
A Proof Sketch Of Something Which May

Possibly Be A Conjecture of Oege de Moor

Nick Benton

Microsoft Research

nick@microsoft.com

December 6, 2000

This note puports to prove something which Oege de Moor presented as an

open problem in a talk entitled \Pointwise Relations" at the Computer Labo-

ratory on December 1st. Since I've rephrased everything in terms with which

I'm more familiar

1

(and may well have misunderstood or misremembered what

he said), it's entirely possible that it doesn't, however.

Oege starts with a simply-typed lambda calculus. This is given two inter-

pretations, one in Set and one in Rel. Now Rel is the Kleisli category of the

powerset monad P on Set and I believe that Oege's direct relational semantics is

the same one as you get by factoring through the call-by-value translation into

Moggi's computational metalanguage and then interpreting that in Set with

T = P. The call-by-value translation has the following shape:

(� `M : A)

�

= �

�

`M

�

: T (A

�

)

where

Types

G

�

= G G a ground type

(A�B)

�

= A

�

�B

�

(A! B)

�

= A

�

! T (B

�

)

Terms in Context

(�; x : A ` x : A)

�

= �

�

; x : A

�

` val x : T (A

�

)

(� ` (M N) : B)

�

= �

�

` (let x (M

�

in (let y (N

�

in x y)) : T (B

�

)

(� ` (�x : A:M) : A! B)

�

= �

�

` val (�x : A

�

:M

�

) : A

�

! T (B

�

)

The val (�) form is interpreted by the unit of the monad and let � (� in � by

Kleisli composition.

I don't think that what follows depends on anything that's very speci�c

to Set or the powerset monad, but I haven't got around to rewriting it in an

element-free way in terms of CCCs with relations and seeing just what the

1

\Mathematicians are like Frenchmen: whatever you say to them, they translate into their

own language and forthwith it is something entirely di�erent." { Goethe.

1

conditions are. Not only will I be frightfully uncategorical, but I'll also confuse

syntax and semantics all over the place, con�dent that the {'s can be dotted and

the `'s crossed if there's any interest : : :

We start by de�ning a relation R

A

between (the intepretations of) A and

A

�

for each type A of the source language. To deal with the fact that we've got

computation types around, we'll also need a trivial auxiliary relation R

T

A

which

relates A with T (A

�

):

x R

G

y () x = y

f R

A!B

g () 8x 2 A; y 2 A

�

:x R

A

y) (f x) R

T

B

(g y)

x R

T

A

y () 9y

0

2 A

�

:(y = val y

0

) ^ (x R

A

y

0

)

(Probably hiding `� is mono' in the computation type case.) A simple induction

on terms in context yields the usual \fundamental theorem of logical relations":

Lemma 1. If x

1

: A

1

; : : : x

n

: A

n

` M : B and for all 1 � i � n ` V

i

: A

i

,

`W

i

: A

�

i

, and V

i

R

A

W

i

, then M [V

i

=x

i

] R

T

A

M

�

[W

i

=x

i

].

The above should be read with semantic brackets in appropriate places and

probably with W and V being elements of the model rather than terms (and

thus composition instead of substitution), but it doesn't make any di�erence.

But Oege's theorem actually looked something like this:

A

M

-

B

A

�

-

B

+

-

A

�

+

M

�

-

-

B

�

-

Where A

�

and B

�

are the relational interpretations of the types A and B, M

�

is

the relational interpretation of the term M with one free variable. The (�)

+

and

(�)

�

are inductively de�ned translations which replace function spaces in the

original type by `relation spaces' in all positive (resp. negative) positions. There

are canonical coercion functions A

�

! A, A ! A

+

, A

�

! A

�

and A

�

! A

+

which are de�ned in the `obvious' way. Note that it's relational composition

along the bottom of the diagram.

What does that look like in terms of explicit computational types? I con�-

2

dently assert (but am too lazy to check) that it's this:

A

M

-

B

p

B

-

B

+

A

�

e

A

-

T (B

+

)

�

-

A

�

+

M

�

-

e

�

A

-

T (B

�

)

T

(

p

�

B

)

-

Where

G

+

= G

G

�

= G

(A! B)

+

= A

�

! T (B

+

)

(A! B)

�

= A

+

! B

�

and

e

G

(g) = g

p

G

(g) = g

e

�

G

(g) = g

p

�

G

(g) = g

e

A!B

(f) = e

B

� f � p

A

p

A!B

(f) = � � p

B

� f � e

A

e

�

A!B

(f) = � � e

�

B

� f � p

�

A

p

�

A!B

(f) = T (p

�

B

) � f � e

�

A

I claim that this is implied by Lemma 1, which requires me to connect the

logical relation and all those funny es and ps:

Proposition 2. For any type A

1. 8x 2 A

�

: e

A

(x) R

A

e

�

A

(x);

2. 8x 2 A; y 2 A

�

: x R

A

y) p

A

(x) = p

�

A

(y).

Proof. The two parts are proved simultaneously by induction on A. The base

case is trivial, whilst for function types we reason as follows:

1. If f 2 (A ! B)

�

, we want to know that e

A!B

(f) R

A!B

e

�

A!B

(f).

Expanding the de�nitions that's

(e

B

� f � p

A

) R

A!B

(� � e

�

B

� f � p

�

A

)

3

By the de�nition of R

A!B

that means we have to show that for any a; b

with a R

A

b

(e

B

� f � p

A

)(a) R

T

B

(� � e

�

B

� f � p

�

A

)(b)

By induction (second part), we know p

A

(a) = p

�

A

(b) so the above is

e

B

(f(p

A

(a))) R

T

B

�(e

�

B

(f(p

A

(a))))

By the de�nition of R

T

B

(de�nitely do want � mono) that holds if

e

B

(f(p

A

(a))) R

B

e

�

B

(f(p

A

(a)))

which holds by induction (�rst part).

2. Now assume f R

A!B

g and we want p

A!B

(f) = p

�

A!B

(g). That's

(� � p

B

� f � e

A

) = (T (p

�

B

) � g � e

�

A

)

so pick an arbitrary x 2 A

�

, then we need show

(� � p

B

� f � e

A

)(x) = (T (p

�

B

) � g � e

�

A

)(x) (1)

By induction (�rst part), we know (e

A

x) R

A

(e

�

A

x) and hence, as f and g

are related, (f(e

A

x)) R

T

B

(g(e

�

A

x)). By the de�nition of R

T

B

, that means

g(e

�

A

x) = �(v) for some v such that (f(e

A

x)) R

B

v. But then

T (p

�

B

)(g(e

�

A

x)) = T (p

�

B

)(� v)

= �(p

�

B

v) (monad defn.)

So we can establish Equation 1 if we can show

(p

B

(f(e

A

x))) = (p

�

B

v)

which follows immediately from the fact that (f(e

A

x)) R

B

v and induction

(second part).

Now, look back at my version of Oege's diagram.

Corollary 3. If x : A `M : B then

e

A

; [[M]]; p

B

; � = e

�

A

; [[M

�

]];T (p

�

B

)

Proof. If x 2 A

�

then (e

A

x) R

A

(e

�

A

x) by part 1 of Proposition 2. Hence, by

Lemma 1, [[M]](e

A

x) R

T

B

[[M

�

]](e

�

A

x). Hence we're done by part 2 of Proposi-

tion 2, just as we were in that proof. (Not suprising, since we're in a CCC.)

4

