

A Proof Sketch Of Something Which May Possibly Be A Conjecture of Oege de Moor

Nick Benton
Microsoft Research
nick@microsoft.com

December 6, 2000

This note purports to prove something which Oege de Moor presented as an open problem in a talk entitled “Pointwise Relations” at the Computer Laboratory on December 1st. Since I’ve rephrased everything in terms with which I’m more familiar¹ (and may well have misunderstood or misremembered what he said), it’s entirely possible that it doesn’t, however.

Oege starts with a simply-typed lambda calculus. This is given two interpretations, one in $\mathbb{S}et$ and one in $\mathbb{R}el$. Now $\mathbb{R}el$ is the Kleisli category of the powerset monad \mathbb{P} on $\mathbb{S}et$ and I believe that Oege’s direct relational semantics is the same one as you get by factoring through the call-by-value translation into Moggi’s computational metalanguage and then interpreting that in $\mathbb{S}et$ with $T = \mathbb{P}$. The call-by-value translation has the following shape:

$$(\Gamma \vdash M : A)^* = \Gamma^* \vdash M^* : T(A^*)$$

where

Types	
G^*	$= G$ G a ground type
$(A \times B)^*$	$= A^* \times B^*$
$(A \rightarrow B)^*$	$= A^* \rightarrow T(B^*)$

Terms in Context

$(\Gamma, x : A \vdash x : A)^*$	$= \Gamma^*, x : A^* \vdash \text{val } x : T(A^*)$
$(\Gamma \vdash (M N) : B)^*$	$= \Gamma^* \vdash (\text{let } x \Leftarrow M^* \text{ in } (\text{let } y \Leftarrow N^* \text{ in } x y)) : T(B^*)$
$(\Gamma \vdash (\lambda x : A.M) : A \rightarrow B)^*$	$= \Gamma^* \vdash \text{val } (\lambda x : A^*.M^*) : A^* \rightarrow T(B^*)$

The $\text{val } (\cdot)$ form is interpreted by the unit of the monad and let $\cdot \Leftarrow \cdot$ in \cdot by Kleisli composition.

I don’t think that what follows depends on anything that’s very specific to $\mathbb{S}et$ or the powerset monad, but I haven’t got around to rewriting it in an element-free way in terms of CCCs with relations and seeing just what the

¹ “Mathematicians are like Frenchmen: whatever you say to them, they translate into their own language and forthwith it is something entirely different.” – Goethe.

conditions are. Not only will I be frightfully uncategorical, but I'll also confuse syntax and semantics all over the place, confident that the i 's can be dotted and the ℓ 's crossed if there's any interest ...

We start by defining a relation \mathcal{R}_A between (the interpretations of) A and A^* for each type A of the source language. To deal with the fact that we've got computation types around, we'll also need a trivial auxiliary relation \mathcal{R}_A^T which relates A with $T(A^*)$:

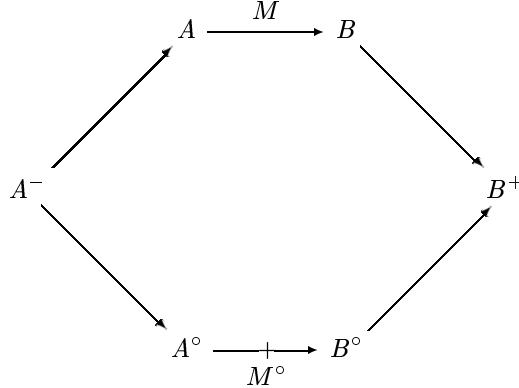
$$\begin{aligned} x \mathcal{R}_G y &\iff x = y \\ f \mathcal{R}_{A \rightarrow B} g &\iff \forall x \in A, y \in A^*. x \mathcal{R}_A y \Rightarrow (f x) \mathcal{R}_B^T (g y) \\ x \mathcal{R}_A^T y &\iff \exists y' \in A^*. (y = \text{val } y') \wedge (x \mathcal{R}_A y') \end{aligned}$$

(Probably hiding ' η is mono' in the computation type case.) A simple induction on terms in context yields the usual "fundamental theorem of logical relations":

Lemma 1. *If $x_1 : A_1, \dots, x_n : A_n \vdash M : B$ and for all $1 \leq i \leq n \vdash V_i : A_i, \vdash W_i : A_i^*$, and $V_i \mathcal{R}_A W_i$, then $M[V_i/x_i] \mathcal{R}_A^T M^*[W_i/x_i]$. \square*

The above should be read with semantic brackets in appropriate places and probably with W and V being elements of the model rather than terms (and thus composition instead of substitution), but it doesn't make any difference.

But Oege's theorem actually looked something like this:



Where A° and B° are the relational interpretations of the types A and B , M° is the relational interpretation of the term M with one free variable. The $(\cdot)^+$ and $(\cdot)^-$ are inductively defined translations which replace function spaces in the original type by 'relation spaces' in all positive (resp. negative) positions. There are canonical coercion functions $A^- \rightarrow A$, $A \rightarrow A^+$, $A^- \rightarrow A^\circ$ and $A^\circ \rightarrow A^+$ which are defined in the 'obvious' way. Note that it's relational composition along the bottom of the diagram.

What does that look like in terms of explicit computational types? I confi-

dently assert (but am too lazy to check) that it's this:

$$\begin{array}{ccccc}
& & A & \xrightarrow{M} & B \xrightarrow{p_B} B^+ \\
& \nearrow e_A & & & \searrow \ni \\
A^- & & & & T(B^+) \\
& \searrow e_A^* & & & \nearrow T(p_B^*) \\
& & A^* & \xrightarrow{M^*} & T(B^*)
\end{array}$$

Where

$$\begin{aligned}
G^+ &= G \\
G^- &= G \\
(A \rightarrow B)^+ &= A^- \rightarrow T(B^+) \\
(A \rightarrow B)^- &= A^+ \rightarrow B^-
\end{aligned}$$

and

$$\begin{aligned}
e_G(g) &= g \\
p_G(g) &= g \\
e_G^*(g) &= g \\
p_G^*(g) &= g \\
e_{A \rightarrow B}(f) &= e_B \circ f \circ p_A \\
p_{A \rightarrow B}(f) &= \eta \circ p_B \circ f \circ e_A \\
e_{A \rightarrow B}^*(f) &= \eta \circ e_B^* \circ f \circ p_A^* \\
p_{A \rightarrow B}^*(f) &= T(p_B^*) \circ f \circ e_A^*
\end{aligned}$$

I claim that this is implied by Lemma 1, which requires me to connect the logical relation and all those funny e s and p s:

Proposition 2. *For any type A*

1. $\forall x \in A^- . e_A(x) \mathcal{R}_A e_A^*(x);$
2. $\forall x \in A, y \in A^*. x \mathcal{R}_A y \Rightarrow p_A(x) = p_A^*(y).$

Proof. The two parts are proved simultaneously by induction on A . The base case is trivial, whilst for function types we reason as follows:

1. If $f \in (A \rightarrow B)^-$, we want to know that $e_{A \rightarrow B}(f) \mathcal{R}_{A \rightarrow B} e_{A \rightarrow B}^*(f)$. Expanding the definitions that's

$$(e_B \circ f \circ p_A) \mathcal{R}_{A \rightarrow B} (\eta \circ e_B^* \circ f \circ p_A^*)$$

By the definition of $\mathcal{R}_{A \rightarrow B}$ that means we have to show that for any a, b with $a \mathcal{R}_A b$

$$(e_B \circ f \circ p_A)(a) \mathcal{R}_B^T (\eta \circ e_B^* \circ f \circ p_A^*)(b)$$

By induction (second part), we know $p_A(a) = p_A^*(b)$ so the above is

$$e_B(f(p_A(a))) \mathcal{R}_B^T \eta(e_B^*(f(p_A(a))))$$

By the definition of \mathcal{R}_B^T (definitely *do* want η mono) that holds if

$$e_B(f(p_A(a))) \mathcal{R}_B e_B^*(f(p_A(a)))$$

which holds by induction (first part).

2. Now assume $f \mathcal{R}_{A \rightarrow B} g$ and we want $p_{A \rightarrow B}(f) = p_{A \rightarrow B}^*(g)$. That's

$$(\eta \circ p_B \circ f \circ e_A) = (T(p_B^*) \circ g \circ e_A^*)$$

so pick an arbitrary $x \in A^-$, then we need show

$$(\eta \circ p_B \circ f \circ e_A)(x) = (T(p_B^*) \circ g \circ e_A^*)(x) \quad (1)$$

By induction (first part), we know $(e_A x) \mathcal{R}_A (e_A^* x)$ and hence, as f and g are related, $(f(e_A x)) \mathcal{R}_B^T (g(e_A^* x))$. By the definition of \mathcal{R}_B^T , that means $g(e_A^* x) = \eta(v)$ for some v such that $(f(e_A x)) \mathcal{R}_B v$. But then

$$\begin{aligned} T(p_B^*)(g(e_A^* x)) &= T(p_B^*)(\eta v) \\ &= \eta(p_B^* v) \quad (\text{monad defn.}) \end{aligned}$$

So we can establish Equation 1 if we can show

$$(p_B(f(e_A x))) = (p_B^* v)$$

which follows immediately from the fact that $(f(e_A x)) \mathcal{R}_B v$ and induction (second part).

□

Now, look back at my version of Oege's diagram.

Corollary 3. *If $x : A \vdash M : B$ then*

$$e_A; \llbracket M \rrbracket; p_B; \eta = e_A^*; \llbracket M^* \rrbracket; T(p_B^*)$$

Proof. If $x \in A^-$ then $(e_A x) \mathcal{R}_A (e_A^* x)$ by part 1 of Proposition 2. Hence, by Lemma 1, $\llbracket M \rrbracket(e_A x) \mathcal{R}_B^T \llbracket M^* \rrbracket(e_A^* x)$. Hence we're done by part 2 of Proposition 2, just as we were in that proof. (Not surprising, since we're in a CCC.) □