
Appears in ACM SIGPLAN ‘01 Conference on Programming Language Design and Implementation (PLDI), June 2001.

for
n
ot

sor-
ro-
ent

pro-
he
hit,
.

ion
ut
ata
ller

on.
ry
of
ce
of

ons
iza-
he
nd
ng
this
s,
u-

g a
ce
ns

rk.
d
to

ata

t
ed to

ive
PSs

this
o

with
of

ion.
to

ce
ce

Efficient Representations and Abstractions for Quantifying
and Exploiting Data Reference Locality

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052

trishulc@microsoft.com
ABSTRACT
With the growing processor-memory performance gap, understand-
ing and optimizing a program's reference locality, and conse-
quently, its cache performance, is becoming increasingly important.
Unfortunately, current reference locality optimizations rely on heu-
ristics and are fairly ad-hoc. In addition, while optimization tech-
nology for improving instruction cache performance is fairly
mature (though heuristic-based), data cache optimizations are still
at an early stage. We believe the primary reason for this imbalance
is the lack of a suitable representation of a program’s dynamic data
reference behavior and a quantitative basis for understanding this
behavior.

We address these issues by proposing a quantitative basis for
understanding and optimizing reference locality, and by describing
efficient data reference representations and an exploitable locality
abstraction that support this framework. Our data reference
representations (Whole Program Streams and Stream Flow Graphs)
are compact—two to four orders of magnitude smaller than the
program’s data reference trace—and permit efficient analysis—on
the order of seconds to a few minutes—even for complex
applications. These representations can be used to efficiently
compute our exploitable locality abstraction (hot data streams). We
demonstrate that these representations and our hot data stream
abstraction are useful for quantifying and exploiting data reference
locality. We applied our framework to several SPECint 2000
benchmarks, a graphics program, and a commercial Microsoft
database application. The results suggest significant opportunity for
hot data stream-based locality optimizations.

1. INTRODUCTION
In the never-ending quest for greater performance, machine archi-
tectures continue to grow more complex. Achieving near-peak per-
formance on these modern machines places an immense burden on
software. Machine complexity makes statically anticipating and
improving a program’s performance increasingly difficult. A more
pragmatic approach is to observe a program’s dynamic execution
behavior and use this data to optimize the program.

Program paths—consecutively executed basic block sequences—
can offer insight into a program’s dynamic control flow behavior
and have been successfully used in compilers for program optimi-

zations [1, 2, 10, 12]. However, though paths provide a basis
understanding a program’s dynamic control flow, they supply a
incomplete picture of a program’s dynamic behavior as they do n
capture a program’s data accesses. With the growing proces
memory performance gap, understanding and optimizing a p
gram’s data accesses is becoming increasingly important. Rec
research has attempted to address this problem by optimizing a
gram’s data layout for caches [3, 4, 5, 6, 9, 15, 24]. Since a cac
miss can be up to two orders of magnitude slower than a cache
these techniques promise significant performance improvements

Unfortunately, while aggregate data access frequency informat
may be sufficient for page-level data layout [22], cache-level layo
requires fine-grain temporal information about sequences of d
references [3, 4]. This is because cache blocks are much sma
than pages resulting in zero-tolerance for incorrect data co-locati
This temporal information can be obtained by instrumenting eve
program load and store, but analyzing the resulting gigabytes
trace data is impractical. In addition, the need for data referen
sequence information makes it hard to use statistical sampling
loads and stores to reduce the amount of data generated.

We believe that the lack of suitable data reference representati
and abstractions are the primary obstacle to analysis and optim
tion of a program’s dynamic data reference behavior. Unlike t
control flow graph and program paths, which are a convenient a
compact abstraction of a program’s control flow, no correspondi
analogue exists for a program’s data accesses. Compounding
problem is the fact that current reference locality optimization
both for code and data, are fairly ad-hoc and rely primarily on he
ristics.

This paper attempts to address these issues by proposin
quantitative basis for understanding and improving referen
locality, and by describing efficient data reference representatio
and an exploitable locality abstraction that support this framewo
We show that a hierarchical compression algorithm calle
SEQUITUR [20] can be used along with simple data abstractions
construct a compact representation of a program’s dynamic d
reference behavior. The resulting structures, calledWhole Program
Streams (WPS), are small and permit analyses withou
decompression. The paper shows that these WPSs can be us
efficiently compute our exploitable locality abstraction—hot data
streams—which are frequently repeated sequences of consecut
data accesses, and are analogous to hot program paths. While W
capture a program’s complete dynamic data reference behavior,
level of detail is often unnecessary for many optimizations. T
address this, we show that hot data streams can be combined
the SEQUITUR compression technique to produce a series
representations with increasing compactness, but lower precis
These representations, which are efficient to analyze, can be up
four orders of magnitude smaller than the original data referen
trace, yet still retain enough information about data referen

b,
f its
ro-
ely
e-
and
his
ted,
ept
-

tri-
cts
the

ome
uch

nti-
fi-
e
truc-
us,
tri-

a
of
es
ata
ottest
PE-
ial
nt
ts.
ibit
hem

er-
to
that
behavior for optimization purposes.

The paper evaluates these representations and the hot data stream
abstraction by applying them to quantify and exploit data reference
locality in several SPECint 2000 benchmarks, boxsim, a graphics
application, and Microsoft SQL Server, a commercial database. It
shows that the hot data stream abstraction can be used to compute
inherent exploitable locality metrics that are indicative of a
program’s algorithmic spatial and temporal reference locality, and
a realized locality metric that evaluates the effectiveness of the
program’s mapping of data objects to memory addresses at
exploiting the inherent reference locality. Since these locality
metrics can be efficiently computed at the granularity of individual
hot data streams, they allow locality optimizations to focus solely
on streams that show the greatest potential benefit. In addition to
guiding locality optimizations, hot data streams, which contain
data objects that are frequently accessed together, can help drive
locality optimizations, such as clustering and prefetching. The
paper demonstrates that such hot data stream-based locality
optimizations have the potential to significantly improve cache
performance.

The rest of the paper is organized as follows. Section 2 presents a
quantitative basis for studying reference locality and defines an
exploitable locality abstraction—hot data streams. It discusses
several exploitable locality metrics that can be computed in terms
of this hot data stream abstraction. Section 3 describes the
construction of Whole Program Streams and other more compact,
though less precise, representations of a program’s dynamic data
reference behavior. It also discusses efficiently computing the hot
data stream abstraction from these representations. Section 4
outlines the role of our data reference representations, hot data
streams abstraction, and locality metrics in exploiting reference
locality. Section 5 presents experimental results for several
SPECint 2000 benchmarks, boxsim, a graphics application, and
Microsoft’s SQL database. Finally, section 6 briefly discusses
related work.

2. QUANTIFYING LOCALITY
Programs appear to exhibit a property termedlocality of reference
[16]. Informally, this locality of reference principle says that the
most recently used data is likely to be accessed again in the near

future. This phenomenon is widely observed and a rule of thum
often called the 90/10 rule, states that a program spends 90% o
execution time in only 10% of the code. While cache miss rate p
vides an indirect measure of a program’s reference locality, rar
do we see a program’s reference locality directly quantified ind
pendent of the mapping of data objects to memory addresses,
much less this quantification used as a basis for optimization. T
section discusses how data reference locality can be compu
shows that data references exhibit locality, describes a new conc
that we call exploitable locality, and defines metrics for quantify
ing exploitable locality.

2.1 Data Reference Locality
A data reference sequence exhibits locality if the reference dis
bution is non-uniform in terms of either the data addresses/obje
being accessed or the load/store instructions responsible for
accesses. A consequence of data reference locality is that s
addresses/objects or load/store instructions are accessed m
more frequently than others making these highly referenced e
ties attractive optimization targets. One possible quantifiable de
nition for data reference locality in the spirit of the 90/10 rule is th
smallest percentage of accessed data addresses/program ins
tions that are responsible for 90% of the data references. Th
good reference locality implies a large skew in the reference dis
bution. The 90/10 rule predicts a reference locality of 10% and
uniform reference distribution possesses a reference locality
50%. Figure 1 indicates the fraction of program data referenc
(90%) that are attributable to the most frequently referenced d
addresses (1–2% of accessed data addresses), and to the h
loads and stores (4–8% of load/store accesses), for several S
Cint 2000 benchmarks, and Microsoft SQL Server, a commerc
database.1 The graphs indicate that programs possess significa
data reference locality, even more than the 90/10 rule predic
Interestingly, they also indicate that data addresses often exh
greater access skew than a program’s load/store PCs, making t

Figure 1. Program data reference skew in terms of. load-store PCs and data addresses.

0

20

40

60

80

100

0 2 4 6 8

% of load-store PCs

%
of

da
ta

re
fe

re
nc

es

tw olf perlbmk eon mcf sqlserver

0

20

40

60

80

100

0 1 2 3

% of data addresses

%
of

da
ta

re
fe

re
nc

es

tw olf perlbmk eon mcf sqlserver

1 To avoid biasing the data in favor of addresses, stack ref
ences were excluded. In addition, we modified the programs
prevent reuse of heap addresses by removing all system calls
free memory.

is
ure
ible
e’s
g as
lyze
t the
ata

nces
n
sess
n

lity

n
n

hat
m

e
ec-
ta
at
of
s. We
is
ak-

by
ata
ee
ta
ffi-
we
ta
fer-
es.

at
re

ity

y
a-
e

ry
are

lity
re-
cs
er-
s,
elp

to
ent
rd

ics
good optimization targets. Thus, in the rest of this paper we focus
on reference locality expressed in terms of data addresses/objects.

2.2 Data Reference Regularity
From an optimization standpoint, locality is only interesting if it
can be exploited to improve program performance. Processor
caches, which are the ubiquitous hardware solution to exploiting
reference locality, form the first line of attack. We believe that the
key property that makes data reference locality exploitable by
software optimization (over and above caches) isregularity.

For a data reference subsequence to exhibit regularity, it must
contain a minimum of two references and must appear at least
twice (non-overlapping) within a data reference sequence. In the
first sequence in Figure 2, the only regular subsequence isbc, and
in the second sequence, it isab, bc,andabc.We quantify regularity
in terms of four associated concepts calledregularity magnitude,
regularity frequency, spatial regularity, andtemporal regularity. To
make the definitions concrete, we apply them to quantify the
regularity of subsequenceabc in the second sequence shown in
Figure 2. Regularity magnitude is defined as the product of the
number of references in the regular data subsequence (not
necessarily to unique data objects) and the non-overlapping
repetition frequency of that subsequence in the data reference
sequence. The regularity magnitude of subsequenceabc is 18.
Regularity frequency is defined as the number of non-overlapping
occurrences of the regular reference subsequence within the data
reference sequence. The regularity frequency ofabc is 6. Spatial
regularity is defined as the number of references (not necessarily to
unique data objects) in the regular subsequence. The spatial
regularity ofabc is 3. Temporal regularity is defined as the average
number of references between successive non-overlapping
occurrences of the data reference subsequence that exhibits
regularity. The temporal regularity ofabc is 1.2.

2.3 Exploitable Data Reference Locality
While hardware caches are capable of exploiting reference locality
independent of regularity, software locality optimizations are
heavily dependent on regularity. Figure 2 illustrates this with three
data reference sequences. The first two data reference sequences
have exactly the same reference locality or reference skew.
However, the first data reference sequence is less predictable than
the second sequence. The second data reference sequence’s
regularity makes it a much more attractive optimization target. For
example, a prefetching optimization could exploit the regularity of
subsequenceabc to initiate prefetches for data objectsb, and c,
once objecta has been observed. A clustering optimization could
attempt to allocate data objectsa, b, andc, together, in the same
cache block or page.

If a data reference sequence exhibits regularity then do we need it

to exhibit reference locality or reference skew as well? Or
regularity all we need? The third data reference sequence in Fig
2 attempts to address these questions. While it is certainly poss
for software optimizations to take advantage of the sequenc
regularity, this reference sequence does not appear as promisin
the second sequence since any optimization must track and ana
a larger number of data objects than the second sequence to ge
same performance benefit. In any case, since a program’s d
reference sequence exhibits locality (see Figure 1), such seque
are extremely unlikely to occur in practice. Thus, from a
optimization perspective, data reference sequences that pos
both reference locality and regularity are ideal optimizatio
targets. Hence, we refer to the combination of reference loca
and regularity asexploitable locality, and it is the focus of the rest
of this paper.

2.3.1 Exploitable Data Reference Locality Abstractio
Since exploitable locality forms the basis of our optimizatio
framework, we define an exploitable locality abstraction calledhot
data streams. A data stream is a data reference subsequence t
exhibits regularity. If the regularity magnitude of a data strea
exceeds a predetermined threshold, then it is termed ahot data
stream. In the spirit of the 90/10 rule, this heat threshold abov
which a data stream is labelled as “hot” is set such that the coll
tion of hot data streams together cover 90% of all program da
references (see Section 3 for details). Note that with this he
threshold, the 90/10 rule ensures that only a small fraction
accessed data addresses/objects participate in hot data stream
confirm this in Section 5 and additionally demonstrate that th
heat threshold generates a small number of hot data streams, m
ing them attractive optimization targets. Hot data streams are
definition regular, and since they are extracted from program d
reference traces, which are known to exhibit reference locality (s
Figure 1), they qualify as exploitable locality units. These hot da
streams, which are analogous to hot program paths, can be e
ciently extracted from large program data reference traces, as
demonstrate in Section 3. In addition, the collection of hot da
streams taken together are representative of a program’s data re
ence behavior since they cover 90% of all program data referenc

2.4 Quantifying Exploitable Locality
This section presents two sets of exploitable locality metrics th
are useful from an optimization perspective. These metrics a
defined in terms of hot data streams, our exploitable local
abstraction. The first set of metrics quantify theinherentexploit-
able data reference locality of an algorithm. This information ma
be useful to a programmer and could suggest algorithmic modific
tions. The second kind of exploitable locality metric quantifies th
impact of a particular mapping of data objects to memo
addresses, and the interaction of this mapping with hardw
caches. Thisrealized locality metric quantifies how effectively
hardware caches exploit a program’s inherent reference loca
and provides a measure of the remaining opportunity for softwa
based locality optimizations. Together, these locality metri
define limits on the performance improvements due to data ref
ence locality optimizations. In addition, these locality metric
which can be efficiently computed from hot data streams, can h
guide data locality optimizations as described in Section 4.

2.4.1 Inherent Exploitable Locality Metrics
Spatial and temporal locality are well-known concepts used
express locality [13]. However, these are unsuitable as inher
exploitable locality metrics for three reasons. First, the standa
definitions are qualitative and do not indicate how these metr

a b c a c bd b a e c f b b b c g a a f a d c c

a b c a b cd e f a b c g a b c f a b c d a b c

a b ch d e f a b ch i k l f i m d e f m k l f

Reference Locality

Reference Locality + Regularity

Sequence 1:

Sequence 2:

Regularity

Sequence 3:

Figure 2. Data reference sequence characteristics.

elves
le
ce
ed
lyze
.

his
ar
e
ted

nd
tly
ram-
sed
e

is
ro-
fre-
s a
ffi-

e a
nce
n its
data

able

e
out
n be

te
ec-
ow

d
er-

f a
ts

us’
eral
a
sting
ta
may be computed. Next, they do not incorporate regularity, which
is important for quantifying exploitable locality. Finally, spatial
locality in particular is defined in terms of cache blocks, making it
ill-suited as a measure of inherent locality.

To address this, we define exploitable algorithmic spatial and
temporal data reference locality metrics in terms of our hot data
stream abstraction. The inherent exploitable spatial locality of a
hot data stream is its spatial regularity. A data reference sequence’s
inherent exploitable spatial locality is the weighted average spatial
regularity across all of the sequence’s hot data streams, where a hot
data stream’s weight is its regularity magnitude. Long hot data
streams indicate good inherent exploitable spatial reference
locality. Similarly, the inherent exploitable temporal locality of a
hot data stream is its temporal regularity. A data reference
sequence’s inherent exploitable temporal locality is the weighted
average temporal regularity across all of its hot data streams. A hot
data stream that repeats in close succession has good inherent
temporal reference locality. As noted earlier, these metrics are
characteristic of the algorithm and are independent of the mapping
of data objects to memory addresses.

2.4.2 Realized Exploitable Locality Metric
Caches exploit a program’s spatial locality by transferring data in
cache blocks that encompass multiple words (typically 32 to 128
bytes). Caches exploit temporal locality by storing the most
recently accessed data. Our realized exploitable locality metric—
cache block packing efficiency—attempts to quantify the success
of caches at exploiting a program’s inherent locality. This cache
block packing efficiency metric is determined by the mapping of
data objects to memory addresses. Ignoring cache capacity and
associativity constraints, an ideal mapping would enable hardware
to fully exploit a program’s inherent locality. More typically, a sub-
optimal mapping suggests software optimization opportunities.
Finite cache capacity and limited associativity provide additional
optimization opportunities.

A hot data stream’s cache block packing efficiency is the ratio of
the minimum number of cache blocks required by its data members
if they could be re-mapped to different memory addresses, to the
actual number of cache blocks required, given the current map-
ping. A ratio close to one indicates that the existing data layout is
good at exploiting the hot data stream’s inherent spatial locality. In
addition, if the weighted average cache block packing efficiency
over all program hot data streams is close to one, it indicates that
the data layout assists the cache in exploiting the temporal locality
of hot data streams since it keeps to a minimum the number of
cache blocks referenced between successive accesses to the same
hot data stream (ignoring cache associativity constraints).

3. DATA REFERENCE REPRESENTA-
TIONS FOR COMPUTING LOCALITY
Compression algorithms discover and exploit sequence regularity

to produce a compressed sequence. Thus, they suggest thems
as obvious candidates for efficiently discovering our exploitab
locality abstraction—hot data streams—from a data referen
trace. They also offer the additional benefit of producing a reduc
data reference trace representation that is more efficient to ana
by virtue of its compactness. This section explores these issues

Nevill-Manning and Witten’s SEQUITUR compression algorithm
infers hierarchical structure from a sequence of symbols [20]. T
linear time, on-line algorithm constructs a context-free gramm
for its input. It does this by recursively replacing repetitions in th
sequence with a grammatical rule that generates the repea
string. Figure 3 illustrates this for the stringabcbcabcabc. The
resulting grammar requires fewer symbols than the input string a
constitutes a hierarchical representation of the string that explici
captures the repeated sequences, bc and abc. In addition, the g
mar can be compactly represented as a DAG, as shown. Larus u
this DAG representation of the SEQUITUR grammar, which h
called Whole Program Paths(WPP), to represent a program’s
complete dynamic control flow behavior [17]. He showed that th
WPP representation can be efficiently analyzed to extract hot p
gram paths, which are acyclic path sequences that repeat
quently. For example, if the sequence in Figure 3 represent
program’s acyclic path sequence, then Larus showed how to e
ciently compute the hot program path,abc, from the WPP repre-
sentation of this sequence.

This section extends the Whole Program Paths idea to provid
series of representations of a program’s dynamic data refere
behavior. Each representation in the series is more compact tha
predecessor, but comprises a less precise representation of the
reference trace. We describe simple data abstractions that en
the construction of these representations, which we callWhole
Program Streamsi (WPSi), from raw data address traces. Th
resulting representations are small and permit analyses with
decompression (see Section 5.2). These representations ca
used to efficiently discoverhot data streams, our exploitable local-
ity abstraction. While WPSs capture a program’s comple
dynamic data reference behavior, this level of detail is often unn
essary for many optimizations. To address this, we discuss h
WPSs can be combined with hot data streams to constructStream
Flow Graphs(SFGs), which are yet more compact summarize
representations that are similar to control flow graphs in that ref
ence sequence information is no longer retained.

3.1 Whole Program Streams (WPS)
While acyclic paths are a convenient and compact abstraction o
program’s dynamic control flow, no corresponding analogue exis
for a program’s data accesses. Thus, direct application of Lar
WPP technique to a program’s data reference trace faces sev
challenges. First, using SEQUITUR to identify repetitions in
sequence of raw data addresses may obfuscate several intere
patterns that may only be apparent at the granularity of da

abcbcabcabc SEQUITUR

S -> BABB

A->bc

B ->aA

Sequence grammar
Reference sequence

DAG representation
of grammar

Figure 3. Sequence compression using SEQUITUR.

S

B

A

a b c

ther

the
(see

-
e,
ub-
The
ata
in a
It
S,
ire-
es
s
i-
S
QL

cu-
his
pre-
me
arus
gle
te
o-

s as
ms
ref-

se)

s sin-
ce,
a

objects. Second, the size of the resulting WPS0 grammar may be
too large to be efficiently analyzed. Finally, the processing time
required to construct a WPS0 from a raw data address trace may be
too large for the technique to be practical. Abstracting data
addresses may alleviate these problems by increasing the regularity
in the data reference stream and consequently reducing the size of
the WPS0 grammar.

An obvious candidate for abstracting data addresses is to use the
name or type of the object that generates the address. While this
approach works for static objects, heap addresses present an addi-
tional challenge. Heap space is reused as heap data is dynamically
allocated and freed. Consequently, the same heap address can cor-
respond to different program objects during execution. These may
need to be distinguished for several reasons. First, heap addresses
are unlikely to be reused in the same manner across multiple pro-
gram runs with different inputs. In addition, source-level optimiza-
tions need to distinguish between data objects that share the same
heap address. A possible candidate for abstracting heap addresses
is to use heap object names based on allocation site calling context.
Allocation site calling context (depth 3) has been shown to be a
useful abstraction for studying the behavior of heap objects [22].
An alternative approach that permits greater discrimination
between heap objects is to associate a global counter with alloca-
tion sites and increment the counter after each allocation. The com-
bination of the allocation site with this global counter (birth
identifier) can then be used to abstract heap addresses. Unlike pro-
gram paths, all these data abstractions are lossy—it is not possible
to regenerate the address trace once these abstractions have been
applied. However, depending on the nature of subsequent analyses
on the WPS0 structure, such an abstracted program data access his-
tory may suffice. Figure 4 illustrates the process of constructing a
WPS representation from a data reference trace.

The next step is to analyze the WPS representation to discover hot
data streams. As defined earlier, a hot data stream is a data refer-
ence subsequence that exhibits regularity and whose regularity
magnitude exceeds a predetermined “heat” threshold, H. More
informally, a hot data stream is a frequently repeated sequence of
consecutive data references. A minimal hot data stream is the min-
imal prefix of a data stream with a heat of H or more. To ensure
that the collection of hot data streams are representative of a pro-
gram’s data reference behavior, the heat threshold H is set appro-

priately such that the hot data streams references taken toge
account for 90% of all data references.

The algorithm used for detecting hot data streams in WPSs is
same algorithm Larus used to compute hot subpaths in WPPs
[17] for further details). The algorithm performs a postorder tra
versal of the DAG, visiting each node once. At each interior nod
it examines each data stream formed by concatenating the s
streams produced by two or more of the node’s descendents.
algorithm examines only concatenated strings, as the hot d
streams produced solely by a descendent node are detected
recursive call. The algorithm finds minimal hot data streams.
runs in time O(EL), where E is the number of edges in the WP
and L is the maximum length of a data stream. The space requ
ments are O(PL), where P is the number of partially visited nod
in the DAG (which is typically far lower than the number of node
in the DAG). Our experiments indicate that the algorithm is eff
cient in practice, requiring at most a minute to analyze the WP0
representation, even for complex programs, such as MS S
server.

3.2 Trace Reduction
Since SEQUITUR is an on-line algorithm with tight time and
space bounds, the resulting grammars are not minimal. In parti
lar, the grammars contain many redundant productions. While t
does not affect the hot data streams computed from the WPS re
sentation, it does impact the WPS size and the analysis ti
required to the compute the hot data streams. To address this, L
proposed and used SEQUITUR(1), which looks ahead a sin
symbol before introducing a new rule to eliminate a duplica
digram, in his implementation of WPPs, but the grammars pr
duced are not significantly smaller [17].

We take an orthogonal approach that uses the hot data stream
an abstraction mechanism. As shown in Figure 4, hot data strea
can be used as an abstraction mechanism to produce a reduced
erence trace,tracei+1, which is composed solely of hot data
streams with all cold references (which can be considered noi
excluded, from atracei. This is done by traversing theWPSi to
regenerate the reference trace with hot data streams encoded a
gle symbols and cold references eliminated. This reduced tra
tracei+1, can again be processed by SEQUITUR to produce
WPSi+1 representation that can be used to detecthot data

0xabcc0000

0xabcd1e00

Address a

b

Data reference trace0 Abstracted data reference trace0

SEQUITUR

Whole Program

Hot data
stream analyses

Hot data stream
Abstraction

a’

b’

a’

b’

a b c

d b

Data reference trace1

Figure 4. Constructing data reference representations.

Hot Data Streams0

Abstraction

a’

b’

a b c

d b

Stream Flow
Graph0 (SFG0)

Streams0 (WPS0)

Graph
summarization

2
2

S

B

CA

a b c d

s,
w
ost
t,
help
te

ity.
on

,

irst
can
ata

a
ot
ng
es
are
ta

ns
of
ur
.
se

ng

ng
by
., its

atrix
que
ich
ests,
ess
of

and
rce
es
he
ay
m-
n

g
,
s can
he
d
as

ify
streamsi+1. The encoding of hot data streams as single symbols
and elimination of cold addresses (i.e., noise) enables SEQUITUR
to discover larger repetition patterns and accounts for the much
more compact grammar. This process can be repeated as many
times as required. Each iteration produces a more compact WPS
representation and fewer, hotter hot data streams, but includes less
of a program’s original data reference sequence since hot data
streams are selected to cover 90% of references. Thus WPS0
includes all original data references, hot data streams0 include 90%
of these references, WPS1 includes 90% of original data refer-
ences, and hot data streams1 includes 81% of original data refer-
ences. The reduced representations are useful since the WPS0
representation captures a program’s complete dynamic data refer-
ence behavior, a level of detail that is often unnecessary for many
optimizations. In addition, the reduced representations still retain
information about frequently observed data reference behavior.

3.3 Graph Representation
While WPSs are compact, they retain data reference sequence
information that can complicate analysis that does not require this
information. For example, many analyses operate efficiently on a
program’s control flow graph, which does not retain precise basic
block sequence information. To address this, we can combine the
WPS with hot data streams to construct aStream Flow Graph
(SFG), which is similar to a control flow graph with hot data
streams replacing basic blocks as graph nodes, as shown in Figure
4. In the SFG, each hot data stream is represented by a single node
and weighted directed edges, <src, dest>, indicate the number of
times an access to hot data streamsrc is immediately followed by
an access to hot data streamdest. The SFG representation has the
advantage that many control flow graph analyses can be directly
adapted to operate on it. For example, dominators in the SFG may
suggest program load/store points to initiate prefetching. In addi-
tion, the SFG captures temporal relationships that are potentially
more precise than Gloy et al.’s Temporal Relationship Graph
(TRG) since they are not determined by an arbitrarily selected tem-
poral reference window size [11].

3.4 Discussion
The previous discussion suggests using the WPS, and SFG
representations, and the hot data stream abstractions within a data
locality optimization framework, much as control flow graphs and
program paths are used for code optimizations. However, a major
difference between these representations is that the control flow
graph is a static representation and hence represents all possible
program executions, whereas WPSs, and SFGs are abstract
representations of one observed execution. Offsetting this is the
fact that most code optimizations have to be conservative since an
incorrect transformation will affect program correctness, whereas
many data locality optimizations can afford to be aggressive as
incorrect application affects only a program’s performance and not
its correctness. In addition, our experiments indicate that hot data
streams, when expressed in terms of the program loads and stores
that generate the references, are relatively stable across program
executions with different inputs [7].

4. EXPLOITING LOCALITY
Our exploitable locality abstraction, hot data streams, and our
associated exploitable locality metrics can be used to improve data
reference locality in at least four ways, which are described further
in this section. First, they can help identify programs likely to
benefit from data locality optimizations by computing exploitable
locality metrics for them. Since these exploitable locality metrics

are computed at the granularity of individual hot data stream
locality optimizations can focus solely on the streams that sho
the largest potential benefit. Second, they can help select the m
suitable locality optimization for a particular hot data stream. Nex
hot data streams and our data reference representations can
drive locality optimizations. Finally, they can be used to compu
the potential benefits of data locality optimizations in the limit.

4.1 Tools for Improving Data Locality
We built a tool called DRiLL (Data Reference Locality Locator) to
help programmers improve a program’s data reference local
DRiLL enumerates all of a program’s hot data streams. Clicking
a hot data stream displays itsregularity magnitude (heat), spatial
regularity (our inherent exploitable spatial locality metric)
temporal regularity (our inherent exploitable temporal locality
metric), and its cache block packing efficiency(our realized
exploitable locality metric). In addition, DRiLL displays the
program source responsible for the reference to the stream’s f
data member in a code browser window. The hot data stream
be traversed in data member order to see the code and d
structures responsible for the stream references.

We have used DRiLL to improve the data reference locality of
few programs, including boxsim [8], by hand. We focused on h
data streams with high heat and poor cache block packi
efficiencies. Streams with poor cache block packing efficienci
indicate data objects that should be in the same cache block but
currently in different blocks. We attempted to co-locate these da
objects in the same cache block by modifying structure definitio
to reorder fields, splitting structures, and merging split portions
different structures. Preliminary results appear promising as o
transformations improved execution time by 8–15%
Measurements of the optimized programs confirmed that the
improvements were due to improved cache block packi
efficiencies.

4.2 Implementing Data Locality Optimizations
A program’s data reference locality can be improved by changi
the order in which it accesses data (i.e., its inherent locality), or
changing the mapping of data objects to memory addresses (i.e
realized locality). While changing the order in which a program
accesses data has been used to improve the locality of dense m
codes that access arrays, it is not a practical optimization techni
for pointer-based data structures [5]. However, prefetching, wh
changes the order in which the memory system sees data requ
can be used to improve data locality by tolerating memory acc
latency [14, 19]. Techniques for changing a program’s mapping
data objects to memory addresses include clustering, coloring,
compression [5]. Of these, compression typically requires sou
code modification and is not considered further. Coloring reduc
cache conflict misses caused by multiple blocks mapping to t
same cache location. Higher associativity caches—4 way, 8 w
and higher associativity caches are becoming increasingly co
mon—reduce the benefit of this optimization. Thus, we focus o
clustering as the primary data layout optimization for improvin
locality. We briefly outline how our exploitable locality metrics
hot data stream abstraction, and data reference representation
be used to identify data locality optimization targets, select t
most effective optimization combination for a given target, an
drive the selected optimization. The discussion is preliminary
this is a topic of current research.

4.2.1 Identifying Data Locality Optimizations Targets
The locality metrics described in Section 2 can be used to ident

ta
ac-

e

er
dard
-
ca-
to
s-
ly
r-
o a
d 9
pro-
eap

ap
air,
We
on
aced
was
he

t the

w
s-

-
ith
ch

per-
e

ive
he

9

1

data locality optimization targets. The best optimization targets are
long hot data streams that are not repeated in close succession, and
that have poor cache block packing efficiency. Short hot data
streams are indicative of poor inherent exploitable spatial locality
and limit the benefit of any data locality optimization. Hot data
streams that are repeated in close succession are likely to be cache
resident on subsequent accesses and consequently unlikely to ben-
efit from data locality optimizations. Poor cache block packing
efficiency signifies that a hot data stream occupies a larger number
of cache blocks than are strictly necessary.

4.2.2 Selecting Data Locality Optimizations
Clustering and prefetching have different strengths and weak-
nesses. In addition, we distinguish between two types of prefetch-
ing—intra-stream prefetching, which fetches the data members of
the stream being currently accessed, and inter-stream prefetching
which fetches the data members of a stream that is different from
the one being currently accessed. Clustering alone is less effective
for hot data streams with poor exploitable temporal locality when
the improvement in cache block packing efficiency is insufficient
to make the stream’s data members cache resident. In addition, in
the absence of continuous reorganization, clustering cannot
address competing layout constraints caused by data objects
belonging to multiple hot data streams. Prefetching, on the other
hand, can address both these shortcomings, but requires intelligent
scheduling to be effective. In addition, it can increase a program’s
memory bandwidth requirements. Given these constraints, cluster-
ing should be used for hot data streams with poor cache block
packing efficiency to enforce the dominant data layout. Inter-
stream prefetching should be used for hot data streams with poor
exploitable temporal locality. Finally, intra-stream prefetching
should be used for those streams with good exploitable spatial
locality that have poor cache block packing efficiency even after
clustering due to competing layout requirements.

4.2.3 Driving Data Locality Optimizations
In addition to guiding data locality optimizations, such as
prefetching, and clustering, our data reference representations and
hot data streams can be used to drive these optimizations. For
prefetching optimizations, hot data streams supply an ordered list
of data addresses to be fetched. For inter-stream prefetching, the
SFG can be analyzed to determine candidate pairs. In addition,
dominators in the SFG suggest program load/store points to initiate
prefetching. Clustering optimizations use an object affinity graph
to determine objects that need to be co-located [4]. The SFG can be
used as a more precise replacement for the object affinity graph.

We quantified the potential benefit of hot data stream-based
locality optimizations for several programs. The detailed results
are reported in Section 5.4. They indicate that locality
optimizations based on hot data streams appear promising, and can
produce cache miss rate reductions of up to 92%. In addition,
preliminary results for an initial implementation of a hot data
stream-based prefetching optimization indicate cache miss rate
improvements of 15–43% for three benchmarks when different
data reference profiles were used as train and test profiles [7].

5. EXPERIMENTAL EVALUATION
This section presents results from applying our techniques to sev-
eral programs and demonstrates that they produce compact repre-
sentations of data reference behavior that support efficient
analysis. We show that our hot data stream abstraction is useful for
quantifying data reference locality and can guide data locality opti-
mizations by using it to compute locality metrics for our bench-

mark programs. Finally, we compute the potential benefit of da
locality optimizations guided by our representations and abstr
tions.

5.1 Experimental Methodology
The programs used in this study include several of th
SPECint2000 benchmarks,boxsim, a graphics application that sim-
ulates spheres bouncing in a box [8], and Microsoft SQL serv
7.0, a commercial database. The benchmarks (and the stan
libraries) were instrumented with Microsoft’s Vulcan tool to pro
duce a data address trace along with information about heap allo
tions. Vulcan is an executable instrumentation system similar
ATOM [23]. Stack references were not instrumented to avoid bia
ing the data reference locality results. In addition, they typical
exhibit good locality and are seldom data locality optimization ta
gets. For experimentation purposes, the traces were written t
file, rather than processed on-line. Each data reference occupie
bytes in the trace (one byte encodes the reference type and the
gram counter and data address each occupy four bytes). The h
allocation information was processed to build a map of he
objects. A heap object is a <Start address, global counter> p
where the global counter is incremented after each allocation.
used this naming scheme to achieve maximum discriminati
between heap objects. Heap addresses in the trace were repl
by their corresponding heap object name. The abstracted trace
fed to SEQUITUR, which produced a context-free grammar. T
DAG representation of this grammar (i.e., the WPS0) was analyzed
to identify hot data streams0. These hot data streams0 were used in
conjunction with the WPS0 to construct the SFG0 representation.
The process was repeated as described in Section 3 to construc
WPS1 representation. Finally, the WPS1 was analyzed to identify
hot data streams1 and these were used to construct the Stream Flo
Graph1 (SFG1). Measurements were performed on a dual proce
sor 550 Mhz Pentium III Xeon PC with 512 MB of memory run
ning Windows 2000 Server. The SPEC benchmarks were run w
their smallest input data set (test) with the exception of eon whi
was run with the larger train input set.boxsimwas used to simulate
100 bouncing spheres. The SQL server measurements were
formed while running the TPC-C benchmark. This is an on-lin
transaction processing benchmark that consists of a mix of f
concurrent transactions of different types and complexity. T

Table 1: Benchmark characteristics

Benchmark
Refs.

millions
Heap

millions
Global

millions

Addresses
heap+
global

Refs./
Address

176.gcc 464.7 125.0 146.1 22,647 11,972

197.parser 1,255.7 516.4 530.5 9,977 104,92

252.eon 1,784.0 165.4 152.5 18,744 16,96

253.perlbmk 112.1 36.3 27.4 26,715 2,385

255.vortex 3,384.4 778.4 637.3 200,810 7,050

300.twolf 91.6 39.3 27.6 17,770 3,764

boxsim 183.4 60.1 43.6 75,677 1,371

SQL server 279.2 139.4 39.8 1,606,890 112

on

g
ver
ro-
ss
total
for
ss

um-
the

ep-
ce

t

as
e
n.
m-
benchmark runs for a fixed length of time, in this case a short (non-
standard run) of 60 seconds. Unlike the SPEC benchmarks, which
are single threaded, SQL executes many threads. The current sys-
tem distinguishes data references between threads and constructs a
separate WPS for each one. Table 1 reports some overall character-
istics of the benchmark’s data references. The last column indi-
cates the average number of references to each global and heap
data address.

5.2 Evaluating the Representations and
Abstractions

Figure 5 reports the sizes of the different data reference representa-
tions. The WPS0 and WPS1 size is the size of the ASCII grammar
produced by SEQUITUR (the binary representation can be two
times smaller), and the SFG0, SFG1 size is the size of the respec-
tive Stream Flow Graphs. The WPS0s are one to two orders of
magnitude smaller than the data reference traces, on average. The
WPS1 and SFG0, SFG1 offer an additional order of magnitude size
reduction, reducing a gigabyte trace to a representation that occu-
pies a few megabytes or even a few hundred kilobytes. These small
representations permit in-memory trace processing. Most promis-
ingly, in all cases the WPS0s were small enough to permit efficient
processing (avoiding the need to use the WPS1 or SFG representa-
tions, which are lossy representations of the data reference trace),
with the analysis time for hot data stream identification ranging
from a few seconds to a minute. Hence, all following results are
computed on the WPS0 representation unless noted otherwise. In
addition, the compression is a measure of the regularity in a pro-
gram’s data reference stream and the high compression ratios sug-
gest a large amount of inherent exploitable reference locality.

The hot data stream analysis requires three parameters—the mini-
mum and maximum length of a hot data stream, and the threshold
above which a data stream is marked as “hot”. We set the mini-
mum hot data stream length at 2 and the maximum length at 100
since it is unclear whether there is significant opportunity for
exploiting longer streams and our data (not shown) indicated that
only a few streams are longer than this value. Because the goal is
to use hot data streams for locality optimizations, we would like a
large majority of the data references in the trace (at least 90% of
references) to belong to hot data streams, for the optimization to
have a significant impact on overall program locality. However, if
this requires setting the threshold so low that it produces an

extremely large number of hot data streams, the optimizati
opportunity becomes less attractive.

To investigate this issue, we defined our threshold for identifyin
hot data streams as follows—it is the smallest value at which o
90% of data references participate in hot data streams. If a p
gram’s references were uniformly distributed over its addre
space, each address would be accessed (total references)/ (
addresses) times. We use multiples of this ‘unit uniform access’
each program to report the threshold. This normalization proce
permits comparison across the programs, independent of the n
ber of data references in the trace. Greater the threshold, higher
program’s data reference regularity. Since the threshold value r
resents a plausible empirical measure of exploitable referen
locality, we refer to it as ‘exploitable locality threshold’ or jus
‘locality threshold’.

Table 2 reports the ‘locality threshold’ for the various programs
well as hot data stream information at this ‘locality threshold’. Th
locality thresholds range from 1 for 176.gcc, to 126 for 252.eo
The table indicates that SQL server has a significantly larger nu

Figure 5. Relative sizes of the different data reference representations.

1

1,000

1,000,000

1,000,000,000

176.g
cc

197.p
ars

er

252.e
on

253.p
erlb

m
k

255.vo
rte

x

300.tw
olf

boxs
im

SQLse
rv

er

S
iz

e
in

K
B

Trace

WPS0

WPS1

SFG0

SFG1

Table 2: Hot data stream information.

Benchmark

Locality
threshold

(‘unit uniform
access’

multiple)

Number
of hot
data

streams

of
distinct

addresses
in hot data

streams

% of total
program

data
addresses

176.gcc 1 7,461 3,912 17.27

197.parser 69 105 14 0.14

252.eon 126 60 80 0.43

253.perlbmk 58 228 181 0.68

255.vortex 75 475 250 0.12

300.twolf 5 1,260 419 2.36

boxsim 4 3,896 1,701 2.25

SQLserver 8 77,319 32,616 2.03

a
of

cy,
m.

ity,
tive
eris-
er-

is
6

e.,
ty
nd
est
ave
of
ther
ith
0.
ber of hot data streams than any of the other benchmarks, probably
reflecting its more complex data reference behavior. In addition,
SQL server has a higher number of distinct data addresses that par-
ticipate in hot data streams. However, when viewed as a percent-
age of the total number of data addresses accessed during program
execution, the number is comparable to the other benchmarks, and
at 2.03% is quite small. The sole exception is 176.gcc, where data
addresses that participate in hot data streams comprise 17.3% of all
data addresses. These results suggests that commercial applica-
tions such as SQL server, despite their richer data reference behav-
ior, possess regularity in their data reference stream much like the
SPEC benchmarks. In addition, the results indicate that setting the
“heat” threshold so that 90% of program data references participate
in hot data streams, does not produce an excessive number of hot
data streams, and the resulting hot data streams include only a
small fraction of all program data addresses. This is encouraging
for data locality optimizations based on the hot data stream
abstraction. Finally, examination of the program source associated
with these hot data streams indicate that while some streams occur
in loops, many span procedure and data structure boundaries,
exposing potentially new optimization opportunities.

5.3 Using Metrics to Quantify Locality
Two factors contribute to the regularity magnitude or ‘heat’ of
data stream. One is its spatial regularity, which is the number
references it contains, and the other is its regularity frequen
which is the number of non-overlapping occurrences of the strea
Another hot data stream characteristic is its temporal regular
which is the average reference distance between consecu
stream occurrences. As described in Section 2.4, these charact
tics can be used to compute exploitable locality metrics. We p
formed experiments to compute these metrics and the data
presented in Figures 6, 7 and summarized in Table 3. Figure
illustrates the cumulative distribution of hot data stream sizes (i.
spatial regularity), which is our inherent exploitable spatial locali
metric. The programs divide into three classes, with 176.gcc a
SQLserver in one class, boxsim in a category by itself, and the r
of the benchmarks in a third class. 176.gcc and SQLserver h
relatively the worst inherent exploitable spatial locality as 90%
their hot data streams are less than 20 references long. On the o
hand, boxsim has the best inherent exploitable spatial locality w
a fairly uniform distribution of hot data stream sizes from 2 to 10

Figure 6. Cumulative distribution of hot data stream sizes.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

hot data stream size

%
of

ho
td

at
a

st
re

am
s

176.gcc

197.parser

252.eon

253.perlbmk

255.vortex

300.tw olf

boxsim

SQLserver

Figure 7. Cumulative distribution of hot data stream cache block packing efficiencies.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Cache block packing efficiency (64 byte blocks)

%
of

ho
td

at
a

st
re

am
s

176.gcc

197.parser

252.eon

253.perlbmk

255.vortex

300.tw olf

boxsim

SQLserver

our
ed
of
te
all
wo
s)
ng
his
ta
nd
and

it
ms
er-
the
is

ory
m’s
m

ic
olf,

-
ld
nd
e-

lity
cs
tial
he
it.
ti-

ore
on
ea-
ure
tici-
raph
%)
fer-
is

ata
the

ce
r of
table

the
lity
ta
ate
t is
se
ore
not
The other benchmarks lie in between these extremes with a slight
bias towards short hot data streams. Table 3 shows weighted aver-
age hot data stream sizes, where the “heat” (i.e., regularity magni-
tude) of a data stream is used as its weight, so hotter data streams
have a greater influence on the reported average value. As
expected, 176.gcc and SQLserver have the smallest average hot
data stream size. While boxsim has the longest streams, its
weighted average is not significantly greater than the other bench-
marks, indicating that its “hottest” streams are small. In addition,
255.vortex exhibits a similar behavior wherein its weighted aver-
age hot data stream size is smaller than Figure 4 indicates. From a
cache optimization standpoint, the data is encouraging as stream
sizes are sufficiently long to guide cache-conscious layouts or
direct prefetching.

Due to space constraints, we omit the graph for cumulative distri-
bution of average hot data stream repetition intervals (i.e., tempo-
ral regularity), which is our inherent exploitable temporal locality
metric. Instead, we present the weighted average hot data stream
repetition intervals, expressed in terms of references, in Table 3.
The weighted average numbers reported are similar to the omitted
graph with the exception of boxsim, which appears to have its
“hottest” data streams repeat in closer succession than expected.
Once again, the programs divide into three categories with SQL
server, 176.gcc, and 300.twolf in one class, boxsim and 253.per-
lbmk in a second class, and 197.parser, 252.eon, and 255.vortex in
the third class. The first class of benchmarks, which includes
SQLserver, have relatively poor inherent exploitable temporal
locality. 253.perlbmk and boxsim have reasonable exploitable tem-
poral locality. Finally, 197.parser, 252.eon, and 255.vortex possess
hot data streams that exhibit good exploitable temporal locality.
Interestingly, these results correlate well with number of hot data
streams present in these benchmarks, with the exception of boxsim
(see Table 2). Benchmarks with a large number of hot data streams
tend to have the same stream repeat less often.

The inherent exploitable locality metrics computed from hot data
streams indicate that 176.gcc and SQLserver have relatively poor
inherent exploitable spatial and temporal locality, boxsim has
excellent inherent spatial locality but only fair temporal locality,
300.twolf has reasonably good inherent spatial locality but poor
temporal locality, and the rest of the benchmarks have relatively
good inherent exploitable temporal locality and reasonable inher-

ent exploitable spatial locality.

The next set of experiments use hot data streams to compute
realized exploitable locality metric for the benchmarks as outlin
in Section 2.4.2. Figure 7 illustrates the cumulative distribution
the hot data stream’s cache block packing efficiency for 64 by
cache blocks. The shape of the curves is remarkably similar for
benchmarks and indicates that their hot data streams fall into t
distinct categories—a small fraction (5--35% of hot data stream
that have ideal cache block packing efficiency, and the remaini
streams that have suboptimal cache block packing efficiency. T
metric permits focusing optimization efforts on those hot da
streams with the most potential for improvement. 176.gcc a
197.parser have the best packing efficiencies and 253.perlbmk
boxsim, the worst. From the weighted average data in Table 3
appears that the boxsim’s and 252.eon’s “hottest” data strea
have better than expected packing efficiencies. However, on av
age, the benchmark’s hot data streams occupy 2 to 3 times
number of caches blocks that an ideal layout would require. Th
suggests that the current mapping of data objects to mem
addresses does not do a very good job of exploiting the progra
inherent reference locality and promises significant benefits fro
data locality optimizations.

Combining the inherent and realized exploitable locality metr
data for the benchmarks it appears that boxsim and 300.tw
which have good inherent spatial locality, fair/poor inherent tem
poral locality, and poor cache block packing efficiencies, wou
benefit most from data locality optimizations, while 197.parser a
252.eon, which have good inherent temporal locality, would ben
fit the least.

5.4 Evaluating the Potential of Stream-Based
Data Locality Optimizations

We now evaluate the hot data stream abstraction for data loca
optimizations along two dimensions. First, are the locality metri
computed using hot data streams useful for indicating the poten
of different optimizations? If so, they could be used to select t
data locality optimization likely to produce the greatest benef
Second, how much improvement can we expect from locality op
mizations based on the hot data stream abstraction?

Before attempting to answer these questions, we address a m
basic issue. How much do we give up by focusing our optimizati
efforts on hot data streams exclusively? To answer this, we m
sured cache miss rates for a variety of cache configurations. Fig
8 shows the proportion of caches misses to references that par
pate in hot data streams as the cache miss rate increases. The g
indicates that if cache performance is a bottleneck (miss rate > 5
then around 80% of misses are attributable to hot data stream re
ences, with the exception of 197.parser for which this number
only 30%. This is not surprising as it suggests that when hot d
streams fit in the cache, most misses are to cold addresses and
cache miss rate is low. For programs with a cache performan
problem, their higher cache miss rates indicate a large numbe
misses to hot data stream references, making these streams sui
optimization targets.

Figure 9 attempts to answer the previous two questions about
ability of hot data streams-based metrics to select data loca
optimizations and the benefits of optimizations that target hot da
streams. We first compute the potential impact on cache miss r
of an ideal prefetching scheme based on hot data streams tha
able to schedule all prefetches sufficiently in advance of their u
such that the data is cache-resident when referenced (we ign
misses that occur when the data is prefetched, since these do

Table 3: Summary of inherent and realized locality metrics.

Benchmark
Wt. avg hot
data stream

size

Wt. avg.
repetition
interval

Wt. avg cache
block packing

efficiency

176.gcc 10.3 4,575.4 51.7

197.parser 24.0 86.9 64.8

252.eon 18.4 47.9 66.4

253.perlbmk 23.1 334.8 31.0

255.vortex 11.5 92.8 36.1

300.twolf 23.9 847.7 39.8

boxsim 25.8 228.2 49.2

SQLserver 10.9 2,544.1 41.4

to
yet
w
s an
ce
’s

uch
om-
cks
gth
per
re-
all

on-
e as
rate
t on
for
affect access latency if the prefetch is scheduled sufficiently in
advance). Second, we compute the effect of using hot data streams
to cluster objects as mentioned in Section 4. Finally, we compute
the effect of combining the two optimizations. The results are com-
puted for a 8K fully-associative cache with 64 byte blocks (we
scaled the cache size since we used the SPEC benchmark’s test
inputs) and are normalized to the base cache miss rate. As expected
from the locality metric data, boxsim and 300.twolf benefit the
most from locality optimizations and 197.parser (also see Figure
8), 252.eon, and 253.vortex, benefit the least. In addition, cluster-
ing appears to be less effective for 176.gcc, and SQLserver, possi-
ble due to their complex data reference behavior that suggests
multiple competing layouts. However, with the exception of
197.parser (see Figure 8), locality optimizations based on hot data
streams appear promising, producing cache miss rate reductions of
64–92%. Admittedly, these are ideal miss rate improvements. In a
practical implementation the prefetch scheduling would not be per-
fect. In addition, program constraints may prevent a faithful imple-
mentation of the clustering scheme suggested by hot data streams.
Nevertheless, the large cache miss rate improvements indicate that
practical implementations of these hot data stream-based locality
optimizations merit further consideration.

6. RELATED WORK
Larus used a hierarchical compression algorithm (SEQUITUR)
construct Whole Program Paths (WPP), which are a compact,
analyzable representation of a program’s dynamic control flo
[17]. This paper demonstrates that a similar scheme can serve a
effective representation of a program’s dynamic data referen
behavior. Together, they provide a complete picture of a program
dynamic execution behavior.

Compressing program traces has been the subject of m
research. For example, Plezkun described a two-pass trace c
pression scheme, which infers basic block’s successors and tra
linear address patterns.This is used to produce a variable-len
encoding that compresses address traces to a fraction of a bit
reference [21]. Larus’s Abstract Execution scheme guides the
execution of the address generating slice of a program with a sm
amount of run-time data [18]. While these techniques produce c
siderable compression, the encoded files are not as analyzabl
WPSs, and they require significant post-processing to regene
the address trace. In any case, the focus of this research is no
compression but on efficient representations and abstractions
analysis and optimization of dynamic data reference behavior.

Figure 8. Fraction of cache misses caused by hot data streams.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

Cache miss rate

%
of

m
is

se
s

to
ho

td
at

a
st

re
am

ad
dr

es
se

s

176.gcc

197.parser

252.eon

253.perlbmk

255.vortex

300.tw olf

boxsim

SQLserver

0

20

40

60

80

100

176.g
cc

197.p
ars

er

252.e
on

253.p
erlb

m
k

255.vo
rte

x

300.tw
olf

boxs
im

SQLse
rv

er

N
or

m
al

iz
ed

ca
ch

e
m

is
s

ra
te

Base

Prefetching

Clustering

Pref. + Clustering

Figure 9. Potential of locality optimizations based on the hot data stream abstraction.

-
-

:

-

l

ss
-

f-

VI-
7. CONCLUSIONS
With the growing processor-memory performance gap,
understanding and optimizing a program’s data reference locality,
and consequently, its cache performance, is becoming increasingly
important. The paper address this by proposing a quantitative basis
for understanding and improving reference locality. It describes
data reference representations—Whole Program Streams, Stream
Flow Graph—and an exploitable locality abstraction—hot data
streams—that support this framework. The paper demonstrates
that these data reference representations are compact and can be
used to efficiently compute the hot data stream abstraction. In
addition, it shows that hot data streams are useful for quantifying
as well as exploiting data reference locality. The results reported in
this paper suggest significant opportunity for hot data stream-based
locality optimizations.

8. ACKNOWLEDGMENTS
Jim Larus generously provided his implementation of the
SEQUITUR algorithm as well as code for detecting hot subpaths
in Whole Program Paths. Tom Ball, Ras Bodik, Jim Larus, Scott
McFarling, Ben Zorn and the anonymous referees provided useful
comments on earlier drafts of this paper.

9. REFERENCES
[1] G. Ammons and J. R. Larus. “Improving data-flow analyses

with path profiles.” InProceedings of the ACM SIGPLAN’98
Conference on Programming Language Design and Implemen-
tation, pages 72-84, 1998.

[2] R. Bodik, R. Gupta, and M. L. Soffa. “Redefining data flow in-
formation using infeasible paths.” InProceedings of the ACM
SIGSOFT Fifth Symposium on the Foundations of Software En-
gineering, May 1997.

[3] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-conscious
data placement.” InProceedings of the Eighth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VIII), pages 139-149,
Oct. 1998.

[4] T. M. Chilimbi, and J. R. Larus. “Using generational garbage
collection to implement cache-conscious data placement.” In
Proceedings of the 1998 International Symposium on Memory
Management, Oct. 1998.

[5] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious
structure layout.” InProceedings of the ACM SIGPLAN’99
Conference on Programming Language Design and Implemen-
tation, May 1999.

[6] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious
structure definition.” InProceedings of the ACM SIGPLAN’99
Conference on Programming Language Design and Implemen-
tation, May 1999.

[7] T. M. Chilimbi. “On the stability of temporal data reference pro-
files.” In Microsoft Research, Technical Report MSR-TR-2001-
43, Apr. 2001.

[8] S. Chenney. “Controllable and scalable simulation for anima-
tion.” Ph.D. Thesis, University of California at Berkeley, 2000.

[9] C. Ding and K Kennedy. “Improving cache performance in dy-
namic applications through data and computation reorganiza-
tion at run time.” InProceedings of the ACM SIGPLAN’99
Conference on Programming Language Design and Implemen-
tation, pages 229-241, May 1999.

[10] J. A. Fisher. “Trace Scheduling: A technique for global micro
code compaction.” InIEEE Transactions on Computers, vol. C
30,pages 478-490, 1981.

[11] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder. “Procedure
placement using temporal ordering information.” InProceed-
ings of the 30th Annual ACM/IEEE International Symposium
on Microarchitecture,1997.

[12] R. Gupta, D. A. Berson, and J. Z. Fang. “Path profile guided
partial dead code elimination using predication.” InProceed-
ings of the International Conference on Parallel Architecture
and Compilation Techniques (PACT),1997.

[13] J. L. Hennessy and D. A. Patterson. “Computer Architecture
A quantitative approach, Second Edition.”Morgan Kaufmann
Publishers, San Mateo, CA,1995.

[14] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetching
technique for irregular accesses to linked data structures.” In
Symposium on High-Performance Computer Architecture,Jan.
2000.

[15] T. Kistler and M. Franz. “Automated record layout for dynam
ic data structures.” InDepartment of Information and Computer
Science, University of California at Irvine, Technical Report
98-22,May 1998.

[16] D. E. Knuth. “An empirical study of FORTRAN programs.” In
Software—Practice and Experience, vol 1,pages 105-133,
1971.

[17] J. R. Larus. “Whole program paths.” InProceedings of the
ACM SIGPLAN’99 Conference on Programming Language
Design and Implementation, pages 259-269, May 1999.

[18] J. R. Larus. “Abstract Execution: A technique for efficiently
tracing programs.” InSoftware—Practice and Experience, vo
20,pages 1241-1258, 1990.

[19] C-K. Luk and T. Mowry. “Compiler-based prefetching for re-
cursive data structures.” InProceedings of the 7th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VII), Oct. 1996.

[20] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incre-
mental hierarchy inference for compression.” InProceedings of
the Data Compression Conference (DCC’97), 1997.

[21]A. R. Plezkun. “Techniques for compressing program addre
traces.” InProceedings of the 27th Annual ACM/IEEE Interna
tional Symposium on Microarchitecture,pages 32-40, 1994.

[22] M. L. Seidl, and B. G. Zorn “Segregating heap objects by re
erence behavior and lifetime.” InProceedings of the Eight In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
II) , pages 12-23, Oct. 1998.

[23] A. Srivastava and A. Eustace. “ATOM: A system for building
customized program analysis tools.” InProceedings of the
ACM SIGPLAN’94 Conference on Programming Language
Design and Implementation, pages 196-205, May 1994.

[24] D. Truong, F. Bodin, and A. Seznec. “Improving cache
behavior of dynamically allocated data structures.” In
Proceedings of the International Conference on Parallel
Architecture and Compilation Techniques (PACT),1998.

	1. INTRODUCTION
	Figure 1. Program data reference skew in terms of

	2. QUANTIFYING LOCALITY
	2.1 Data Reference Locality
	2.2 Data Reference Regularity
	2.3 Exploitable Data Reference Locality
	Figure 2. Data reference sequence characteristics.
	2.3.1 Exploitable Data Reference Locality Abstraction

	2.4 Quantifying Exploitable Locality
	2.4.1 Inherent Exploitable Locality Metrics
	2.4.2 Realized Exploitable Locality Metric

	3. DATA REFERENCE REPRESENTATIONS FOR COMPUTING LOCALITY
	Figure 3. Sequence compression using SEQUITUR.
	3.1 Whole Program Streams (WPS)
	3.2 Trace Reduction
	Figure 4. Constructing data reference representations.

	3.3 Graph Representation
	3.4 Discussion

	4. EXPLOITING LOCALITY
	4.1 Tools for Improving Data Locality
	4.2 Implementing Data Locality Optimizations
	4.2.1 Identifying Data Locality Optimizations Targets
	4.2.2 Selecting Data Locality Optimizations
	4.2.3 Driving Data Locality Optimizations

	5. EXPERIMENTAL EVALUATION
	5.1 Experimental Methodology
	Table 1: Benchmark characteristics

	176.gcc
	464.7
	125.0
	146.1
	22,647
	11,972
	197.parser
	1,255.7
	516.4
	530.5
	9,977
	104,929
	252.eon
	1,784.0
	165.4
	152.5
	18,744
	16,961
	253.perlbmk
	112.1
	36.3
	27.4
	26,715
	2,385
	255.vortex
	3,384.4
	778.4
	637.3
	200,810
	7,050
	300.twolf
	91.6
	39.3
	27.6
	17,770
	3,764
	boxsim
	183.4
	60.1
	43.6
	75,677
	1,371
	SQL server
	279.2
	139.4
	39.8
	1,606,890
	112
	5.2 Evaluating the Representations and Abstractions
	Figure 5. Relative sizes of the different data reference representations.
	Table 2: Hot data stream information.

	176.gcc
	1
	7,461
	3,912
	17.27
	197.parser
	69
	105
	14
	0.14
	252.eon
	126
	60
	80
	0.43
	253.perlbmk
	58
	228
	181
	0.68
	255.vortex
	75
	475
	250
	0.12
	300.twolf
	5
	1,260
	419
	2.36
	boxsim
	4
	3,896
	1,701
	2.25
	SQLserver
	8
	77,319
	32,616
	2.03
	Figure 6. Cumulative distribution of hot data stream sizes.
	5.3 Using Metrics to Quantify Locality
	Figure 7. Cumulative distribution of hot data stream cache block packing efficiencies.
	Table 3: Summary of inherent and realized locality metrics.

	176.gcc
	10.3
	4,575.4
	51.7
	197.parser
	24.0
	86.9
	64.8
	252.eon
	18.4
	47.9
	66.4
	253.perlbmk
	23.1
	334.8
	31.0
	255.vortex
	11.5
	92.8
	36.1
	300.twolf
	23.9
	847.7
	39.8
	boxsim
	25.8
	228.2
	49.2
	SQLserver
	10.9
	2,544.1
	41.4
	5.4 Evaluating the Potential of Stream-Based Data Locality Optimizations
	Figure 8. Fraction of cache misses caused by hot data streams.
	Figure 9. Potential of locality optimizations based on the hot data stream abstraction.

	6. RELATED WORK
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES
	[1] G. Ammons and J. R. Larus. “Improving data-flow analyses with path profiles.” In Proceedings ...
	[2] R. Bodik, R. Gupta, and M. L. Soffa. “Redefining data flow information using infeasible paths...
	[3] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-conscious data placement.” In Proceeding...
	[4] T. M. Chilimbi, and J. R. Larus. “Using generational garbage collection to implement cache-co...
	[5] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious structure layout.” In Proceedi...
	[6] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious structure definition.” In Proc...
	[7] T. M. Chilimbi. “On the stability of temporal data reference profiles.” In Microsoft Research...
	[8] S. Chenney. “Controllable and scalable simulation for animation.” Ph.D. Thesis, University of...
	[9] C. Ding and K Kennedy. “Improving cache performance in dynamic applications through data and ...
	[10] J. A. Fisher. “Trace Scheduling: A technique for global microcode compaction.” In IEEE Trans...
	[11] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder. “Procedure placement using temporal order...
	[12] R. Gupta, D. A. Berson, and J. Z. Fang. “Path profile guided partial dead code elimination u...
	[13] J. L. Hennessy and D. A. Patterson. “Computer Architecture: A quantitative approach, Second ...
	[14] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetching technique for irregular accesses ...
	[15] T. Kistler and M. Franz. “Automated record layout for dynamic data structures.” In Departmen...
	[16] D. E. Knuth. “An empirical study of FORTRAN programs.” In Software—Practice and Experience, ...
	[17] J. R. Larus. “Whole program paths.” In Proceedings of the ACM SIGPLAN’99 Conference on Progr...
	[18] J. R. Larus. “Abstract Execution: A technique for efficiently tracing programs.” In Software...
	[19] C-K. Luk and T. Mowry. “Compiler-based prefetching for recursive data structures.” In Procee...
	[20] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incremental hierarchy inference for com...
	[21]A. R. Plezkun. “Techniques for compressing program address traces.” In Proceedings of the 27t...
	[22] M. L. Seidl, and B. G. Zorn “Segregating heap objects by reference behavior and lifetime.” I...
	[23] A. Srivastava and A. Eustace. “ATOM: A system for building customized program analysis tools...

	Efficient Representations and Abstractions for Quantifying and Exploiting Data Reference Locality
	Trishul M. Chilimbi
	Microsoft Research
	One Microsoft Way
	Redmond, WA 98052
	trishulc@microsoft.com

