A Proof Sketch Of Something Which May
Possibly Be A Conjecture of Oege de Moor

Nick Benton
Microsoft Research
nickOmicrosoft.com

December 6, 2000

This note puports to prove something which Oege de Moor presented as an
open problem in a talk entitled “Pointwise Relations” at the Computer Labo-
ratory on December 1st. Since I've rephrased everything in terms with which
I’'m more familiar! (and may well have misunderstood or misremembered what
he said), it’s entirely possible that it doesn’t, however.

Oege starts with a simply-typed lambda calculus. This is given two inter-
pretations, one in Set and one in Rel. Now Rel is the Kleisli category of the
powerset monad P on Set and I believe that Oege’s direct relational semantics is
the same one as you get by factoring through the call-by-value translation into
Moggi’s computational metalanguage and then interpreting that in Set with
T = P. The call-by-value translation has the following shape:

(CHM:A)* = T*F M :T(AY)
where
Types
G* = G @G aground type
(Ax B)Y = A*xB*
(A= B)" = A" —>T(B")
Terms in Context
(Ty,z:AFz:A) = T"z:A"Fvalz:T(4")
(TFMN):B)* = I'"kF(letz «M*in(lety < N*inzy)): T(B")
(CF (\e: AM):A— B)* = T*Fval(\z: A*.M*): A* = T(BY)

The val (-) form is interpreted by the unit of the monad and let - < -in- by
Kleisli composition.

I don’t think that what follows depends on anything that’s very specific
to Set or the powerset monad, but I haven’t got around to rewriting it in an
element-free way in terms of CCCs with relations and seeing just what the

L«Mathematicians are like Frenchmen: whatever you say to them, they translate into their
own language and forthwith it is something entirely different.” — Goethe.

conditions are. Not only will I be frightfully uncategorical, but I’ll also confuse
syntax and semantics all over the place, confident that the 2’s can be dotted and
the £’s crossed if there’s any interest ...

We start by defining a relation R4 between (the intepretations of) A and
A* for each type A of the source language. To deal with the fact that we’ve got
computation types around, we’ll also need a trivial auxiliary relation R% which
relates A with T(A*):

TRegy <= zx=y
fRasBg < VzeAycAzRay= (fz)RE ()
tRYy = 3 cA(y=valy)A(zRaYy)

(Probably hiding ‘n is mono’ in the computation type case.) A simple induction
on terms in context yields the usual “fundamental theorem of logical relations”:

Lemma 1. If 2, : Ay,...2p : Ap F M : B and forall1 <i<ntkV;: A,
Wi A, and V; Ra W;, then M[V;/z;] Ry M*[W;/z;]. O

The above should be read with semantic brackets in appropriate places and
probably with W and V being elements of the model rather than terms (and
thus composition instead of substitution), but it doesn’t make any difference.

But Oege’s theorem actually looked something like this:

M

A B

Where A° and B° are the relational interpretations of the types A and B, M° is
the relational interpretation of the term M with one free variable. The (-)™ and
(-)~ are inductively defined translations which replace function spaces in the
original type by ‘relation spaces’ in all positive (resp. negative) positions. There
are canonical coercion functions A= — A4, A — AT, A= — A° and A° — AT
which are defined in the ‘obvious’ way. Note that it’s relational composition
along the bottom of the diagram.

What does that look like in terms of explicit computational types? I confi-

dently assert (but am too lazy to check) that it’s this:

A M g PB g
Ry 2
A= T(BY)
o)
S A9°
A + - T(B")
M*
Where
Gt = G
G = G
(A= B)" = A~ —T(B")
(A= B)~ = A" > B~
and

ec(g) = g

pc(g) = g

eclg) = ¢

pclg) = ¢
easB(f) = epofopa
pasB(f) = moppofoea
eap(f) = moepofopy
pasp(f) = T(pp)ofoey

I claim that this is implied by Lemma 1, which requires me to connect the
logical relation and all those funny es and ps:

Proposition 2. For any type A
1. Ve € A= ea(z) Ra e%(z);
2.V e Ajye A*. 2 Ray = pa(z) =p4(y).

Proof. The two parts are proved simultaneously by induction on A. The base
case is trivial, whilst for function types we reason as follows:

1. If f € (A — B) , we want to know that ea,5(f) Raop ei_p(f).
Expanding the definitions that’s

(epofopa) Rasp (noepo foph)

By the definition of R 4_,p that means we have to show that for any a,b
with a R4 b

(epo fopa)(a) RE (noehofoph)b)
By induction (second part), we know pa(a) = p%(b) so the above is

es(f(pa(a)) RE n(ep(f(pa(a))

By the definition of RE (definitely do want mono) that holds if

eB(f(pa(a))) Rp ep(f(pala)))
which holds by induction (first part).
2. Now assume f Ra_,p g and we want pa—,g(f) = p%_, 5(g). That’s
(noppofoea)=(T(pp)ogoen)
so pick an arbitrary z € A~, then we need show
(neppofoea)(r) =(T(pp)ogoey)(z) (1)

By induction (first part), we know (e4) R4 (e* z) and hence, as f and g
are related, (f(ea z)) RE (g(e* z)). By the definition of R%, that means
g(e%) = n(v) for some v such that (f(ea z)) Rp v. But then

T(pp)(glexz)) = T(p)(nv)
= n(psv) (monad defn.)

So we can establish Equation 1 if we can show

(pe(f(ea) = (P v)

which follows immediately from the fact that (f(e4z)) Rp v and induction
(second part).

O
Now, look back at my version of Oege’s diagram.
Corollary 3. Ifz: A+ M : B then
ea;[M;ppin = €u;[M*]; T(pp)

Proof. If z € A~ then (e4) Ra (% x) by part 1 of Proposition 2. Hence, by
Lemma 1, [M](ea z) RE [M*](e’ z). Hence we’re done by part 2 of Proposi-
tion 2, just as we were in that proof. (Not suprising, since we're in a CCC.) O

