
The Proof Assistant as an Integrated
Development Environment

Nick Benton

Microsoft Research
nick@microsoft.com

Abstract. We discuss the potential of doing program development, code
generation, application-specific modelling, and verification entirely within
a proof assistant.

Managing the interaction between programming and proving creates challeng-
ing problems in the design of languages, logics and user interfaces. Almost in-
dependent from the deep research problems associated with designing reasoning
methods for programs, it is not clear what a ‘ideal’ environment or tool-chain
for producing verified software might even look like.

Many automated verification tools start with conventional languages, com-
pilers and development environments, which are extended to allow Hoare-style
assertions and invariants to be added as annotations, for example as structured
comments. Assertions are verified behind the scenes, for example by an SMT
solver, and failures reported by ‘red squigglies’ and textual error messages, just
like conventional syntax and type errors. This comfortably familiar approach is
minimally disruptive to development practices and can work very well, particu-
larly for comparatively simple or specific properties. But there are limitations.

Firstly, when the automation fails (which is the common case), the pro-
grammer has to change the program, change the specification, or add further
annotations as hints to the prover. Making such changes can be hard: the pro-
grammer is, at least morally, interacting with the prover to try to construct a
proof, without any direct feedback of what the proof looks like and only one
mechanism – stating new lemmas – to guide its construction. The alternative
of generating verification conditions for residual obligations and shipping them
to a proof assistant allows some interactivity, but often generates large, incom-
prehensible goals, with no clear link back to the original program. Accurately
relating the annotation language, prover language, proof assistant language and,
in the case of interesting properties, the semantics of the programming language
is challenging. Even arranging to persist the VC proofs along with the program
isn’t entirely trival.

Secondly, the idea of just marking up a conventional program with a few
well-chosen pre/postconditions and invariants and then pressing a magic button
only gets one so far. There are simple syntactic limitations on what one can say
if specification level constructs must align with programming language ones (e.g.



insisting that each procedure has a single specification, or disallowing quantifica-
tion scoped over more than one procedure). More fundamentally, to verify ‘deep’
functional correctness properties one needs a rich logic just to write the speci-
fications. Really verifying a compiler, linear algebra library, crypto protocol or
video decoder involves a model of the desired behaviour that can only be formally
captured in a language that is powerful enough to express, essentially, arbitrary
mathematics, especially if we want the specifications to be comprehensible and
modular. The necessary reasoning about such models is not generally fully au-
tomatable, so some form of explicit representation of proofs seems unavoidable.1

As the amount of text involved in defining the model, proving properties of it,
writing specifications and establishing that they hold of the program (even with
the help of some automation) can easily be at least as great as that associated
with the actual program (and almost always takes at least as long to write), an
environment’s support for convenient proving is arguably more important than
its support for programming.

An attractive alternative to Hoare-style verification is to write one’s soft-
ware in a dependently-typed language, such as Coq or Agda, in the first place.
Dependent type theories do have the power to express the mathematically rich
specifications one needs for full functional correctness (as well as a full range of
simpler ones, of course). And dependently typed languages provide an elegant
integration of programming and proving, such that programs can be said to be
‘correct by construction’ (even if achieving correctness requires a more elaborate
construction). There are actually two slightly different styles of writing verified
software in dependently-typed systems: one one can either use the full power of
dependency to capture specifications directly in the types of functions, or write
conventionally-typed programs about which one separately, though still all in
the same system, proves correctness theorems. The latter style is common in
Coq – e.g. for CompCert [13] – as there is good tactical support for proving,
strongly-dependent programming is trickier than it should be, and because ex-
traction of the computationally relevant parts of a program to OCaml for actual
execution is thereby more straightforward.

Beautiful though it often is, programming directly in type theory comes with
its own trade-offs. Firstly, one must program in a rather fundamentalist pure
functional language, in which only provably total functions can be written. Such
a language is not obviously the most natural choice for writing all the kinds of
software component one might wish to verify. Secondly, compilation is typically
via extraction/translation to a more conventional functional language, such as
OCaml or Haskell. This is convenient both for reusing existing infrastructure
(optimising compilation, runtime systems, etc.) and for interfacing verified and
unverified code, for example to add impure IO and UI code to a verified algo-
rithmic core. But if we insist on a very high level assurance (which we often

1 For particular applications, such as cryptography, or forms of property, such as
memory safety, one can usefully use an interactive prover to verify the metatheory
associated with specialized automation, but in the general case it is impossible to
insulate the developer of seriously verified software from thinking about proofs.



don’t), then we might have reservations about including a sophisticated com-
piler, its runtime system and libraries in our trusted computing base.2 And if
the theorems we really want to prove make non-trivial statements about the IO
behaviour of our program, that behaviour really needs to be brought within the
scope of our formal reasoning.

An popular alternative approach is to use a proof assistant to reason about a
program written in a conventional language, such as C or ML. Given a formalized
semantics for the programming language and a representation of the program
code as an object in the prover’s internal language, one can prove program prop-
erties by many methods, including Hoare-style reasoning, with the soundness of
the reasoning principles being formally justified in terms of the semantics of the
specific language, which may be high or low level, pure or impure. Actual exe-
cutable code is generated by running the textual version of the program through
a conventional compiler. This approach is particularly appropriate for verifying
low-level code and has been successfully used in many significant projects, such
as the sel4 verification [10]. As with program extraction, an external compiler
becomes part of the TCB, though in both cases that concern can be removed by
a separate formal verification of the compiler itself.3 The state of the art here
is the Verified Software Toolchain [1], which builds provably sound separation
logic reasoning (and other program analysis tools) for a version of C on top of
the CompCert semantics and compiler.

As previously mentioned, interactive verification of programs written in stan-
dard programming languages has huge advantages. In many practical situations,
it will, clearly, be the only kind of verification that is acceptable. And yet, as
well as the potential weakening of the guarantees that are obtained if one does
not also use a verified compiler, it is inherently a little clumsy. One’s workflow
involves tools to translate between the programming language syntax and that
of whatever representation is chosen in the prover’s language. Naive representa-
tion choices (of the sort that would mesh well with a compiler correctness proof
and are much more acceptable in metatheoretic work) lead to theorems being
proved about objects that are rather more unwieldy than the original source,
such as abstract syntax trees with their own encoded representations of defini-
tions, scope, etc. Even slightly more idiomatic translations (that, for example,
map definitions in the language to definitions in the prover) make it trickier to
verify formally the correctness of the workflow as a whole. There are numerous
complexities, from differences in identifier naming rules, through dealing with
preprocessors to linking, build scripts, code generation, and keeping the program
and proof in sync.

2 And whilst the story about the relation between Coq semantics and OCaml semantics
might be reasonably clear for whole programs, it seems less so for components, as the
OCaml type system can’t express the purity constraints assumed by Coq functions.

3 Or alleviated by testing, though even that really ought to be strongly connected with
the formalized semantics. One reason for verifying programs written in an existing
language is to be able to use existing tools.



Now, proof assistants are powerful tools, verification researchers are smart,
and code is malleable stuff. Many ingenious strategies for reducing the pain
of impedence matching have been devised, including the circular verification
of the F* typechecker [21] and Myreen et al.’s automatic extraction of HOL
functions, together with correspondence proofs, from low-level programs [17, 16].
But ultimately, a proof assistant like Coq is in many respects simply a better
programming language than most conventional ones. Ideally, we’d like to keep
the expressive structuring and integration between programming and proving
that we get from programming in type theory and also have high assurance
compilation down to the machine, the ability to do low-level programming, and
effects, including general recursion.

Various projects have involved writing imperative (or other non-purely-func-
tional) programs directly in a proof assistant. But this is often just to do exam-
ples for papers on metatheoretic work: a small program is coded up as a term in
an AST type, or directly into some more semantic representation, and something
interesting is proved about it, but it is not often suggested that this is a way of
writing programs one would ever want to actually run. A notable exception is
Ynot: an ML-like, higher-order, imperative language, with Hoare-style assertions
in types [18]. Ynot is built as a library in Coq, from which it inherits structuring
and proving mechanisms. The model of effectful programs is axiomatised rather
than formally verified in Coq, and programs are run via extraction to OCaml, so
Ynot may not quite achieve the highest level of assurance, but the programming
model of ‘type theory with effects’ is an attractive one. Verified programs that
have been written in Ynot include web services [23] and a simple database [14].

Over the last few years, Andrew Kennedy and I, together with a number of
collaborators, have been investigating formally verified compilation and reason-
ing principles for low-level level languages. Like many others, we aim to verify
systems-level code right down to the hardware and so, having done several bits
of work involving very idealized assembly code and abstract machines, we em-
barked on constructing a Coq model of (a sequential subset of) x86 machine
code. The model is foundational in style: starting from bits, bytes and words,
on top of which we model the machine architecture, instruction encoding and
decoding, and the operational semantics.

The scientifically ‘deep’ part of the project involves the design and semantics
of a separation logic for unstructured machine code, supporting both first- and
higher-order frame rules, a full range of intuitionistic connectives and a ‘later’
modality, all with good logical properties [8]. Along the way, however, we also
discovered that Coq was not such a bad system for actually writing the programs
we wanted to verify. Being based on type theory, Coq can do more than contem-
plate eternal verities: it can actually compute. We implemented an assembler in
Coq which, thanks to user-defined notations (including custom binding forms),
is syntactically compatible with existing assemblers. The assembler has been
proved correct, but also actually runs inside Coq: we can extract a bootable



binary image or a runnable .exe file from Coq, with no other external dependen-
cies.4

Moreover, Coq’s powerful abstraction mechanisms allow us to define con-
veniently parameterized higher-level programming constructs, including control
structures and a variety of calling conventions, as macros. These macros also
come with their own verified specifications, allowing one to move up the abstrac-
tion hierarchy in both programming and proving [9]. Chlipala’s Bedrock system
[5] takes a similar approach, allowing imperative programs to be written within
Coq using very conventional-looking macro syntax that incorporates pre/post
conditions and invariants and supports a very high degree of Coq automation
for producing foundational proofs about the generated (machine-independent)
low-level code.

One could keep going up until one had recreated most of the features of a
general-purpose high-level language, but we are more excited about the prospect
of producing verified code via much more explicit orchestration of staging and
metaprogramming within the prover, combining general purpose programming
abstractions with the use of embedded domain-specific languages; sharing pieces,
but each with their own metatheory and code generation strategies. As a small
example of the kind of thing we have in mind, we implemented a verified compiler
for regular expressions that builds on an existing third-party formalization [4]
of the theory of Kleene algebras – not merely at the specification level, but
reusing a verified and computable function from regular languages to finite state
machines as part of the compilation process.

Such an approach is not universally applicable, but for producing, say, a
small, foundationally verified operating system kernel, the use of a conventional
language seems eminently avoidable. Indeed, combining domain-specific com-
pilers specialized to packet processing, scheduling, protocol definitions, event
processing, policy checking, and so on, and able to describe those domains and
their theory declaratively, using the full power of type theory, rather than indi-
rectly through an implementation of some aspect of them in a general-purpose,
low-level programming language, is very appealing. There is much talk about
‘model-driven’ software engineering, but it would be good to do it for real, using
tools that can both actually build meaningful models and generate code that
provably implements them. Mixing up different programming and specification
paradigms might seem (or even be) a recipe for chaos, but the need to verify
composed systems at least keeps us honest, and not only were we going to have
to think carefully about the specifications of boundaries in any case, but those
specifications provide guidance for designing the combination.

Even for unverified software, there is a trend towards integrating special pur-
pose sub-languages into mainstream, general-purpose ones. C] has been extended
with (amongst other things) asynchronous concurrency, reactive programming,
database queries and parallelism, while F ] goes even further by integrating het-
erogenous external data sources and models [22]. Trying to make such a range
of features and paradigms fit together into a single coherent language design is

4 Well, apart from hex2bin and a small bootloader borrowed from Singularity.



challenging, to say the least, and conventional type systems are often not up
to the job of expressing domain-specific invariants (e.g. noninterference between
parallel tasks). If we are going to verify multiparadigm programs, we do have
to capture those invariants in our specification language, so perhaps that could
take the place of, or augment, types at the programming stage too.

Furthermore, the potential performance advantages of metaprogramming and
domain-specific code generation are considerable. Serious software (presumably
the only kind on which one would spend the effort of verification) already often
makes use of code generation techniques, from parser generators and template
metaprogramming to the custom approach of, for example, FFTW [7]. Com-
posing code generators, rather than working with a monolithic compiler, would
allow many optimizations (such as smoothly combining manual memory man-
agement and garbage collection), limited only by the effort one is willing to put
into establishing their safety.

Of course, there are many obstacles, both large and enormous, to be overcome
before the rather utopian vision of UNCOL-with-extra-maths [6] can be realized:
Computation within Coq is comparatively slow, and naive definitions often don’t
compute at all. Despite much research, it is still hard to work comfortably with
object languages with binding. Interfacing different styles of specification may
prove impossibly hard. It’s not really clear how to factor definitions to allow shar-
ing of important optimizations like register allocation, or to get the right degree
of machine-independence. We’ve given no thought to debugging or profiling. And
so on. Nevertheless, for a restricted range of high-assurance verification tasks,
multiparadigm code generation directly from a proof assistant is an exciting and
promising research direction.

More broadly, programming languages have, in a sense, lost control of their
environments. However good we are at compiling and verifying individual lan-
guages, modern software components increasingly live in a complex, heteroge-
nous world, with rich interfaces to other components, libraries and services.
Building genuinely trustworthy systems means that the scope of specification
and verification has to extend beyond closed programs written in a single lan-
guage. Modern proof assistants are simply the only tools we have in which all the
artefacts in which we are interested (programs, languages, models, specifications,
proofs, compilers . . . ) can coexist and be formally related.

The research community is beginning to build up quite a collection of machine
formalizations of important artefacts, including network protocols [3], machine
architectures, languages, logics, and programming-related theory [2]. These are
expensive to construct, and it is a shame that many are abandoned after a couple
of papers. However, there are encouraging signs that reuse is not only possible,
but is really happening: VST [1] builds on CompCert [13], Bedrock [5] on XCAP
[19], and the CakeML compiler [12] on components also used in other projects,
including a (tested) model of x86-64 [20, 15] and (a translation of) a formalization
of Parsing Expression Grammars [11]. As such formalizations mature, it should
be possible to integrate them into the process of software development, rather
than just post-hoc verification.



A mature high assurance development environment will probably look more
like Visual Studio than an Emacs buffer with blue highlights. But the underlying
technology that ties it all together should be logic and type theory.

Acknowledgements

My thanks go to Andrew Kennedy and to the other friends who’ve contributed
and collaborated with us on many aspects of mechanized reasoning about soft-
ware: Pierre-Evariste Dagand, Chris Hawblitzel, Chung-Kil Hur, Guilhem Jaber,
Jonas Jensen, Neel Krishnaswami, Conor McBride, Georg Neis, Marco Paviotti,
Valentin Robert, Nicolas Tabareau, Carsten Varming, Uri Zarfaty.

References

1. A W Appel, R Dockins, A Hobor, L Beringer, J Dodds, G Stewart, S Blazy, and
X Leroy. Program Logics for Certified Compilers. CUP, 2014.

2. N Benton, A Kennedy, and C Varming. Some domain theory and denotational
semantics in Coq. In 22nd International Conference on Theorem Proving in Higher
Order Logics (TPHOLs), volume 5674 of LNCS, 2009.

3. S Bishop, M Fairbairn, M Norrish, P Sewell, M Smith, and K Wansbrough. TCP,
UDP, and Sockets: Rigorous and experimentally-validated behavioural specifica-
tion. volume 2: The specification. Technical Report 625, University of Cambridge
Computer Laboratory, 2005.

4. T Braibant and D Pous. An efficient Coq tactic for deciding Kleene algebras. In
International Conference on Interactive Theorem Proving (ITP), volume 6172 of
LNCS. Springer, 2010.

5. A Chlipala. The Bedrock structured programming system: Combining generative
metaprogramming and Hoare logic in an extensible program verifier. In ACM
International Conference on Functional Programming (ICFP), 2013.

6. M E Conway. Proposal for an UNCOL. Communications of the ACM, 1(10):5–8,
1958.

7. M Frigo. A fast Fourier transform compiler. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 1999.

8. J Jensen, N Benton, and A Kennedy. High-level separation logic for low-level code.
In ACM Symposium on Principles of Programming Languages (POPL), 2013.

9. A Kennedy, N Benton, J Jensen, and P Dagand. Coq: The world’s best macro
assembler? In International Symposium on Principles and Practice of Declarative
Programming (PPDP), 2013.

10. G Klein, K Elphinstone, G Heiser, J Andronick, D Cock, P Derrin, D Elkaduwe,
K Engelhardt, R Kolanski, M Norrish, T Sewell, H Tuch, and Simon Winwood.
sel4: Formal verification of an OS kernel. In 22nd ACM Symposium on Operating
Systems Principles (SOSP), 2009.

11. A Koprowski and H Binsztok. TRX: A formally verified parser interpreter. Logical
Methods in Computer Science, 7(2), 2011.

12. R Kumar, M O Myreen, S A Owens, and M Norrish. CakeML: A verified imple-
mentation of ML. In ACM Symposium on Principles of Programming Languages
(POPL), 2014.



13. X Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

14. G Malecha, G Morrisett, A Shinnar, and R Wisnesky. Toward a verified relational
database management system. In ACM Symposium on Principles of Programming
Languages (POPL), 2010.

15. M O Myreen. Verified just-in-time compiler on x86. In ACM Symposium on
Principles of Programming Languages (POPL), 2010.

16. M O Myreen and M J C Gordon. Function extraction. Science of Computer
Programming, 2010.

17. M O Myreen, K Slind, and M J C Gordon. Machine-code verification for multiple
architectures - an application of decompilation into logic. In Formal Methods in
Computer-Aided Design (FMCAD), 2008.

18. A Nanevski, G Morrisett, A Shinnar, P Govereau, and L Birkedal. Ynot: Rea-
soning with the awkward squad. In ACM International Conference on Functional
Programming (ICFP), 2008.

19. Z Ni and Z Shao. Certified assembly programming with embedded code pointers.
In ACM Symposium on Principles of Programming Languages (POPL), 2006.

20. S Sarkar, P Sewell, F Zappa Nardelli, S Owens, T Ridge, T Braibant, M O Myreen,
and J Alglave. The semantics of x86-cc multiprocessor machine code. In ACM
Symposium on Principles of Programming Languages (POPL), 2009.

21. P-Y Strub, N Swamy, C Fournet, and J Chen. Self-certification: Bootstrapping
certified typecheckers in F* with Coq. In ACM Symposium on Principles of Pro-
gramming Languages (POPL), 2012.

22. D Syme, K Battocchi, K Takeda, D Malayeri, and T Petricek. Themes in
information-rich functional programming for internet-scale data sources. In Work-
shop on Data Driven Functional Programming (DDFP). ACM, 2013.

23. R Wisnesky, G Malecha, and G Morrisett. Certified web services in Ynot. In In-
ternational Workshop on Automated Specification and Verification of Web Systems
(WWV), 2009.


