying this is that R is a ongruene if it is preserved

by all the onstruts of the ommand syntax. (Exerise: Why are the two de�nitions

equivalent?)

What we want to know is that our semanti equivalene relation � is a ongruene,

as that then allows us to `substitute equals for equals'. Lukily, it turns out that � is a

ongruene for IMP programs. The theorem an be proved diretly from the operational

semantis, and Proposition 18 is atually one of the steps in the proof (this is developed

further in the Exerises), but it will also follow from the results of the next hapter. The

Part II Conurreny Theory ourse develops these ideas further { for onurrent proesses

there are many natural notions of equivalene, some of whih are ongruenes and some

of whih are not.

3.3.6 Semanti equivalene proofs as funtions (optional)

If you study the proofs of Propositions 17 and 18, and have done some of the exerises

on semanti equivalene then you should be able to see that the proofs all have a similar

form. There are always two impliations (for the two parts of the de�nition of semanti

equivalene), eah of whih has the form

if C

1

; S)

C

S

0

then C

2

; S)

C

S

0

These are proved by looking at the possible derivations of C

1

; S)

C

S

0

and showing that for

eah one we an onstrut a derivation of C

2

; S)

C

S

0

. For some of the proofs onerning

looping onstruts, this onstrution requires strutural indution on the derivation of

C

1

; S)

C

S

0

, whereas for simpler ases (like Proposition 17) it's just a matter of splitting

39

the eah derivation of C

1

; S)

C

S

0

into a small number of subderivations whih an be

reassembled to give a derivation of C

2

; S)

C

S

0

. In any ase, one an view the proof that

(any instane of) C

1

is semantially equivalent to (the orresponding instane of) C

2

as

a pair of funtions whih take derivations to derivations { given a derivation about C

1

,

one funtion returns the derivation of the same thing about C

2

(and the other funtion

does the onverse). In the ase that the proof requires strutural indution on derivations

the funtions whih express the proof will themselves be de�ned indutively. In the ase

where the proof relies on an assumption that two ommands are equivalent, the funtion

orresponding to the proof will take as extra arguments the funtions whih witness that

equivalene.

All this an be formalised in ML, but the details are rather too messy to inlude here.

Appendix A ontains further details, and the ode is available eletronially for those who

would really like to play with it.

3.4 Exerises

1. Chek that you an give derivations in the one step transition semantis for eah of

the transitions in the example on page 25.

2. Do the proof of Proposition 13, that IMP expressions have no side-e�ets.

3. Complete the proof of Theorem 14, that transitions are deterministi.

4. Prove Lemma 15, that the evaluation of expressions always terminates.

5. How would you hange the one-step transition semantis to speify a right-to-left,

rather than a left-to-right evaluation order? How would you write the rules so that

the evaluation order is unspei�ed and, for example, all the following sequenes are

allowed?

h10; Si

h3 + 7; Si

h(0 + 3) + 7; Si

h(0 + (1 + 2)) + 7; Si

h(0 + (1 + 2)) + (3 + 4); Si

h(0 + 3) + (3 + 4); Si

h3 + (3 + 4); Si

�

�

�

�

�

�

��

H

H

H

H

H

H

Hj

?

?

?

?

X

X

X

X

X

X

X

X

X

X

X

X

Xz

X

X

X

X

X

X

X

X

X

X

X

X

X

Xz

Prove that in this ase, although the one-step transition relations !

I

and !

B

are

no longer deterministi, the evaluation relations Ieval, Beval and Ceval whih are

de�ned in terms of them are still deterministi.

40

6. Produe a derivation in the big-step evaluation semantis for the example on page 31.

7. Finish the proof of Theorem 16, showing the equivalene of the small-step and big-

step semantis for IMP.

8. There is a lot of hoie about what onstitutes a `small step' in the transition se-

mantis. Formulate a di�erent version in whih expressions all evaluate in just one

step, but ommands still generally take lots of little steps.

9. Show that for all C 2 Com,

C ; skip � C � skip ; C

10. Show that for all ommands C

1

,C

2

,C

3

(C

1

; C

2

) ; C

3

� C

1

; (C

2

; C

3

)

11. Give examples of be 2 Bexp and C

1

; C

2

; C

3

2 Com for whih

C1 ; (if be thenC

2

else C

3

) 6� if be then (C

1

; C

2

) else (C

1

; C

3

)

12. Suppose be; S)

B

true. Prove that there is no S

0

2 States suh that

while be do skip; S)

C

S

0

13. Complete the proof that � is a ongruene using the evaluation semantis. In other

words, show that if C

1

� C

2

then:

(a) (C

1

; C) � (C

2

; C) and (C ; C

1

) � (C ; C

2

).

(b) (if be thenC elseC

1

) � (if be thenC elseC

2

) and (if be thenC

1

elseC) �

(if be thenC

2

elseC).

14. Prove that for any be 2 Bexp and C 2 Com

while be do C � if be then (C ; while be do C) else skip

(You an do this in two natural ways { one is a diret proof from the evaluation

semantis and the other uses the transition semantis.)

15. Augment the rules de�ning Bexp with

be 2 Bexp

not(be) 2 Bexp

and extend the relation)

B

by the rule

be; S)

B

b

()

B

�3)

not(be))

B

:b

where :true = false and :false = true.

41

Now augment the rules de�ning Com with

C 2 Com be 2 Bexp

(repeatC until be) 2 Com

The intended meaning of (repeat C until be) is `repeatedly exeute C until the

ondition be evaluates to true'. Extend the evaluation relation)

C

by adding some

rules whih express this intention. Prove, using your new de�nition of)

C

, that for

any C and be

(repeatC until be) � C ; (while not(be) do C)

16. Augment the ommands of IMP with the following two new onstruts

be 2 Bexp

exitif(be) 2 Com

C

1

2 Com C

2

2 Com

(C

1

orelseC

2

) 2 Com

The intended meaning of exitif(be) is to abort exeution at the urrent state just

in ase be evaluates to true. The intended meaning of C

1

orelse C

2

is to exeute

C

1

until either it terminates normally (in whih ase C

2

is ignored ompletely), or

until exeution is aborted as above, in whih ase C

2

is exeuted. This is made

preise by adding to the evaluation relations)

B

,)

I

and)

C

, the new relation

*� Com� States� States (pronouned `aborts at') with the following new rules:

be; S)

B

true

exitif(be); S * S

be; S)

B

false

exitif(be); S)

C

S

C

1

; S * S

0

(C

1

; C

2

); S * S

0

C

1

; S)

C

S

0

C

2

; S

0

* S

00

(C

1

; C

2

); S * S

00

be; S)

B

true C

1

; S * S

0

if be thenC

1

elseC

2

; S * S

0

be; S)

B

false C

2

; S * S

0

if be thenC

1

elseC

2

; S * S

0

be; S)

B

true C;S * S

0

while be doC;S * S

0

be; S)

B

true C;S)

C

S

0

while be do C;S

0

* S

00

while be do C;S * S

00

C

1

; S)

C

S

0

(C

1

orelseC

2

); S)

C

S

0

C

1

; S * S

0

C

2

; S

0

)

C

S

00

(C

1

orelseC

2

); S)

C

S

00

C

1

; S * S

0

C

2

; S

0

* S

00

(C

1

orelseC

2

); S * S

00

(a) For the new language, the old de�nition of � still makes sense, but it is no

longer a ongruene. Why not? Re�ne the de�nition of semanti equivalene

of ommands to repair this.

42

(b) Call a ommand C unexeptional if C;S * S

0

holds for no states S; S

0

. For

suh a C, show that (if be then C

0

else C) is semantially equivalent to an

expression built from be,C and C

0

using just exitif, orelse and ;.

() Use the new language to de�ne a maro exit and a new form of while onstrut

with the property that exit will abort the smallest suh enlosing new while

loop.

17. If you know how to program in Prolog, experiment with implementing the two kinds

of operational semantis for IMP in Prolog, rather than ML. What are the advantages

and disadvantages of this approah?

18. Prove that IMP is Turing-powerful, by piking your favourite model of omputation

from the Computation Theory ourse (Turing mahines, register mahines or partial

reursive funtions) and showing how to simulate it in IMP.

43

Chapter 4

Denotational Semantis of IMP

The aim of this hapter is to present a di�erent style of semantis for IMP in whih

the meanings of IMP phrases are given diretly as (stati) mathematial objets, rather

than in terms of operational rules whih express (dynamially) how evaluation proeeds.

This approah has several payo�s. One is that we will be able to see straight away that

the semantis is ompositional. This means that the meaning of any phrase is determined

solely by the meaning of its subphrases, and will show, amongst other things, that semanti

equivalene is a ongruene (f. the remarks and exerises at the end of the last hapter).

Another major advantage of the denotational approah is that it gives an independent

mathematial meaning to the syntati onstruts of our language. This enables one to

ompare the semantis of di�erent languages and to identify the key onepts underlying

them. For example, the way in whih we will give a meaning to while-loops in IMP turns

out to use the same tehniques as are needed to give a denotational semantis to reursive

funtions in more sophistiated languages than IMP.

The mathematial spaes in whih we will �nd the meanings of IMP phrases are ertain

kinds of partially ordered sets, alled omplete partial orders or domains. These strutures

are entral to denotational semantis and an be used to treat nearly all programming

language features you will meet. In partiular, they an be used to give semantis to

funtional languages like ML and Haskell and to non-determinism and parallelism.

1

From the point of view of this ourse of letures, there is a slight pedagogial diÆulty

aused by the fat that our language IMP is so very trivial (no interesting datatypes,

no proedures, no higher-order funtions) that it is atually possible to explain its de-

notational semantis just in terms of partial funtions between sets and without expliit

mention of omplete partial orders at all. However, sine this naive approah does not

sale up to more interesting languages, I will jump straight in to using the more general

mahinery of omplete partial orders to give the semantis of IMP.

2

1

Atually there are still some things that the standard theory of domains doesn't deal with very niely.

These inlude dealing with sequentiality, omputability and with `fairness'. Denotational semantis is still

an ative researh area, though the material in this ourse has been pretty stable and standard sine the

seventies.

2

And anyway, this is the only way I an set any interesting exerises or exam questions... :-)

44

4.1 Complete Partial Orders

4.1.1 Partial orders

A binary relation v on a set D is a partial order if it is

reexive 8d 2 D: d v d

transitive 8d; d

0

; d

00

2 D: d v d

0

^ d

0

v d

00

) d v d

00

anti-symmetri 8d; d

0

2 D: d v d

0

^ d

0

v d) d = d

0

.

A pair (D;v� D � D) for whih v is a partial order is alled a partially ordered set,

or poset for short. D is then alled the underlying set, or arrier, of the poset. We will

frequently abuse notation by just referring to `the poset D' and using v to denote the

partial order on a variety of di�eret posets.

The least element, or bottom, of a poset D, if it exists, is an element ? 2 D suh that

8d 2 D:? v d

Note that, by anti-symmetry, the bottom element of a poset, if it exists, is unique. If ?

and ?

0

were two bottoms then we'd have ? v ?

0

and ?

0

v ? and hene ? = ?

0

. We will

sometimes use subsripts to distinguish the bottoms of di�erent pos, but will also feel

free to omit them.

4.1.2 Chains and least upper bounds

If (D;v) is a poset, then a (ountable) hain in D is a funtion :N ! D suh that

8n 2 N:(n) v (n+ 1):

(0) v (1) v (2) v � � �

If is a hain, we will usually write

n

rather than (n).

An upper bound for a hain in D is an element d 2 D whih dominates all the

elements of the hain:

8n 2 N:

n

v d

Clearly, for a given hain, there may be no upper bound or there may be many upper

bounds. The least upper bound

F

1

n=0

n

of the hain , if it exists, is an upper bound

whih is v all other upper bounds:

8d 2 D:

1

G

n=0

n

!

v d () (8n 2 N:

n

v d)

Least upper bounds are also known as lubs (for obvious reasons) or sups (sup is short for

supremum, so sups is short for suprema (mixing English and Latin plurals)). Least upper

bounds, like bottoms, are unique if they exist as a trivial onsequene of the fat that v

is antisymmetri.

A omplete partial order, or po for short, is a poset whih has least upper bounds for

all (ountable) hains. We will also sometimes refer to pos as domains.

3

Examples:

3

What we are alling a po is often alled an !-po in the literature, the ! indiating that only lubs

of ountable hains are required to exist. Many authors also require pos to have a least element, and

would refer to our potentially bottomless ones as predomains. Even more onfusingly, the term `domain'

is frequently taken to mean a po with some partiular more ompliated extra struture, whih we will

have no need of here.

45

1. If X is any set, then the powerset of X

P(X)

def

= fS j S � Xg

ordered by � is a po. The lub of a hain S

0

� S

1

� � � � is the union

S

1

n=0

S

n

. The

po (P(X);�) also has a least element: the empty set ; � X.

2. For any sets X and Y , the set X * Y of partial funtions from X to Y

X * Y

def

= ff 2 P(X � Y) j 8x 2 X:8y; y

0

2 Y: (x; y) 2 f ^ (x; y

0

) 2 f) y = y

0

g

ordered by � is a po with lubs of hains given by union and least element the empty

set (i.e. the always unde�ned partial funtion), just as in 1.

3. For any set X, de�ning v to be the equality relation on X, i.e. x v x

0

() x = x

0

,

makes X into a po, alled the disrete po on X. Note that any hain in (X;=)

is onstant,

0

=

1

= � � �, and so trivially has a least upper bound

0

. (X;=) has a

bottom just when X has preisely one element.

4. Let
 = N [f1g (where1 is just a suggestive name for some element distint from

all those in N), and de�ne v on
 by

x v x

0

() (x; x

0

2 N ^ x � x

0

) _ (x

0

=1)

Then
 is a po whih may be pitured like this:

0

1

2

n

n+ 1

1

.

.

.

.

.

.

.

.

4.1.3 Continuous funtions

If (D;v

D

) and (E;v

E

) are pos, and f :D ! E is a funtion between their underlying

sets, then f is monotoni if it preserves order:

8d; d

0

2 D: d v

D

d

0

) f(d) v

E

f(d

0

)

It is ontinuous if it is monotoni and also preserves least upper bounds of all hains in

D:

f

1

G

n=0

n

!

=

1

G

n=0

f(

n

) (4.1)

46

Note that f Æ :N ! E is a hain beause f is monotoni.

Atually, one half of Equation 4.1 follows diretly from monotoniity, sine for any

m 2 N

m

v

D

1

G

n=0

n

by the de�nition of upper bounds, so monotoniity gives

f(

m

) v

E

f

1

G

n=0

n

!

whih says f (

F

1

n=0

n

) is an upper bound for the hain f Æ . Therefore, it is w

E

the least

upper bound:

1

G

m=0

f(

m

) v

E

f

1

G

n=0

n

!

whih means that Equation 4.1 holds i�

f

1

G

n=0

n

!

v

1

G

n=0

f(

n

)

You should hek (Exerise) that

1. For any po D, the identity funtion id

D

def

=�d 2 D:d : D ! D is always ontinuous.

4

2. If f :D ! E and g:E ! F are ontinuous then the omposition

g Æ f

def

= �d 2 D:g(f(d)) : D ! F

is ontinuous.

3. If X is a disrete po, then any funtion f :X ! D is ontinuous.

4.1.4 Binary produt of pos

If D

1

and D

2

are pos, then their binary produt D

1

�D

2

has as underlying set

D

1

�D

2

= f(d

1

; d

2

) j d

1

2 D

1

^ d

2

2 D

2

g

with the partial order

(d

1

; d

2

) v (d

0

1

; d

0

2

) () d

1

v d

0

1

^ d

2

v d

0

2

It's easy to hek that this is a po, with least upper bounds alulated `ompontentwise'.

If : N ! D

1

�D

2

is given by

n

= (

0

n

;

00

n

) then

1

G

n=0

n

=

1

G

n=0

0

n

;

1

G

n=0

00

n

!

If D and E both have bottoms, then so does D �E, viz. the pair (?

D

;?

E

).

4

Reall that �x 2 A:e, where e is some expression possibly involving the variable x, means `the funtion

whih sends any a 2 A to e[a=x℄'. It's essentially the same as fn (x:A)=>e in ML.

47

There are ontinuous projetion funtions fst:D

1

�D

2

! D

1

and snd:D

1

�D

2

! D

2

given by fst(d

1

; d

2

) = d

1

and snd(d

1

; d

2

) = d

2

.

Given ontinuous funtions f

1

:E ! D

1

and f

2

:E ! D

2

, we get a ontinuous funtion

hf

1

; f

2

i:E ! D

1

�D

2

de�ned by hf

1

; f

2

i(e) = (f

1

(e); f

2

(e)). This obviously satis�es the

pair of equations

fst Æ hf

1

; f

2

i = f

1

snd Æ hf

1

; f

2

i = f

2

whih we an summarise in a diagram:

E

D

1

D

1

�D

2

D

2

�

fst

-

snd

Z

Z

Z

Z

Z

Z

Z

Z

Z}

f

1

�

�

�

�

�

�

�

�

�>

f

2

6

hf

1

; f

2

i

Given f

1

:E

1

! D

1

and f

2

:E

2

! D

2

ontinuous, we de�ne the ontinuous funtion

f

1

� f

2

:E

1

� E

2

! D

1

�D

2

to be hf

1

Æ fst; f

2

Æ sndi. In other words (f

1

� f

2

)(e

1

; e

2

) =

(f

1

(e

1

); f

2

(e

2

)).

For example, if
 is the po de�ned at the end of Setion 4.1.2,then
�
 is the po

whih we an draw like this:

(0; 0)

(1; 0)

(2; 0)

(0; 1)

(1; 1)

(2; 1)

(0; 2)

(1; 2)

(2; 2)

(0;1)

(1;1)

(2;1)

(1; 0)

(1; 1)

(1; 2)

(1;1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

48

4.1.5 Exponentation of pos

If D and E are pos, then the exponential, or (ontinuous) funtion spae, po [D ! E℄

has as underlying set

ff :D ! E j f is ontinuousg

with the order

f v f

0

() 8d 2 D: f(d) v f

0

(d)

Note that we use muh the same notation for the set of all funtions between two sets and

the po of all ontinuous funtions between two pos. If X and Y are sets, regarded as

disrete pos, then the exponential po [X ! Y ℄ is just the disrete po on the set of all

funtions from X to Y .

You should hek that [D ! E℄ really is a po, with lubs of hains alulated `point-

wise':

1

G

n=0

f

n

= �d 2 D:

1

G

n=0

f

n

(d)

!

If E has a bottom, then [D ! E℄ has a bottom, given by ?

[D!E℄

= �d 2 D:?

E

, the

onstant ?

E

funtion (whih is easily seen to be ontinuous).

The evaluation funtion ev: [D ! E℄ �D ! E is the ontinuous funtion de�ned by

ev(f; d) = f(d).

Given a ontinuous g:F�D ! E, there is a ontinuous funtion ur(g):F ! [D ! E℄,

alled the Currying of g, where for eah x 2 F , ur(g)(x) = �d 2 D: g(x; d). Thus ur(g)

satis�es g = ev Æ (ur(g)� id), whih we may draw as a diagram:

[D ! E℄�D

F �D E

-

g

?

ur(g) � id

�

�

�

�

�

�

�

�

�>

ev

4.1.6 Lifting

Given a po D, the lifted po D

?

is obtained by adding a new bottom element below all

those in D. Formally, the underlying set of D

?

is

f[d℄ j d 2 Dg [f?g

with the order

x v x

0

() (x = ?) _ (9d; d

0

2 D: x = [d℄ ^ x

0

= [d

0

℄ ^ d v d

0

)

where [�℄ is a formal funtion to `mark' all the elements of D in suh a way as to make

them distint from the new ?, so for any d; d

0

2 D ([d℄ = [d

0

℄) d = d

0

and ? 6= [d℄.

Clearly, D

?

has a bottom ?. The funtion [�℄:D ! D

?

is ontinuous and order-

reeting, in the sense that

[d℄ v [d

0

℄) d v d

0

49

If f :D ! E is ontinuous and E has a bottom, then we an lift f to get a ontinuous

funtion f

�

:D

?

! E de�ned by

f

�

(x)

def

=

(

f(d) if x = [d℄ for some d 2 D

? if x = ?

So that f = f

�

Æ [�℄ whih an be drawn as

D

D

?

E

6

[�℄

�

�

�

�

�

�

�

�

�>

f

-

f

�

The operation f 7! f

�

is itself a ontinuous funtion

(�)

�

: [D ! E℄! [D

?

! E℄

For example, if B is the set ftrue; falseg, regarded as a disrete po,then the po B

?

(whih is not disrete) looks like

?

[true℄ [false℄

J

J

J

J

J

J

A po like this, whih is the lift of a disrete po, is said to be at. For a at po,

x v x

0

() (x = ?) _ (x = x

0

).

4.1.7 Conditionals

Regarding B = ftrue; falseg as a disrete po, for eah po D there is a ontinuous funtion

B�D�D ! D alled the onditional funtion for D, whose value at (b; d

1

; d

2

) 2 B�D�D

is

(b) d

1

j d

2

)

def

=

(

d

1

if b = true

d

2

if b = false

4.1.8 Least �xed points

Suppose D is a po with a bottom, ?, and f :D ! D is a ontinuous funtion. Consider

the sequene of elements of D

?; f(?); f(f(?)) = f

2

(?); f

3

(?); : : :

We have

? v f(?) by de�nition of bottom

f(?) v f(f(?)) = f

2

(?) by montoniity and previous line

f

2

(?) v f

3

(?) for the same reason

50

and so on. Thus

? v f(?) v f

2

(?) v f

3

(?) v � � �

is a hain in D, and therefore has a least upper bound:

�x(f)

def

=

1

G

n=0

f

n

(?)

where, indutively, f

0

(?) = ? and f

n+1

(?) = f(f

n

(?)).

Sine f is ontinuous, we have

f(�x(f)) =

1

G

n=0

f(f

n

(?))

=

1

G

n=0

f

n+1

(?)

But

F

1

n=0

f

n+1

(?) is the lub of the hain f(?) v f

2

(?) v � � � and this is learly the same

as the lub of the hain ? v f(?) v f

2

(?) v � � �. In other words

f(�x(f)) = �x(f)

so �x(f) is a �xed point of f .

More generally, a pre�xed point of f is an element d 2 D suh that f(d) v d. Given

suh a d, we an reason as follows:

? v d sine ? is bottom, so

f(?) v f(d) v d as f monotone & d pre�xed point

f

2

(?) v f(d) v d for the same reason

et. Thus 8n 2 N: f

n

(d) v d, whih means that d is an upper bound for the hain

ff

n

(?) j n 2 Ng. So d is w the least upper bound of that hain, i.e.

�x(f) =

1

G

n=0

f

n

(?) v d

whih means that �x(f) is the least element of the set of all pre�xed points of f . In

partiular, it is also the least �xed point of f .

5

In fat the operation f 7! �x(f) atually determines a ontinuous funtion �x: [D !

D℄! D.

4.1.9 Fixpoint indution

There is a useful tehnique for proving properties of least �xed points, due to Sott and

de Bakker, whih is alled �xpoint indution (or sometimes Sott indution). Assume that

5

Of ourse, this all looks very familiar { it appears to be essentially the same as the arguments we used

right at the start of these notes to justify indutive de�nitions. In fat, there are some slight di�erenes.

Previously we showed (in the `downwards' onstrution) that any monotone funtion on a omplete lattie

(i.e. a set with greatest lower bounds of all subsets, whih in that ase were intersetions) has a least �xed

point. Here we have just shown that a ontinuous funtion (whih is rather more than just a monotone

funtion) over a po with a ? (whih is rather less than a omplete lattie) has a least �xed point.

51

D is a po with a bottom and that f :D ! D is a ontinuous funtion. Then if P (�) is a

partiular kind of prediate over D, we an dedue P (�x(f)) by showing

P (?)

and

P (x)

P (f(x))

But what is the speial ondition whih P (�) has to satisfy to make this valid? We an

�nd the answer just by trying to prove that the indution priniple above is sound, and

seeing what we have to assume about P (�) to make the proof go through. So we'll assume

that we've shown the two things above and try to dedue P (�x(f)).

Reall that �x(f) =

F

1

n=0

f

n

(?). So we start by observing that as we've assumed

that P (?) holds, we have that P (f

0

(?)) holds. Now assume that P (f

n

(?)) holds. By

the seond rule above, this means that P (f(f

n

(?))) holds. But that's just P (f

n+1

(?)).

Hene we an onlude by mathematial indution that P (f

n

(?)) holds for all n. But

what we want to know is that P (

F

1

n=0

f

n

(?)) holds. To make this leap, we have to know

that P itself has a speial property. Clearly, a suÆient ondition on P is that whenever

x

0

v x

1

v � � � is a hain in D suh that for all n, P (x

n

) holds, P (

F

1

n=0

x

n

) holds. In

words, whenever we have a hain, all of whose elements satisfy P , the limit of the hain

also satis�es P . A prediate with this property is said to be inlusive or hain-losed, and

we have just shown

Theorem 19 (Fixpoint Indution) If D is a po with a bottom, f :D ! D is a on-

tinuous funtion and P (�) is an inlusive prediate on D, then

(P (?) and 8x 2 D: P (x)) P (f(x))) implies P (�x(f))

2

(Of ourse, we an, as usual, identify a prediate on D with the subset of elements of D

whih satisfy it, so we an speak of inlusive subsets, rather than prediates.)

As it stands, Theorem 19 doesn't seem to be very useful. After all, heking that a

prediate is inlusive looks like quite a lot of work, in general; so all we save ourselves by

appealing to the �xpoint indution theorem is a little appliation of ordinary mathematial

indution. The reason that the method is useful is that we an often save ourselves the

bother of expliitly heking from �rst priniples that a partiular prediate is inlusive.

This is beause there are a whole range of ways in whih we an build inlusive prediates

from other inlusive prediates. Hene we an often tell that a prediate is inlusive just by

looking at it and seeing that it's made up from \inlusivity-preserving" operations (muh

as we an often tell that a funtion is ontinuous just by inspetion beause we know

things like `omposition preserves ontinuity'). This is developed further in the Exerises.

Here's an example of a proof by �xpoint indution:

Theorem 20 If D and E are pos with bottom, f :D ! E is a strit ontinuous funtion

(i.e. f(?) = ?) and h:D ! D and g:E ! E are ontinuous funtions with f Æh = g Æ f ,

then

�x(g) = f(�x(h))

Proof. We will prove �x(g) = f(�x(h) by proving that the left hand side is v the right

hand side and vie versa. Firstly

f(�x(h)) = f(h(�x(h))) defn. of �xpoint

= g(f(�x(h))) assumption

52

So f(�x(h)) is a �xpoint of g, and hene �x(g) v f(�x(h)) by minimality of least �xed

points.

Now we use �xpoint indution to prove the reverse inequality. We take the prediate

P (x) over D to be

P (x)

def

= (f(x) v �x(g))

whih is an inlusive prediate (Exerise). Then we need to hek �rstly that P (?) holds.

This means heking f(?) v �x(g) whih is immediate sine we assumed that f was strit,

so f(?) = ? v �x(g). Next we need to hek that under the hypothesis that P (x) holds,

we an dedue P (h(x)) holds. So the hypothesis is that f(x) v �x(g) and we reason as

follows:

f(h(x)) = g(f(x)) assumption

v g(�x(g)) monotoniity of g and hypothesis

= �x(g) defn. of �xpoint

So P (h(x)) holds as required, and we an use Theorem 19 to dedue P (�x(h)), i.e. that

f(�x(h)) v �x(g) as required. 2

You an �nd more interesting Exerises on �xpoint indution in past examination

questions (e.g. 1993 Paper 8 Question 10).

4.2 Denotational Semantis of IMP

Having dealt with the mathematial preliminaries, we an now give the denotational se-

mantis of our language using pos.

4.2.1 Semantis of integer and boolean expressions

We de�ne funtions

[[�℄℄ : Iexp! (States! Z)

[[�℄℄ : Bexp! (States! B)

by indution on the struture of expressions.

6

You an pronoune [[e℄℄ as `the meaning of

e', and the de�nitions are as follows, for any S 2 States:

Constants For n 2 Z, b 2 B

[[n℄℄(S)

def

= n

[[b℄℄(S)

def

= b

Variables For x 2 Pvar

[[x℄℄(S)

def

= S(x)

6

The symbols [[and ℄℄ are alled semanti brakets and part of their purpose is to emphasize that what's

inside them is to be treated as a piee of syntax, rather than a mathematial expression. Sine we already

have some onventions (involving underlining and the use of di�erent typefaes) for this, that aspet is not

quite so important for us.

53

Compound expressions For iop 2 Iop, bop 2 Bop, ie

1

; ie

2

2 Iexp

[[ie

1

iop ie

2

℄℄(S)

def

= ([[ie

1

℄℄(S)) iop ([[ie

2

℄℄(S))

[[ie

1

bop ie

2

℄℄(S)

def

= ([[ie

1

℄℄(S)) bop ([[ie

2

℄℄(S))

Proposition 21 For all ie 2 Iexp, be 2 Bexp, S 2 States, n 2 Z, b 2 B :

ie; S)

I

n () [[ie℄℄(S) = n

be; S)

B

b () [[be℄℄(S) = b

In other words, the [[�℄℄ funtions are idential to the operationally de�ned funtions Ieval

and Beval.

Proof. This is an elementary strutural indution, and is left as an Exerise. 2

So the meaning of an expression is a (total) funtion from States to whihever of Z

and B is appropriate. We an regard States,Z and B as disrete pos, in whih ase the

funtions are trivially ontinuous.

4.2.2 Semantis of ommands

Giving a semantis to ommands is more ompliated than giving a semantis to ex-

pressions. This is beause we have to deal with two (losely related) extra features of

ommands: potential non-termination and looping onstruts. Reall that for ommand

C, we de�ned Ceval(C) to be a partial funtion States * States. An alternative way to

express this partiality is by taking total funtions into the at po States

?

:

Proposition 22 For any sets X and Y , there is a bijetive orrespondene between the

set (X * Y) of partial funtions from X to Y and the elements of the po [X ! Y

?

℄

(where we regard X and Y as disrete pos).

Proof. Firstly note that any funtion from X to the underlying set of Y

?

is ontinuous,

beause X is disrete.

We de�ne a funtion I from (X * Y) to the underlying set of [X ! Y

?

℄ by, for

f 2 (X * Y), x 2 X

I(f)(x)

def

=

(

[f(x)℄ if f(x) is de�ned

? otherwise

The inverse funtion I

�1

sends g:X ! Y

?

to I

�1

(g):X * Y where for any x 2 X,

I

�1

(g)(x) is de�ned i� g(x) = [y℄ for some y 2 Y , and in this ase I

�1

(g)(x) = y.

Clearly I

�1

(I(f)) = f and I(I

�1

(g)) = g. 2

Note that the ompletely unde�ned partial funtion orresponds to the onstantly

? funtion (�x 2 X: ?):X ! Y

?

. When we de�ne the denotation of a ommand as

a ontinuous funtion from States ! States

?

, non-termination of the ommand will be

represented by its denotation returning ?.

We an now de�ne

[[�℄℄:Com! [States! States

?

℄

by indution on the struture of ommands. The meaning of any ommand will be a

(trivially) ontinuous funtion from the disrete po States to the at po States

?

.

54

Skip

[[skip℄℄

def

= �S 2 States:[S℄

Assignment If x 2 Pvar and ie 2 Iexp then the meaning of the assignment x := ie in

a state S is the element of States

?

orresponding to the state S updated to send

the variable x to the integer [[ie℄℄(S) (with apologies for the overloading of square

brakets):

[[x := ie℄℄

def

= �S 2 States:[S[[[ie℄℄(S)=x℄℄

Sequening For C

1

; C

2

2 Com we have [[C

1

℄℄:States ! States

?

and [[C

2

℄℄:States !

States

?

and we want to ompose them together, for whih we need to use the (�)

�

operation (Setion 4.1.6)

States States

?

States

?

-

[[C

1

℄℄

-

([[C

2

℄℄)

�

So we de�ne

[[C

1

; C

2

℄℄

def

= �S 2 States:[[C

2

℄℄

�

([[C

1

℄℄(S))

Conditionals For be 2 Bexp, C

1

; C

2

2 Com we an give the meaning of ifbethenC

1

elseC

2

using the ontinuous onditional funtion whih we de�ned in Setion 4.1.7:

[[if be thenC

1

elseC

2

℄℄

def

= �S 2 States: ([[be℄℄(S)) [[C

1

℄℄(S) j [[C

2

℄℄(S))

While-loops This is where we need the interesting bit of the order struture of pos.

Reall that (f. the transition semantis and the exerises at the end of the last

hapter)

while be do C � if be then (C ; while be do C) else skip

We want the denotation of the ommand on the left to be equal to that of the

ommand on the right. If we write f 2 [States ! States

?

℄ for the as yet unknown

denotation of while be do C, this means that we want f to satisfy

f = �S 2 States:([[be℄℄(S)) f

�

([[C℄℄(S)) j [S℄)

The expression on the right is a ontinuous funtion of f , whih means that we an

�nd an f satsifying the equation by taking the least �xed point of that funtion.

[[while be doC℄℄

def

= �x(�)

where �: [States! States

?

℄! [States! States

?

℄ is de�ned by

�

def

= �f 2 [States! States

?

℄:�S 2 States:([[be℄℄(S)) f

�

([[C℄℄(S)) j [S℄)

The fat that for any ommand C, [[C℄℄ is indeed a well-de�ned ontinuous funtion is

relatively easy to see. The only thing that might not be ompletely obvious is that the

operation � whih we used to de�ne the meaning of while ommands is ontinuous, but

this an be seen from the fat that it is built up out of ontinuity-preserving operations.

Alternatively, you an prove it from �rst priniples (Exerise). To know that �x(�) exists

55

we also need to know that � is an operator on a domain with a least element, whih it is,

sine [States! States

?

℄ has as least element the onstantly ? funtion.

It is worth trying to understand just how the denotation of while ommands is on-

struted. Assume that there is some ommand
 suh that [[
℄℄ = �S 2 States:?, then

[[whilebedoC℄℄ = �x(�) 2 [States! States

?

℄ is onstruted as the least upper bound of a

hain of funtions f :N ! [States! States

?

℄, starting with the onstant bottom funtion:

f

n

: States! States

?

f

0

= �S 2 States:?

= [[
℄℄

f

1

= �(f

0

)

= �S 2 States:([[be℄℄(S)) f

�

0

([[C℄℄(S)) j [S℄)

= �S 2 States:([[be℄℄(S)) ? j [S℄)

= [[if be then
 else skip℄℄

f

2

= �(f

1

)

= �S 2 States:([[be℄℄(S)) f

�

1

([[C℄℄(S)) j [S℄)

= [[if be then (C ; if be then
 else skip) else skip℄℄

f

3

= �(f

2

)

= �S 2 States:([[be℄℄(S)) f

�

2

([[C℄℄(S)) j [S℄)

= [[if be then (C ; if be then (C ; if be then
 else skip) else skip) else skip℄℄

f

4

= �(f

3

)

= and so on...

So the limit of this hain, whih is the denotation of the while ommand is (morally)

equal to the denotation of its in�nite unfolding in terms of if statements. Eah of the f

i

is the denotation of a �nite approximation to the while ommand whih behaves like the

while ommand for up to i iterations and then fails to terminate.

4.3 Equivalene of the Denotational and Operational Se-

mantis of IMP

Theorem 23 For all ie 2 Iexp,be 2 Bexp,C 2 Com,n 2 Z,b 2 B and S; S

0

2 States:

1. ie; S)

I

n if and only if [[ie℄℄(S) = n.

2. be; S)

B

b if and only if [[be℄℄(S) = b.

3. C;S)

C

S

0

if and only if [[C℄℄(S) = [S

0

℄.

In other words, the denotational [[�℄℄ funtions are equal to the operationally de�ned

funtions Ieval,Beval and Ceval (where in the third ase we regard Ceval as a funtion

Com! [States! States

?

℄ using the bijetion of Proposition 22).

Proof. The �rst two parts are just Proposition 21. For part 3., we have two diretions to

prove. The left-to-right diretion is proved by rule indution for)

C

, whilst the right-to-

left diretion is shown by strutural indution on C.

56

For the left-to-right diretion, we want to show that

f(C;S; S

0

) j [[C℄℄(S) = [S

0

℄g � Com� States� States

is losed under the rules de�ning)

C

, using parts 1. and 2. of the theorem for those rules

whose hypotheses involve)

B

or)

I

. We just deal with the ase of rule ()

C

�7) and leave

the other rules as Exerises.

Suppose that C is while be do C

0

and that

(a) [[be℄℄(S) = true

(b) [[C

0

℄℄(S) = [S

0

℄

() [[C℄℄(S

0

) = [S

00

℄

for some states S; S

0

; S

00

. We have to prove that [[C℄℄(S) = [S

00

℄. Now, by the de�nition of

the denotational semantis, [[C℄℄ = �x(�) where

� = �g:�S:([[be℄℄(S)) g

�

([[C

0

℄℄(S)) j [S℄)

By the disussion in Setion 4.1.8,

[[C℄℄ = �x(�) = �(�x(�)) = �([[C℄℄)

so that

[[C℄℄(S) = [[be℄℄(S)) [[C℄℄

�

([[C

0

℄℄(S)) j [S℄

= true) [[C℄℄

�

([S

0

℄) j [S℄ by (a) and (b)

= [[C℄℄

�

([S

0

℄) by de�nition of)j

= [[C℄℄(S

0

) by de�nition of (�)

�

= [S

00

℄ by ()

as required.

For the right-to-left diretion we use indution on the struture of C. As usual, the

interesting ase is when C is while be do C

0

and we onsider this ase in detail and leave

the others as Exerises. In this ase we want to show that

8S; S

0

:[[C℄℄(S) = [S

0

℄ implies C;S)

C

S

0

(4.2)

on the indutive assumption that

8S; S

0

:[[C

0

℄℄(S) = [S

0

℄ implies C

0

; S)

C

S

0

(4.3)

Now, (4.2) is equivalent to

[[C℄℄ v Ceval(C) in [States! States

?

℄ (4.4)

where,

Ceval(C)(S)

def

=

(

[S

0

℄ if C;S)

C

S

0

for some S

0

? otherwise

57

But by the de�nition, [[C℄℄ = �x(�) and that means, by the disussion in Setion 4.1.8,

that we an dedue (4.4) if we an show Ceval(C) to be a pre�xed point of �, as it is then

w the least pre�xed point. In other words, we want to show

�(Ceval(C)) v Ceval(C) (4.5)

i.e. that whenever �(Ceval(C))(S) 6= ? then �(Ceval(C))(S) = Ceval(C)(S). But

�(Ceval(C))(S) =

�

[[be℄℄(S)) (Ceval(C))

�

([[C

0

℄℄(S)) j [S℄

�

so if �(Ceval(C))(S) 6= ? then there are two possibilities:

1. Either [[be℄℄(S) = true and (Ceval(C))

�

([[C

0

℄℄(S)) 6= ?, or

2. [[be℄℄(S) = false.

We onsider eah ase in turn:

1. In this ase we have

? 6= (Ceval(C))

�

([[C

0

℄℄(S)) =

(

Ceval(C)(S

0

) if [[C

0

℄℄(S) = [S

0

℄

? otherwise

So we must have [[C

0

℄℄(S) = [S

0

℄ and Ceval(C)(S

0

) = [S

00

℄ for some S; S

00

. Then by

(4.3) and the de�nition of Ceval we have

C

0

; S)

C

S

0

and C;S

0

)

C

S

00

We are assuming that [[be℄℄ = true so that by Part 2. of the Theorem (whih was

part of Proposition 21) we have

be; S)

B

true

whih taken with the two instanes of)

C

above, allows us to apply ()

C

�7) to

obtain C;S)

C

S

00

and hene

�(Ceval(C))(S) = [S

00

℄ = Ceval(C)(S)

as required.

2. In the ase that [[be℄℄(S) = false, then by Part 2. of the Theorem, be; S)

B

false and

so by applying rule ()

C

�6) we get

C;S)

C

S

and hene

�(Ceval(C))(S) = [S℄ = Ceval(C)(S)

as required.

So in either ase, we get �(Ceval(C))(S) 6= ? implies �(Ceval(C))(S) = Ceval(C)(S) for

all S 2 States and thus we have established (4.5) and hene (4.2) as explained above. 2

Theorem 23 immediately implies that the operational and denotational notions of

equivalene oinide:

Corollary 24 For any C

1

; C

2

2 Com

C

1

� C

2

() [[C

1

℄℄ = [[C

2

℄℄

2

58

4.3.1 Adequay and full abstration

We have been rather fortunate here { the orrespondene between the denotational and

operational semantis is very aurate. For more ompliated languages, it is very diÆult

to ahieve suh a preise math. However, for many purposes a preise orrespondene is

not stritly neessary. For example, suppose we wish to use the denotational semantis to

dedue that two ommands are semantially equivalent. In other words, we plan to show

that the two ommands have the same denotation and dedue that they will behave the

same operationally. For this to be a valid proedure, we only need to know the right-to-left

diretion of Corollary 24, viz.

[[C

1

℄℄ = [[C

2

℄℄) C

1

� C

2

A semantis with this property (denotational equality implies operational equality) is

said to be adequate. A semantis whih satis�es both diretions of Corollary 24 (so that

operational equality implies denotational equality as well as vie-versa) is said to be fully

abstrat.

Of ourse, if our semantis is adequate but not fully abstrat, we might fail to prove a

true fat C

1

� C

2

using the denotational semantis. But for a good semantis this won't

happen very often, and in any ase, we don't expet to be able to prove all true equiva-

lenes, simply beause of the inompleteness theorem (or the insolvability of the halting

problem, aording to taste). Note that an adequate but non-fully abstrat semantis

is no good at all for proving semanti inequivalenes, but that showing inequivalenes

diretly from the operational semantis is usually easy (for example, for IMP, to show

that two ommands are inequivalent we just have to give one state on whih they behave

di�erently).

So why is it hard to �nd fully abstrat denotational semantis for many interesting

languages? Part of the answer is that denotational models usually ontain some points

whih are not the denotation of any program phrase. Now this does not in itself ause a

failure of full abstration: after all, there are ontinuous funtions from States to States

?

whih are not the denotation of any IMP ommand (Exerise: why? Find one.), but our

semantis for IMP is fully abstrat. The problem arises when two semantially equivalent

phrases have denotations whih are di�erent, but are only di�erent beause of the presene

of the extra elements in the semantis. For example, we might have two funtions whih

behave the same on all arguments whih are the denotation of a term in the language, but

whih give di�erent results on some argument whih is not the denotation of any term.

Examining just how this ours an give fairly deep insights into the struture of the

language in question. For example, a straightforward denotational semantis for a little

funtional language turns out not to be fully abstrat beause all the funtions de�nable

in the language are sequential { they an be omputed without any parallelism or time-

sliing. The model ontains funtions whih annot be so omputed, suh as `parallel or',

whih is the ontinuous funtion por: B

?

� B

?

! B

?

de�ned by

por(x; y) =

8

>

<

>

:

[true℄ if x = [true℄ or y = [true℄

[false℄ if x = [false℄ and y = [false℄

? otherwise

You should be able to see that to implement a funtion with this behaviour requires

some parallelism, beause on a sequential mahine the funtion has to look at one of

its arguments �rst, and if that fails to terminate, the appliation as a whole will fail to

59

terminate, even if the other argument would have returned [true℄. And in fat it turns

out that adding a parallel or onstant to the language makes the simple semantis fully

abstrat. The alternative, re�ning the de�nitions of domains and ontinuous funtions so

as to get full abstration for the sequential language is an extremely hallenging problem

(whih has reently been solved, after a fashion).

4.3.2 Compositionality and ongruene

The denotational semantis we have given for IMP has a very interesting property, whih

is that the meaning of any phrase is given in terms of the meaning of its subphrases (go

bak and look!). We all this property of the semantis ompositionality, and it is a highly

desirable feature of a semantis. We an use the fat that the denotational semantis is

ompositional to give a slik proof of the fat that semanti equivalene is a ongruene

(you should have already proved this diretly from the operational semantis when doing

the Exerises at the end of the last hapter):

Corollary 25 (Semanti ongruene) For any C

1

; C

2

2 Com and C[�℄ a `ommand

with a hole in it',

C

1

� C

2

implies C[C

1

℄ � C[C

2

℄

Proof. Beause [[�℄℄ is ompositional, it's obvious that [[C

1

℄℄ = [[C

2

℄℄ implies that [[C[C

1

℄℄℄ =

[[C[C

2

℄℄℄ and the result then follows from Corollary 24 (just using the adequay diretion).

2

4.4 Information, Continuity and Computability

We have given the semantis of IMP ommands in terms of ontinuous funtions between

pos. It seems worth trying to give some slightly more intuitive explanation of why pos

and ontinuous funtions were hosen, and work, for this purpose.

Cpos and ontinuous funtions are not a priori obviously the plae to look for the

meanings of programs. One's �rst thought would be to just take sets and funtions. This

doesn't quite work for a number of reasons:

1. Non-termination. If [[A℄℄ were the set assoiated with a type A, and [[B℄℄ that asso-

iated with a type B, then taking [[A! B℄℄ to be ([[A℄℄! [[B℄℄), the set of funtions

between [[A℄℄ and [[B℄℄ would not aount for the possibility of non-termination. (You

should know from Computation Theory that the possibility of non-termination is a

entral part of all Turing-powerful omputational paradigms.)

2. Reursion. Looping or reursive language onstruts suh as reursive funtion def-

initions in ML or while loops in IMP naturally lead to the denotation of ertain

expressions being de�ned in a reursive way. If the denotation of a program expres-

sion e is a funtion f : [[A℄℄ ! [[B℄℄ then this means de�ning f to be a solution to an

equation f = �(f) where � is some funtion from ([[A℄℄! [[B℄℄) to itself. We simply

annot �nd solutions to arbitrary suh equations if we allow all set-theoreti fun-

tions for �. We feel somehow that we shouldn't have to solve arbitrary equations,

sine there are vastly fewer omputable funtions and these are the only ones whih

give rise to equations whih we absolutely have to be able to solve. Furthermore,

60

some equations may have more than one solution (e.g. f = f has any funtion at

all as a solution), and we need some way to pik the one of those solutions whih

orresponds to what the operational semantis atually gives.

3. Reursive domain equations. As well as reursively de�ned elements of domains,

we also have to deal with situations where the domains themselves are reursively

de�ned. IMP is too simple to require this, but it shows up in the semantis for

ML's reursive datatypes or in the ase of the untyped lambda alulus, whih was

the original reason for Dana Sott's introdution of domain theory in the late 60s.

Roughly speaking, the argument goes as follows: in the untyped lambda alulus

every term is a funtion whih an be applied to any other term and return a term.

So if D is the set representing the meanings of untyped lambda terms, we would

have to have D = (D ! D). In fat, we'd be ontent with D

�

=

(D ! D) (replaing

equality with isomorphism), but even this has only a trivial solution if we take

(D ! D) to be the set of all funtions from the set D to itself. The problem is

that (D ! D) is always of stritly larger ardinality (size) than D whenever D

has more than one element.

7

By adding some order struture to D, and restriting

the meaning of (D ! D) to those funtions whih respet that order struture it

is possible to �nd solutions to the equation and hene to �nd a semantis for the

untyped lambda alulus.

So the reasons for introduing all the tehnial mahinery of order and ontinuity were

initially very pragmati { we just wanted something like a set, but sets wouldn't atually

work beause they had too many funtions between them. So we added some struture

and ut down the funtion spae to funtions that preserved the struture so that we

ould solve reursive domain equations (and reursive element equations). After the fat,

however, we an develop an informal story whih relates the order struture to an intuitive

idea of information, and ontinuity to omputability. This analogy between ontinuity and

omputability is not preise, but we an ertainly argue informally that any omputable

funtion should be ontinuous.

Firstly, just onsider non-termination. The idea of adding a new element to represent

non-termination seems simple enough, but why not just take a set-theoreti union? Well,

onsider a funtion f :N [f?g ! N [f?g. If f(?) = [n℄ then that means that when

the argument of f fails to terminate, then f returns the natural number n. Now if f is

supposed to be the meaning of a omputer program, then this must mean that f([m℄) = [n℄

for allm 2 N, sine f ould not have deided what to do when given ? as input by looking

at its input, seeing that it failed to terminate, and then returning [n℄ { that would take

for ever! So f must return [n℄ for any input. So ? represents less information than [m℄,

and if the funtion is given more information as input, it must give more information as

output, whih we an express by putting an order on N [f?g to give N

?

, and restriting

attention to monotone funtions.

As another example, onsider a omputer program or system F whih takes �nite and

in�nite streams of 0s and 1s as input and returns a 0 or a 1. There are many suh systems.

One of them just returns a 0 without reading any input. Another returns 1 straight away.

One of them reads one harater from the input and returns that, whereas another negates

the �rst harater. One returns a 1 as soon as it has seen more than 42 1s in the input, one

7

By a simple diagonalisation argument of the sort you should have met in Disrete Maths and in

Computation Theory.

61

ounts all the ones in the input and returns 0 or 1 aording to whether the total is a prime

number, and so on. There are some onstraints on the possible behaviours, however. One

of these is that if F outputs a value before it's seen all of the input, then it annot retrat

that on the basis of any subsequent input. We an use ? as a `don't know' element on

the input and the output and there is then a natural information order imposed on them

both. For the output side we get f0; 1g

?

, reading ? as `F hasn't produed an answer yet'

and 0 (resp. 1) as `F has printed a 0 (resp. 1)'. The order on the input is more interesting

and starts like this:

?

[℄[0;? [1;?

[0℄ [0; 0;? [0; 1;? [1℄ [1; 0;? [1; 1;?

[0; 0℄ [0; 1℄ [1; 0℄ [1; 1℄

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

Q

Q

Q

Q

Q

Q

Q

�

�

�

�

�

�

�

A

A

A

A

A

A

A

A

A

A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

where, for example ? means we haven't seen any of the input yet, [0;? means that we've

seen a zero but we don't know what omes next and [0℄ means that we've seen a zero and

then an end-of-stream marker. Note that the information ordering is essentially a pre�x

ordering. You should be able to onvine yourself that any implementable F has to be

monotoni with respet to this ordering.

What about ontinuity? Take, for example, the inreasing hain one obtains by aways

taking the right-hand branh in the input domain. This is

? v [1;? v [1; 1;? v [1; 1; 1;? v � � � v [1; 1; 1; : : :℄

where the limit is the in�nite stream of 1s, whih we an also write as 1

!

. Continuity

imposes the extra restrition on F that it annot return ? at all the �nite stages and

then suddenly return 0 or 1 at the in�nite limit 1

!

. This is surely reasonable, sine F an

only know that it is being presented with an in�nite stream of 1s after waiting an in�nite

amount of time.

This is not, of ourse, a truly ompelling argument that omputable maps are on-

tinuous, but it does give some idea of how we an rationalise the fat that domains and

ontinuous maps suit the purposes of semantis. You should note that the other implia-

tion ertainly doesn't hold { there are learly many non-omputable funtions in [N ! N

?

℄,

sine any partial funtion N * N at all gives rise to suh a ontinuous funtion. Continuity

only really starts to ut things down at higher types.

62

4.5 Implementing the Denotational Semantis in ML

It is relatively easy to produe a rather impreise translation of the lauses de�ning [[�℄℄

into ML funtions. We annot, however, really reet the subtleties of the distintions we

make between, for example, States and States

?

in the ML ode, sine all ML types already

ontain the possibility of non-termination, and one annot in any ase write programs

whih manipulate non-termination like any other value. Thus the best we an do is to write

some ML ode whih has, morally, the same denotational semantis as IMP programs,

rather than being that semantis. The ML ode is loser to an alternative presentation of

the semantis in whih we do not make lifting expliit, and instead make the denotation

of a ommand be a strit ontinuous funtion from States

?

to States

?

(see Exerise 17).

It is virtually the same as the implementation of the big step evaluation semantis:

(* Denotational Semantis of IMP *)

(* denotei : IEXP -> (STATES -> int) *)

fun denotei ie (S:STATES) = ase ie of

N(n) => n

| Pvar(x) => lookup(x,S)

| Iop(iop,ie1,ie2) => let val n1 = denotei ie1 S

val n2 = denotei ie2 S

in

iopmeaning iop (n1,n2)

end;

(* denoteb : BEXP -> (STATES -> bool) *)

fun denoteb be (S:STATES) = ase be of

B(b) => b

| Bop(bop,ie1,ie2) => let val n1 = denotei ie1 S

val n2 = denotei ie2 S

in

bopmeaning bop (n1,n2)

end;

(* Fixpoint ombinator *)

fun fix f x = f (fix f) x;

(* denote : COM -> (STATES -> STATES) *)

fun denote C (S:STATES) = ase C of

Skip => S

| Assign(x,ie) => let val n = denotei ie S

in update(S,x,n)

end

| Seq(C1,C2) => let val S' = denote C1 S

in denote C2 S'

end

| If(be,C1,C2) => if (denoteb be S)

then denote C1 S

else denote C2 S

63

| While(be,C1) =>

let val phi = fn f => fn S'=> if (denoteb be S')

then f (denote C1 S')

else S'

in (fix phi) S

end;

4.6 Exerises

1. Let X and Y be sets, regarded as disrete pos. Show that a funtion f :X

?

! Y

?

is ontinuous if and only if one of the following holds:

(a) f is strit. That is, f(?) = ?.

(b) f is onstant. 8x 2 X

?

:f(x) = f(?).

2. Suppose that v is a partial order on a set X and that f :X ! X is a monotone

funtion. Show that x

0

2 X is a �xed point of f if both the following two onditions

hold:

(a) x

0

v f(x

0

)

(b) 8x 2 X:(x v f(x)) x v x

0

).

3. Suppose that D,E and F are pos, and that f :D �E ! F is a funtion satisfying

(a) For all d 2 D, �y 2 E:f(d; y) is a ontinuous funtion E ! F ,

(b) For all e 2 E, �x 2 D:f(x; e) is a ontinuous funtion D ! F .

Is it the ase that f is itself a ontinuous funtion from the produt po D � E to

F ?

4. Show that the funtion ev: [D ! E℄�D ! E of Setion 4.1.5 is ontinuous.

5. Let D be a po with a least element. Show that the funtion �x: [D ! D℄ ! D of

Setion 4.1.8 is ontinuous.

6. Let
 be the po in the Examples at the end of Setion 4.1.2 and 1 a one-element

po. Show that the exponential po [
! (1)

?

℄ is in bijetion with
 itself.

7. Look again at Proposition 22. What is the the order relation on the set of partial

funtions (X * Y) whih is indued from the order relation v on the po [X ! Y

?

℄

under the bijetion I?

8. We say that two pos D and E are isomorphi, and write D

�

=

E if there are

ontinuous funtions �:D ! E and :E ! D whih are mutually inverse, so that

� Æ is the identity funtion on E and Æ � is the identity on D. Prove or disprove

eah of the following statements:

(a) For any pos A and B, A�B

�

=

B �A.

(b) For any pos A and B, (A�B)

?

�

=

A

?

�B

?

.

() For any pos A, B and C, A� (B � C)

�

=

(A�B)� C.

64

(d) For any pos A and B, [A! B℄

?

�

=

[A! B

?

℄.

(e) For any pos A, B and C, [(A�B)! C℄

�

=

[A! [B ! C℄℄.

(f) For any pos A and B, [A

?

! B℄

�

=

B � [A! B℄.

9. Show that for any d 2 D, if we de�ne P � D by P = fx 2 D j x v dg, then P is an

inlusive subset of D.

10. Show that an arbitrary intersetion of inlusive subsets of a poD is itself an inlusive

subset of D. In other words, assume that for all i 2 I, P

i

is an inlusive subset of D

and then prove that

T

i2I

P

i

is an inlusive subset of D.

11. Show that the union of two inlusive subsets of D is inlusive. Dedue that any �nite

union of inlusive subsets is inlusive. Give an example to show that an in�nite union

of inlusive subsets need not be inlusive (hint: start by just thinking of the simplest

example you an of a non-inlusive subset of a po).

12. Show that if f :D ! E is a ontinuous funtion between two pos, and P is an

inlusive subset of E, then f

�1

(P) is an inlusive subset of D (where, of ourse,

f

�1

(P) = fd 2 D j f(d) 2 Pg). So inlusive subsets are losed under inverse

images of ontinuous funtions. How about diret images? In other words, if P is

an inlusive subset of D, is f(P) always an inlusive subset of E?

13. Do the proof of Proposition 21, showing the equivalene of the denotational fun-

tions [[�℄℄ with the operationally de�ned evaluation relations for integer and boolean

expressions.

14. Complete the proof of Theorem 23 by

(a) Showing that the set

f(C;S; S

0

) j [[C℄℄(S) = [S

0

℄g � Com� States� States

is losed under the rules ()

C

�1) to ()

C

�6) of the evaluation semantis.

(b) Completing the proof by indution on the struture of C that

8S; S

0

:[[C℄℄(S) = [S

0

℄ implies C;S)

C

S

0

15. Let �: [N ! N

?

℄! [N ! N

?

℄ be the funtion whih sends g:N ! N

?

to the funtion

�(g):N ! N

?

de�ned by

�(g)(n)

def

=

(

[1℄ if n = 0

(�m:[m� n℄)

�

(g(n� 1)) otherwise

for all n 2 N. What is the funtion �(�x 2 N:?)? What is �

n

(�x 2 N:?)? What is

�x(�)?

16. Think what would happen in the previous question if we were to replae N and N

?

by Z and Z

?

. How many �xed points are there of the new version of �? Whih

is the least �xed point? Whih one orresponds to the real behaviour of the usual

de�nition of a very familar ML funtion?

65

17. We have made a `modern' hoie about how we should treat lifting in giving the

denotational semantis of IMP. In partiular, we hose to work with pos whih

do not neessarily have a bottom, and to make the denotation of a ommand be

a ontinuous funtion from States to States

?

. This meant that we had to use the

(�)

�

operation to ompose the denotation of two ommands. There is an alternative

presentation, whih is the one used in muh of the literature, in whih we never

use pos without a bottom, and make the semantis of ommands be strit ontin-

uous funtions from States

?

to States

?

. In this presentation the interpretation of

sequening is just ordinary funtional omposition. Work out the rest of the details

of the semantis of IMP in this form. Compare it with the other semantis and with

the ML implementation of the denotational semantis.

66

Chapter 5

Further Topis

We have now overed the semantis of IMP fairly thoroughly. The aim of this hapter is

to give a brief, and rather informal, sketh of how we an give semantis to a ouple of

interesting extensions of IMP, and how Floyd-Hoare logi (that is, an axiomati semantis)

for IMP may be interpreted and proved sound using the denotational semantis we have

already given. All the material in this hapter is non-examinable, in the sense that you

will not be assumed to know it. Some of these topis have, however, arisen in previous

years' questions, and in any ase it is important to be aware that giving semantis to more

sophistiated programming languages an be onsiderably more omplex and subtle (not

to mention interesting) than was the ase for IMP.

5.1 Non-Determinism

IMP is a ompletely deterministi language: in a given state, the result of evaluating a

partiular expression is unique and the result of exeuting any ommand (either a �nal

state or non-termination) is also unique. We proved this for the small-step semantis

in Theorem 14, and it is also impliit in the fat that, for example, the denotation of a

ommand is given as a funtion from States to States

?

. Non-determinism is interesting

for a variety of reasons. Firstly, adding non-deterministi onstruts to a language an,

perhaps surprisingly, lead to learer programs. This is beause one an avoid having to

overspeify some aspets of an algorithm. For example, a program whih operates on two

streams of input data might be expressed as non-deterministially hoosing whih stream

to look at next if the order in whih items are piked for proessing is unimportant.

Seondly, non-determinism is a natural onsequene of onurreny (though there is more

to onurreny than non-determinism). For example, suppose that we were to extend IMP

with a ommand form C

1

k C

2

whih is supposed to exeute C

1

and C

2

in parallel. What

would be the e�et of (X := 1) k (X := 2)? Assuming that assignments are atomi, the

result will be that X has the value 1 or the value 2, depending on the order in whih the

proesses run; the programmer must generally assume that either order is possible.

Finally, non-determinism arises even in modelling deterministi systems, if we wish to

abstrat away from ertain low-level details. One interesting example of this phenomenon

ours when desribing stati analyses, suh as are often performed by optimising ompilers

to disover program properties whih an be used to ompile more eÆient ode. The

analysis is sometimes done by omputing an approximate semantis of the program in

whih it is assumed that, for example, a value of type int might have any integer value

67

at all. Thus semanti tehniques designed for non-deterministi languages are useful in

modelling the stati analysis, even when the language being analysed is deterministi.

5.1.1 Transition semantis of non-determinism

We now onsider extending IMP with a non-deterministi hoie onstrut. The rules for

forming ommands (Figure 3.1) are extended with

C

1

2 Com C

2

2 Com

C

1

or C

2

2 Com

and the intended behaviour of C

1

or C

2

is that it non-deterministially behaves either like

C

1

or like C

2

. Here's how to extend the small-step transition semantis (Figure 3.2) to

ope with hoie:

hC

1

or C

2

; Si !

C

hC

1

; Si hC

1

or C

2

; Si !

C

hC

2

; Si

These two axioms simply say that C

1

or C

2

an make a single step to beome C

1

, and

that it also an make a transition to beome C

2

. Note that this means that the transition

relation !

C

on on�gurations now has to be a general relation, beause a on�guration

an have more than one immediate suessor. Previously, !

C

was atually a partial

funtion (for example, we exploited this fat when de�ning step in ML).

This apparently trivial extension of IMP is atually rather more interesting than it

might at �rst appear. Previously, a given on�guration (i.e. pair of a ommand and a state)

ould behave in just two ways - it ould have a �nite evaluation sequene, orresponding

to termination, or it ould have an in�nite evaluation sequene, orresponding to non-

termination. But with the addition of non-deterministi hoie, the possibilities are riher

{ not only an a ommand have several possible �nite evaluation sequenes, but it an

have a mixture of some �nite and some in�nite evaluation sequenes. This leads to some

hoie in how to formulate the big-step and denotational semantis.

5.1.2 An evaluation semantis for non-determinism

The obvious way to give a big-step semantis to our extended language is to add the

following two rules to those in Figure 3.3 with

C

1

; S)

C

S

0

C

1

or C

2

; S)

C

S

0

C

2

; S)

C

S

0

C

1

or C

2

; S)

C

S

0

And indeed, given these two rules, there is still a orrespondene between the small-step

and the big-step semantis (Exerise):

Theorem 26 When the syntax, transition semantis and evaluation semantis of IMP

are extended as above, the equivalene of Theorem 16, viz.

hC;Si !

�

C

hskip; S

0

i if and only if C;S)

C

S

0

remains valid. 2

68

But this is not quite the whole story. Think about how non-termination is treated in the

two styles of operational semantis. In the transition semantis, we an expliitly express

what it is for a on�guration to lead to a non-terminating omputation: there is an in�nite

sequene of one step-transitions

hC;Si !

C

hC

0

; S

0

i !

C

hC

00

; S

00

i !

C

� � �

(whih we an write hC;Si !

!

C

). In the big-step evaluation semantis, by ontrast, non-

termination is simply reeted by the absene of a derivation of a terminating evaluation.

Before we added non-determinism, this was perfetly adequate:

Theorem 27 For deterministi IMP, for any ommand C and state S

hC;Si !

!

C

if and only if 6 9S

0

: C; S)

C

S

0

2

But for non-deterministi IMP, the theorem above is false. For example, for any S

h(skip) or (while true do skip); Si !

!

C

but also

(skip) or (while true do skip); S)

C

S

So the big-step semantis only really aptures what we might think of as \positive" in-

formation: it just tells us the set of terminating behaviours of a on�guration; thus it

annot distinguish a ommand whih always terminates in a given state from one whih

sometimes terminates in that state and sometimes fails to terminate. Whether we are

about this distintion depends on the use we are making of the semantis.

One way to make the big-step semantis more aurate is to add a \may-diverge"

prediate on on�gurations *� (Com � States), but it is not immediately lear how to

de�ne *. It is not too hard to write down some plausible looking rules, suh as

be; S)

B

true C;S)

C

S

0

while be doC;S

0

*

while be doC;S *

but it is rather harder to see what those rules are supposed to mean. They ertainly

don't onstitute an indutive de�nition of *, beause if one tries to use them to derive the

divergene of a partiular ommand, one ends up trying to onstrut in�nite derivations.

For example, if we try to prove

while true do skip *

the derivation must end with

true; S)

B

true skip; S)

C

S while true do skip; S *

while true do skip; S *

where the �nal assumption is the same as the onlusion. It turns out that we an make

sense of the rules de�ning the divergene prediate if we understand them as a o-indutive

de�nition. The notion of o-indutive de�nition is essentially dual to that of indutive

de�nition (it is de�ned using a greatest, rather than a least, �xed point), but it would,

unfortunately, take us too far beyond the sope of this ourse to investigate it in more

detail.

1

1

A theory of operational semantis de�ned using a mixture of indutive and o-indutive evaluation

and divergene relations has been developed by the Cousots, under the name GSOS

1

. See, for example,

P. Cousot and R. Cousot. Indutive de�nitions, semantis and abstrat interpretation. In Proeedings of

the ACM Conferene on Prinples of Programming Languages. 1991.

69

5.1.3 Non-determinism and semanti equivalene

The ombination of non-determinism and non-termination whih we have in the extended

version of IMP leads to a range of di�erent notions of when two ommmands should be

onsidered equivalent. Let
 be while true do skip and onsider the following three

ommands:

1. x := 1

2. (x := 1) or

3.

Whih of these should be onsidered equivalent? There are several reasonable positions

to take:

Plotkin says none of them are equivalent, beause

1. always terminates

2. an terminate and an fail to terminate

3. always fails to terminate

This point of view is sometimes referred to as errati non-determinism.

Hoare says 1 and 2 are equivalent, and di�erent from 3, beause they have the same

set of possible observable results. This is referred to as angeli, or relational non-

determinism; it is also the semantis behind partial orretness assertions (see Se-

tion 5.3).

Smyth says 2 and 3 are equivalent, and di�erent from 1, beause they an both fail to

terminate and so we an guarantee nothing of either of them. This is alled the

demoni (`what an go wrong, will go wrong') view of non-determinism and is the

semantis for total orretness assertions.

So the simple big-step step semantis whih we gave above orresponds to angeli non-

determinism. If, as before, we write C

1

� C

2

to mean

8S; S

0

: C

1

; S)

C

S

0

i� C

2

; S)

C

S

0

then we have

(x := 1) � ((x := 1) or
) 6�

These di�erent notions of when ommands should be onsidered equivalent orrespond

to di�erent notions of what we an observe of programs. The idea that di�erent notions

of observation yield di�erent equivalenes on program phrases arises in many areas of

semantis, and you will meet it again in the Part II ourse on Conurreny and the Pi

Calulus. When we give a denotational semantis to a language, we generally have to

deide whih notion of equivalene we wish to model sine we would like two ommands to

be equivalent just when their denotations are equal (though this ideal is sometimes rather

diÆult to attain).

70

5.1.4 Denotational semantis for angeli non-determinism

It is fairly straightforward to give a denotational semantis to non-deterministi IMP whih

aptures the angeli view of non-determinism. Reall that P(States), ordered by inlusion,

is a omplete partial order. We will take the denotation of a ommand to be a funtion

from States to P(States). (Sine States is disrete, all suh funtions are ontinuous.)

It is worth noting in passing that there are several equivalent ways of presenting the

domain [States! P(States)℄ whih we ould have used instead:

1. [States ! P(States)℄

�

=

P(States � States) whih is the po of relations between

states. This is why the semantis we shall given is often alled the relational seman-

tis.

2. If we write P

+

(States) for the po of non-empty subsets of States, then [States !

P(States)℄

�

=

[States ! (P

+

(States))

?

℄, sine (P

+

(States))

?

�

=

P(States). This ad-

vantage of this view is that it makes expliit the fat that we are dealing with both

non-determinism and non-termination at the same time.

3. We an also ombine non-determinism and non-termination in the other order.

If D is a po, we write P

H

(D) for the po of non-empty, downwards-losed and

limit-losed subsets of D ordered by inlusion, where S is downwards-losed if

x v y 2 S) x 2 S, and S is limit-losed if whenever hx

n

i is a hain in D

suh that 8n: x

n

2 S then

F

x

n

2 S. Given this notation, we have [States !

P(States)℄

�

=

[States ! P

H

(States

?

)℄ sine P(States)

�

=

P

H

(States

?

). Observe also

that P

H

(States) = P

+

(States) (beause States is disrete), so we ould have used

P

H

rather than P

+

in 2. P

H

(D) is alled the Hoare (or relational) powerdomain of

D.

It is an instrutive Exerise to hek that the assertions made above are orret, i.e. that

the things laimed to be pos really are pos, and all the laimed isomorphisms really

hold.

Before we an present the angeli denotational semantis of non-deterministi IMP, we

need one new piee of notation. If X and Y are sets and f :X ! P(Y) is a funtion, then

we write f

[

:P(X) ! P(Y) for the funtion whih sends A � X to

S

a2A

f(a). (Compare

this with the de�nition of (�)

�

given in Setion 4.1.6.) It is a simple Exerise to hek that

f

[

is always ontinuous, if we regard P(X) and P(Y) as pos.

The relational semantis of non-deterministi IMP is shown in Figure 5.1. Note the

way in whih we use singleton set formation f�g in the plaes where we used the lift-

ing [�℄ operation in the semantis of deterministi IMP, and that the �xpoint in the

semantis of while-loops is well-de�ned beause [States ! P(States)℄ is a po with a

bottom element, namely the onstant emptyset funtion �S 2 States:;. In fat the

angeli denotational semantis has muh the same `shape' as the deterministi denota-

tional semantis of Chapter 4. The di�erene is that we have used the powerset opera-

tion P(�) in plae of the lifting operation (�)

?

. The preise orrespondene is as follows:

Deterministi semantis Non-deterministi semantis

[States! States

?

℄ [States! P(States)℄

[S℄ f Sg

f

�

:States

?

! States

?

f

[

:P(States)! P(States)

The new language feature is the hoie operation, whih we model using the union

operation on P(States). This semantis is both adequate and fully abstrat for the angeli

71

[[skip℄℄(S) = fSg

[[x := ie℄℄(S) = fS[[[ie℄℄(S)=x℄g

[[C

1

; C

2

℄℄(S) = [[C

2

℄℄

[

([[C

1

℄℄(S))

[[if be thenC

1

elseC

2

℄℄(S) = [[be℄℄(S)) [[C

1

℄℄(S) j [[C

2

℄℄(S)

[[while be do C℄℄(S) = �x(�)

where �: [States! P(States)℄! [States! P(States)℄ is de�ned by

�(f)(S) = [[be℄℄(S)) f

[

([[C℄℄(S)) j fSg

[[C

1

or C

2

℄℄(S) = ([[C

1

℄℄(S)) [([[C

2

℄℄(S))

Figure 5.1: Angeli Semantis of Non-Deterministi IMP

notion of equivalene (heking this is left as an Exerise for the reader, but I believe it's

orret: : :):

Theorem 28 For all non-deterministi IMP ommands C

1

and C

2

C

1

�

=

C

2

i� [[C

1

℄℄ = [[C

2

℄℄

2

5.1.5 Errati non-determinism and the Egli-Milner order

It is also possible to give a denotational semantis whih models the more re�ned notion

of equivalene given by the errati view of non-determinism. The basi idea is that we

want to de�ne the meaning of a ommand to be a funtion from States to P

P

(States

?

),

where P

P

(States

?

) is some po made up out of subsets of States

?

but whih aptures the

errati notion of when two sets of possible outomes are equivalent. We an motivate the

onstrution by onsidering an interesting example program:

x := 0 ; a := 0 ; while a = 0 do ((x := x+ 1) or (a := 1))

If we write the state as the pair (S(x); S(a)), the possible exeution sequenes of this

ommand look like this:

(0; 0) ! (1; 0) ! (2; 0) ! � � �

#

(0; 1) (1; 1) (2; 1) � � �

So the possible behaviours are to terminate with S(x) = n and S(a) = 1 for any n 2 N or

to fail to terminate. The fat that non-termination must be a possibility an be seen as a

onsequene of K�onig's Lemma { any in�nite, �nitely branhing tree has an in�nite path

(IA Disrete Maths). What does this have to do with modelling errati non-determinism?

It tells us that any in�nite set in P

P

(States

?

) should also ontain ?. So we take the

72

underlying set of P

P

(States

?

) to be all non-empty subsets of States

?

whih are either

�nite or ontain ?.

What order relation should we put on this olletion of subsets in order to get a po?

We've got two order relations to ombine: the v ordering on States

?

and the � ordering

on P(States

?

). The natural way to ombine these is to say that we move up in the order

from a subset A if every element of A is inreased, possibly to a set of larger elements.

The resulting order is alled the Egli-Milner order v

EM

. More formally, A v

EM

B i� for

all x 2 A there exists a non-empty subset B

x

of B suh that

1. 8y 2 B

x

: x v y

2. B =

S

x2A

B

x

Equivalently:

A v

EM

B i� 1: 8x 2 A:9y 2 B:x v y

and 2: 8y 2 B:9x 2 A:x v y

This order relation turns out to be losely related to the important notion of bisimulation

whih you will meet in the Part II Conurreny ourse. The po (P

P

(States

?

);v

EM

) whih

is onstruted by taking non-empty subsets of States

?

whih are either �nite or ontain

?, together with the Egli-Milner order, is alled the Plotkin powerdomain of States

?

. You

should hek that this really is a po and may like to try drawing (a �nite part of!) its

Hasse diagram.

By taking [[C℄℄ to be in [States ! P

P

(States

?

)℄, we an de�ne a denotational seman-

tis for non-deterministi IMP whih models the equivalene on ommands given by the

errati view of non-determinism. We omit the details of this semantis, but its de�nition

looks muh like that whih we gave for angeli non-determinism, though using a di�erent

powerdomain.

5.2 Jumps and Continuations

Most imperative programming languages have some onstruts whih allow non-loal

hanges in the ow of ontrol. This an mean anything from a ompletely unrestrited

goto ommand to more strutured operations suh as exeptions, break ommands for

exiting loop bodies, an abort ommand whih terminates exeution immediately, or even

more sophistiated ontrol onstruts suh as built-in baktraking. You should have al-

ready seen (in Exerise 16 on page 42) how, with a little bit of ingenuity, one an extend

an operational semantis to desribe some onstruts of this kind. But how an we give

a denotational semantis to jumps? After all, mathematial funtions just apture an

input/output relation, and all the di�erent lasses of jump we have just mentioned seem,

at least at �rst sight, to involve some notion of `program point'.

There is a general tehnique for giving semantis to non-loal ontrol operations, whih

is due, independently, to Christopher Wadsworth and Lokwood Morris, following an idea

of Mazurkiewiz published in 1970. The simplest form of the idea is that the meaning of

a ommand should be a (urried) funtion of two arguments. One argument is the usual

state, but the other is a funtion whih represents what is to be done with the �nal state

after the ommand has terminated in order to give the result of the whole program. This

funtion is alled a ontinuation. Notie that the idea of ontinuations is inherently higher-

order: we rely on being able to pass funtions as arguments in the denotational semantis,

even if the language we are modelling does not ontain expliit higher-order features. The

73

idea of ontinuation is an important one, whih has now spread far beyond the semantis

ommunity. Continuation passing is a widely-used funtional programming tehnique and

is also at the heart of many modern ompilers, suh as that for Standard ML of New Jersey.

Indeed, SML/NJ even extends the SML language with expliit support for ontinuation-

based programming, in the form of the all-with-urrent-ontinuation (all) primitive.

Continuations are also a topi of some exiting urrent researh, as they appear to arise

naturally in the ontext of extrating programs from proofs in lassial logi.

5.2.1 Continuation semantis of IMP

We will demonstrate the use of ontinuations by �rst onsidering how to give a ontinuation

based semantis to IMP with no extensions. We �x some set A of answers, whih will be

the set from whih the results of whole programs will be drawn. It doesn't muh matter

exatly what A is, and you an, if you like, simply take A to be States, so that the �nal

result of a program is just the �nal state in whih it terminates. Now, de�ne the po Cont

of ontinuations to be [States ! A

?

℄, so that a ontinuation is a funtion whih for eah

state yields either a �nal answer or non-termination. The ontinuation semantis gives the

meaning of eah ommand as a funtion taking a ontinuation and a state and returning

an answer (or bottom):

[[C℄℄: (Cont! (States! A

?

))

Note that this is equivalent to either of

[[C℄℄:Cont! Cont or [[C℄℄: (States! A

?

)! (States! A

?

):

Now, think about the denotation of the skip ommand in this form. It will take a

ontinuation k 2 [States ! A

?

℄ and a state S 2 States, and it has to return an answer.

Obviously, the only thing it an do to produe an answer is to apply k to S. So

[[skip℄℄ = �k 2 Cont:�S 2 States: k(S)

and this is indeed intuitively the right thing to do, as k is supposed to be what is done to

the state resulting from exeuting skip in the state S in order to return an answer, and

the state after exeuting skip in state S is just S.

The interesting ase of the ontinuation semantis is that for sequential omposition

of ommands. Here it helps to think �rst about what ([[C℄℄ k) means for C a ommand

and k a ontinuation. This is a partial appliation, of type States! A

?

. It is a funtion

whih takes a state as argument and then returns the answer you get from �rst running

C in that state and then applying k to the state in whih C terminates. But States! A

?

is also the type of ontinuations, so ([[C℄℄ k) is itself a ontinuation { it's a `what to do

do next' whih omprises �rst doing whatever C does and then doing whatever k does.

How does that tell us what [[C

1

; C

2

℄℄ k S should be? The idea here is that we want to

exeute C

1

in state S, and then exeute C

2

and �nally apply the ontinuation to the state

that results. In other words, we just want to run C

1

in the state S with the ontinuation

([[C

2

℄℄ k)! Thus

[[C

1

; C

2

℄℄ = �k 2 Cont:�S 2 States: [[C

1

℄℄ ([[C

2

℄℄ k) S

This is the pons asinorum of ontinuations; one you have rossed it, the rest follows fairly

easily. The full ontinuation-passing semantis of IMP is shown in Figure 5.2. Note that

74

[[skip℄℄ k S = k(S)

[[x := ie℄℄ k S = k(S[[[ie℄℄(S)=x℄)

[[C

1

; C

2

℄℄ k S = [[C

1

℄℄ ([[C

2

℄℄ k) S

[[if be then C

1

elseC

2

℄℄ k S = [[be℄℄(S)) [[C

1

℄℄ k S j [[C

2

℄℄ k S

[[while be doC℄℄ = �x(�)

where �: (Cont! Cont)! (Cont! Cont) is given by

� = �f :Cont! Cont:�k:Cont:�S:States:[[be℄℄(S)) [[C℄℄ (f k) S j k(S)

Figure 5.2: Continuation Semantis of IMP

to alulate the result of a whole program, we now have to supply an initial state and an

initial ontinuation k

0

. The initial ontinuation might simply be the lift of the identity

funtion (k

0

= �S 2 States:[S℄), if we take A to be States, or it might extrat the value

of some distinguished result variable r (so k

0

= �S 2 States:[S(r)℄), if we took A = N.

This, you may be thinking, is all very well, but we already had a perfetly satisfatory

semantis for IMP. But now assume that the set A ontains a distinguished error value

(so perhaps A = States [fErrorg), and we wish to add a new ommand abort whih,

when exeuted, will immediately terminate the program and return this error value. It is

absolutely trivial to add this to our ontinuation semantis:

[[abort℄℄ k S = [Error℄

so the abort ommand simply throws away the ontinuation whih it is given (i.e. it

disards `the rest of the program'), and returns (the lift of) the error value. It is sometimes

said that the most powerful thing a ommand an do with a ontinuation is to ignore it.

5.2.2 Continuation semantis of IMP-with-exits

Now let's onsider a more interesting example, whih is a slight variant of the IMP-

with-exits language whih was introdued in Exerise 16 on page 42. We add two new

ommand forms: exit and (C

1

orelse C

2

) to the syntax of IMP. The intended behaviour

of (C

1

orelse C

2

) is that it exeutes exatly like C

1

unless C

1

hits an exit ommand, in

whih ase further exeution of C

1

is abandoned and C

2

is exeuted starting in the state

at whih C

1

enountered the exit. If C

1

does not enounter an exit then C

2

is ignored.

An exit ommand without an enlosing orelse behaves like abort.

We an give a ontinuation semantis to this language by making the denotation of

eah ommand be a funtion whih takes two ontinuations as well as a state, and returns

an answer. The intuitive idea is that the �rst ontinuation is the ordinary default on-

tinuation whih is to be applied if the ommand terminates normally (`suess'), and the

seond ontinuation is the ontinuation to be applied if the ommand enounters an exit

(`failure'). Thus

[[C℄℄ : (Cont! (Cont! (States! A

?

)))

This semantis is shown in Figure 5.3.

The interesting point here is the symmetry between the pair skip and `;' and the pair

exit and orelse. The skip ommand simply sueeds, so it applies the suess ontinu-

ation to the urrent state. The omposite C

1

;C

2

behaves as C

1

with suess ontinuation

75

[[skip℄℄ k

1

k

2

S = k

1

(S)

[[C

1

; C

2

℄℄ k

1

k

2

S = [[C

1

℄℄ ([[C

2

℄℄ k

1

k

2

) k

2

S

[[exit℄℄ k

1

k

2

S = k

2

(S)

[[C

1

orelseC

2

℄℄ k

1

k

2

S = [[C

1

℄℄ k

1

([[C

2

℄℄ k

1

k

2

) S

[[abort℄℄ k

1

k

2

S = [Err℄

[[if be thenC

1

elseC

2

℄℄ k

1

k

2

S = [[be℄℄(S)) [[C

1

℄℄ k

1

k

2

S j [[C

2

℄℄ k

1

k

2

S

[[while be do C℄℄ = �x(�)

where �: (Cont! (Cont! Cont))! (Cont! (Cont! Cont)) is given by

� = �f:�k

1

:�k

2

:�S:[[be℄℄(S)) [[C℄℄ (f k

1

k

2

) k

2

S j k

1

(S)

Figure 5.3: Continuation Semantis of IMP-with-exits

([[C

2

℄℄ k

1

k

2

) and failure ontinuation k

2

. Thus, if C

1

sueeds it will subsequently do C

2

and then k

1

or k

2

aording to whether or not C

2

sueeds. If C

1

fails, however, C

2

is

ignored and the failure ontinuation k

2

is invoked.

The exit ommand simply fails, so it applies the failure ontinuation to the urrent

state. The ommand C

1

orelse C

2

behaves as C

1

with suess ontinuation k

1

and fail-

ure ontinuation ([[C

2

℄℄ k

1

k

2

). Thus, if C

1

sueeds, C

2

will be ignored and the suess

ontinuation k

1

will be invoked. If C

1

fails, then C

2

will be exeuted, followed by k

1

or k

2

depending on whether or not C

2

sueeds.

To ensure that an exit without an enlosing orelse should behave like abort, we

simply have to make the initial failure ontinuation whih is supplied to an entire program

be k

f

= �S 2 States:[Err℄.

5.2.3 An ML implementation of IMP-with-exits

Finally, here's a fairly diret implementation of the semantis of IMP-with-exits as ML

ode. This onstitutes a omplete working interpreter for the language. (You may like to

extend the IMP parser funtions to deal with the extended language.) Compare this ode

with the mathematial semantis in Figure 5.3 and see how well they orrespond.

datatype IOP = Plus | Times | Minus;

datatype IEXP = N of int | Pvar of string | Iop of IOP*IEXP*IEXP;

datatype BOP = Equal | Greater;

datatype BEXP = B of bool | Bop of BOP*IEXP*IEXP;

datatype COM = Skip | Assign of string*IEXP | Seq of COM*COM |

If of BEXP*COM*COM | While of BEXP*COM |

Abort | Exit | Orelse of COM*COM;

(* -----------------------

States

*)

type STATES = (string*int) list;

76

(* lookup : string*STATES -> int *)

exeption Lookup;

fun lookup(x,[℄) = raise Lookup

| lookup(x,(y,v)::pairs) = if x=y then v else lookup(x,pairs);

(* update : STATES*string*int -> STATES *)

fun update (S,x,n) = ase S of

[℄ => [(x,n)℄

| ((y,v)::pairs) => if x=y then (x,n)::pairs

else (y,v)::(update (pairs,x,n));

(* iopmeaning : IOP -> ((int*int)->int) *)

fun iopmeaning iop (x:int,y:int) = ase iop of

Plus => x+y

| Times => x*y

| Minus => x-y;

(* bopmeaning : BOP -> ((int*int)->bool) *)

fun bopmeaning bop (x:int,y:int) = ase bop of

Equal => x=y

| Greater => x>y;

(* types of answers and ontinuations *)

datatype A = OK of int | Error;

type CONT = STATES -> A;

(* initial state - everything is undefined *)

val (S:STATES) = [℄;

(* initial ontinuation returns the value of the variable r *)

val (k:CONT) = fn S => OK(lookup("r",S));

(* error ontinuation *)

val (ek:CONT) = fn S => Error;

(* denotei : IEXP -> (STATES -> int) *)

fun denotei ie (S:STATES) = ase ie of

N(n) => n

| Pvar(x) => lookup(x,S)

| Iop(iop,ie1,ie2) => let val n1 = denotei ie1 S

val n2 = denotei ie2 S

in

iopmeaning iop (n1,n2)

end;

(* denoteb : BEXP -> (STATES -> bool) *)

fun denoteb be (S:STATES) = ase be of

77

B(b) => b

| Bop(bop,ie1,ie2) => let val n1 = denotei ie1 S

val n2 = denotei ie2 S

in

bopmeaning bop (n1,n2)

end;

(* denote : COM -> CONT -> CONT -> STATES -> A *)

fun denote C (k1:CONT) (k2:CONT) (S:STATES) = ase C of

Skip => k1 S

| Assign(x,ie) => let val n = denotei ie S

in k1 (update(S,x,n))

end

| Seq(C1,C2) => denote C1 (denote C2 k1 k2) k2 S

| If(be,C1,C2) => if (denoteb be S)

then denote C1 k1 k2 S

else denote C2 k1 k2 S

| While(be,C1) => if (denoteb be S)

then denote C1 (denote C k1 k2) k2 S

else k1 S

| Abort => Error

| Exit => k2 S

| Orelse(C1,C2) => denote C1 k1 (denote C2 k1 k2) S;

(* run runs a ommand with initial state and ontinuations *)

fun run = denote k ek S;

Here are a ouple of simple examples of this implementation of IMP-with-exits in use:

- (* define 1 to be r:=0; (skip orelse r:=1) *)

= val 1 = Seq(Assign("r",N 0), Orelse(Skip,Assign("r",N 1)));

> val v1 = ... : COM

- run 1;

> OK 0 : A

- (* define 2 to be r:=0; (exit orelse r:=1) *)

= val 2 = Seq(Assign("r",N 0), Orelse(Exit,Assign("r",N 1)));

> val 2 = ... : COM

- run 2;

> OK 1 : A

- (* define 3 to be

= r:=0;

= while true do

= (r:=r+1;

= if r>7 then exit else skip))

= orelse skip

= to demonstrate breaking out of an otherwise infinite loop

= *)

78

= val 3 = Seq(Assign("r",N 0), Orelse(While(B true,

= Seq(Assign("r",Iop(Plus,Pvar "r",N 1)),

= If(Bop(Greater,Pvar "r",N 7),Exit,Skip))),Skip));

> val 3 = ... : COM

- run 3;

> OK 8 : A

5.3 Axiomati Semantis of IMP

This setion ontains a brief aount of how the Floyd-Hoare rules for proving properties of

IMP programs may be justi�ed in terms of the denotational semantis. It is not ompletely

detailed and rigorous, but it should give a good idea of how denotational semantis an

be used to justify reasoning priniples for program veri�ation. You will learn a lot more

about Floyd-Hoare logi in the Part II ourse Spei�ation and Veri�ation.

5.3.1 Partial Corretness Assertions

The general form of a partial orretness statement is

fPg C fQg

whih means `if one exeutes the ommand C starting in a state whih satis�es P , then if

the ommand terminates it will do so in a state satisfying Q'. A typial example of a valid

partial orretness statement about an IMP program would be the following, asserting

that a program to alulate greatest ommon divisors is orret:

fX = x ^ Y = y ^ 1 � x ^ 1 � yg

whileX 6= Y do (ifX � Y then Y := Y �X elseX :=X � Y)

fX = gd(x; y)g

We ould also develop a theory of total orretness statements of the form [P ℄ C [Q℄,

meaning `if the ommand C is started in a state satisfying P then it will terminate in a

state satisfying Q', but we will not do so here.

We �rst have to introdue a language in whih to formulate assertions about states.

These will be de�ned in terms of an auxiliary set of integer variables Ivar. We will now

use lower-ase letters for elements of Ivar and upper-ase for program variables (elements

of Pvar). The set Aexp of arithmeti expressions is de�ned indutively by the following

rules:

n 2 Z

n 2 Aexp

X 2 Pvar

X 2 Aexp

i 2 Ivar

i 2 Aexp

a

1

2 Aexp a

2

2 Aexp

a

1

+ a

2

2 Aexp

a

1

2 Aexp a

2

2 Aexp

a

1

� a

2

2 Aexp

a

1

2 Aexp a

2

2 Aexp

a

1

� a

2

2 Aexp

It is important that the set of integer expressions Iexp of IMP is ontained within the set

Aexp, but this is easily seen to be true.

We an now de�ne the set of assertions Assn in terms of these arithmeti expressions.

These assertions are made up of logial ombinations of atomi assertions about arithmeti

79

expressions:

true 2 Assn false 2 Assn

a

1

2 Aexp a

2

2 Aexp

a

1

� a

2

2 Assn

A

1

2 Assn A

2

2 Assn

A

1

^A

2

2 Assn

A 2 Assn

:A 2 Assn

i 2 Ivar A 2 Assn

8i:A 2 Assn

We will feel free to use other logial onnetives in assertions, regarding them as syntati

sugar for ombinations of the basi ones given above. For example, if a

1

; a

2

2 Aexp

then (a

1

= a

2

) 2 Assn

def

=(a

1

� a

2

) ^ (a

2

� a

1

). Similarly, if A 2 Assn and i 2 Ivar

then (9i:A) 2 Assn

def

=:(8i::A). Note that Bexp, the set of boolean expressions in our

programming language, is a subset of Assn (modulo some syntati sugar).

This small language of assertions is rih enough to ode up a very wide range of

prediates. As an Exerise, you might like to try expressing X = gd(x; y) in Assn.

If S 2 States and A 2 Assn, we now want to de�ne a notion of S satisfying the

assertion A. This depends on knowing the meaning of arithmeti expressions, whih in

turn will depend on some assignment of integer values for all the integer variables and all

the program variables. So, let an interpretation I 2 Interp be a funtion from Ivar to Z,

and we an then de�ne

[[�℄℄:Aexp! (Interp! (States! Z))

as follows

[[n℄℄(I)(S) = n

[[X℄℄(I)(S) = S(X)

[[i℄℄(I)(S) = I(i)

[[a

1

+ a

2

℄℄(I)(S) = [[a

1

℄℄(I)(S) + [[a

2

℄℄(I)(S)

[[a

1

� a

2

℄℄(I)(S) = [[a

1

℄℄(I)(S) � [[a

2

℄℄(I)(S)

[[a

1

� a

2

℄℄(I)(S) = [[a

1

℄℄(I)(S) � [[a

2

℄℄(I)(S)

Using this, we an then de�ne when state S 2 States satis�es an assertion A under an

interpretation I, whih we write S j=

I

A, by indution on the struture of A as follows:

S j=

I

true

[[a

0

℄℄(I)(S) � [[a

1

℄℄(I)(S)

S j=

I

(a

0

� a

1

)

S j=

I

A

1

S j=

I

A

2

S j=

I

A

1

^A

2

S 6j=

I

A

S j=

I

:A

8n 2 Z: S j=

I[n=i℄

A

S j=

I

8i:A

And we an extend the notion of satisfation to elements of States

?

by letting the unde�ned

state satisfy every assertion. We will feel free to overload the use of the j= notation to

refer to elements of States or of States

?

without omment.

S j=

I

A

[S℄ j=

I

A

? j=

I

A

80

Now, if A;B 2 Assn and C 2 Com we an de�ne the notion of when the partial

orretness assertion

fAg C fBg

is valid by de�ning

j= fAg C fBg

to mean

8I 2 Interp: 8S 2 States: (S j=

I

A) [[C℄℄(S) j=

I

B)

In other words, fAgC fBg is a valid partial orretness assertion if for any interpretation

I and for any state S whih satis�es the assertion A, the denotation of C applied to

state S is a state (possibly ?) satisfying B. Note that we now have a ompletely formal

notion of when a partial orretness assertion is valid, de�ned in terms of the denotational

semantis. We will be able to use this to prove that a logi for deriving partial orretness

assertions is sound (dedues only valid assertions), rather than just deiding that all the

rules look intuitively plausible.

We will also use the notion of validity for assertions. If A 2 Assn then write j= A to

mean that for all S 2 States and for all I 2 Interp, S j=

I

A.

5.3.2 Hoare Logi

We now give some proof rules for deriving partial orretness statements about IMP

programs. There is one rule for eah ommand onstrut and one logial rule. The rule

for assignment uses the notion of substituting an integer expression into an assertion whih

is de�ned in a fairly obvious way.

fAgskipfAg fA[ie=X℄gX := iefAg

fAgC

1

fA

0

g fA

0

gC

2

fA

00

g

fAgC

1

; C

2

fA

00

g

fA ^ begC

1

fA

0

g fA ^ :begC

2

fA

0

g

fAgif be thenC

1

elseC

2

fA

0

g

fA ^ begCfAg

fAgwhile be do CfA ^ :beg

j= (A) A

0

) fA

0

gCfB

0

g j= (B

0

) B)

fAgCfBg

We write ` fAgCfBg when fAgCfBg is derivable using the above rules.

5.3.3 Soundness of Hoare Logi

We aim to prove formally that the logi given in the previous setion is sound, that is, all

the theorems ` fAgCfBg whih an be derived in the logi are valid. The full proof of

this fat relies on a ouple of simple lemmas onerning substitution, both of whih are

proved by strutural indution.

Lemma 29 If X 2 Pvar and a; a

0

2 Aexp then for all I 2 Interp and S 2 States

[[a[a

0

=X℄℄℄(I)(S) = [[a℄℄(I)(S[[[a

0

℄℄(I)(S)=X℄)

2

81

Lemma 30 For any I 2 Interp,A 2 Assn,X 2 Pvar, ie 2 Iexp and S 2 States

S j=

I

A[ie=X℄ () S[[[ie℄℄(S)=X℄ j=

I

B

2

We will also need to know that the meanings of assertions are inlusive prediates,

whih is an obvious onsequene of the fat that States

?

is a at po:

Lemma 31 If :N ! States

?

is a hain in States

?

, I 2 Interp and A 2 Assn then

�

8n 2 N:

n

j=

I

A

�

)

1

G

n=0

n

j=

I

A

2

We an now formulate our main result

Theorem 32 (Soundness) For any A;B 2 Assn and C 2 Com, if ` fAgCfBg then

j= fAgCfBg.

Proof. This follows by rule indution on the rules of Hoare logi. We have to show for

eah rule that if the hypotheses are valid then so is the onlusion. We will only onsider

the ase of the rule for while ommands here, and leave the other rules as Exerises. (We

will not atually need Lemmas 29 and 30 for the ase we onsider here, but you will need

them for some of the other ases.)

So assume that the hypothesis of the while rule is valid, i.e. that j= fA^begCfAg. We

wish to prove that the onlusion of the rule is also valid, i.e. that j= fAgwhilebedoCfA^

:beg. Reall that [[while be do C℄℄ = �x� where

�

def

= �f 2 [States! States

?

℄:�S 2 States:([[be℄℄(S)) f

�

([[C℄℄(S)) j [S℄)

So we have to show that for any state S and interpretation I, if S j=

I

A then

1

G

n=0

�

n

(�S

0

2 States:?)

!

(S) j=

I

A ^ :be

whih, by the de�nition of lubs in funtion spaes is equivalent to

1

G

n=0

�

n

(�S

0

2 States:?)(S)

!

j=

I

A ^ :be

We will show by mathematial indution that for all n 2 N and for all S 2 States, if

S j=

I

A then

�

n

(�S

0

2 States:?)(S) j=

I

A ^ :be

from whih the result follows by Lemma 31. (This ould have been presented as an example

of �xpoint indution.)

For the base ase of the indution, we just have

�

0

(�S

0

2 States:?)(S) = ? j=

I

A ^ :be

82

Now for the indution step, writing f

n

for �

n

(�S

0

2 States:?) we need to show

8S 2 States: S j=

I

A) f

n+1

(S) j=

I

A ^ :be

whih means showing that if S j=

I

A then

([[be℄℄(S)) f

�

n

([[C℄℄(S)) j [S℄) j=

I

A ^ :be

Now there are two possibilities:

1. If [[be℄℄(S) = false then f

n+1

(S) = [S℄ and we have [S℄ j=

I

A and [S℄ j=

I

:be and

hene f

n+1

(S) j=

I

A ^ :be as required.

2. If [[be℄℄(S) = true then f

n+1

(S) = f

�

n

([[C℄℄(S)). By our assumption about the hypoth-

esis of the while rule being valid, we know that [[C℄℄(S) j=

I

A beause S j=

I

be and

S j=

I

A. Hene by indution, f

�

n

([[C℄℄(S)) j= A ^ :be as required.

2

An obvious question to ask is whether ompleteness, whih is the onverse to soundness,

holds { do the Hoare logi rules prove all valid partial orretness assertions? It turns out

that they do, but with an important aveat. Notie that the logial rule

j= (A) A

0

) fA

0

gCfB

0

g j= (B

0

) B)

fAgCfBg

is phrased in terms of the validity of the assertions A) A

0

and B

0

) B, rather than

their provability. If we atually want to use Hoare logi to prove things about programs

then we have to give a proof system for assertions as well, and suh a system an never be

omplete by G�odel's Inompleteness Theorem. Thus if we had aess to an orale whih

ould magially deide the truth of statements of the form j= A, then we ould prove all

valid partial orretness assertions using Hoare logi. Sine we do not have suh an orale,

we have to make do with a logi for deriving statements ` A, and this prevents us from

being able to prove all the valid partial orretness assertions. We an therefore say that

Hoare logi is relatively omplete.

For more realisti IMP-like programming languages, suh as Algol, it has been shown

that there is not even a relatively omplete Hoare logi, so the usefulness of the onept

of relative ompleteness is rather limited.

83

Appendix A

Semanti Equivalene Proofs as

ML Funtions

This appendix ontains some very optional material whih onerns the way in whih

onstrutive proofs of semanti equivalenes an be seen in terms of funtions mapping

derivations in the evaluation semantis to other derivations.

We will give a brief outline of how this idea an be made onrete by de�ning ML

funtions whih map derivations to derivations. The details are rather unpleasant, but it's

worth at least noting that it an be done.

Firstly, we have to deide how to represent derivations in the evaluation semantis in

ML. As we have mentioned in Chapter 2, the set of derivations is itself an indutively

de�ned set and we shall ode this set as an indutive ML datatype with one onstrutor

for eah rule in the semantis. (Atually, we'll need three datatypes, orresponding to the

three evaluation relations.)

What should we store at eah node in the tree? If we onsider a rule like ()

C

�3),

it's lear that we'll need to store the two subderivations whih derive C

1

; S)

C

S

0

and

C

2

; S

0

)

C

S

00

, but what else? Atually, nothing else. This is beause the onlusion of

the rule, viz. C

1

;C

2

; S)

C

S

00

is ompletely determined by the onlusions of the two

subderivations and the fat that we know we are applying rule ()

C

�3). For a rule like

()

C

�4) we will need to know the two subderivations and what the else-branh, C

2

, of

the if-statement is, sine that does not appear in either of the subderivations. Applying

similar reasoning to eah rule, we get the following datatypes for evaluation derivations

(you will need to refer to Figure 3.3 to have any hane of understanding this!):

datatype IDER = Ir1 of int*STATES | Ir2 of string*STATES |

Ir3 of IOP*IDER*IDER;

datatype BDER = Br1 of bool*STATES | Br2 of BOP*IDER*IDER;

datatype CDER = Cr1 of STATES | Cr2 of string*IDER | Cr3 of CDER*CDER |

Cr4 of BDER*CDER*COM | Cr5 of BDER*CDER*COM |

Cr6 of BDER*COM | Cr7 of BDER*CDER*CDER;

84

For example, this derivation

()

B

�1)

true; [℄)

B

true

()

I

�1)

1; [℄)

I

1

()

C

�2)

x := 1; [℄)

C

[x = 1℄

()

C

�4)

if true then x := 1 else x := 2; [℄)

C

[x = 1℄

()

I

�1)

0; [x = 1℄)

I

0

()

C

�2)

y := 0; [x = 1℄)

C

[x = 1 y = 0℄

()

C

�3)

(if true then x := 1 else x := 2) ; y := 0; [℄)

C

[x = 1 y = 0℄

is oded as this element of the ML datatype CDER:

Cr3 (Cr4 (Br1 (true,[℄),Cr2 ("x",Ir1 (1,[℄)),Assign ("x",N 2)),Cr2 ("y",

Ir1 (0,[("x",1)℄)))

There is still a slight problem with our representation of derivations { there are many

elements of the datatypes whih do not orrespond to valid derivations in the semantis.

This is beause there is no way to enfore the restritions aused by the fat that sub-

derivations of a given derivation usually have to agree with eah other in some way. For

example, in the ase of ()

C

�3), the state at whih C

1

ends up as the onlusion of the

�rst subderivation has to be the same as the state in whih C

2

is started in the onlusion

of the seond subderivation. We annot express this in the ML datatype, so we will have

to hek that it is true using a funtion whih traverses a putative derivation tree and

heks that it is well-formed.

1

The following funtions will extrat the onlusions of a

derivation and hek that it is well-formed, raising the exeption BadDer if it is not. Note

that we have to use an auxiliary funtion to test whether two states, represented as lists,

are equal sine the order of the bindings in the two lists might be di�erent.

fun forall [℄ p = true

| forall (x::xs) p = (p x) andalso (forall xs p);

fun eqstate (S1,S2) = (forall S1 (fn x => x mem S2))

andalso

(forall S2 (fn x => x mem S1));

exeption BadDer;

(* ion : IDER -> IEXP*STATES*int *)

fun ion d = ase d of

Ir1(n,S:STATES) => (N n,S,n)

| Ir2(x,S) => (Pvar x,S,lookup(x,S) handle Lookup => raise BadDer)

| Ir3(iop,d1,d2) => let val (ie1,S1,n1) = ion d1

val (ie2,S2,n2) = ion d2

in if eqstate(S1,S2)

then (Iop(iop,ie1,ie2),S1,iopmeaning iop (n1,n2))

1

The problem is that ML's type system is not powerful enough to express these restritions. There are

muh more powerful type theories whih an ope with this sort of thing, and it is these more powerful

systems whih form the basis of many automated theorem provers. In suh systems one really does give

formal proofs by de�ning funtions in a way whih is not entirely unrelated to the rather rough-and-ready

ML ode we give here. The key idea is the `propositions-as-types' analogy whih is disussed (albeit not at

a suÆiently advaned level to deal with the kind of proofs we're onerned with here) in Dr Pitts's Part

II ourse on Types.

85

else raise BadDer

end;

(* bon : BDER -> BEXP*STATES*bool *)

fun bon d = ase d of

Br1(b,S:STATES) => (B b,S,b)

| Br2(bop,d1,d2) => let val (ie1,S1,n1) = ion d1

val (ie2,S2,n2) = ion d2

in if eqstate(S1,S2)

then (Bop(bop,ie1,ie2),S1,bopmeaning bop (n1,n2))

else raise BadDer

end;

(* on : CDER -> COM*STATES*STATES *)

fun on d = ase d of

Cr1(S:STATES) => (Skip,S,S)

| Cr2(x,d1) => let val (ie,S,n) = ion d1

in (Assign(x,ie),S,update(S,x,n))

end

| Cr3(d1,d2) => let val (C1,S,S1) = on d1

val (C2,S2,S3) = on d2

in if eqstate(S1,S2)

then (Seq(C1,C2),S,S3)

else raise BadDer

end

| Cr4(bd,d,C2) => let val (be,S1,b) = bon bd

val (C1,S2,S3) = on d

in if eqstate(S1,S2) andalso (b=true)

then (If(be,C1,C2),S1,S3)

else raise BadDer

end

| Cr5(bd,d,C1) => let val (be,S1,b) = bon bd

val (C2,S2,S3) = on d

in if eqstate(S1,S2) andalso (b=false)

then (If(be,C1,C2),S1,S3)

else raise BadDer

end

| Cr6(bd,C) => let val (be,S,b) = bon bd

in if (b=false)

then (While(be,C),S,S)

else raise BadDer

end

| Cr7(bd,d1,d2) => let val (be,S1,b) = bon bd

val (C,S2,S3) = on d1

val (C',S4,S5) = on d2

in if (b=true) andalso

eqstate(S1,S2) andalso

eqstate(S3,S4) andalso

86

(C' = While(be,C))

then

(C',S1,S5)

else raise BadDer

end;

We an use this to extrat the onlusion of the derivation we gave earlier and to hek

that it is well-formed:

- on (Cr3 (Cr4 (Br1 (true,[℄),Cr2 ("x",Ir1 (1,[℄)),Assign ("x",N 2)),

= Cr2 ("y",Ir1 (0,[("x",1)℄))));

> (Seq (If (B(true),Assign("x",N 1),Assign ("x",N 2)),Assign ("y",N 0)),

[℄,

[("x",1),("y",0)℄) : COM*STATES*STATES

So now what about oding proofs as ML funtions? We will start by onsidering half

of the proof of Proposition 17, the impliation that says if

(if be thenC elseC

0

) ; C

00

; S)

C

S

0

(A.1)

then

if be then (C ; C

00

) else (C ; C

00

); S)

C

S

0

(A.2)

Our funtion to ode the proof of this impliation will take as input a derivation of A.1

and return a derivation of A.2. Any derivation of A.1 must end with an appliation of

()

C

�3) and we then onsider ases aording to the last rule used in the derivation of the

�rst hypothesis of that appliation of ()

C

�3) to deide how to build a derivation of A.2.

This is expressed by the following ML ode:

(* ifseqproof : CDER -> CDER *)

fun ifseqproof (Cr3(d1,d2)) =

let val (C3,_,_) = on d2 in

ase d1 of

Cr4(bd,d1,C2) => Cr4(bd,Cr3(d1,d2),Seq(C2,C3))

| Cr5(bd,d2,C1) => Cr5(bd,Cr3(d2,d2),Seq(C1,C3))

end;

Note that ifseqproof doesn't make any attempt to hek that its input is a valid deriva-

tion of an instane of A.1, though it will raise an unaught exeption (either math or

BadDer) in most suh ases. Now let's see ifseqproof in ation by applying it to the ML

term oding the derivation we gave earlier:

- ifseqproof (Cr3 (Cr4 (Br1 (true,[℄),Cr2 ("x",Ir1 (1,[℄)),

= Assign ("x",N 2)),Cr2 ("y",Ir1 (0,[("x",1)℄))));

> Cr4 (Br1 (true,[℄),Cr3 (Cr2 ("x",Ir1 (1,[℄)),Cr2 ("y",Ir1

(0,[("x",1)℄))),Seq (Assign ("x",N 2),Assign ("y",N 0))) : CDER

and this is indeed the term of type CDER whih odes the derivation

()

B

�1)

true; [℄)

B

true

()

I

�1)

1; [℄)

I

1

()

C

�2)

x := 1; [℄)

C

[x = 1℄

()

I

�1)

0; [x = 1℄)

I

0

()

C

�2)

y := 0; [x = 1℄)

C

[x = 1 y = 0℄

()

C

�3)

x := 1 ; y := 0; [℄)

C

[x = 1 y = 0℄

()

C

�4)

if true then (x := 1 ; y := 0) else (x := 2 ; y := 0); [℄)

C

[x = 1 y = 0℄

87

as we would expet.

It is important to realise that writing suh an ML funtion does not onstitute a

mathematial proof, sine we have given no formal justi�ation that the ML ode atually

does what we intuitively think it does. The funtion ifseqproof merely expresses the

idea of the formal proof of Proposition 17. However, thinking in terms of funtions an

be a useful way to understand and to ome up with this kind of proof.

What about the proof of Proposition 18? We will just prove half of the equivalene:

8S; S

0

2 States: if while be doC

1

; S)

C

S

0

then while be do C

2

; S)

C

S

0

(A.3)

under the assumption that C

1

� C

2

. In fat, to prove A.3,it suÆes to assume just half

of the equivalene of C

1

and C

2

viz.

8S; S

0

2 States: if C

1

; S)

C

S

0

then C

2

; S)

C

S

0

(A.4)

The funtion oding the proof of A.3 will map derivations of the `if' part to derivations of

the `then' part, but it will also need to take an extra argument whih odes the assumption

A.4. That argument will itself be a funtion f whih takes derivations of C

1

; S)

C

S

0

to derivations of C

2

; S)

C

S

0

(the jargon word is that f is a realizer for the impliation

A.4). So, to sum up, the funtion whileongproof whih we want to de�ne will, for any

be,C

1

,C

2

,S and S

0

, take as input

1. A derivation d of while be doC

1

; S)

C

S

0

.

2. A funtion f from derivations to derivations whih maps a derivation of C

1

; S

00

)

C

S

000

to a derivation of C

2

; S

00

)

C

S

000

, for any S

00

and S

000

.

and it will return a derivation of while be do C

2

; S)

C

S

0

. In fat, for a trivial tehnial

reason, whileongproof also has to take the ommand C

2

as input

2

, thus the ode ends

up looking like this:

(* whileongproof : CDER * COM * (CDER -> CDER) -> CDER *)

fun whileongproof (d:CDER,C2,f:CDER->CDER) =

ase d of

Cr6(bd,C1) => Cr6(bd,C2)

| Cr7(bd,d1,d2) => let val d2' = whileongproof (d2,C2,f)

val d1' = f d1

in

Cr7(bd,d1',d2')

end;

Notie how whileongproof uses reursion in the ase that the derivation d ends with

an appliation of ()

C

�7), and that this orresponds exatly to the use of indution in

the real proof of Proposition 18. Note also how f is used to transform the derivation of

the seond hypothesis of ()

C

�7) { this is the part in the proof where we appeal to the

assumption that C

1

� C

2

.

For example, let's take C

1

and C

2

to be instanes of the equivalene of Proposition 17

2

This is just beause in the ase that the derivation 1. above uses ()

C

�6), we need to return an

appliation of ()

C

�6) whih ontains C

2

, but we don't atually have it in our hand, and we an't use f to

get it beause we don't have any derivation about C

1

to supply as input to f.

88

(* these two are equivalent by ifseqproof *)

val 1 = readom "if x=1 then y:=y+2 else y:=y+1 endif;x:=x-1";

val 2 = readom "if x=1 then y:=y+2;x:=x-1 else y:=y+1;x:=x-1 endif";

(* embed them in a while ommand *)

val 1' = While(Bop(Greater,Pvar "x",N 0),1);

val 2' = While(Bop(Greater,Pvar "x",N 0),2);

(* We want to show 1' equivalent to 2',

so start with derivation of 1' doing something

NB. maked : COM -> (STATES -> CDER) just

exeutes a ommand in a given state and

returns the entire derivation assoiated

with that run.

*)

val d1 = maked 1' [("y",0),("x",2)℄;

(* Now we an apply the proof to get a derivation of

2' doing the same thing. Note the use of ifseqproof

as a witness/realizer that 1 is equivalent to 2.

*)

val d2 = whileongproof(d1,2,ifseqproof);

We end up with d1 being a derivation that 1

0

; [y = 0 x = 2℄)

C

[y = 3 x = 0℄ and

d2 the derivation that 2

0

; [y = 0 x = 2℄)

C

[y = 3 x = 0℄ whih is what we wanted.

Unfortunately, the atual derivations are rather too large to be worth inluding here

(around 3 feet wide).

89

