Appears in ACM SIGPLAN ‘01 Conference on Programming Language Design and Implementation (PLDI), June 2001.

Efficient Representations and Abstractions for Quantifying
and Exploiting Data Reference Locality

Trishul M. Chilimbi
Microsoft Research

One Microsoft Way
Redmond, WA 98052
trishulc@microsoft.com

ABSTRACT zations [1, 2, 10, 12]. However, though paths provide a basis for
]] understanding a program’s dynamic control flow, they supply an
With the growing processor-memory performance gap, understandncomplete picture of a program’s dynamic behavior as they do not
ing and optimizing a program's reference locality, and consecapture a program’s data accesses. With the growing processor-
quently, its cache performance, is becoming increasingly importantmemory performance gap, understanding and optimizing a pro-
Unfortunately, current reference locality optimizations rely on heu-gram’s data accesses is becoming increasingly important. Recent
ristics and are fa|r|y ad-hoc. In addition, while optimization tech- research has attempted to address this prob|em by opt|m|z|ng a pro-
nology for improving instruction cache performance is fairly gram's data layout for caches [3, 4, 5, 6, 9, 15, 24]. Since a cache
mature (though heuristic-based), data cache optimizations are stithiss can be up to two orders of magnitude slower than a cache hit,

at an early stage. We believe the primary reason for this imbalancgese techniques promise significant performance improvements.
is the lack of a suitable representation of a program’s dynamic data

reference behavior and a quantitative basis for understanding thidnfortunately, while aggregate data access frequency information
behavior. may be sufficient for page-level data layout [22], cache-level layout
requires fine-grain temporal information about sequences of data
We address these issues by proposing a quantitative basis fegferences [3, 4]. This is because cache blocks are much smaller
understanding and optimizing reference locality, and by describinghan pages resulting in zero-tolerance for incorrect data co-location.
efficient data reference representations and an exploitable localityhis temporal information can be obtained by instrumenting every
abstraction that support this framework. Our data referencerogram load and store, but analyzing the resulting gigabytes of
representations (Whole Program Streams and Stream Flow Graphighce data is impractical. In addition, the need for data reference
are compact—two to four orders of magnitude smaller than thesequence information makes it hard to use statistical sampling of
program’s data reference trace—and permit efficient analysis—ofoads and stores to reduce the amount of data generated.
the order of seconds to a few minutes—even for complex .) .
applications. These representations can be used to efficientlyve believe that the lack of.swtable data reference representations
compute our exploitable locality abstraction (hot data streams). Wé&nd abstractions are the primary obstacle to analysis and optimiza-
demonstrate that these representations and our hot data stredign of @ program’'s dynamic data reference behavior. Unlike the
abstraction are useful for quantifying and exploiting data referenc&ontrol flow graph and program paths, which are a convenient and
locality. We applied our framework to several SPECint 2000Ccompact abstraction ofaprogr'ams control flow, no corresponding
benchmarks, a graphics program, and a commercial Microsof@halogue exists for a program’s data accesses. Compounding this

database application. The results suggest significant opportunity faproblem is the fact that current reference locality optimizations,
hot data stream-based locality optimizations. both for code and data, are fairly ad-hoc and rely primarily on heu-

ristics.
1. INTRODUCTION This paper attempts to address these issues by proposing a
In the never-ending quest for greater performance, machine archijuantitative basis for understanding and improving reference
tectures continue to grow more complex. Achieving near-peak pertocality, and by describing efficient data reference representations
formance on these modern machines places an immense burden and an exploitable locality abstraction that support this framework.
software. Machine complexity makes statically anticipating andwe show that a hierarchical compression algorithm called
improving a program’s performance increasingly difficult. A more SEQUITUR [20] can be used along with simple data abstractions to
pragmatic approach is to observe a program’s dynamic executioBonstruct a compact representation of a program’s dynamic data
behavior and use this data to optimize the program. reference behavior. The resulting structures, calldtble Program
Streams (WPS), are small and permit analyses without

Program paths—consecutively executed basic block sequences— :
can offer insight into a program’s dynamic control flow behavior decompression. The paper shows that these WPSs can be used to

. : - _efficiently compute our exploitable locality abstractiohet data
and have been successfully used in compilers for program Opt'm'étreams—which are frequently repeated sequences of consecutive
data accesses, and are analogous to hot program paths. While WPSs
capture a program’s complete dynamic data reference behavior, this
level of detail is often unnecessary for many optimizations. To
address this, we show that hot data streams can be combined with
the SEQUITUR compression technique to produce a series of
representations with increasing compactness, but lower precision.
These representations, which are efficient to analyze, can be up to
four orders of magnitude smaller than the original data reference
trace, yet still retain enough information about data reference

—e—twolf —m— perlbmk —A&— eon —¢— mcf —+— sqlserver | | —e— tw olf —m— perlbmk —a— eon —¢— mcf —+— sqlserver
100 " 100
E 2
¢ 80 g 801
[S] [S]
: N
c 60 5 60
2 f/ : / /
<
g 40 £ 40
e ©
ks S /‘
s 20 s 20
0 0+
0 2 4 6 8 0 1 2 3
% of load-store PCs % of data addresses

Figure 1. Program data reference skew in terms ofload-store PCs and data addresses.

behavior for optimization purposes. future. This phenomenon is widely observed and a rule of thumb,

. often called the 90/10 rule, states that a program spends 90% of its
The paper evaluates these representations and the hot data strea brog b)

. X ! ; Bkecution time in only 10% of the code. While cache miss rate pro-
abstr.act.lon by applying them to quantify and exploit Qata referen.ce vides an indirect measure of a program'’s reference locality, rarely
Ioca[lty in several $PEC|nt 2000 benchmarks, bOXS'm' a graphics do we see a program’s reference locality directly quantified inde-
application, and Microsoft SQL Server, a commercial database. It Jo\qant of the mapping of data objects to memory addresses, and
.ShOWS that the .hOt data stream absf[rac’uon can b? u.sed. t0 COMPULR, ¢ Jess this guantification used as a basis for optimization. This
inherent exploitable locality metrics that are indicative of a

's algorithmi tial and t | ref localit d section discusses how data reference locality can be computed,
program s aigorithmic spatial and tempora; reference locality, and gq,ys that data references exhibit locality, describes a new concept
a realized locality metric that evaluates the effectiveness of the

) : that we call exploitable locality, and defines metrics for quantify-
program’s mapping of data objects to memory addresses at P Y g fy

exploiting the inherent reference locality. Since these locality ing exploitable ocality.

metrics can be efficiently computed at the granularity of individual 2 1 Data Reference Locality
hot data streams, they allow locality optimizations to focus solely

on streams that show the greatest potential benefit. In addition to
guiding locality optimizations, hot data streams, which contain

data objects that are frequently accessed together, can help driv

A data reference sequence exhibits locality if the reference distri-
bution is non-uniform in terms of either the data addresses/objects
Jdeing accessed or the load/store instructions responsible for the

locality optimizations, such as clustering and prefetching. The accesses. A consequence of data reference locality is that some

paper demonstrates that such hot data stream-based |0ca|it>;lddresses/objects or load/store instructions are accessed much
optimizations have the potential to significantly improve cache Mere frequently than others making these highly referenced enti-
performance. ties attractive optimization targets. One possible quantifiable defi-

nition for data reference locality in the spirit of the 90/10 rule is the

The rest of the paper is organized as follows. Section 2 presents asmallest percentage of accessed data addresses/program instruc-
guantitative basis for studying reference locality and defines an tions that are responsible for 90% of the data references. Thus,
exploitable locality abstraction—hot data streams. It discusses good reference locality implies a large skew in the reference distri-
several exploitable locality metrics that can be computed in terms bution. The 90/10 rule predicts a reference locality of 10% and a
of this hot data stream abstraction. Section 3 describes theuniform reference distribution possesses a reference locality of
construction of Whole Program Streams and other more compact,50%. Figure 1 indicates the fraction of program data references
though less precise, representations of a program’s dynamic datg90%) that are attributable to the most frequently referenced data
reference behavior. It also discusses efficiently computing the hot addresses (1-2% of accessed data addresses), and to the hottest
data stream abstraction from these representations. Section 4oads and stores (4—8% of load/store accesses), for several SPE-
outlines the role of our data reference representations, hot dataCint 2000 benchmarks, and Microsoft SQL Server, a commercial
streams abstraction, and locality metrics in exploiting reference gatabasé.The graphs indicate that programs possess significant
locality. Section 5 presents experimental results for several data reference locality, even more than the 90/10 rule predicts.
SPECint 2000 benchmarks, boxsim, a graphics application, and|nterestingly, they also indicate that data addresses often exhibit

MiICftOZOﬁ’S kSQL database. Finally, section 6 briefly discusses greater access skew than a program’s load/store PCs, making them
related work.

2. QUANTlFYING LOCALITY 1 To avoid biasing the data in favor of addresses, stack refer-

Programs appear to exhibit a property ternfmehlity of reference ences were excluded. In addition, we modified the programs to

[16]. Informally, this locality of reference principle says that the prevent reuse of heap addresses by removing all system calls that
most recently used data is likely to be accessed again in the neafree memory.

Reference Locality to exhi_bit reference locality or reference skew as well? Or is
regularity all we need? The third data reference sequence in Figure
2 attempts to address these questions. While it is certainly possible
for software optimizations to take advantage of the sequence’s
regularity, this reference sequence does not appear as promising as
the second sequence since any optimization must track and analyze
Sequence 2: abcabcdefabcgabcfabcdabc a larger number of data objects than the second sequence to get the
same performance benefit. In any case, since a program’s data
) reference sequence exhibits locality (see Figure 1), such sequences
Regularity are extremely unlikely to occur in practice. Thus, from an
Sequence 3; abchdefabchiklfimdefmklf optimization perspective, data reference sequences that possess
both reference locality and regularity are ideal optimization
) o targets. Hence, we refer to the combination of reference locality
Figure 2. Data reference sequence characteristics. and regularity agxploitable localityand it is the focus of the rest
good optimization targets. Thus, in the rest of this paper we focus Of this paper.
on reference locality expressed in terms of data addresses/objects

Sequence 1: abcacbdbaecfbbbcgaafadcc

Reference Locality + Regularity

'2.3.1 Exploitable Data Reference Locality Abstraction
2.2 Data Reference Regularity Since exploitable locality forms the basis of our optimization

From an optimization standpoint, locality is only interesting if it framework, we define an exploitable locality abstraction caliet
can be exploited to improve program performance. Processordata streamsA data stream is a data reference subsequence that
caches, which are the ubiquitous hardware solution to exploiting €xhibits regularity. If the regularity magnitude of a data stream
reference locality, form the first line of attack. We believe that the €xceeds a predetermined threshold, then it is termédtadata
software optimization (over and above cachespgilarity. which a data stream is labelled as “hot” is set such that the collec-
tion of hot data streams together cover 90% of all program data
For a data reference subsequence to exhibit regularity, it mustreferences (see Section 3 for details). Note that with this heat
contain a minimum of two references and must appear at leastthreshold, the 90/10 rule ensures that only a small fraction of
twice (non-overlapping) within a data reference sequence. In the accessed data addresses/objects participate in hot data streams. We

first sequence in Figure 2, the only regular subsequenke, snd confirm this in Section 5 and additionally demonstrate that this
in the second sequence, itab, bc,andabc.We quantify regularity heat threshold generates a small number of hot data streams, mak-
in terms of four associated concepts caltedularity magnitude, ing them attractive optimization targets. Hot data streams are by
regularity frequencyspatial regularity andtemporal regularity To definition regular, and since they are extracted from program data

make the definitions concrete, we apply them to quantify the reference traces, which are known to exhibit reference locality (see
regularity of subsequencabc in the second sequence shown in Figure 1), they qualify as exploitable locality units. These hot data
Figure 2. Regularity magnitude is defined as the product of the streams, which are analogous to hot program paths, can be effi-
number of references in the regular data subsequence (noftciently extracted from large program data reference traces, as we
necessarily to unique data objects) and the non-overlapping demonstrate in Section 3. In addition, the collection of hot data
repetition frequency of that subsequence in the data referencestreams taken together are representative of a program’s data refer-
sequence. The regularity magnitude of subsequereis 18. ence behavior since they cover 90% of all program data references.
Regularity frequency is defined as the number of non-overlapping o . .
occurrences of the regular reference subsequence within the dat?.4 Quantifying Exploitable Locality
reference sequence. The regularity frequencplmfis 6. Spatial g section presents two sets of exploitable locality metrics that
regularlty is deflr!ed as the number of references (not necessarlly.toare useful from an optimization perspective. These metrics are
unique data objects) in the regular subsequence. The spatialyefined in terms of hot data streams, our exploitable locality
regularity ofabcis 3. Temporal regularity is def!ned as the average apgiraction. The first set of metrics quantify tinderentexploit-
number of references between successive non-overlappinggpe data reference locality of an algorithm. This information may
occurrences of the data reference subsequence that exhibitye yseful to a programmer and could suggest algorithmic modifica-
regularity. The temporal regularity abcis 1.2. tions. The second kind of exploitable locality metric quantifies the

: : impact of a particular mapping of data objects to memory
2.3 Epr0|tabIe Data Reference Loca“ty addresses, and the interaction of this mapping with hardware
While hardware caches are capable of exploiting reference locality caches. Thigealized locality metric quantifies how effectively
independent of regularity, software locality optimizations are hardware caches exploit a program’s inherent reference locality
heavily dependent on regularity. Figure 2 illustrates this with three and provides a measure of the remaining opportunity for software-
data reference sequences. The first two data reference sequencesased locality optimizations. Together, these locality metrics
have exactly the same reference locality or reference skew.define limits on the performance improvements due to data refer-
However, the first data reference sequence is less predictable thaence locality optimizations. In addition, these locality metrics,
the second sequence. The second data reference sequenceghich can be efficiently computed from hot data streams, can help
regularity makes it a much more attractive optimization target. For guide data locality optimizations as described in Section 4.
example, a prefetching optimization could exploit the regularity of
subsequencabc to initiate prefetches for data objedbs andc, 2.4.1 Inherent Exploitable Locality Metrics
once object has been observed. A clustering optimization could spatial and temporal locality are well-known concepts used to
attempt to allocate data objedsb, andc, together, in the same express locality [13]. However, these are unsuitable as inherent
cache block or page. exploitable locality metrics for three reasons. First, the standard

If a data reference sequence exhibits regularity then do we need iidefinitions are qualitative and do not indicate how these metrics

S->BABB S

SEQUITUR A->bc
abcbeabeabe | SEQUTUR | -

B ->aA A v

Sequence grammar

Reference sequence

DAG representation
of grammar
a b ¢

Figure 3. Sequence compression using SEQUITUR.

may be computed. Next, they do not incorporate regularity, which to produce a compressed sequence. Thus, they suggest themselves
is important for quantifying exploitable locality. Finally, spatial as obvious candidates for efficiently discovering our exploitable
locality in particular is defined in terms of cache blocks, making it locality abstraction—hot data streams—from a data reference
ill-suited as a measure of inherent locality. trace. They also offer the additional benefit of producing a reduced
data reference trace representation that is more efficient to analyze

To address this, we define exploitable algorithmic spatial and v e of its compactness. This section explores these issues.

temporal data reference locality metrics in terms of our hot data
stream abstraction. The inherent exploitable spatial locality of a Nevill-Manning and Witten’s SEQUITUR compression algorithm
hot data stream is its spatial regularity. A data reference sequence’snfers hierarchical structure from a sequence of symbols [20]. This
inherent exploitable spatial locality is the weighted average spatial linear time, on-line algorithm constructs a context-free grammar
regularity across all of the sequence’s hot data streams, where a hofor its input. It does this by recursively replacing repetitions in the
data stream’s weight is its regularity magnitude. Long hot data sequence with a grammatical rule that generates the repeated
streams indicate good inherent exploitable spatial referencestring. Figure 3 illustrates this for the strirgpcbcabcabcThe
locality. Similarly, the inherent exploitable temporal locality of a resulting grammar requires fewer symbols than the input string and
hot data stream is its temporal regularity. A data reference constitutes a hierarchical representation of the string that explicitly
sequence’s inherent exploitable temporal locality is the weighted captures the repeated sequences, bc and abc. In addition, the gram-
average temporal regularity across all of its hot data streams. A hotmar can be compactly represented as a DAG, as shown. Larus used
data stream that repeats in close succession has good inhererthis DAG representation of the SEQUITUR grammar, which he
temporal reference locality. As noted earlier, these metrics are called Whole Program PathgWPP), to represent a program’s
characteristic of the algorithm and are independent of the mappingcomplete dynamic control flow behavior [17]. He showed that this

of data objects to memory addresses. WPP representation can be efficiently analyzed to extract hot pro-
. . . . gram paths, which are acyclic path sequences that repeat fre-
2.4.2 Realized Exploitable Locality Metric quently. For example, if the sequence in Figure 3 represents a

Caches exploit a program’s spatial locality by transferring data in program’s acyclic path sequence, then Larus showed how to effi-

cache blocks that encompass multiple words (typically 32 to 128 ciently compute the hot program patibg from the WPP repre-

bytes). Caches exploit temporal locality by storing the most sentation of this sequence.

recently accessed data. Our realized exploitable locality metric—

cache block packing efficiency—attempts to quantify the success

of caches at exploiting a program’s inherent locality. This cache

block packing efficiency metric is determined by the mapping of

data objects to memory addresses. Ignoring cache capacity an

assouatlwty.constralnts,’ an ideal mapping would er[able hardwarethe construction of these representations, which we \d4ible

to fully exploit a program’s inherent locality. More typically, a sub- Program Streams(WPS), from raw data address traces. The

optimal mapping suggests software optimization opportunities. g_ m . 9 . T

Finite cache capacity and limited associativity provide additional 'éSulting representations are small and permit analyses without

optimization opportunities. decompre;s_lon (se_e Section 5.2). These representations can be
used to efficiently discovenot data streamsour exploitable local-

A hot data stream’s cache block packing efficiency is the ratio of ity abstraction. While WPSs capture a program’s complete

the minimum number of cache blocks required by its data members dynamic data reference behavior, this level of detail is often unnec-

if they could be re-mapped to different memory addresses, to theessary for many optimizations. To address this, we discuss how

actual number of cache blocks required, given the current map- WPSs can be combined with hot data streams to consBtueam

ping. A ratio close to one indicates that the existing data layout is Flow Graphs(SFGs), which are yet more compact summarized

good at exploiting the hot data stream’s inherent spatial locality. In representations that are similar to control flow graphs in that refer-

addition, if the weighted average cache block packing efficiency ence sequence information is no longer retained.

over all program hot data streams is close to one, it indicates that

the data layout assists the cache in exploiting the temporal locality 3.1 Whole Program Streams (WPS)

of hot data streams since it keeps to a minimum the number of hile acyclic paths are a convenient and compact abstraction of a
cache blocks referenced between successive accesses to the sagogram’s dynamic control flow, no corresponding analogue exists

This section extends the Whole Program Paths idea to provide a
series of representations of a program’s dynamic data reference
behavior. Each representation in the series is more compact than its
cpredecessor, but comprises a less precise representation of the data
reference trace. We describe simple data abstractions that enable

hot data stream (ignoring cache associativity constraints). for a program’s data accesses. Thus, direct application of Larus’
WPP technique to a program’s data reference trace faces several

3. DATA REFERENCE REPRESENTA- challenges. First, using SEQUITUR to identify repetitions in a

TIONS FOR COMPUTING LOCALITY sequence of raw data addresses may obfuscate several interesting

Compression algorithms discover and exploit sequence regularityPatterns that may only be apparent at the granularity of data

Oxabcc0000 Address a
Oxabcd1e00 — Abstraction — b — SEQUITUR —
Data reference trage Abstracted data reference trgce 1 01e Program
¢ ¢ Streamg (WPS)
=
b’ < [Hotdatastream g Hot data Gra_ph _ >
Abstraction stream analyses [summarization

Data reference trage
Hot Data Streams

a old b |
| d b Stream Flow
b —I—l Graphy (SF&)

Figure 4. Constructing data reference representations.

objects. Second, the size of the resulting WB@&mmar may be priately such that the hot data streams references taken together
too large to be efficiently analyzed. Finally, the processing time account for 90% of all data references.

required to construct aWBSom araw data gddress trace.may be The algorithm used for detecting hot data streams in WPSs is the
too large for the technique to be practical. Abstracting data same algorithm Larus used to compute hot subpaths in WPPs (see
addresses may alleviate these problems by increasing the regularity1 7] for further details). The algorithm performs a postorder tra-

in the data reference stream and consequently reducing the size o{iersal of the DAG, visiting each node once. At each interior node,
the WP$ grammar. it examines each data stream formed by concatenating the sub-
An obvious candidate for abstracting data addresses is to use th%}r%?m]smprgfgr%?gegygmo %er?ccgteer?;tteh; gt? ﬁ}ez d::’cﬁ:;dirgts) d-;?ae
name or type of the object that generates the address. While this 9 Y 9s,

. . streams produced solely by a descendent node are detected in a
approach works for static objects, heap addresses present an adOIfecursive call. The algorithm finds minimal hot data streams. It

tional challenge. Heap space is reused as heap data is dynamical|¥ N . .
uns in time O(EL), where E is the number of edges in the WPS,
aIIocat%d ar:j(_jﬁfreed. Consequetl)w_tly, thg same heap_add[rehss can Cobnq L is the mgxirzmm length of a data stream Tt?e space require-
respond to different program objects during execution. These may ; - 0%

need to be distinguished for several reasons. First, heap addresse: ents are O(PL), where P is the number of partially visited nodes

are unlikely to be reused in the same manner across multiple pro-! the DAG (which is typically far lower than the number of nodes

gram runs with different inputs. In addition, source-level optimiza- in the_ DAG). _Our exp_e_rlments |nd|cate_ that the alglorlthrﬂ 1S eg"
tions need to distinguish between data objects that share the samg'em n pra§tlce, requiring at most a minute to analyze the yVPS
heap address. A possible candidate for abstracting heap addressd§Presentation, even for complex programs, such as MS SQL
is to use heap object names based on allocation site calling contextS€"Ver-

Allocation site calling context (depth 3) has been shown to be a :

useful abstraction for studying the behavior of heap objects [22]. 3.2 Trace Reduction
An alternative approach that permits greater discrimination Since SEQUITUR is an on-line algorithm with tight time and
between heap objects is to associate a global counter with alloca-Space bounds, the resulting grammars are not minimal. In particu-
tion sites and increment the counter after each allocation. The com-lar, the grammars contain many redundant productions. While this
bination of the allocation site with this global counter (birth does not affect the hot data streams computed from the WPS repre-
identifier) can then be used to abstract heap addresses. Unlike prosentation, it does impact the WPS size and the analysis time
gram paths, all these data abstractions are lossy—it is not possiblgequired to the compute the hot data streams. To address this, Larus
to regenerate the address trace once these abstractions have be@hoposed and used SEQUITUR(1), which looks ahead a single
applied. However, depending on the nature of subsequent analysesymbol before introducing a new rule to eliminate a duplicate
on the WPgstructure, such an abstracted program data access his-digram, in his implementation of WPPs, but the grammars pro-
tory may suffice. Figure 4 illustrates the process of constructing a duced are not significantly smaller [17].

WPS representation from a data reference trace. We take an orthogonal approach that uses the hot data streams as

The next step is to analyze the WPS representation to discover ho@ @bstraction mechanism. As shown in Figure 4, hot data streams
data streams. As defined earlier, a hot data stream is a data referé@n be used as an abstraction mechanism to produce a reduced ref-
ence subsequence that exhibits regularity and whose regularityT€Nce tracefracg,;, which is composed solely of hot data
magnitude exceeds a predetermined “heat” threshold, H. More streams with all cold references (which can be considered noise)
informally, a hot data stream is a frequently repeated sequence oféxcluded, from arace. This is done by traversing th&/P$ to
consecutive data references. A minimal hot data stream is the min-regenerate the reference trace with hot data streams encoded as sin-
imal prefix of a data stream with a heat of H or more. To ensure gle symbols and cold references eliminated. This reduced trace,
that the collection of hot data streams are representative of a pro-trace,;, can again be processed by SEQUITUR to produce a
gram’s data reference behavior, the heat threshold H is set appro\wps,, representation that can be used to dethot data

streamg . The encoding of hot data streams as single symbols are computed at the granularity of individual hot data streams,
and elimination of cold addresses (i.e., noise) enables SEQUITUR locality optimizations can focus solely on the streams that show
to discover larger repetition patterns and accounts for the much the largest potential benefit. Second, they can help select the most
more compact grammar. This process can be repeated as man uitable Iocality optimization foraparticular hot data stream. Next,
times as required. Each iteration produces a more compact WPShot data streams and our data reference representations can help
representation and fewer, hotter hot data streams, but includes lesélrive locality optimizations. Finally, they can be used to compute
of a program’s 0rigina| data reference sequence since hot datathe potential benefits of data Iocality optimizations in the limit.

streams are selected to cover 90% of references. ThusgWPS 4.1 Tools for | ing Data L lit
includes all original data references, hot data strganwude 90% ' 00Is Tor iImproving Data Locality

of these references, WPSncludes 90% of original data refer- ~ We builtatool called DRILL (Data Refertyance Locality Locator) to
ences, and hot data stregniscludes 81% of original data refer- BeFip programmers improve a p“’?rams data referencg I(_Jcallty.

. . iLL enumerates all of a program’s hot data streams. Clicking on
ences. The' reduced representations are useful smge the, WPS, 1ot data stream displays isgularity magnitude (heagppatial
representation captures a program's complete dynamic data referregularity (our inherent exploitable spatial locality metric),
ence behavior, a level of detail that is often unnecessary for many temporal regularity (our inherent exploitable temporal locality
optimizations. In addition, the reduced representations still retain metric), and itscache block packing efficiencfour realized
information about frequently observed data reference behavior. exploitable locality metric). In addition, DRILL displays the

. program source responsible for the reference to the stream'’s first
3.3 Graph Representatlon data member in a code browser window. The hot data stream can
While WPSs are compact, they retain data reference sequencebe traversed in data member order to see the code and data
information that can complicate analysis that does not require this structures responsible for the stream references.
information. For example, many analyses operate efficiently on a
program’s control flow graph, which does not retain precise basic
block sequence information. To address this, we can combine the
WPS with hot data streams to construcSaeam Flow Graph
(SFG) which is similar to a control flow graph with hot data

We have used DRILL to improve the data reference locality of a
few programs, including boxsim [8], by hand. We focused on hot
data streams with high heat and poor cache block packing
efficiencies. Streams with poor cache block packing efficiencies

streams replacing basic blocks as graph nodes, as shown in I:iguréndicate data objects that should be in the same cache block but are

4. In the SFG, each hot data stream is represented by a single nodguently in different blocks. We attempted to co-locate these data
and Weighteoi directed edgessrs, dest, indicate the number of objects in the same cache block by modifying structure definitions

times an access to hot data stresmmis immediately followed by O reorder fields, splitting structures, and merging split portions of
an access to hot data strealest The SFG representation has the different structures. Preliminary results appear promising as our
advantage that many control flow graph analyses can be directly fansformations improved —execution time by = 8-15%.
adapted to operate on it. For example, dominators in the SFG mayMeasurements of the optimized programs confirmed that these
suggest program load/store points to initiate prefetching. In addi- w;pr_ovements were due to improved cache block packing
tion, the SFG captures temporal relationships that are potentially &"'C€NCIES.

more precise than Gloy et al.'s Temporal Relationship Graph

(TRG) since they are not determined by an arbitrarily selected tem- 4.2 Implementlng Data Locallty Optlmlzatlons

poral reference window size [11]. A program'’s data reference locality can be improved by changing
.) the order in which it accesses data (i.e., its inherent locality), or by
3.4 Discussion changing the mapping of data objects to memory addresses (i.e., its

The previous discussion suggests using the WPS, and SI:Grealized locality). While changin_g the order in Which a program
representations, and the hot data stream abstractions within a dat4ccesses data has been used to improve the locality of dense matrix
locality optimization framework, much as control flow graphs and codes that access arrays, it is not a practical optimization technique
program paths are used for code optimizations. However, a majorfor pointer-based d_ata structures [5]- However, prefetching, which
difference between these representations is that the control rowCh"’mlsjes th‘a order in Wh'gh thf m(le.mol;y Syf‘e”? sees data requests,
graph is a static representation and hence represents all possiblG2n Pe used to improve data locality by tolerating memory access
program executions, whereas WPSs, and SFGs are abstraciatency [14, 19]. Techniques for changing a program’s mapping of
representations of one observed execution. Offsetting this is thedata objects to memory addresses include clustering, coloring, and
fact that most code optimizations have to be conservative since ancOMPression [5]. Of these, compression typically requires source

incorrect transformation will affect program correctness, whereas ¢0d€ modification and is not considered further. Coloring reduces
many data locality optimizations can afford to be aggressive as ache conflict misses caused by multiple blocks mapping to the
incorrect application affects only a program’s performance and not sar&wi_c?‘che 'OCat.'Ot'?- _tl—hgherhassocnakt)lwty caches—4 V_/ay,l 8 way
its correctness. In addition, our experiments indicate that hot data®1? N9 éer assr?us Vi >f’ ca:cc he_s are _ecqmlngl_t:ncreasu;g y com-
streams, when expressed in terms of the program loads and store§'0n—reduce the benefit of this optimization. Thus, we focus on

that generate the references, are relatively stable across prograrfilUStéring as the primary data layout optimization for improving
executions with different inputs [7]. ocality. We briefly outline how our exploitable locality metrics,

hot data stream abstraction, and data reference representations can
4. EXPLOITING LOCALITY be used to identify data locality optimization targets, select the
most effective optimization combination for a given target, and
drive the selected optimization. The discussion is preliminary as
this is a topic of current research.

Our exploitable locality abstraction, hot data streams, and our
associated exploitable locality metrics can be used to improve data
reference locality in at least four ways, which are described further
in this section. First, they can help identify programs likely to 4.2 1 |dentifying Data Locality Optimizations Targets

benefit from data locality optimizations by computing exploitable
locality metrics for them. Since these exploitable locality metrics The locality metrics described in Section 2 can be used to identify

data locality optimization targets. The best optimization targets are mark programs. Finally, we compute the potential benefit of data
long hot data streams that are not repeated in close succession, anidcality optimizations guided by our representations and abstrac-
that have poor cache block packing efficiency. Short hot data tions.

streams are indicative of poor inherent exploitable spatial locality .

and limit the benefit of any data locality optimization. Hot data 5.1 Experimental Methodology

streams that are repeated in close succession are likely to be cachghe programs used in this study include several of the
resident on subsequent accesses and consequently unlikely to berspECInt2000 benchmarksoxsim a graphics application that sim-

efit from data locality optimizations. Poor cache block packing ylates spheres bouncing in a box [8], and Microsoft SQL server
efficiency signifies that a hot data stream occupies a larger number7 0, a commercial database. The benchmarks (and the standard

of cache blocks than are strictly necessary. libraries) were instrumented with Microsoft's Vulcan tool to pro-
. . T duce a data address trace along with information about heap alloca-
4.2.2 Selecting Data Locality Optimizations tions. Vulcan is an executable instrumentation system similar to

Clustering and prefetching have different strengths and weak- ATOM [23]. Stack references were not instrumented to avoid bias-
nesses. In addition, we distinguish between two types of prefetch-ing the data reference locality results. In addition, they typically
ing—intra-stream prefetching, which fetches the data members of exhibit good locality and are seldom data locality optimization tar-
the stream being currently accessed, and inter-stream prefetchingyets. For experimentation purposes, the traces were written to a
which fetches the data members of a stream that is different from file, rather than processed on-line. Each data reference occupied 9
the one being currently accessed. Clustering alone is less effectivebytes in the trace (one byte encodes the reference type and the pro-
for hot data streams with poor exploitable temporal locality when gram counter and data address each occupy four bytes). The heap
the improvement in cache block packing efficiency is insufficient allocation information was processed to build a map of heap
to make the stream’s data members cache resident. In addition, inobjects. A heap object is a <Start address, global counter> pair,
the absence of continuous reorganization, clustering cannotwhere the global counter is incremented after each allocation. We
address competing layout constraints caused by data objectaised this naming scheme to achieve maximum discrimination
belonging to multiple hot data streams. Prefetching, on the other between heap objects. Heap addresses in the trace were replaced
hand, can address both these shortcomings, but requires intelligenby their corresponding heap object name. The abstracted trace was
scheduling to be effective. In addition, it can increase a program’s fed to SEQUITUR, which produced a context-free grammar. The
memory bandwidth requirements. Given these constraints, cluster-DAG representation of this grammar (i.e., the WP8as analyzed

ing should be used for hot data streams with poor cache block g jgentify hot data streargsThese hot data streagwere used in
packing efficiency to enforce the dominant data layout. Inter- o, hetion with the WPgto construct the SFgrepresentation.

stream prefetching should be used for hot data streams with poor i . .
b 9 b The process was repeated as described in Section 3 to construct the

exploitable temporal locality. Finally, intra-stream prefetching . . X .
should be used for those streams with good exploitable spatial WPSL representation. Finally, the WpSvas analyzed to identify

locality that have poor cache block packing efficiency even after hotdata streamsand these were used to construct the Stream Flow

clustering due to competing layout requirements. Graph (SFG). Measurements were performed on a dual proces-
. . L sor 550 Mhz Pentium Il Xeon PC with 512 MB of memory run-
4.2.3 Driving Data Locality Optimizations ning Windows 2000 Server. The SPEC benchmarks were run with

In addition to guiding data locality optimizations, such as their smallest input data set (test) with the exception of eon which
prefetching, and clustering, our data reference representations andvas run with the larger train input sétoxsimwas used to simulate

hot data streams can be used to drive these optimizations. Forl0O0 bouncing spheres. The SQL server measurements were per-
prefetching optimizations, hot data streams supply an ordered listformed while running the TPC-C benchmark. This is an on-line
of data addresses to be fetched. For inter-stream prefetching, the@ransaction processing benchmark that consists of a mix of five
SFG can be analyzed to determine candidate pairs. In addition,concurrent transactions of different types and complexity. The
dominators in the SFG suggest program load/store points to initiate

prefetching. Clustering optimizations use an object affinity graph Table 1. Benchmark characteristics

to determine objects that need to be co-located [4]. The SFG can be| I

used as a more precise replacement for the object affinity graph. Benchmard €S- | Heap | Global A?]dresse> Refs./
enchmark| .- - L eap+

We quantified the potential benefit of hot data stream-based millions | millions | millions globgl Address

locality optimizations for several programs. The detailed results

are (epqrted in Section 5.4. They indicate th.at. locality 176.gcc 464.7 125l0 146.1 22847 11,072

optimizations based on hot data streams appear promising, and can

produce cache miss rate reductions of up to 92%. In addition, 197.parser 1.255|7 516.4 530.5 9077 104l929

preliminary results for an initial implementation of a hot data ' '

stream-based prefetching optimization indicate cache miss rate|252 egn 1,7840 1654 1525 18,744 16,961

improvements of 15-43% for three benchmarks when different

data reference profiles were used as train and test profiles [7]. 253.perlbmk 112.1 36)3 27.4 26,715 2,385

5. EXPERIMENTAL EVALUATION 255.vortex | 3,384.4 778/4 6373 200,810 7,050

This section presents results from applying our techniques to sev- 7

eral programs and demonstrates that they produce compact repre-300-tWOlf 91.6 39.3 27.6 17,710 3,764

sentations of data reference behavior that support efficient)

analysis. We show that our hot data stream abstraction is useful for|20XSim 1834 60.1 4316 7567 1371

quantifying data reference locality and can guide data locality opti-

mizations by using it to compute locality metrics for our bench- SQL server 279.¢ 1394 398 1,606,890 12

1,000,000,000
_| _| 0 Trace
] 1 » _
E 1,000,000 | WPSO0
.i OWPS1
% 1,000 | m SFGO
O SFG1
l i
X N & . X
¢ & & & @ & & &
'\:\b. N szr & QQJ’\\ o .Ao $ 05\- \?e

Figure 5. Relative sizes of the different data reference representations.
benchmark runs for a fixed length of time, in this case a short (non- extremely large number of hot data streams, the optimization
standard run) of 60 seconds. Unlike the SPEC benchmarks, whichopportunity becomes less attractive.
are single threaded, SQL executes many threads. The current sys-. . . L . . e
tem disgt]inguishes data references betwe)t/en threads and construc¥s-£1° investigate this issue, we defined our threshold for identifying
separate WPS for each one. Table 1 reports some overall charactelOt data streams as follows—it is the smallest value at which over
istics of the benchmark's data references. The last column indi- 20% Of data references participate in hot data streams. If a pro-

cates the average number of references to each global and hea ram’s references were uniformly distributed over its address
data address pace, each address would be accessed (total references)/ (total

addresses) times. We use multiples of this ‘unit uniform access’ for

5.2 Evaluating the Representations and each program to report the threshold. This normalization process
Abstractions permits comparison across the programs, independent of the num-
ber of data references in the trace. Greater the threshold, higher the

Figure 5 reports the sizes of the different data reference representaprogram’s data reference regularity. Since the threshold value rep-
tions. The WP§and WPS size is the size of the ASCIl grammar resents a plausible empirical measure of exploitable reference
produced by SEQUITUR (the binary representation can be two locality, we refer to it as ‘exploitable locality threshold’ or just
times smaller), and the SRGSFG; size is the size of the respec- ‘locality threshold'.

tive Stream Flow Graphs. The WESSare one to two orders of pape 2 reports the ‘locality threshold’ for the various programs as
magnitude smaller than the data reference traces, on average. Thgsell as hot data stream information at this ‘locality threshold’. The

WPS, and SFG@, SFG offer an additional order of magnitude size |ocality thresholds range from 1 for 176.gcc, to 126 for 252.eon.

reduction, reducing a gigabyte trace to a representation that occu-The table indicates that SQL server has a significantly larger num-
pies a few megabytes or even a few hundred kilobytes. These small

representations permit in-memory trace processing. Most promis- Table 2: Hot data stream information.

ingly, in all cases the WRyS were small enough to permit efficient

processing (avoiding the need to use the WBSSFG representa- Locality #of |,

tions, which are lossy representations of the data reference trace), threshold Number distinct % oftotal
with the analysis time for hot data stream identification ranging | Benchmark| (‘unituniform ofhot | 1 iresses Program
from a few seconds to a minute. Hence, all following results are access’ data |\ data d2t@
computed on the WRSepresentation unless noted otherwise. In multiple) streams streams addresses
addition, the compression is a measure of the regularity in a pro-

gram’s data reference stream and thg high compression rgtios SUg- (176.gcc 1 7,460 3,912 1707
gest a large amount of inherent exploitable reference locality.

The hot data stream analysis requires three parameters—the mini- | 197-parser 6p 105 14 0.14
mum and maximum length of a hot data stream, and the threshold N

above which a data stream is marked as “hot”. We set the mini- 252.eon 126 6p 80 043
mum hot data stream length at 2 and the maximum length at 100 253 perlbmk 58 298 181 0.68
since it is unclear whether there is significant opportunity for ' '
exploiting longer streams and our dat_a (not shown) indicated tha_t 255 vortex 74 475 250 012
only a few streams are longer than this value. Because the goal is

to use hot data streams for locality optimizations, we would like a | 300 twolf 5 1,26(419 2.36
large majority of the data references in the trace (at least 90% of

references) to belong to hot data streams, for the optimization to |poxsim 4 3,896 1,701 2.25
have a significant impact on overall program locality. However, if

this requires setting the threshold so low that it produces an |SQLserver 8 77,319 32,616 203

—e— 176.gcc
—+—197.parser
252.eon
—&— 253.perlbmk
—m— 255.vortex
300.tw olf
—>¢— boxsim
—X%— SQLserver

% of hot data streams

0 T T T T
0 20 40 60 80 100

hot data stream size

Figure 6. Cumulative distribution of hot data stream sizes.
ber of hot data streams than any of the other benchmarks, probably5 3 Using Metrics to Quantify Locality
reflecting its more complex data reference behavior. In addition : : : . ,
. L ' Two factors contribute to the regularity magnitude or ‘heat’ of a
SQL server has a higher number of distinct data addresses that Paryata stream. One is its spatial rgegular>i/ty Wghich is the number of
ticipate in hot data streams. However, when viewed as a percent'references it contains, and the other is its regularity frequency,
age of the total number of data addresses accessed during preraS?vhich is the number of non-overlapping occurrences of the stream.
executlc?n_, thelnumber is comparable to .the .other benchmarks, an Another hot data stream characteristic is its temporal regularity,
at 2.03% is quite small. The sole exception is 176.gcc, where data hich is the average reference distance between consecutive
addresses that participate in hot data streams comprise 17.3% Of.an;ream occurrences. As described in Section 2.4, these characteris-
Cjata addresses. These results suggests that commercial aplOI'C&%i'cs can be used to compute exploitable Iocality’metrics We per-
tions such as SQL server, despite their richer data reference behavformed experiments to comoute these metrics and tHe data is
ior, possess regularity in their data reference stream much like thepresented Fi)n Figures 6, 7 ar?d summarized in Table 3. Figure 6
Shiitc t%?ggﬁggglfiligt%%%zlg?b$23r§niuétast;n?;?;§ nT:st ;Zg'ig%;?gillustrates the cumulative distribution of hot data stream sizes (i.e.,
: . patial regularity), which is our inherent exploitable spatial locality
g]a{]:ts?r%t:r:ge:r%sYtﬁ:izgﬁiir?roﬂgged:& esxt(r:s:fr:\éeirTCUIT db:ro?:; hoinetric. The programs divide into three classes, with 176.gcc and
L 9 . Y aSQLserver in one class, boxsim in a category by itself, and the rest

fsma(l}: fracltlon l9f all program dat?) adddressesl.q Thlzs |sdenc0urag|ng of the benchmarks in a third class. 176.gcc and SQLserver have
or data locality optimizations based on the hot data stream - : o g ;

X X g - relatively the worst inherent exploitable spatial locality as 90% of
abstractlon. Finally, examination of the program source associated heir hotydata streams are less tFk)lan 20 refzrences Ionté. On the other
with these hot data streams indicate that while some streams occu and, boxsim has the best inherent exploitable spatial locality with

in loops, many span procedure and data structure boundaries,__. - R .
exposing potentially new optimization opportunities. ‘a fairly uniform distribution of hot data stream sizes from 2 to 100.

100
90 A —X 7
—e—176.gcc
80 /K/(= - = “—{ 197 X
: : ' ' —+—197.parser
g 70 7K /-/)—0—0—0—‘/ p
g 60 ﬁ%%? /,0 ® o o J —e—252.e0n
= E —
8 50 / // —m— 253.perlbmk
3 40 / M / 255.vortex
E 30 / —>— 300.tw off
E 20 —¥— boxsim
10 —=— SQLserver
0 : /
0 20 40 60 80 100
Cache block packing efficiency (64 byte blocks)

Figure 7. Cumulative distribution of hot data stream cache block packing efficiencies.

The other benchmarks lie in between these extremes with a slightent exploitable spatial locality.

bias towards short hot data streams. Table 3 shows weighted aver-Th t set of . ¢ hot data st i i
age hot data stream sizes, where the “heat” (i.e., regularity magni- ' '€ N€Xt St of experiments use hot data streams 1o compute our

tude) of a data stream is used as its weight, so hotter data Streamgealized exploitable locality metric for the benchmarks as outlined
have a greater influence on the reportéd average value Asn Section 2.4.2. Figure 7 illustrates the cumulative distribution of

expected, 176.gcc and SQLserver have the smallest average horthe hot data stream’s cache block packing efficiency for 64 byte

data stream size. While boxsim has the longest streams itscache blocks. The shape of the curves is remarkably similar for all
weighted average is not significantly greater than the other bench-Penchmarks and indicates that their hot da;ta streams fall into two
marks, indicating that its “hottest” streams are small. In addition, distinct categories—a small fraction (5--35% of hot data streams)
255.vortex exhibits a similar behavior wherein its weighted aver- that have ideal cache block packing efficiency, and the remaining

age hot data stream size is smaller than Figure 4 indicates. From a@treams that have suboptimal cache block packing efficiency. This

cache optimization standpoint, the data is encouraging as streand etric permtitshfocusing optim_izﬂion _ef‘forts on thoi‘;GhOt dat"’a
sizes are sufficiently long to guide cache-conscious layouts or streams with the most potential for improvement. -gcc an
direct prefetching. 197.parser have the best packing efficiencies and 253.perlbmk and

boxsim, the worst. From the weighted average data in Table 3 it

Due to space constraints, we omit the graph for cumulative distri- appears that the boxsim’'s and 252.eon’s “hottest” data streams
bution of average hot data stream repetition intervals (i.e., tempo- have better than expected packing efficiencies. However, on aver-
ral regularity), which is our inherent exploitable temporal locality age, the benchmark’s hot data streams occupy 2 to 3 times the
metric. Instead, we present the weighted average hot data streanmumber of caches blocks that an ideal layout would require. This

repetition intervals, expressed in terms of references, in Table 3.suggests that the current mapping of data objects to memory
The weighted average numbers reported are similar to the omittedaddresses does not do a very good job of exploiting the program’s
graph with the exception of boxsim, which appears to have its inherent reference locality and promises significant benefits from

“hottest” data streams repeat in closer succession than expecteddata locality optimizations.

Se?ggr?g%l.’g::r:f grr]c()ig;%rgjwcg:??ﬁ cl)?]tg Ct?;:; %%tfggn;;v ggssig&_Combining the inherent ar_1d realized exploitab_le locality metric
Ibmk in a second class, and 197.parser, 252.eon, and 255.vortex iffata for the benchmarks it appears that boxsim and 300.twolf,
the third class. The first class of benchmarks, which includes Which have good inherent spatial locality, fair/poor inherent tem-
SQLserver, have relatively poor inherent exploitable temporal poral _Iocallty, and poor caqhe leCI.(pa_lcklng e_f'ﬂmenmes, would

locality. 253.perlbmk and boxsim have reasonable exploitable tem- PENEfit most from data locality optimizations, while 197.parser and
poral locality. Finally, 197.parser, 252.eon, and 255.vortex possess2>2-€0N, which have good inherent temporal locality, would bene-
hot data streams that exhibit good exploitable temporal locality. "'t the least.

Interestingly, these results correlate well with number of hot data ; ; _
streams present in these benchmarks, with the exception of boxsim5'4 Evaluatmg t.he Po'ger)tlal‘of Stream-Based

(see Table 2). Benchmarks with a large number of hot data streams Data Locality Optimizations

tend to have the same stream repeat less often. We now evaluate the hot data stream abstraction for data locality
optimizations along two dimensions. First, are the locality metrics

computed using hot data streams useful for indicating the potential
of different optimizations? If so, they could be used to select the
data locality optimization likely to produce the greatest benefit.

Second, how much improvement can we expect from locality opti-

mizations based on the hot data stream abstraction?

The inherent exploitable locality metrics computed from hot data
streams indicate that 176.gcc and SQLserver have relatively poor
inherent exploitable spatial and temporal locality, boxsim has
excellent inherent spatial locality but only fair temporal locality,
300.twolf has reasonably good inherent spatial locality but poor
temporal locality, and the rest of the benchmarks have relatively
good inherent exploitable temporal locality and reasonable inher- Before attempting to answer these questions, we address a more
basic issue. How much do we give up by focusing our optimization

Table 3: Summary of inherent and realized locality metrics. efforts on hot data streams exclusively? To answer this, we mea-
sured cache miss rates for a variety of cache configurations. Figure
Wt.avghot | Wt. avg. Wt. avg cache 8 shows the proportion of caches misses to references that partici-
Benchmark | datastream| repetition block packing pate in hot data streams as the cache miss rate increases. The graph
size interval efficienc indicates that if cache performance is a bottleneck (miss rate > 5%)
y then around 80% of misses are attributable to hot data stream refer-
ences, with the exception of 197.parser for which this number is
176.gcc 103 4.5754 5Ly only 30%. This is not surprising as it suggests that when hot data
streams fit in the cache, most misses are to cold addresses and the
197.parser 24.4 86.9 64.8 cache miss rate is low. For programs with a cache performance
252 eon 18.4 47.d 66.4 problem, their higher cache miss rates indicate a large number of
)) 7 i misses to hot data stream references, making these streams suitable
253.perlbmk 23.1 334.4 31.p Optimization targets.
Figure 9 attempts to answer the previous two questions about the
255.vortex 115 92.9 36.1 ability of hot data streams-based metrics to select data locality
optimizations and the benefits of optimizations that target hot data
300.twolf 23.9 8art 39.8 streams. We first compute the potential impact on cache miss rate
boxsim 25.8 228.2) 497 of an ideal prefetching scheme based on hot data streams that is
))) able to schedule all prefetches sufficiently in advance of their use
SQLserver 10.9 2.544.1 414 such that the data is cache-resident when referenced (we ignore
misses that occur when the data is prefetched, since these do not

] —¥—176.gcc

—e— 197.parser
—m— 252.eon
253.perlbmk
—x— 255.vortex
—e— 300.tw olf

+— boxsim

—=— SQLserver

% of misses to hot data stream
addresses

0 5 10 15 20 25 30 35

Cache miss rate

Figure 8. Fraction of cache misses caused by hot data streams.

affect access latency if the prefetch is scheduled sufficiently in 6, RELATED WORK
advance). Second, we compute the effect of using hot data stream
to cluster objects as mentioned in Section 4. Finally, we compute
the effect of combining the two optimizations. The results are com-
puted for a 8K fully-associative cache with 64 byte blocks (we
scaled the cache size since we used the SPEC benchmark’s te
inputs) and are normalized to the base cache miss rate. As expecte
from the locality metric data, boxsim and 300.twolf benefit the
most from locality optimizations and 197.parser (also see Figure
8), 252.eon, and 253.vortex, benefit the least. In addition, cluster- Compressing program traces has been the subject of much
ing appears to be less effective for 176.gcc, and SQLserver, possitesearch. For example, Plezkun described a two-pass trace com-
ble due to their complex data reference behavior that suggestspression scheme, which infers basic block’s successors and tracks
multiple competing layouts. However, with the exception of linear address patterns.This is used to produce a variable-length
197.parser (see Figure 8), locality optimizations based on hot dataencoding that compresses address traces to a fraction of a bit per
streams appear promising, producing cache miss rate reductions ofeference [21]. Larus’s Abstract Execution scheme guides the re-
64-92%. Admittedly, these are ideal miss rate improvements. In a execution of the address generating slice of a program with a small
practical implementation the prefetch scheduling would not be per- amount of run-time data [18]. While these techniques produce con-
fect. In addition, program constraints may prevent a faithful imple- siderable compression, the encoded files are not as analyzable as
mentation of the clustering scheme suggested by hot data streamswPSs, and they require significant post-processing to regenerate
Nevertheless, the large cache miss rate improvements indicate thathe address trace. In any case, the focus of this research is not on
practical implementations of these hot data stream-based localitycompression but on efficient representations and abstractions for

Y arus used a hierarchical compression algorithm (SEQUITUR) to
construct Whole Program Paths (WPP), which are a compact, yet
analyzable representation of a program’s dynamic control flow
4 7]. This paper demonstrates that a similar scheme can serve as an
ffective representation of a program’s dynamic data reference
ehavior. Together, they provide a complete picture of a program’s
dynamic execution behavior.

optimizations merit further consideration. analysis and optimization of dynamic data reference behavior.
100
o -
S goH ||
3 O Base
E 60 H - :
2 | Prefetching
§ 40 H | O Clustering
3 O Pref. + Clustering
£ 204 -
: i
5 [1
S odH :
O N\ Q & 3 S ; X
o S N $* «° & &
S S PX A
S &P k >

Figure 9. Potential of locality optimizations based on the hot data stream abstraction.

7. CONCLUSIONS [10] J. A. Fisher. “Trace Scheduling: A_technique for global micro-
With the growing processor-memory performance gap code compaction.” IEEE Transactions on Computers, vol. C-

understanding and optimizing a program’s data reference locality, 30, pages 478-430, 1981,

and consequently, its cache performance, is becoming increasingly{11] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder. “Procedure
important. The paper address this by proposing a quantitative basis placement using temporal ordering information.’Rroceed-
for understanding and improving reference locality. It describes ings of the 30th Annual ACM/IEEE International Symposium
data reference representations—Whole Program Streams, Stream on Microarchitecture1997.

Flow Graph—and an exploitable locality abstraction—hot data)) .
streams—that support this framework. The paper demonstrates12] R- Gupta, D. A. Berson, and J. Z. Fang. “Path profile guided
that these data reference representations are compact and can be Partial dead code elimination using predication.Proceed-
used to efficiently compute the hot data stream abstraction. In ings of the_lnt_ernatlonal_Conference on Parallel Architecture
addition, it shows that hot data streams are useful for quantifying ~ @nd Compilation Techniques (PACTR97.

as well as exploiting data reference locality. The results reported in [13] J. L. Hennessy and D. A. Patterson. “Computer Architecture:
this paper suggest significant opportunity for hot data stream-based” “p quantitative approach, Second EditioMbrgan Kaufmann

locality optimizations. Publishers, San Mateo, CA995.
8. ACKNOWLEDGMENTS [14] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetching
Jim Larus generously provided his implementation of the technique for irregular accesses to linked data structures.” In

SEQUITUR algorithm as well as code for detecting hot subpaths ~ Symposium on High-Performance Computer Architectiaa,
in Whole Program Paths. Tom Ball, Ras Bodik, Jim Larus, Scott 2000.
McFarling, Ben Zorn and the anonymous referees provided useful

comments on earlier drafts of this paper [15] T. Kistler and M. Franz. “Automated record layout for dynam-

ic data structures.” IDepartment of Information and Computer
9. REFERENCES Science, University of California at Irvine, Technical Report

] 98-22,May 1998.
[1] G. Ammons and J. R. Larus. “Improving data-flow analyses

with path profiles.” InProceedings of the ACM SIGPLAN'98 [16] D. E. Knuth. “An empirical study of FORTRAN programs.” In
Conference on Programming Language Design and Implemen- ~ Software—Practice and Experience, vopages 105-133,

tation, pages 72-84, 1998. 1971.
[2] R. Bodik, R. Gupta, and M. L. Soffa. “Redefining data flow in- [17]J. R. Larus. “Whole program paths.” Rroceedings of the
formation using infeasible paths.” Proceedings of the ACM ACM SIGPLAN'99 Conference on Programming Language

SIGSOFT Fifth Symposium on the Foundations of Software En- Design and Implementatiopages 259-269, May 1999.

gineering May 1997. [18] J. R. Larus. “Abstract Execution: A technique for efficiently
[3] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-conscious tracing programs.” IrBoftware—Practice and Experience, vol
data placement.” IProceedings of the Eighth International 20, pages 1241-1258, 1990.

Conference on Architectural Support for Programming Lan- [19] C-K. Luk and T. Mowry. “Compiler-based prefetching for re-
guages and Operating Systems (ASPLOS \djes 139-149, cursive data structures.” Proceedings of the 7th International
Oct. 1998. Conference on Architectural Support for Programming Lan-

[4] T. M. Chilimbi, and J. R. Larus. “Using generational garbage guages and Operating Systems (ASPLOS, Dit}. 1996.
collection to implement cache-conscious data placement.” In [20] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incre-
Proceedings of the 1998 International Symposium on Memory ™ 0o hierarchy inference for compression. Pioceedings of
ManagementOct. 1998. the Data Compression Conference (DCC’91997.

[5] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious
structure layout.” IrProceedings of the ACM SIGPLAN’99
Conference on Programming Language Design and Implemen-
tation, May 1999.

[21]A. R. Plezkun. “Techniques for compressing program address
traces.” InProceedings of the 27th Annual ACM/IEEE Interna-
tional Symposium on Microarchitectuneages 32-40, 1994.

[22] M. L. Seidl, and B. G. Zorn “Segregating heap objects by ref-

[6]T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious erence behavior and lifetime.” Rroceedings of the Eight In-

structure definition.” IrProceedings of the ACM SIGPLAN'99 ternational Conference on Architectural Support for
Co_nference on Programming Language Design and Implemen- Programming Languages and Operating Systems (ASPLOS VI-
tation, May 1999. 1), pages 12-23, Oct. 1998.

[7]1 T. M. Chilimbi. “On the stability of temporal data reference pro- [23] A. Srivastava and A. Eustace. “ATOM: A s "
S - A . . . : A system for building
files.” In Microsoft Research, Technical Report MSR-TR-2001- customized program analysis tools.”Pnoceedings of the

43, Apr. 2001. ACM SIGPLAN'94 Conference on Programming Language
[8] S. Chenney. “Controllable and scalable simulation for anima- Design and Implementatiopages 196-205, May 1994.
tion.” Ph.D. Thesis, University of California at Berke]&000. [24] D. Truong, F. Bodin, and A. Seznec. “Improving cache
[9] C. Ding and K Kennedy. “Improving cache performance in dy- behavior of dynamically allocated data structures.” In
namic applications through data and computation reorganiza- Proceedings of the International Conference on Parallel
tion at run time.” InProceedings of the ACM SIGPLAN'99 Architecture and Compilation Techniques (PACI998.

Conference on Programming Language Design and Implemen-
tation, pages 229-241, May 1999.

	1. INTRODUCTION
	Figure 1. Program data reference skew in terms of

	2. QUANTIFYING LOCALITY
	2.1 Data Reference Locality
	2.2 Data Reference Regularity
	2.3 Exploitable Data Reference Locality
	Figure 2. Data reference sequence characteristics.
	2.3.1 Exploitable Data Reference Locality Abstraction

	2.4 Quantifying Exploitable Locality
	2.4.1 Inherent Exploitable Locality Metrics
	2.4.2 Realized Exploitable Locality Metric

	3. DATA REFERENCE REPRESENTATIONS FOR COMPUTING LOCALITY
	Figure 3. Sequence compression using SEQUITUR.
	3.1 Whole Program Streams (WPS)
	3.2 Trace Reduction
	Figure 4. Constructing data reference representations.

	3.3 Graph Representation
	3.4 Discussion

	4. EXPLOITING LOCALITY
	4.1 Tools for Improving Data Locality
	4.2 Implementing Data Locality Optimizations
	4.2.1 Identifying Data Locality Optimizations Targets
	4.2.2 Selecting Data Locality Optimizations
	4.2.3 Driving Data Locality Optimizations

	5. EXPERIMENTAL EVALUATION
	5.1 Experimental Methodology
	Table 1: Benchmark characteristics

	176.gcc
	464.7
	125.0
	146.1
	22,647
	11,972
	197.parser
	1,255.7
	516.4
	530.5
	9,977
	104,929
	252.eon
	1,784.0
	165.4
	152.5
	18,744
	16,961
	253.perlbmk
	112.1
	36.3
	27.4
	26,715
	2,385
	255.vortex
	3,384.4
	778.4
	637.3
	200,810
	7,050
	300.twolf
	91.6
	39.3
	27.6
	17,770
	3,764
	boxsim
	183.4
	60.1
	43.6
	75,677
	1,371
	SQL server
	279.2
	139.4
	39.8
	1,606,890
	112
	5.2 Evaluating the Representations and Abstractions
	Figure 5. Relative sizes of the different data reference representations.
	Table 2: Hot data stream information.

	176.gcc
	1
	7,461
	3,912
	17.27
	197.parser
	69
	105
	14
	0.14
	252.eon
	126
	60
	80
	0.43
	253.perlbmk
	58
	228
	181
	0.68
	255.vortex
	75
	475
	250
	0.12
	300.twolf
	5
	1,260
	419
	2.36
	boxsim
	4
	3,896
	1,701
	2.25
	SQLserver
	8
	77,319
	32,616
	2.03
	Figure 6. Cumulative distribution of hot data stream sizes.
	5.3 Using Metrics to Quantify Locality
	Figure 7. Cumulative distribution of hot data stream cache block packing efficiencies.
	Table 3: Summary of inherent and realized locality metrics.

	176.gcc
	10.3
	4,575.4
	51.7
	197.parser
	24.0
	86.9
	64.8
	252.eon
	18.4
	47.9
	66.4
	253.perlbmk
	23.1
	334.8
	31.0
	255.vortex
	11.5
	92.8
	36.1
	300.twolf
	23.9
	847.7
	39.8
	boxsim
	25.8
	228.2
	49.2
	SQLserver
	10.9
	2,544.1
	41.4
	5.4 Evaluating the Potential of Stream-Based Data Locality Optimizations
	Figure 8. Fraction of cache misses caused by hot data streams.
	Figure 9. Potential of locality optimizations based on the hot data stream abstraction.

	6. RELATED WORK
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES
	[1] G. Ammons and J. R. Larus. “Improving data-flow analyses with path profiles.” In Proceedings ...
	[2] R. Bodik, R. Gupta, and M. L. Soffa. “Redefining data flow information using infeasible paths...
	[3] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-conscious data placement.” In Proceeding...
	[4] T. M. Chilimbi, and J. R. Larus. “Using generational garbage collection to implement cache-co...
	[5] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious structure layout.” In Proceedi...
	[6] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious structure definition.” In Proc...
	[7] T. M. Chilimbi. “On the stability of temporal data reference profiles.” In Microsoft Research...
	[8] S. Chenney. “Controllable and scalable simulation for animation.” Ph.D. Thesis, University of...
	[9] C. Ding and K Kennedy. “Improving cache performance in dynamic applications through data and ...
	[10] J. A. Fisher. “Trace Scheduling: A technique for global microcode compaction.” In IEEE Trans...
	[11] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder. “Procedure placement using temporal order...
	[12] R. Gupta, D. A. Berson, and J. Z. Fang. “Path profile guided partial dead code elimination u...
	[13] J. L. Hennessy and D. A. Patterson. “Computer Architecture: A quantitative approach, Second ...
	[14] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetching technique for irregular accesses ...
	[15] T. Kistler and M. Franz. “Automated record layout for dynamic data structures.” In Departmen...
	[16] D. E. Knuth. “An empirical study of FORTRAN programs.” In Software—Practice and Experience, ...
	[17] J. R. Larus. “Whole program paths.” In Proceedings of the ACM SIGPLAN’99 Conference on Progr...
	[18] J. R. Larus. “Abstract Execution: A technique for efficiently tracing programs.” In Software...
	[19] C-K. Luk and T. Mowry. “Compiler-based prefetching for recursive data structures.” In Procee...
	[20] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incremental hierarchy inference for com...
	[21]A. R. Plezkun. “Techniques for compressing program address traces.” In Proceedings of the 27t...
	[22] M. L. Seidl, and B. G. Zorn “Segregating heap objects by reference behavior and lifetime.” I...
	[23] A. Srivastava and A. Eustace. “ATOM: A system for building customized program analysis tools...

	Efficient Representations and Abstractions for Quantifying and Exploiting Data Reference Locality
	Trishul M. Chilimbi
	Microsoft Research
	One Microsoft Way
	Redmond, WA 98052
	trishulc@microsoft.com

