
Counting Successes: Effects and Transformations
for Non-Deterministic Programs

Nick Benton1, Andrew Kennedy2, Martin Hofmann3, and Vivek Nigam4

1 Microsoft Research, Cambridge, UK
2 Facebook, London, UK

3 Ludwig-Maximilians-Universität, München, Germany
4 UFPB, Joao Pessoa, Brazil

Abstract. We give a simple effect system for non-deterministic pro-
grams, tracking static approximations to the number of results that may
be produced by each computation. A relational semantics for the ef-
fect system establishes the soundness of both the analysis and its use in
effect-based program transformations.

Dedicated to Philip Wadler on the occasion of his 60th birthday.

1 Introduction

Back in 1998, Wadler showed [30, 31] how type-and-effect systems, a form of
static analysis for impure programs that was first introduced by Gifford and
Lucassen [15, 21], may be re-presented, both syntactically and algorithmically,
in terms of a variant of Moggi’s computational metalanguage [22] in which the
computation type constructor is refined by annotations that delimit the possible
effects of computations. The same year, Tolmach described the use of a hierarchy
of monadic types in optimizing compilation [26] and, in the same conference as
Wadler’s paper, two of us presented an optimizing compiler for Standard ML
that used the same kind of refined monadic metalanguage as its intermediate
language, inferring state, exception and divergence effects to enable optimizing
transformations [9].

“That’s all very well in practice,” we thought, “but how does it work out in
theory?” But devising a satisfactory semantics for effect-refined types that both
interprets them as properties of the original, un-refined terms, and validates
program transformations predicated on effect information proved surprisingly
tricky, until we adopted another Wadleresque idea [29]: the relational interpre-
tation of types. Interpreting static analyses in terms of binary relations, rather
than unary predicates, deals naturally with independence properties (such as se-
cure information flow or not reading parts of the store), is naturally extensional
(by contrast with, say, instrumenting the semantics with a trace of side-effecting
operations), and accounts for the soundness of program transformations at the
same time as soundness of the analysis [2]. We have studied a series of effect

2 Benton, Kennedy, Hofmann and Nigam

systems, of ever-increasing sophistication, using relations, concentrating mainly
on tracking uses of mutable state [8, 7, 4].

Here we consider a different effect: non-determinism. Wadler studied non-
determinism in a famous thirty-year-old paper on how lazy lists can be used to
program exception handling, backtracking and pattern matching in pure func-
tional languages [28], and returned to it in his work on query languages [23].
That initial paper draws a distinction between two cases. The first is the use
of lists to encode errors, or exceptions, where computations either fail, repre-
sented by the empty list, or succeed, returning a singleton list. The second is
more general backtracking, encoding the kind of search found in logic program-
ming languages, where computations can return many results. This paper is in
the spirit of formalizing that distinction. We refine a non-determinism monad
with effect annotations that approximate how many (different) results may be
returned by each computation, and give a semantics that validates transforma-
tions that depend on that information. To keep everything as simple as possible,
we work with a total language and a semantics that uses powersets, rather than
lists or multisets, so we do not observe the order or multiplicity of results. The
basic ideas could, however, easily be adapted to a language with recursion or a
semantics with lists instead of sets.

2 Effects for Non-Determinism

2.1 Base Language

We consider a monadically-typed, normalizing, call-by-value lambda calculus
with operations for failure and non-deterministic choice. A more conventionally-
typed impure calculus may be translated into the monadic one via the usual
‘call-by-value translation’ [6], and this extends to the usual style of presenting
effect systems in which every judgement has an effect, and function arrows are
annotated with ‘latent effects’ [31].

We define value types A, computation types TA and contexts Γ as follows:

A,B := unit | int | bool | A×B | A→ TB

Γ := x1 : A1, . . . , xn : An

Value judgements, Γ ` V : A, and computation judgements, Γ ` M : TA,
are defined by the rules in Figure 1. The presence of types on lambda-bound
variables makes typing derivations unique, and addition and comparison should
be considered just representative primitive operations.

Our simple language has an elementary denotational semantics in the cate-
gory of sets and functions. The semantics of types is as follows:

[[unit]] = 1 [[int]] = Z [[bool]] = B [[A×B]] = [[A]]× [[B]]

[[A→ TB]] = [[A]]→ [[TB]] [[TA]] = Pfin([[A]])

Effects and Transformations for Non-Deterministic Programs 3

Γ ` n : int Γ ` b : bool Γ ` () : unit Γ, x : A ` x : A

Γ ` V1 : int Γ ` V2 : int

Γ ` V1 + V2 : int

Γ ` V1 : int Γ ` V2 : int

Γ ` V1 > V2 : bool

Γ ` V1 : A Γ ` V2 : B

Γ ` (V1, V2) : A×B

Γ ` V : A1 ×A2

Γ ` πi V : Ai

Γ, x : A `M : TB

Γ ` λx : A.M : A→ TB

Γ ` V1 : A→ TB Γ ` V2 : A

Γ ` V1 V2 : TB

Γ ` V : A

Γ ` val V : TA

Γ `M : TA Γ, x : A ` N : TB

Γ ` let x⇐M inN : TB

Γ ` V : bool Γ `M : TA Γ ` N : TA

Γ ` if V then M else N : TA

Γ ` fail : TA

Γ `M1 : TA Γ `M2 : TA

Γ `M1 orM2 : TA

Fig. 1. Simple computation type system

The interpretation of the computation type constructor is the finite powerset
monad. The meaning of contexts is given by [[x1 : A1, . . . , xn : An]] = [[A1]] ×
· · · × [[An]], and we can then give the semantics of judgements

[[Γ ` V : A]] : [[Γ]]→ [[A]] and [[Γ `M : TA]] : [[Γ]]→ [[TA]]

inductively in a standard way. The interesting cases are

[[Γ ` val V : TA]] ρ = {[[Γ ` V : A]] ρ}
[[Γ ` let x⇐M inN]] ρ =

⋃
v∈[[Γ`M :A]] ρ [[Γ, x : A ` N : TB]] (ρ, v)

[[Γ ` fail : TA]] ρ = ∅
[[Γ `M1 orM2 : TA]] ρ = ([[Γ `M1 : TA]] ρ) ∪ ([[Γ `M1 : TA]] ρ)

So, for example

[[` let f⇐val (λx : int.if x < 6 then val x else fail) in
let x⇐val 1 or val 2 in let y⇐val 3 or val 4 in f(x+ y) : Tint]] = {4, 5}

The semantics is adequate for the obvious operational semantics and a contextual
equivalence observing, say, the set of unit values produced by a closed program.

2.2 Effect System

We now present an effect analysis that refines the simple type system by an-
notating the computation type constructor with information about how many

4 Benton, Kennedy, Hofmann and Nigam

X ≤ X
X ≤ Y Y ≤ Z

X ≤ Z

X ≤ X ′ Y ≤ Y ′

X × Y ≤ X ′ × Y ′

X ′ ≤ X TεY ≤ Tε′Y
′

(X → TεY) ≤ (X ′ → Tε′Y
′)

ε ≤ ε′ X ≤ X ′

TεX ≤ Tε′X
′

Fig. 2. Subtyping refined types

results a computation may produce. Formally, define refined value types X,
computation types TεX and contexts Θ by

X,Y := unit | int | bool | X × Y | X → TεY

ε ∈ {0, 1, 01, 1+, N}
Θ := x1 : X1, . . . , xn : Xn

A computation of type T0X will always fail, i.e. produce zero results. One of type
T1X is deterministic, i.e. produces exactly one result. More generally, writing |S|
for the cardinality of a finite set S, a computation of type TεX can only produce
sets of results S such that |S| ∈ [[ε]], where [[ε]] ⊆ N:

[[0]] = {0}
[[1]] = {1}

[[01]] = {0, 1}

[[1+]] = {n | n ≥ 1}
[[N]] = N

There is an obvious order on effect annotations, given by ε ≤ ε′ ⇐⇒ [[ε]] ⊆ [[ε′]]:

N

01 1+

0 1

This order induces a subtyping relation on refined types, which is axiomatised in
Figure 2. The refined type assignment system is shown in Figure 3. The erasure
map, U(·), takes refined types to simple ones by forgetting the effect annotations:

U(int) = int U(bool) = bool U(unit) = unit

U(X × Y) = U(X)× U(Y)
U(X → TεY) = U(X)→ U(TεY)

U(TεX) = T (U(X))

U(x1 : X1, . . . , xn : Xn) = x1 : U(X1), . . . , xn : U(Xn)

Lemma 1. If X ≤ Y then U(X) = U(Y), and similarly for computations. ut

Effects and Transformations for Non-Deterministic Programs 5

Θ ` n : int Θ ` b : bool Θ ` () : unit Θ, x : X ` x : X

Θ ` V1 : int Θ ` V2 : int

Θ ` V1 + V2 : int

Θ ` V1 : int Θ ` V2 : int

Θ ` V1 > V2 : bool

Θ ` V1 : X Θ ` V2 : Y

Θ ` (V1, V2) : X × Y

Θ ` V : X1 ×X2

Θ ` πi V : Xi

Θ, x : X `M : TεY

Θ ` λx : U(X).M : X → TεY

Θ ` V1 : X → TεY Θ ` V2 : X

Θ ` V1 V2 : TεY

Θ ` V : X

Θ ` val V : T1X

Θ `M : TεX Θ, x : X ` N : Tε′Y

Θ ` let x⇐M inN : Tε·ε′Y

Θ ` V : bool Θ `M : TεX Θ ` N : TεX

Θ ` if V then M else N : TεX

Θ ` fail : T0X

Θ `M1 : Tε1X Θ `M2 : Tε2X

Θ `M1 orM2 : Tε1+ε2X

Θ ` V : X X ≤ X ′

Θ ` V : X ′

Θ `M : TεX TεX ≤ Tε′X
′

Θ `M : Tε′X
′

Fig. 3. Refined type system

The use of erasure on bound variables means that the subject terms of the refined
type system are the same as those of the unrefined one.

Lemma 2. If Θ ` V : X then U(Θ) ` V : U(X), and similarly for computa-
tions. ut
It is also the case that the refined system does not rule out any terms from the
original language. Let G(·) be the map from simple types to refined types that
adds the ‘top’ effect N to all computation types, and then

Lemma 3. If Γ ` V : A then G(Γ) ` V : G(A) and similarly for computations.
ut

The interesting aspect of the refined type system is the use it makes of
abstract multiplication (in the let-rule) and addition (in the or rule) operations
on effects. The definitions are:

· 0 1 01 1+ N

0 0 0 0 0 0

1 0 1 01 1+ N

01 0 01 01 N N

1+ 0 1+ N 1+ N

N 0 N N N N

+ 0 1 01 1+ N

0 0 1 01 1+ N

1 1 1+ 1+ 1+ 1+

01 01 1+ N 1+ N

1+ 1+ 1+ 1+ 1+ 1+

N N 1+ N 1+ N

The operations endow our chosen set of effect annotations with the structure of
a commutative semiring with idempotent multiplication.

6 Benton, Kennedy, Hofmann and Nigam

Lemma 4. The + operation is associative and commutative, with 0 as a unit.
The · operation is associative, commutative and idempotent, with 1 as unit and
0 as zero. We also have the distributive law (ε1 + ε2) · ε3 = ε1 · ε3 + ε2 · ε3. ut

The correctness statement concerning the abstract operations that we will
need later is a consequence of a trivial fact about the cardinality of unions:

|A| ≤ |A ∪B| ≤ |A|+ |B|

which leads to the following:

Lemma 5. For any ε1,ε2,⋃
a∈[[ε1]], b∈[[ε2]]

{n | max(a, b) ≤ n and n ≤ a+ b} ⊆ [[ε1 + ε2]]⋃
a∈[[ε1]]

⋃
(b1,...,ba)∈[[ε2]]a

{n | ∀i, bi ≤ n and n ≤ Σibi} ⊆ [[ε1 · ε2]]. ut

The intuition behind the awkward-looking correctness condition for multiplica-
tion deserves some explanation. Consider how many results may be produced by
let x⇐M inN when M produces results x1, . . . , xa for some a ∈ [[ε1]] and for
each such result, xi, N(xi) produces a set of results of size bi ∈ [[ε2]]. Then, by
the inequality above, the number n of results of the let-expression is bounded
below by each of the bis and above by the sum of the bis. The set of all possible
cardinalities for the let-expression is then obtained by unioning the cardinality
sets for each possible a and each possible tuple (b1, . . . , ba).

The reader may also be surprised by the asymmetry of the condition for
multiplication, given that we observed above that the abstract operation is com-
mutative. But that commutativity is actually an accidental consequence of our
particular choice of sets of cardinalities to track. Indeed, if M produces a sin-
gle result and for each x, N(x) produces exactly two results (a case we do not
track here), then let x⇐M in N produces two results. Conversely, however,
if M produces two results and for each x, N(x) produces a single result, then
let x⇐M in N can produce either one or two distinct results. This case also
shows that, in general, 1 will only be left unit for multiplication. Idempotency
also fails to hold in general.

We remark that the abstract operations are an example of the Cousots’ αγ
framework for abstract interpretation [12], and were in fact derived using a little
list-of-successes ML program that computes with abstractions and concretions.

2.3 Semantics of Effects

The meanings of simple types are just sets, out of which we will carve the
meanings of refined types as subsets, together with a coarser notion of equality.

We first recall some notation. If R is a (binary) relation on A and Q a relation
on B, then we define relations on Cartesian products and function spaces by

R×Q = {((a, b), (a′, b′)) ∈ (A×B)× (A×B) | (a, a′) ∈ R, (b, b′) ∈ Q}
R→ Q = {(f, f ′) ∈ (A→ B)× (A→ B) | ∀(a, a′) ∈ R. (f a, f ′ a′) ∈ Q}

Effects and Transformations for Non-Deterministic Programs 7

A binary relation on a set is a partial equivalence relation (PER) if it is symmetric
and transitive. If R and Q are PERs, so are R→ Q and R×Q. Write ∆A for the
diagonal relation {(a, a) | a ∈ A}, and a : R for (a, a) ∈ R. If R is a PER on A
and a ∈ A then we define the ‘equivalence class’ [a]R to be {a′ ∈ A|(a, a′) ∈ R},
noting that this is empty unless a : R.

We can now define the semantics of each refined type as a partial equivalence
relation on the semantics of its erasure as follows:

[[X]] ⊆ [[U(X)]]× [[U(X)]]

[[int]] = ∆Z [[bool]] = ∆B [[unit]] = ∆1

[[X × Y]] = [[X]]× [[Y]]

[[X → TεY]] = [[X]]→ [[TεY]]

[[TεX]] = {(S, S′) | S ∼X S′ and |S/[[X]]| ∈ [[ε]]}

The key clause is the last one, in which S ∼X S′ means ∀x ∈ S,∃x′ ∈ S′, (x, x′) ∈
[[X]] and vice versa. The ∼X relation is a lifting of [[X]] to sets of values; this is
a familar, canonical construction that appears, for example, in the definition of
bisimulation or of powerdomains. The quotient S/[[X]] is defined to be {[x][[X]] |
x ∈ S}.5 We observe that if S ∼X S′ then S/[[X]] = S′/[[X]] and ∅ /∈ S/[[X]].

The way one should understand the clause for computation types is that
two sets S,S′ are related when they have the same elements up to the notion of
equivalence associated with the refined type X and, moreover, the cardinality
of the sets (again, as sets of Xs, not as sets of the underlying type UX) is
accurately reflected by ε.

We also extend the relational interpretation of refined types to refined con-
texts in the natural way:

[[Θ]] ⊆ [[U(Θ)]]× [[U(Θ)]]

[[x1 : X1, . . . , xn : Xn]] = [[X1]]× · · · × [[Xn]]

Lemma 6. For any Θ, X and ε, all of [[Θ]], [[X]] and [[TεX]] are partial equiva-
lence relations. ut

The interpretation of a refined type with the top effect annotation everywhere
is just equality on the interpretation of its erasure:

Lemma 7. For all A, [[G(A)]] = ∆[[A]]. ut

The following establishes semantic soundness for our subtyping relation:

Lemma 8. If X ≤ Y then [[X]] ⊆ [[Y]], and similarly for computation types. ut

And we can then show the ‘fundamental theorem’ that establishes the soundness
of the effect system itself:

5 It is tempting to replace S ∼X S′ by S/[[X]] = S′/[[X]], but S/[[X]] contains the
empty set when there is an x ∈ S with (x, x) /∈ [[X]].

8 Benton, Kennedy, Hofmann and Nigam

Theorem 1.

1. If Θ ` V : X, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) ` V : U(X)]] ρ, [[U(Θ) ` V : U(X)]] ρ′) ∈ [[X]]

2. If Θ `M : TεX, (ρ, ρ′) ∈ [[Θ]] then

([[U(Θ) `M : T (U(X))]] ρ, [[U(Θ) `M : T (U(X))]] ρ′) ∈ [[TεX]]

Proof. A largely standard induction; we just sketch the interesting cases.

Trivial computations. Let Γ = U(Θ) and A = U(X). Given (ρ, ρ′) ∈ [[Θ]] we
need to show

([[Γ ` val V : TA]] ρ, [[Γ ` val V : TA]] ρ′) ∈ [[T1X]]

which means

({[[Γ ` V : A]]ρ}, {[[Γ ` V : A]]ρ′}) ∈ {(S, S′) | S ∼X S′ and |S/[[X]]| = 1}

Induction gives ([[Γ ` V : A]]ρ, [[Γ ` V : A]]ρ′) ∈ [[X]], which deals with the · ∼X ·
condition, and it is clear that |{[[[Γ ` V : A]]][[X]]}| = 1.

Choice. We want firstly that

[[Γ `M1 orM2 : TA]]ρ ∼X [[Γ `M1 orM2 : TA]]ρ′

which is

[[Γ `M1 : TA]]ρ ∪ [[Γ `M2 : TA]]ρ ∼X [[Γ `M1 : TA]]ρ′ ∪ [[Γ `M2 : TA]]ρ′

Induction gives [[Γ ` M1 : TA]]ρ ∼X [[Γ ` M1 : TA]]ρ′ and similarly for M2,
from which the result is immediate. Secondly, we want

|[[Γ `M1 orM2 : TA]]ρ / [[X]]| ∈ [[ε1 + ε2]]

and because quotient distributes over union, this is

|[[Γ `M1 : TA]]ρ /[[X]] ∪ [[Γ `M2 : TA]]ρ /[[X]]| ∈ [[ε1 + ε2]]

By induction, |[[Γ `M1 : TA]]ρ /[[X]]| ∈ [[ε1]], and similarly for M2, so we are
done by Lemma 5.

Sequencing. Pick y ∈ [[Γ ` let x⇐M in N : TB]]ρ. By the semantics of let,
there’s an x ∈ [[Γ ` M : TA]]ρ such that y ∈ [[Γ, x : A ` N : TB]](ρ, x). By
induction on M , there’s an x′ ∈ [[Γ ` M : TA]]ρ′ such that (x, x′) ∈ [[X]]. So
by induction on N , [[Γ, x : A ` N : TB]](ρ, x) ∼Y [[Γ, x : A ` N : TB]](ρ′, x′),
and therefore ∃y′ ∈ [[Γ, x : A ` N : TB]](ρ′, x′) with (y, y′) ∈ [[Y]]. Then as
y′ ∈ [[Γ ` let x⇐M inN : TB]]ρ′, we are done.

Effects and Transformations for Non-Deterministic Programs 9

For the cardinality part, note that(⋃
x∈[[Γ`M :TA]]ρ[[Γ, x : A ` N : TB]](ρ, x)

)
/[[Y]]

=
⋃
x∈[[Γ`M :TA]]ρ ([[Γ, x : A ` N : TB]](ρ, x)/[[Y]])

=
⋃

[x]∈[[Γ`M :TA]]ρ/[[X]] ([[Γ, x : A ` N : TB]](ρ, x)/[[Y]])

and then since, by induction, |Γ ` M : TA]]ρ/[[X]]| ∈ [[ε1]], and also for any
[x] ∈ [[Γ `M : TA]]ρ/[[X]],

|[[Γ, x : A ` N : TB]](ρ, x)/[[Y]]| ∈ [[ε2]]

we are done by Lemma 5. ut

2.4 Basic Equations

The semantics validates all the generic equations of the computational metalan-
guage: congruence laws, β and η laws for products, function spaces, booleans and
computation types. We show some of these rules in Figure 4. The powerset monad
also validates a number of more specific equations that hold without restrictions
on the involved effects. These are shown in Figure 5: choice is associative, com-
mutative and idempotent with fail as a unit, the monad is commutative, and
choice and failure distribute over let.

The correctness of the basic congruence laws subsumes Theorem 1. Note that,
slightly subtly, the reflexivity PER rule is invertible. This is sound because our
effect annotations are purely descriptive (Curry-style, or extrinsic in Reynolds’s
terminology [24]) whereas the simple types are more conventionally prescriptive
(Church-style, which Reynolds calls intrinsic). We actually regard the rules of
Figure 3 as abbreviations for a subset of the equational judgements of Figure 4;
thus we can allow the refined type of the conclusion of interesting equational rules
to be different from (in particular, have a smaller effect than) the rules in Figure 3
would assign to one side. This shows up already: most of the rules in Figure 5
are type correct in simple syntactic sense as a consequence of Lemma 4. But the
idempotency rule for choice is not, because the abstract addition is, rightly, not
idempotent. The idempotency law effectively extends the refined type system
with a rule saying that if M has type TεX, so does M orM .

In practical terms, having equivalences also improve typing allows inferred
effects to be improved locally as transformations are performed, rather than
requiring periodic reanalysis of the whole program to obtain the best results.

3 Using Effect Information

More interesting equivalences are predicated on the effect information. We present
these in Figure 6.

The Fail transformation allows any computation with the 0 effect, i.e. that
produces no results, to be replaced with fail.

10 Benton, Kennedy, Hofmann and Nigam

PER rules (+ similar for computations):

Θ ` V : X
============
Θ ` V = V : X

Θ ` V = V ′ : X

Θ ` V ′ = V : X

Θ ` V = V ′ : X Θ ` V ′ = V ′′ : X

Θ ` V = V ′′ : X

Θ ` V = V ′ : X X ≤ X ′

Θ ` V = V ′ : X ′

Congruence rules (extract):

Θ ` V1 = V ′1 : int Θ ` V2 = V ′2 : int

Θ ` (V1 + V2) = (V ′1 + V ′2) : int

Θ ` V = V ′ : X1 ×X2

Θ ` πi V = πi V
′ : Xi

Θ, x : X `M = M ′ : TεY

Θ ` (λx : U(X).M) = (λx : U(X).M ′) : X → TεY

β rules (extract):

Θ, x : X `M : TεY Θ ` V : X

Θ ` (λx : U(X).M)V = M [V/x] : TεY

Θ ` V : X Θ, x : X `M : TεY

Θ ` let x⇐val V inM = M [V/x] : TεY

η rules (extract):

Θ ` V : X → TεY

Θ ` V = (λx : U(X).V x) : X → TεY

Θ `M : TεX

Θ ` (let x⇐M in val x) = M : TεX

Commuting conversions:

Θ `M : Tε1Y Θ, y : Y ` N : Tε2X Θ, x : X ` P : Tε3Z

Θ ` let x⇐(let y⇐M inN) in P = let y⇐M in let x⇐N in P : Tε1·ε2·ε3Z

Fig. 4. Monad-independent equivalences

The Dead Computation transformation allows the removal of a computa-
tion, M , whose value is unused, provided the effect of M indicates that it always
produces at least one result. If M can fail then its removal is generally unsound,
as that could transform a failing computation into one that succeeds.

The Duplicated Computation transformation allows two evaluations of a
computation M to be replaced by one, provided that M produces at most one
result. This is, of course, generally unsound, as, for example,

let x⇐val 1 or val 2 in let y⇐val 1 or val 2 in val (x+ y)
6= let x⇐val 1 or val 2 in val (x+ x).

The Pure Lambda Hoist transformation allows a computation to be hoisted
out of a lambda abstraction, so it is performed once, rather than every time the

Effects and Transformations for Non-Deterministic Programs 11

Choice:
Θ `M1 : Tε1X Θ `M2 : Tε2X

Θ `M1 orM2 = M2 orM1 : Tε1+ε2X

Θ `M : TεX

Θ `M orM = M : TεX

Θ `M : TεX

Θ `M or fail = M : TεX

Θ `M1 : Tε1X Θ `M2 : Tε2X Θ `M3 : Tε3X

Θ `M1 or (M2 orM3) = (M1 orM2) orM3 : Tε1+ε2+ε3X

Commutativity:

Θ `M : Tε1Y Θ ` N : Tε2X Θ, x : X, y : Y ` P : Tε3Z

Θ ` let x⇐M in let y⇐N in P = let y⇐N in let x⇐M in P : Tε1·ε2·ε3Z

Distribution:

Θ `M1 : Tε1X Θ `M2 : Tε2X Θ, x : X ` N : Tε3Y

Θ ` let x⇐(M1 orM2) inN = (let x⇐M1 inN) or (let x⇐M2 inN) : T(ε1+ε2)·ε3Y

Θ, x : X ` N : TεY

Θ ` let x⇐fail inN = fail : T0Y

Θ `M : Tε3X Θ, x : X ` N1 : Tε1Y Θ, x : X ` N2 : Tε2Y

Θ ` let x⇐M in (N1 orN2) = (let x⇐M inN1) or (let x⇐M inN2) : Tε3·(ε1+ε2)Y

Θ `M : TεX

Θ ` let x⇐M in fail = fail : T0Y

Fig. 5. Monad-specific, effect-independent equivalences

function is applied, provided that it returns exactly one result (and, of course,
that it does not depend on the function argument).

Theorem 2. All of the equations shown in Figures 4, 5, and 6 are soundly
modelled in the semantics:

– If Θ ` V = V ′ : X then Θ |= V = V ′ : X.

– If Θ `M = M ′ : TεX then Θ |= M = M ′ : TεX.

Proof. We present proofs for the equivalences in Figure 6.

Dead computation. If we let Γ = U(Θ), A = U(X) and B = U(Y) and (ρ, ρ′) ∈
[[Θ]] then we have to show

([[Γ ` let x⇐M inN : TB]] ρ, [[Γ ` N : TB]] ρ′) ∈ [[TεY]]

12 Benton, Kennedy, Hofmann and Nigam

Fail:
Θ `M : T0X

Θ `M = fail : T0X

Dead Computation:
Θ `M : T1+X Θ ` N : TεY

Θ ` let x⇐M inN = N : TεY

Duplicated Computation:

Θ `M : T01X Θ, x : X, y : X ` N : TεY

Θ ` let x⇐M in let y⇐M inN
= let x⇐M inN [x/y]

: T01·εY

Pure Lambda Hoist:

Θ `M : T1Z Θ, x : X, y : Z ` N : TεY

Θ ` val (λx : U(X).let y⇐M inN)
= let y⇐M in val (λx : U(X).N)

: T1(X → TεY)

Fig. 6. Effect-dependent equivalences

which is⋃
x∈[[Γ`M :TA]]ρ[[Γ, x : A ` N : TB]](ρ, x) ∼Y [[Γ ` N : TB]]ρ′ and∣∣∣⋃x∈[[Γ`M :TA]]ρ[[Γ, x : A ` N : TB]](ρ, x) / [[Y]]

∣∣∣ ∈ [[ε]].

Since for any x, [[Γ, x : A ` N : TB]](ρ, x) = [[Γ ` N : TB]]ρ, and induction on
M tells us that |[[Γ `M : TA]]ρ/[[X]]| > 0, so |[[Γ `M : TA]]ρ| > 0, that’s just

[[Γ ` N : TB]]ρ ∼Y [[Γ ` N : TB]]ρ′ and |[[Γ ` N : TB]]ρ/[[Y]]| ∈ [[ε]]

which is immediate by induction on N .

Duplicated computation. Let Γ = U(Θ),A = U(X),B = U(Y) and (ρ, ρ′) ∈ [[Θ]].
We want (eliding contexts and types in semantic brackets to reduce clutter)⋃

x∈[[M]]ρ

⋃
y∈[[M]]ρ[[N]](ρ, x, y) ∼Y

⋃
x′∈[[M]]ρ′ [[N [x/y]]](ρ′, x′)

and
∣∣∣⋃x∈[[M]]ρ

⋃
y∈[[M]]ρ[[N]](ρ, x, y) / [[Y]]

∣∣∣ ∈ [[01 · ε]]

Let a = |[[M]]ρ/[[X]]|. By induction, a ∈ [[01]]. If a = 0 then we must have
[[M]]ρ = ∅ and (also by induction) [[M]]ρ′ = ∅, so the first clause above is satisfied.
For the second, we just have to check that 0 ∈ [[01 · ε]] for any ε, which is true.

If a = 1 we can pick any x ∈ [[M]]ρ and x′ ∈ [[M]]ρ′ and know ∀y ∈
[[M]]ρ, (x, y) ∈ [[X]] as well as ∀y′ ∈ [[M]]ρ′, (x, y′) ∈ [[X]]. Then by induction

Effects and Transformations for Non-Deterministic Programs 13

on N and the fact that S ∼Y S′ implies S ∪ S′ ∼Y S we have⋃
x∈[[M]]ρ

⋃
y∈[[M]]ρ[[N]](ρ, x, y) ∼Y [[N]](ρ, x, x)

∼Y [[N]](ρ′, x′, x′)
∼Y

⋃
x′∈[[M]]ρ′ [[N]](ρ′, x′, x′)

=
⋃
x′∈[[M]]ρ′ [[N [x/y]]](ρ′, x′)

For the second part, we get |[[N]](ρ, x, x) / [[Y]]| ∈ [[ε]] by induction, and we then
just need to know that [[ε]] ⊆ [[01 · ε]], which is easily checked.

Pure lambda hoist. Define Γ = U(Θ), A = U(X), B = U(Y), C = U(Z) and
pick (ρ, ρ′) ∈ [[Θ]]. We need({

λx ∈ [[A]].
⋃
z∈[[M]]ρ[[N]](ρ, x, z)

}
,
⋃
z∈[[M]]ρ′ {λx ∈ [[A]].[[N]](ρ′, x, z)}

)
∈ [[T1(X → TεY)]]

Since the first component of the pair above is a singleton, the cardinality con-
straint associated with the outer computation type is easily satisfied. For the ∼
part, we look at typical elements of the first and second components above. By
induction on M , we can pick z′ ∈ [[M]]ρ′ and we claim that for any such z′,(

λx ∈ [[A]].
⋃
z∈[[M]]ρ[[N]](ρ, x, z), λx ∈ [[A]].[[N]](ρ′, x, z′)

)
∈ [[X → TεY]]

which will suffice. So assume (x, x′) ∈ [[X]] and we want(⋃
z∈[[M]]ρ[[N]](ρ, x, z), [[N]](ρ′, x′, z′)

)
∈ [[TεY]]

The cardinality part of the above is immediate by induction on N . If y is
an element of the union, then y ∈ [[N]](ρ, x, z) for some z ∈ [[M]]ρ. But then
(z, z′) ∈ [[Z]] because |[[M]]ρ/[[Z]]| = 1, so ∃y′ ∈ [[N]](ρ′, x′, z′) with (y, y′) ∈ [[Y]].
Conversely, if y′ ∈ [[N]](ρ′, x′, z′) then for any z ∈ [[M]] there’s y ∈ [[N]](ρ, x, z)
with (y, y′) ∈ [[Z]], so the two expressions are in the ∼Z relation, as required. ut

For example, if we define

f1 = λg : unit→ Tint.let x⇐g () in let y⇐g () in val x+ y

f2 = λg : unit→ Tint.let x⇐g () in val x+ x

then we have ` f1 = f2 : (unit→ T01int)→ T01int and hence, for example,

` (val f1) or (val f2) = val f2 : T1((unit→ T01int)→ T01int).

Note that the notion of equivalence really is type-specific. We have

6` f1 = f2 : (unit→ TNint)→ TNint

and that equivalence indeed does not hold in the semantics, even though both
f1 and f2 are related to themselves at (i.e. have) that type.

14 Benton, Kennedy, Hofmann and Nigam

Extensions. The syntactic rules can be augmented with anything proved sound
in the model. For example, one can add a subtyping rule T1+X ≤ T1X for any
X such that |[[UX]]/[[X]]| = 1. Or one can manually add typing or equational
judgements that have been proved by hand, without compromising the general
equational theory. For example, Wadler [28] considers parsers that we could give
types of the form PεX = string→ Tε(X×string). One type of the alternation
combinator

alt(p1, p2) = λs : string.
let (v, s′)⇐p1s in val (inlv, s′)
or let (v, s′)⇐p2s in val (inrv, s′)

is P01X × P01Y → PN(X + Y). But if we know that p1 : P01X and p2 : P01Y
cannot both succeed on the same string, then we can soundly ascribe alt(p1, p2)
the type P01(X + Y).

A further extension is to add pruning. One way is

Γ `M1 : TA Γ `M2 : TA

Γ `M1 orelseM2 : TA

[[Γ `M1 orelseM2 : TA]]ρ =

{
[[Γ `M2 : TA]]ρ if [[Γ `M1 : TA]]ρ = ∅
[[Γ `M1 : TA]]ρ otherwise

with refined typing
Θ `M1 : Tε1X Θ `M2 : Tε2X

Θ `M1 orelseM2 : Tε1Bε2X

where ε1Bε2 is defined to be ε1+ε2 if 0 ≤ ε1 and ε1 otherwise. The orelse opera-
tion can be used to improve efficiency in search-style uses of non-determinism
and is, of course, the natural combining operation to use in error-style uses.

4 Discussion

We have given an elementary relational semantics to a simple effect system for
non-deterministic programs, and shown how it may be used to establish effect-
dependent program equivalences. Extending or adapting the constructions to
richer languages or slightly different monads should be straightforward. One can
also enrich the effect language itself, for example by adding conjunctive refine-
ments and effect polymorphism, as we have done previously [3]. The simple style
of effect system presented here seems appropriate for fairly generic compilation
of a source language with a pervasively non-deterministic semantics, but for
which much code could actually be expected to be deterministic. For serious
optimization of non-trivially non-deterministic code, one would need to combine
effects with refinements on values, to formalize the kind of reasoning used in the
parser example above.

Non-determinism monads are widely used to program search, queries, and
pattern matching in functional languages. In Haskell, the basic constructs we use

Effects and Transformations for Non-Deterministic Programs 15

here are abstracted as the MonadPlus class, though different instances satisfy dif-
ferent laws, and there has been much debate about which laws one should expect
to hold in general [32, 25, 27].6 Several researchers have studied efficient imple-
mentations of functional non-determinism and their various equational proper-
ties [17, 14].

Static analysis of functional non-determinism is not so common, though Kam-
mar and Plotkin have developed a general theory of effects and effect-based
transformations, based on the theory of algebraic effects [18]. Non-determinism
is just one example of that theory, and Kammar and Plotkin establish some
equational laws that are very similar to the ones presented here. One interesting
difference between their work and that we describe here is that our refinements
of the computation type are not necessarily monads in their own right. The in-
terpretation of T0X is {∅, ∅)}, which is not preserved by the underlying monadic
unit a 7→ {a}. If we were to track slightly more refined cardinalities (e.g. sets of
size two) then, as we have already observed, the abstract multiplication would
no longer be idempotent (or commutative), which also implies that the Tε(·)s
would no longer be themselves monads.

Katsumata has presented an elegant general theory of effect systems, using
monoidal functors from a preordered monoid (the effect annotations) to end-
ofunctors on the category of values [19]. The effect system given here is an
instance of Katsumata’s theory. Our very concrete approach to specific effects is
by comparison, perhaps rather unsophisticated. On the other hand, the elemen-
tary approach seems to scale more easily to richer effect systems, for example
for concurrency [5]. (Indeed, it would be natural to augment concurrent state
effects with non-determinism information.) Ahman and Plotkin are developing
a still more general framework for refining algebraic effects, which can express
temporal properties and of which our analysis should be a special case [1].

There is considerable literature on determinism and cardinality analyses in
the context of logic programming (e.g. [10, 13]) with applications including in-
troducing cuts and improving the efficiency of parallel search. Many of these
analyses can also detect mutual exclusion between tests [20]. Mercury allows
programmers to specify determinism using (we were pleased to discover) the
same cardinalities as we do here (0 = failure, 1 = det, 01 = semidet, 1+ =
multidet, N = nondet) and similar abstract operations in the checking algorithm
[16].

Acknowledgements. We thank the referees for their thorough and helpful com-
ments.

References

1. D. Ahman and G. D. Plotkin. Refinement types for algebraic effects. In Abstracts of
the 21st Meeting ‘Types for Proofs and Programs’ (TYPES), pages 10–11. Institute
of Cybernetics, Tallinn University of Technology, 2015.

6 Phil was involved in this debate at least as far back as 1997 [11].

16 Benton, Kennedy, Hofmann and Nigam

2. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In 31st ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL), pages 14–25. ACM, 2004.

3. N. Benton and P. Buchlovsky. Semantics of an effect analysis for exceptions. In
3rd ACM SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI), pages 15–26. ACM, 2007.

4. N. Benton, M. Hofmann, and V. Nigam. Abstract effects and proof-relevant logi-
cal relations. In 41st ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 619–632. ACM, 2014.

5. N. Benton, M. Hofmann, and V. Nigam. Effect-dependent transformations for
concurrent programs. arXiv:1510.02419, 2015.

6. N. Benton, J. Hughes, and E. Moggi. Monads and effects. In Applied Semantics,
Advanced Lectures, volume 2395 of LNCS, pages 42–122. Springer-Verlag, 2002.

7. N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational semantics for
effect-based program transformations with dynamic allocation. In 9th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP), pages 87–96. ACM, 2007.

8. N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading, writing and rela-
tions: Towards extensional semantics for effect analyses. In 4th Asian Symposium
on Programming Languages and Systems (APLAS), volume 4279 of LNCS, pages
114–130. Springer-Verlag, 2006.

9. N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Java bytecodes.
In Third ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 129–140. ACM, 1998.

10. C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of Prolog. In International Symposium on Logic Programming, pages 457–471. MIT
Press, 1994.

11. K. Claessen, P. Wadler, et al. Laws for monads with zero and plus. Haskell
mailing list. http://www.mail-archive.com/haskell%40haskell.org/msg01583.
html, May 1997. Accessed January 2016.

12. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Fourth ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL), pages
238–252. ACM, 1977.

13. S.K. Debray and D.S. Warren. Functional computations in logic programs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 11(3):451–481,
1989.

14. S. Fischer, O. Kiselyov, and C.-C. Shan. Purely functional lazy nondeterministic
programming. J. Functional Programming, 21(4/5):413–465, 2011.

15. D. K. Gifford and J. M. Lucassen. Integrating functional and imperative program-
ming. In ACM Conference on LISP and Functional Programming, pages 28–38.
ACM, 1986.

16. F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in the Mercury
compiler. In Proceedings of the Australian Computer Science Conference, pages
337–34, 1996.

17. R. Hinze. Deriving backtracking monad transformers. In Fifth ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP), pages 186–197. ACM,
2000.

18. O. Kammar and G. D. Plotkin. Algebraic foundations for effect-dependent op-
timizations. In 39th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 349–360. ACM, 2012.

Effects and Transformations for Non-Deterministic Programs 17

19. S. Katsumata. Parametric effect monads and semantics of effect systems. In 41st
ACM SIGPLAN Symposium on Principles of Programming Languages (POPL),
pages 633–646. ACM, 2014.

20. P. López-Garcia, F. Bueno, and M. Hermenegildo. Determinacy analysis for logic
programs using mode and type information. In 14th International Symposium on
Logic Based Program Synthesis and Transformation (LOPSTR), volume 3573 of
LNCS, pages 19–35. Springer-Verlag, 2004.

21. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In 15th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL), pages
47–57. ACM, 1988.

22. E. Moggi. Computational lambda-calculus and monads. In 4th Annual Symposium
on Logic in Computer Science (LICS), pages 14–23. IEEE Computer Society, 1989.

23. S. Peyton Jones and P. Wadler. Comprehensive comprehensions. In ACM SIG-
PLAN Workshop on Haskell, pages 61–72. ACM, 2007.

24. J. C. Reynolds. The meaning of types – from intrinsic to extrinsic semantics.
Technical Report BRICS RS-00-32, BRICS, University of Aarhus, December 2000.

25. E. Rivas, M. Jaskelioff, and T. Schrijvers. From monoids to near-semirings: The
essence of MonadPlus and Alternative. In 17th International Symposium on Prin-
ciples and Practice of Declarative Programming (PPDP), pages 196–207. ACM,
2015.

26. A. Tolmach. Optimizing ML using a hierarchy of monadic types. In Second Inter-
national Workshop on Types in Compilation (TIC), volume 1473 of LNCS, pages
97–115. Springer-Verlag, 1998.

27. T. Uustalu. A divertimento on MonadPlus and nondeterminism. Journal of Logical
and Algebraic Methods in Programming, 2016. To appear.

28. P. Wadler. How to replace failure by a list of successes: A method for excpetion
handling, backtracking, and pattern matching in lazy functional languages. In
Functional Programming Languages and Computer Architecture (FPCA), volume
201 of LNCS, pages 113–128. Springer-Verlag, 1985.

29. P. Wadler. Theorems for free! In Fourth International Symposium on Func-
tional Programming Languages and Computer Architecture (FPCA), pages 347–
359. ACM, 1989.

30. P. Wadler. The marriage of effects and monads. In Third ACM SIGPLAN In-
ternational Conference on Functional Programming (ICFP), pages 63–74. ACM,
1998.

31. P. Wadler and P. Thiemann. The marriage of effects and monads. ACM Transac-
tions on Computational Logic, 4(1):1–32, 2003.

32. A. Yakeley et al. MonadPlus reform proposal. https://wiki.haskell.org/

MonadPlus_reform_proposal, 2006. Accessed January 2016.

