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Abstract
We describe a denotational semantics for an abstract effect sys-

tem for a higher-order, shared-variable concurrent programming
language. We prove the soundness of a number of general effect-
based program equivalences, including a parallelization equation
that specifies sufficient conditions for replacing sequential compo-
sition with parallel composition. Effect annotations are relative to
abstract locations specified by contracts rather than physical foot-
prints allowing us in particular to show the soundness of some
transformations involving fine-grained concurrent data structures,
such as Michael-Scott queues, that allow concurrent access to dif-
ferent parts of mutable data structures.

Our semantics is based on refining a trace-based semantics for
first-order programs due to Brookes. By moving from concrete to
abstract locations, and adding type refinements that capture the
possible side-effects of both expressions and their concurrent en-
vironments, we can validate many equivalences that do not hold in
an unrefined model. The meanings of types are expressed using a
game-based logical relation over sets of traces.

1. Introduction
Type-and-effect systems refine conventional types with extra

static information capturing a safe upper bound on the possible
side-effects of expression evaluation. Since their introduction by
Gifford and Lucassen [21], effect systems have been used for pur-
poses including region-based memory management [13], tracking
exceptions [5, 28], communication behaviour [4] and atomicity
[20] for concurrent programs, and information flow [14].

A major reason for tracking effects is to justify program trans-
formations, most obviously in optimizing compilation [11]. For ex-
ample, one may remove computations whose results are unused,
provided that they are sufficiently pure, or commute two state-
manipulating computations, provided that the locations they may
read and write are suitably disjoint. Several groups have studied
the semantics of effect systems, with a focus on formally justifying
such effect-dependent equational reasoning [6, 9, 12, 23, 30]. Our
approach is to interpret effect-refined types using a logical relation
over the (denotational or operational) semantics of the unrefined (or
untyped) language, simultaneously identifying both the subset of
computations that have a particular effect type and a coarser notion
of equivalence (or approximation) on that subset. Such a seman-
tic approach decouples the meaning of effect-refined types from
particular syntactic rules: one may establish that a term has a type
using various more or less approximate inference systems, or by
detailed semantic reasoning.

For sequential computations with global state, denotational
models already provide significant abstraction. For example, the
denotations of skip and X++;X-- are typically equal, so it is im-
mediate that the second is semantically pure. More generally, the
meaning of a judgement Γ ` e : τ&ε guarantees that the result
of evaluating e will be of type τ with side-effects at most ε, un-
der assumptions Γ (a ‘rely’ condition), on the behaviour of e’s
free variables. The possible interaction points between e and its
environment are restricted to initial states and parameter values,
and final states and results, of e itself and its explicitly-listed free

variables. Furthermore, all those interaction points are visible in
the term and are governed by specific annotations appearing in the
typing judgement.

Shared-variable concurrency allows many more possible inter-
actions. The environment now includes anything that may be run-
ning concurrently and, moreover, atomic steps of e and its con-
current environment may be arbitrarily interleaved, so it no longer
suffices to just consider initial and final states. A priori, this leads to
far fewer equations between programs. For example, X++;X--may
be distinguished from skip by being run concurrently with a com-
mand that reads or writes X. But few programs do anything useful
in the presence of unconstrained interference, so we need ways to
describe and control it.

This paper explores effect types as a lightweight interface lan-
guage for modular reasoning about equivalence and refinement un-
der environmental assumptions, e.g. for safely transforming se-
quential composition into parallelism. We show how the relational
approach to effects scales smoothly to concurrency, allowing us to
control interference and prove non-trivial equivalences, extending
(somewhat to our surprise) to the correctness of some fine-grained
algorithms. But functional correctness of particular tricky exam-
ples is not our main focus. We are interested in effect typing as
a useful intermediate level of specification between conventional
types (guaranteeing little about the behaviour of concurrent code)
and richer, more complex, models and logics [31].

Our first contribution is a trace semantics for concurrent pro-
grams that explicitly describes possible interference by the envi-
ronment. We extend Brookes semantics [15] to a higher-order lan-
guage, and then refine it by a semantically-formulated effect system
that separately tracks: (1) the store effects of an expression during
evaluation; (2) the assumed effects of transitions by the environ-
ment; and (3) the overall end-to-end effect, that is, the effect un-
til finishing computation, which may allow “cleaning-up” some of
the effects incurred during computation. Annotated function types

τ1
ε1 | ε3
−−−−→
ε2

τ2 also capture the effect during a call, ε1, the environmen-

tal interference, ε2, and the final effect, ε3. Rather than tracking ef-
fects at the level of individual concrete heap cells, we view the heap
as a set of abstract data structures, each of which may span several
locations, or parts of locations [6]. Each abstract location has its
own notion of equality, and its own notion of legal mutation. Write
effects, for example, need only be flagged when the equivalence
class of an abstract location may change. Both typing and refine-
ment judgements may be established by a combination of generic
type-based rules and semantic reasoning in the model.

Our second and main contribution is the soundness proof of a
number of general program equations: Deadcode, Lambda-Hoist,
Commuting, Duplication and Parallelization Rules. The paral-
lelization rule, for example, describes when the parallel execution,
e1‖e2, of two programs, e1 and e2, can be approximated by their
sequential execution e1; e2.

As our third contribution, we show that our denotational seman-
tics can prove the equivalence of interesting programs, such as the
soundness of an idealized Michael-Scott queue implementation. A
longer account, with more examples and proofs, may be found in
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a companion technical report [7]. We start with some motivating
examples:

Equivalence modulo non-interference. Our semantics justifies
the equation (X := !X + 1; X := !X + 1) = (X := !X + 2) at the
effect type unit & {chX} | ε | ε ∪ {rdX ,wrX}, provided that the
effect, ε, of the concurrent environment does not involve X. This
says that the two commands are equivalent with return type unit,1
exhibit the effect chX , signifying concurrent or ‘chaotic’ access to
X along the way, and have an overall end-to-end effect of ε plus
reading and writing X.

Overlapping references. Let p,p−1 implement a bijection Z →
Z × Z, and consider the following functions:

readFst () = p(!X).1
readSnd () = p(!X).2
wrtFst n = (rec try = let m =!X in

if cas(X,m, p−1(n, p(m).2))
then () else try () )()

wrtSnd n = (rec try = let m =!X in
if cas(X,m, p−1(p(m).1, n))
then () else try () )()

which multiplex two abstract integer references onto a single con-
crete one. Note that the write functions, wrtFst and wrtSnd, use
compare-and-swap, cas, to atomically update the value of the ref-
erence.

Our generic rules (Figure 5) then say that a program, e1, that
only reads and/or writes one abstract reference can be commuted,
or executed in parallel, with another program, e2, that only reads
and/or writes into a different reference. This lets one use types to,
say, justify parallelizing a call to wrtFst followed by one to wrtSnd,
even though they read and write the same concrete location, which
looks like a race.

Version numbers. One can isolate a transaction that reads and
then writes a piece of state simply by enclosing the whole thing in
atomic(·). A more concurrent alternative adds a monotonic version
number to the data. A transaction then works on a private copy, only
committing its changes back (and incrementing the version) if the
current version number is the same as that of the original copy. We
can define an abstract integer reference X in terms of two concrete
ones, Xver and Xval, governed by a specification that says !Xval may
only change when !Xver increases. We define

transact f = let rec try() = let (val, ver) = atomic((!Xval, !Xver))
in let res = f (val) in if atomic(if !Xver = ver then

Xver := ver + 1; Xval := res; true else false)
then () else try()
in try()

Under the assumption that f is a pure function (has effect type

int
∅ | ε
−−→
ε
int for any ε), we can show

transact f = atomic(Xval := f (!Xval); Xver :=!Xver + 1)

at type unit&{rdX,wrX} | ε | ε ∪ {rdX,wrX} for any ε not includ-
ing chaotic access, chX, to X. The environment effect ε here may
include reading and writing X, so concurrent calls to transact are
linearizable.

Michael-Scott queue. The Michael-Scott Queue [26] (MSQ) is
a fine grained concurrent data structure, allowing threads to access
and modify different parts of a queue safely and simultaneously.
We present an idealized version like that of Turon et al [31], which
omits a tail pointer.

1 Being equal at a type means being may-indistinguishable for any observa-
tions which use the terms in question with that type.

head

n0 n1

nj null

n−1

n−k

head

nj+1 null

Figure 1. Illustration of a Michael-Scott Queue. The list resulting
from the pointer to the element n0 (the head pointer with the
continuous arrow in black) contains the list of elements [n1, . . . , n j].
The enqueueing operation is illustrated by the dotted arrow and the
box with the element n j+1 (in blue), while the dequeueing operation
is illustrated by the dot dashed head pointer (in red).

An MSQ maintains a pointer head to a non-empty linked list
as depicted in Figure 1. The first node, that containing the element
n0 in the figure, is not an element of the queue, but is a “sentinel”.
Hence the queue in the figure holds [n1, . . . , n j].

The enqueue and dequeue operations are defined in Figure 2 and
illustrated in the diagram to the right. Elements are dequeued from
the beginning of the linked list, and enqueued at the end, which
involves a traversal that is done without locking. Once the end,
p, of the linked list is found, the program atomically attempts to
insert the new element. This operation has to be atomic because
other programs may have enqueued elements to the end of the list,
meaning that p is no longer the end of the list.

We prove that the enqueue and dequeue of Figure 2 are equiv-
alent to atomic(enqueue) and atomic(dequeue), their atomic
versions which perform all operations in a single step, at a type
that allows the environment to be concurrently reading and writing
the queue. So the fine-grained MSQ behaves like a synchronized
queue, as might also be implemented using locks.

We can also show that the program mem is equivalent to its

atomic version atomic(mem) at type int
∅ | ε2 ,rdMS Q
−−−−−−−−→

ε2
bool pro-

vided the environment does not access the MSQ chaotically, i.e.,
chMS Q < ε2. This typing denotes that mem has the effect of reading
the MSQ, both during execution and as overall effect. With more
assumptions on the environment effects ε2, namely, that it does not
enqueue nor dequeue MSQ, mem may participate in many of the
equations we prove sound, e.g., commuting, deadcode.

Similarly, we can prove that the program reset is equivalent to

its atomic version atomic(reset) at type unit
rdMS QwrMS Q | ε2 ,wrMS Q
−−−−−−−−−−−−−−−−−→

ε2

unit. During executing its effects consist of both reading and
writing the MSQ, we can prove semantically that its overall effect
has only the environment effects ε2 and of writing the MSQ, i.e.,
no read MSQ effect. As with mem, with this typing and given more
assumptions on the environment effects ε2, reset may also be used
in our program equations without further semantic reasoning.

2. Syntax
We work with a metalanguage for concurrent, stateful computa-

tions and higher-order functions. Parallel computations communi-
cate via a shared heap mapping dynamically allocated locations to
structured values, which include pointers. For simplicity, we do not
allow functions to be stored in the heap (no higher-order store).

Memory model. We assume a countably infinite set L of physi-
cal locations X1, . . . , Xn, . . . and a set VB of storeable “R-values”,
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dequeue () = (rec try () = let n0 =!head in enqueue(x) = (rec try (p) =
if !n0.next = null then null if !p.next = null then
else let n1 =!n0.next in if atomic(if !p.next = null then
if cas(!head, n0, n1) then !n1.ele !p.next := ref(x, null); true else false)
else try ()) () then () else try (!p.next)

else try (!p.next)) !head
mem x = (rec find l = reset () = (rec deqAll () =

if l = null then f alse else if dequeue () = null then ()
if !l.ele = x then true else else deqAll ()) ()
find !l.next) !head.next

Figure 2. Enqueue, Dequeue, Membership, and Reset programs for a Michael-Scott Queue at location head.

which include integers, booleans, locations, and tuples (v1, . . . , vn)
of R-values. We assume that it is possible to tell of which form a
value is and to project its components in case it is a tuple. A heap h,
then, is a finite map from L toVB, written {(X1, c1), (X2, c2), . . . , (Xn, cn)},
specifying that the value stored in location Xi is ci. We write dom(h)
for the domain of h and write h[X 7→c] for the heap that agrees with
h except that it gives the variable X the value c. The set of heaps
is denoted by H. We also assume that new(h, v) yields a pair (X, h′)
where X ∈ L is a fresh location and h′ ∈ H is h[X 7→v].

Syntax of expressions. The syntax of untyped values and com-
putations is:

v ::= x | (v1, v2) | vr | c | rec f x = t
e ::= v | let x=e1 in e2 | v1 v2 | if v then e1 else e2

|!v | v1 := v2 | ref(v) | e1‖e2 | atomic(e)

Here, x ranges over variables, vr over R-values, and c over built-
in functions, which include arithmetic, testing whether a value is
an integer, function, pair or reference, equality on simple values,
etc. Each c has a corresponding semantic partial function Fc, so for
example F+(n, n′) = n + n′ for integers n, n′.

The construct rec f x = e defines a recursive function with body
e and recursive calls made via f ; we use λx.e as syntactic sugar
in the case when f is not free in e. Next, !v (reading) returns the
contents of location v, v1 := v2 (writing) updates location v1 with
value v2, and ref(v) (allocating) returns a fresh location initialized
with v. The metatheory is simplified by using “let-normal form”,
where the only elimination for computations is let, though we nest
computations as shorthand for let-expanded versions in examples.

The construct e1‖e2 is evaluated by arbitrarily interleaving eval-
uation steps of e1 and e2 until each has produced a value, say v1 and
v2; the result is then (v1, v2). Assignment, dereferencing and allo-
cation are atomic, but evaluation of nested expressions is generally
not. To enforce atomicity, atomic(e) evaluates an arbitrary e in one
step, without any environmental interference. One can then define
a (more realistic) compare-and-swap operation cas(X, v1, v2):

cas(X, v1, v2) = atomic(if !X = v1 then X := v2; true else false)

this atomically both checks if location X contains v1 and, if so,
replaces it with v2 and returns true; otherwise the location is
unchanged and the returned value is false.

We define the free variables, FV(e), of a term, closed terms, and
the substitution e[v/x] of v for x in e, in the usual way. Locations
may occur in terms, but the type system will constrain their use.

3. Denotational Model
We now sketch a denotational semantics for our metalanguage

based on Brookes’ trace semantics [15]. Fuller details, including a
proof of adequacy with respect to a small-step operational seman-
tics using interleaving, can be found in [7].

A trace models a terminating run of a concurrent computation as
a sequence of pairs of heaps, each representing pre- and post-state

of one or more atomic actions. The semantics of a program then is
a (typically large) set of traces (and final values), accounting for all
possible environment interactions.

Definition 3.1 (Traces). A trace is a finite sequence of the form
(h1, k1)(h2, k2) · · · (hn, kn) where for 1 ≤ j ≤ i ≤ n, we have
hi, ki ∈ H and dom(h j) ⊆ dom(hi), dom(h j) ⊆ dom(ki), dom(k j) ⊆
dom(hi), dom(k j) ⊆ dom(ki). We write Tr for the set of traces.

Let t be a trace. A trace of the form u (h, h) v where t = uv is
said to arise from t by stuttering. A trace of the form u(h, k)v where
t = u(h, q)(q, k)v is said to arise from t by mumbling. For exam-
ple, if t = (h1, k1)(h2, k2)(h3, k3) then (h1, k1)(h, h)(h2, k2)(h3, k3)
arises from t by stuttering. In the case where k1 = h2 the trace
(h1, k2)(h3, k3) arises from t by mumbling. A set of traces U is
closed under stuttering and mumbling if whenever t′ arises from
t by stuttering or mumbling and t ∈ U then t′ ∈ U, too.

Brookes [15] gives a fully-abstract semantics for while-programs
with parallel composition using sets of traces closed under stutter-
ing and mumbling. We here extend his semantics to higher-order
functions and general recursion.

Definition 3.2 (Trace Monad). Let A be a predomain (ω-cpo not
necessarily with bottom). Elements of the domain T A are sets U
of pairs (t, a) where t is a trace and a ∈ A such that the following
properties are satisfied:

• [S&M]: if t′ arises from t by stuttering or mumbling and (t, a) ∈
U then (t′, a) ∈ U.
• [Down]: if (t, a1) ∈ U and a2 ≤ a1 then (t, a2) ∈ U.
• [Sup]: if (ai)i is a chain in A and (t, ai) ∈ U for all i then

(t, supi ai) ∈ U.

The elements of T A are partially ordered by inclusion.

An element U of T A represents the possible outcomes of a
nondeterministic, interactive computation with final result in A.
Thus, if (t, a) ∈ U for t = (h1, k1) . . . (hn, kn) then there could be
n interactions with the environment with heaps h1, . . . , hn being
“played” by the environment and “answered” with heaps k1, . . . , kn
by the computation. After that, this particular computation ends and
a is the final result value.

For example, the semantics of X :=!X + 1; X :=!X + 1; !X
contains many traces, including the following, where we write [n]
for the heap in which X has value n:

• (([10], [12]), 12)
• (([10], [11])([15], [16]), 16)
• (([10], [11])([15], [16])([17, 17]), 17)
• (([10], [11])([15], [16])([17, 17]), 16)

Axiom [S&M] is taken from Brookes. It ensures that the seman-
tics does not distinguish between late and early choice [31] and
related phenomena which are reflected, e.g., in resumption seman-
tics [29], but do not affect observational equivalence. Note that
non-termination is modelled by the empty set, so we are working
with an angelic ‘may semantics’ [27]. For example, the semantics
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of X := 0; if X=0 then 0 else diverge is the same as that of
X := 0; 0 and contains, for example (([10], [0]), 0) but also (stutter-
ing) ((([10], [0]), ([34], [34])), 0). Note that it is not possible to tell
from a trace whether an external update of X has happened before
or after the reading of X.

Let us also illustrate how traces iron out some intensional dif-
ferences that show up when concurrency is modelled using transi-
tion systems or resumptions. Consider the following two programs
where ? denotes a nondeterministically chosen boolean value.

e1 ≡ if ? then X := 0; true else X := 0; false
e2 ≡ X := 0; ?

Both e1 and e2 admit the same traces, namely (([x], [0]), true)
and (([x], [0]), false) and stuttering variants thereof. In semantic
models based on transition systems or resumptions and bisimula-
tion, these are distinguished, which necessitates the use of special
mechanisms such as history and prophecy variables [1], forward-
backward simulation [25], or speculation [31] in reasoning.

Axioms [Down] and [Sup] are known from the Hoare power-
domain [29]. Additional nondeterministic outcomes that are less
defined than existing ones are not recorded in the semantics.

Definition 3.3. If U ⊆ Tr × A then U† is the least subset of T A
containing U, i.e. U† is the closure of U under [S&M], [Down],
[Sup].

Definition 3.4. Let A, B be predomains. We define the continuous
functions rtn : A→ T A and bnd : (A→T B) × T A→ T B by:

rtn(a) := ({((h, h), a) | h ∈ H})†

bnd( f , g) := ({(uv, b) | (u, a) ∈ g ∧ (v, b) ∈ f (a)})†

These endow T A with the structure of a strong monad. A partial
function c : H ⇁ H × A (an element of the state monad S A) can
be (continuously) transformed into an element fromstate(c), where
fromstate : S A → T A is defined by fromstate(c) := {((h, k), a) |
c(h) = (k, a)}†. If t1, t2, t3 are traces, we write inter(t1, t2, t3) to mean
that t3 can be obtained by interleaving t1 and t2 in some way, i.e.,
t3 is contained in the shuffle of t1 and t2. In order to model parallel
composition we introduce the following helper function

| : T A × T B→ T (A × B)
U | V := {(t3, (a, b)) | inter(t1, t2, t3), (t1, a) ∈ U, (t2, b) ∈ V}†

The continuous map at : T A → T A is defined by at(U) :=
{((h, k), v) | ((h, k), v) ∈ U}†. Notice that due to mumbling
((h, k), v) ∈ U iff there exists an element of the form:

((h1, h2)(h2, h3) . . . (hn−2, hn−1)(hn−1, hn), v) ∈ U

where h = h1 and hn = k. The presence of such an element models
an atomic execution of the computation represented by U.

3.1 Semantic values
The predomain V of untyped values is the least solution of

V ' VB + (V→ TV) + V∗.

That is, values are either R-values, continuous functions from val-
ues to computations (TV), or tuples of values. We tend to identify
the summands of the right hand side with subsets of V but may use
tags like fun( f ) ∈ V when f : V→ TV to avoid ambiguity.

There are (canonical) families of deflations pi : V ⇁ V and
qi : TV → TV, such that that (pi)i and (qi)i are ascending
chains converging to the identity. The definition is entirely standard
and may be found in [7]. A consequence is that V and TV are
bifinite (equivalently SFP) predomains [2] and as such also Scott
predomains. These technicalities help with the compatibility of the
admissible closure of logical predicates and simplify reasoning in
general (see Lemmas A.1 and A.2 in the Appendix).

The semantics of values VvW ∈ V → V and terms ~t� ∈ V →
TV are given by the recursive clauses in Figure 3. Environments, ρ,

are properly tuples of values; we abuse notation slightly by treating
them as maps from variables, x, to values, v, (and write ρ[x 7→v] for
functional update) to avoid mentioning an explicit context in which
untyped terms are well-formed.

4. Abstract Locations
We simplify and extend our previous notion of abstract loca-

tions [6]. These allow complicated data structures that span several
concrete locations, or only parts of them, to be a regarded as a sin-
gle “location” that can be written to and read from. Essentially, an
abstract location is given by a partial equivalence relation on heaps
modelling well-formedness and equality, together with a transitive
relation modelling allowed modifications of the abstract location.
Abstract locations then allow certain commands that modify the
physical heap to be treated as read-only or even pure if they respect
the contracts. Abstract locations are related to islands [3], though
one difference is that abstract locations do not require concrete foot-
prints.

In the presence of concurrency, we actually need two partial
equivalence relations: one that models semantic equivalence and
well-formedness, and a finer one that constrains the heap modifi-
cations that other concurrent computations that are independent of
the given abstract locations are allowed to make while an operation
on the abstract location is ongoing, but temporarily preempted.

Definition 4.1 (Concurrent Abstract Location). A concurrent ab-
stract location l consists of the following data:

(1) a partial equivalence relation l
∼ on H modeling the “seman-

tic equivalence” on the bits of the store that l uses. If h l
∼ h′ then

the same computation started on h and h′, respectively, will yield
related or even equal results.

(2) a partial equivalence relation l
= on H refining l

∼ and model-
ing the “strict equivalence” on the bits of the store that l uses. If a
concurrent computation on l has reached h and is preempted, then
another computation may replace h with h′ where h l

= h′ and then
the original computation on l may resume on h′ without the final
result being compromised.

(3) a transitive (and reflexive on the support of l
∼) relation

l
−→ modeling how exactly the heap may change upon writing the
abstract location and in particular what bits of the store such writes
leave intact. In other words, if h

l
−→ h1 then h1 might arise by writing

to l in h and all possible writes are specified by
l
−→. We call

l
−→ the

step relation of l.
These data must satisfy the following conditions where h : l

stands for h l
∼ h.

1. If h : l then h l
= h;

2. if h
l
−→ h1 then h : l and h1 : l.

If h
l
−→ h1 and at the same time h l

= h1, then we say that h1 arises
from h by a silent move in l. Our semantic framework will permit
silent moves at all times.

We now describe abstract locations suitable for our previous
motivating examples.

Single integer. Our simplest example is the following abstract
location, parametric with respect to concrete location X:

h int(X)
∼ h′ ⇐⇒ ∃n.h(X) = int(n) ∧ h′(X) = int(n)

h
int(X)
= h′ ⇐⇒ h int(X)

∼ h′

h
int(X)
−−−−→ h1 ⇐⇒

h : int(X), h1 : int(X) and ∀X′ ∈ L.X′ , X ⇒ h(X′) = h1(X′)
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VxWρ = ρ(x)
VvrWρ = vr

V(v1, v2)Wρ = (Vv1Wρ,Vv2Wρ)
Vv.iWρ = di if i = 1, 2, VvWρ = (d1, d2)
VcWρ = fun( f )

where f (v) = rtn(Fc(v)) if Fc(v) is defined
and f (v) = ∅, otherwise.

Vrec f x = eWρ = fun(g‡(ρ))
where g(ρ, u) = λd.VeWρ[ f 7→u, x 7→d]

VvWρ = 0, otherwise

~v�ρ = rtn(VvWρ)
~let x=e1 in e2�ρ = bnd(λd.~e2�ρ[x 7→d], ~e1�ρ)

~v1 v2�ρ = Vv1Wρ(Vv2Wρ)
~if v then e1 else e2�ρ = ~e1�ρ, if VvWρ = true
~if v then e1 else e2�ρ = ~e2�ρ, if VvWρ = false

~!v�ρ = fromstate(λh.(h, h(X))), when VvWρ = X
~v1 := v2�ρ = fromstate(λh.(h[X 7→Vv2Wρ], ())), if Vv1Wρ = X
~ref(v)�ρ = fromstate(λh.new(h,VvWρ))

~atomic(e)�ρ = at(~e�)
~e1‖e2�ρ = ~e1�ρ | ~e2�ρ
~e�ρ = ∅, otherwise

Figure 3. Denotational semantics

Two heaps are semantically equivalent (w.r.t. int(X) that is) if the
values stored in X are integers and equal; the step relation requires
all other concrete locations to be unchanged. We sometimes write
rdX ,wrX , chX for rdint(X),wrint(X), chint(X).

Overlapping references. Let X be a concrete location encoding
a pair of integer values using a bijection p. We define the abstract
location fst(X) as below. We omit snd(X) which is similar, but only
looks at the second projection, instead of the first.

h fst(X)
∼ h′ ⇐⇒ ∃a1a2a′1a′2 ∈ Z.h(X) = p−1(a1, a2) ∧

h′(X) = p−1(a′1, a
′
2) ∧ a1 = a′1

h
fst(X)
= h′ ⇐⇒ h fst(X)

∼ h′

h
fst(X)
−−−−→ h1 ⇐⇒ h : fst(X), h1 : fst(X) and
(∀X′ , X.h(X′) = h1(X′)) ∧ (∀a1a2a′1a′2 ∈ Z.h(X) = p−1(a1, a2) ∧

h1(X) = p−1(a′1, a
′
2)⇒ a2 = a′2)

The semantic (and strict) equivalence of fst(X) (respectively,
snd(X)) specifies that two heaps h and h′ are equivalent when-
ever they both store a pair of values in X and the first projections
(respectively, second projection) of these pairs are the same. The
step relation of fst(X) (respectively, snd(X)) specifies that it keeps
all other locations alone and does not change the second projection
(respectively, first projection) of the pair stored at location X.

Version numbers. The abstract location X consists of two con-
crete locations XVal and XVer, and its relations are:

h X
∼ h′ ⇐⇒ h(XVal) = h′(XVal)

h X
= h′ ⇐⇒ h X

∼ h′

h
X
−→ h1 ⇐⇒ ∀X′ < {XVer, XVal}.h(X′) = h1(X′) ∧

h : X ∧ h1 : X ∧ h(XVer) <= h1(XVer) ∧
[h(XVal) , h1(XVal)⇒ h(XVer) < h1(XVer)]

Two heaps are semantically equivalent if they have the same value
(independent of the version number). The step relation specifies
that the version number does not decrease, and increases if the
value changes.

Michael-Scott queue. For concrete location X we introduce a
concurrent abstract location msq(X) first informally as follows: we
have h msq(X)

∼ h′ if both h and h′ contain a well-formed MSQ rooted
at X and these queues contain the same entries in the same order.
They may, however, use different locations for the nodes and also
have different garbage tails.

The relation h
msq(X)

= h′ asserts that h and h′ are identical on
the part reachable and co-reachable from X via next pointers. This
means that while an MSQ operation is working on the queue no
concurrent operation working elsewhere is allowed to relocate the
queue or remove the garbage trail which would be the case if we
merely required that such operations do not change the MS Q(X)

∼ -class.

The relation
msq(X)
−−−−−→, finally, is defined as the transitive closure of

the actions of operations on the MSQ: adding nodes at the tail and
moving nodes from the head to the garbage tail.

We now give a formal definition. We represent pointers head,
next, elem using some layout convention, e.g. v.head = v.1, etc. We
then define

h, X
next
→ X′ ⇐⇒ X′ can be reached from X in h

by following a chain of next pointers

We use List(X, h, (X0, . . . , Xn), (v1 . . . , vn)) to signal that h(X) points
to a linked list with nodes X0, . . . , Xn and entries v1, . . . vn. Note
that the first node X0 acts as a sentinel and its elem component is
ignored. Formally:

h(X).head = X0 h(Xi).elem = vi for i = 1, . . . , n
h(Xi).next = Xi+1 for i = 0, . . . , n − 1 h(Xn).next = null

We define fp(X, h) as the set of locations reachable and co-reachable
from X via next, formally:

fp(X, h) = {X′ | X
next
→ X′ ∨ X′

next
→ X}

Finally, we define snoc(h, h′, X, v) to mean that h′ arises from h by
attaching a new node containing v at the end of the list pointed
to by X in h. Thus, in particular, List(X, h, (X0, . . . , Xn), (v1 . . . , vn))
implies List(X, h′, (X0, . . . , Xn, Xn+1), (v1 . . . , vn, v)) for some Xn+1 <
dom(h). We omit the obvious frame conditions. We now define

h msq(X)
∼ h′ ⇐⇒ ∃~X ~X′ ∃~v.List(X, h, ~X,~v) ∧ List(X, h′, ~X′,~v)

h
msq(X)

= h′ ⇐⇒ h msq(X)
∼ h′ ∧ ∀X′ ∈ fp(X, h).h(X′) = h′(X′)

h
msq(X)
−−−−−→ h1 ⇐⇒ h : msq(X) ∧ h1 : msq(X) ∧ step∗(h, h1)

step(h, h1) ⇐⇒ ∀X′ , X.h(X′) = h1(X′) ∧
[h1(X) = h(X).next ∨ ∃v.snoc(h, h1, X, v)]

In these examples, the only silent moves are identities. But datas-
tructures such as collections that reorganize during lookups, or
which use late initialization [6] do involve non-trivial silent moves.

4.1 Worlds
We group the abstract locations used by a program into a world.

In this paper, all these abstract locations must be established up
front. While concrete locations may be dynamically allocated to
grow an abstract location, as in the MSQ example, we do not
allow worlds to evolve dynamically. We have previously shown
[3, 6] how (proof-relevant) Kripke logical relations can account for
dynamic allocation of abstract locations, but leave the combination
of those with concurrency for future work.

Definition 4.2 (world). A world is a set of abstract locations.
The relation h |= w (heap h satisfies world w) is defined as the

largest relation such that h |= w implies

• h : l for all l ∈ w;
• if l ∈ w and h

l
−→ h1 then h l′

= h1 holds for all l′ ∈ w with l′ , l
and h1 |= w.
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We remark that if our world w contains two “interfering” ab-
stract locations, e.g. has both an integer location and a boolean lo-
cation placed at the same physical location, then there will be no
heap h such that h |= w.

We assume a fixed current world w which may appear in defini-
tions without being notationally reflected. (See Assumption 1 later.)

5. Effects
For each abstract location l we have three elementary effects rdl

(reading from l), wrl (writing to l), and chl (chaotic access). An
effect, ranged over by ε, is a set of elementary effects.

Chaotic access is similar to writing, but allows writes that are
not in sync. For example, e1 = X := 1 and e2 = X := 2 both
have individually the wrX effect, but e1 and e2 are distinguishable
by contexts that assume the wrX-effect. Thus, e1 and e2 are not
equal “at type” wrX . At type chX they are, however, equal, because
a context that copes with this effect may not assume that both
produce equal results.

So chl is a ‘don’t care’ effect, requiring the environment not to
look at a particular location during a concurrent computation. For
example, we can show that X := !X + 1; X := !X + 1 is equivalent
to X := !X + 2 “at type” unit & chX | ε | ε ∪ {rdX ,wrX}, where
ε is any effect such that X < locs(ε). This means that the two
computations are indistinguishable by environments that do not
read, let alone modify X during the computation and assume regular
read-write access once it is completed. The chX effect is required
because X may be different during the computations. However,
once the programs are finished, the value of X will be the same
in both cases, so the end-to-end effect need not include chX . The
ch effects are akin to the private regions from [12], but seem more
permissive.

We use the notation rds(ε), wrs(ε), chs(ε) to refer to the abstract
locations l for which ε contains rdl, wrl, and chl, respectively. We
write locs(ε) := rds(ε) ∪ wrs(ε) ∪ chs(ε).

Our semantics of effects follows the relational style, introduced
by Benton et al. [9] and also employed by Birkedal et al. [12]. Intu-
itively, two computations are related at rdX if they produce related
results when run in states that have related values for X. Should
the starting states differ on the value of X, then their behavior is
unconstrained. They are related at wrX if either they leave the X
unchanged or they write related values to X, i.e., the values of X
are equal at the end. If they are related at chX , then arbitrary modi-
fications of X are allowed.

Definition 5.1. An effect ε is well-formed (with respect to the
current world) if locs(ε) ⊆ w and rds(ε) ∩ chs(ε) = ∅ and chs(ε) ⊆
wrs(ε). An effect specification is a triple (ε1, ε2, ε3) of well-formed
effects such that ε2 ⊆ ε3.

An effect specification (ε1, ε2, ε3) approximates the behavior of
a computation e in as follows: the effect ε1 summarizes side ef-
fects that may occur during the execution of e (corresponding to a
guarantee condition in the rely-guarantee formalism [17], for those
familiar with this); the effect ε2 summarizes effects of the inter-
acting environment that e can tolerate while still functioning as
expected (corresponding to a rely condition). Finally, ε3 summa-
rizes the side effects that may occur between start and completion
of e. All the effects that the environment might introduce must be
recorded in ε3 because they are not under “our” control and might
happen at any time even as the very last thing before the final re-
sult is returned. The effects flagged in ε1, on the other hand, do not
necessarily show up in ε3, for a computation might be able to clean
up those effects prior to returning the final result. The requirement
that rds(ε) ∩ chs(ε) = ∅ is owed to the fact that all effects should
preserve their own precondition, however the precondition of rdl
is agreement on l which is not preserved by chl. The requirement

chs(ε) ⊆ wrs(ε) reflects the fact that chl includes wrl as a special
case.

Consider the computations e1 = X := !X + 1; X := !X + 1
and e2 = X := !X + 2. Let εX stand for {rdX ,wrX}. Each of
the two computations can be assigned the effect (εX , ∅, εX), but
they are distinguishable at that effect typing. Namely, let e =
if X = 1 then diverge, which has effect specification (∅, εX , εX).
Assuming that e1 = e2 at type (εX , ∅, εX), then from our parallel
congruence rule (in Figure 5) we could derive that e1‖e = e2‖e at
effect type (εX , εX , εX), which is clearly not true. Under the looser
specification ({chX}, ∅, εX), however, they are indistinguishable, and
our semantics is able to validate this equivalence, see Example 7.6.

A intuitive effect specification for the program e =!X would
be int & rdX | ε | ε, rdX . However, it can also be assigned the
effect int & ∅ | ε | ε, rdX . Our semantics allows for a number
of effect specification that seem not be needed in practice. The
important effect specifications (ε1, ε2, ε3) are those that do not have
read effects in ε1 ∪ ε2.

We write εC for ε with all read effects removed and each wrl
in ε replaced by chl. We will sometimes write rdX ,wrX , chX for
rdint(X),wrint(X), chint(X). Note that if εC ∪ ε1 is a well-formed effect,
then it is the case that rds(ε1) ∩ (wrs(ε) ∪ chs(ε)) = ∅. We use
this observation to simplify some side conditions. In our concrete
examples, we abbreviate {chl} ∪ {wrl} by just chl, in other words,
the chaotic effect silently implies the write effect.

Notations: For any well-formed effects ε, ε′ we use the notation
ε ⊥ ε′ to mean that rds(ε) ∩ wrs(ε′) = rds(ε′) ∩ wrs(ε) = wrs(ε) ∩
wrs(ε′) = ∅. Note that this implies in particular chs(ε)∩rds(ε′) = ∅,
etc. We write h rds(ε)

∼ h′ to mean h l
∼ h′ for each l ∈ rds(ε). We

write
ε
−→ for the transitive closure of (

⋃
l∈wrs(ε)

l
−→) ∪

⋃
l∈w(

l
−→ ∩

l
=).

Thus,
ε
−→ allows steps by locations recorded as writing in ε and

silent steps by all locations in the current world. We define the
notation ε1 t ε2 which appears in the parallel congruence rule by
ε1 t ε2 = (ε1 ∪ ε2) \ {wr` | wr` < ε1 ∩ ε2} \ {ch` | ch` < ε1 ∩ ε2}.

6. Typing and congruence rules
Types are given by the grammar

τ ::= unit | int | bool | A | τ1 × τ2 | τ1
ε1 | ε3
−−−−→
ε2

τ2

where A ranges over user-specified abstract types. They will typi-
cally include reference types such as intref and also types like

lists, sets, and even objects. In τ1
ε1 | ε3
−−−−→
ε2

τ2 the triple of effects

(ε1, ε2, ε3) must be an effect specification.
We use two judgments:

• Γ ` v ≤ v′ : τ specifying that values v and v′ have type τ and
that v approximates v′,
• Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3 specifying that the programs

e and e′ under the context Γ have type τ, with the effect spec-
ification (ε1, ε2, ε3) specifying, respectively, the effects during
execution, the effects of the interacting environment and the
start and completion effects. Moreover, e approximates e′ at this
specification.

We assume an ambient set of axioms each having the form
(v, v′, τ) where v, v′ are values in the metalanguage and τ is a type
meaning that v and v′ are claimed to be of type τ and that v ap-
proximates v′. These must be proved “manually” using the seman-
tics, because they generally depend on the subtleties of particular
abstract locations, but useful equational consequences can then be
established by generic type-based rules.

We also define typing judgements Γ ` v : τ and Γ ` e : τ &
ε1 | ε2 | ε3 simply to be abbreviations for the ‘diagonal’ part of
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the inequational judgements, i.e. they hold when Γ ` v ≤ v : τ and
Γ ` e ≤ e : τ & ε1 | ε2 | ε3 can be derived from the rules from
Figure 6.

In what follows, we will justify all the rules semantically using a
logical relation (Section 7) and then conclude their soundness w.r.t.
typed observational appoximation and equivalence (Section 8). But
we first sketch the intuition behind some of the rules.

The parallel composition rule states that two programs e1 and
e2 can be composed when their internal effects are not conflicting
in the sense that the internal effects of one program appear as
environment interaction effects of the other program. Note the
relationship to the parallel composition rule of the rely-guarantee
formalism [17]. Also note that the effects of computations e1 and
e2 are not required to be independent from each other as they are in
the parallization rule further down.

The appearance of the t-operation deserves special mention. It
might be, for example, that e1 modifies X on the way, thus wrX ∈ ε1
but cleans up this modification by eventually restoring the old value
of X. This would be reflected by wrX < ε∪ ε

′ ∪ ε2. In that case, we
would not expect to see wrX in the end-to-end effect of the parallel
composition and that is precisely what t achieves.

The rules labelled (Sem) make available all kinds of program
transformations that are valid on the level of the untyped denota-
tional semantics, including commuting conversions for let and if,
fixpoint unrolling, and beta and eta equalities.

Finally, we have several effect-dependent (in)equalities: the par-
allelization rule generalises a similar rule from [12]. The other ones
are concurrent version of analogous rules for sequential computa-
tion that have been analysed in previous work [6, 8, 9, 30] and are
at the basis of all kinds of compiler optimizations. The side con-
ditions on the effects are rather subtle and much less obvious than
those found in a sequential setting. The parallelization rule is simi-
lar to the parallel congruence rule in that it requires the participating
computations to mutually tolerate each other. This time, however,
since the two computations being compared will do rather different
things temporarily they must be oblivious against chaotic access,
hence the (−)C strengthenings in the premise.

The reason for the appearance of (−)C in the other rules is
similar. The rule for pure lambda hoist seems unusual and will
thus be explained in more detail. First, the computation e1 to be
hoisted may indeed have side effects ε1 so long as they are cleaned
up by the time e1 completes and the intervening environment does
not notice (modelled by the conditions ε1 ⊥ ε and final effect
εC = εC ∪ ∅). In the conclusion the transient effect ε1 shows up
again, but (−)C-ed since it only appears in different sides. Also in
the other rules like commuting etc. it is the case that the familiar
side conditions on applicability only affect the end-to-end effects
whereas the transient effects are merely required not to interfere
with the environment.

The following definitions provide the semantics of effects.

Definition 6.1 (Tiling). Let w ` ε. We write [ε](h, h′, h1, h′1) to
mean that (i) h |= w⇒ h

ε
−→ h1 and (ii) h′ |= w⇒ h′

ε
−→ h′1 and (iii)

h rds(ε)
∼ h′ and l ∈ wrs(ε) \ chs(ε) imply (h l

= h1 ∧h′ l= h′1)∨h1
l
∼ h′1.

Thus, assuming semantic consistency of heaps, h and h′ evolve
to h1 and h′1 according to the modifying (writing or chaotic) loca-
tions in ε, and if h, h′ agree on the reads of ε then written locations
will either be identically (equivalently) modified or left alone.

If the step relations of all abstract locations commute with each
other then tiling admits an alternative characterisation in terms of
preservation of binary relations [9]. The above, more operational,
version is inspired by that of Birkedal et al [12].

Lemma 6.2. Suppose that w ` ε, w ` ε1, w ` ε2. The following
hold whenever well-formed.

1. If [ε](h, h′, h1, h′1) and [ε](h1, h′1, h2, h′2) then [ε](h, h′, h2, h′2);
2. [ε](h, h′, h, h′)
3. If ε1 ⊆ ε2 then [ε1](h, h′, h1, h′1)⇒ [ε2](h, h′, h1, h′1)
4. [ε](h, h′, h1, h′1)⇒ [εC](h, h′, h1, h′1)
5. If [ε](h, h′, k, k′) and h rds(ε)

∼ h′ then k rds(ε)
∼ k′. (this relies on

rds(ε) ∩ chs(ε) = ∅.)
6. Suppose [ε](h, h′, h1, h′1). If h |= w then h1 |= w; if h′ |= w then

h′1 |= w.

7. Logical Relation
Definition 7.1 (Specifications). A value specification is a relation
E ⊆ V × V such that

• if x1 ≤ x and y ≤ y1 and x E y then x1 E y1;
• if (xi)i and (yi)i are chains such that xi E yi then supi xi E supi yi,

i.e., E is admissible qua relation;
• if x E y then pi(x) E pi(y) for each i, i.e. E is closed under the

canonical deflations.

Similarly, a computation specification is a relation Q ⊆ TV × TV
such that ≤; Q;≤ ⊆ Q and Q is admissible qua relation and Q is
closed under the canonical deflations qi.

The requirement ≤; E;≤ ⊆ E ensures smooth interaction with
the down-closure built into our trace monad. Admissibility is
needed for the soundness of recursion and, finally, closure un-
der the canonical deflations, is needed so that Lemma A.2 can be
applied.

Definition 7.2. If E ⊆ V × V and Q ⊆ TV × TV then the relation
E→Q ⊆ V × V is defined by

f E→Q f ′ ⇐⇒ ∀x x′.(x E x′)⇒ ( f (x) Q f ′(x′))

In particular, for f E→Q f ′ to hold, both f , f ′ must be functions
(and not elements of base type or tuples).

Lemma 7.3. If E and Q are specifications so is E→Q.

The following is the crucial definition of this paper; it gives a
semantic counterpart to observational approximation and, due to
its game-theoretic flavour, allows for very intuitive proofs.

Definition 7.4. Let E ⊆ V × V be a value specification and
(ε1, ε2, ε3) an effect specification. We define the relations T0(E, ε1, ε2, ε3)
and T (E, ε1, ε2, ε3) between sets of trace-value pairs, i.e. on
P(Tr × Values):

(U,U′) ∈ T0(E, ε1, ε2, ε3) if and only if

∀((h1, k1) . . . (hn, kn), a) ∈ U.h1 |= w⇒

∀h′1.h
′
1 |= w⇒ h1

rds(ε3)
∼ h′1 ⇒

∃k′1.[ε1](h1, h′1, k1, k′1) ∧ ∀h′2.[ε2](k1, k′1, h2, h′2)⇒
∃k′2.[ε1](h2, h′2, k2, k′2) ∧ ∀h′3.[ε2](k2, k′2, h3, h′3)⇒
· · ·

∃k′n.[ε1](hn, kn, h′n, k
′
n) ∧ [ε3](h1, h′1, kn, k′n)∧

∃a′ ∈ V.(a, a′) ∈ E ∧ ((h′1, k
′
1) . . . (h′n, k

′
n), a′) ∈ U′


We define the relation T (E, ε1, ε2, ε3) ⊆ TV × TV as the least
admissible superset of T0.

Remark 7.5. Taking the admissible closure is necessary for the
validity of the fixpoint rule. We explain in [7] that due to the fact
the underlying predomains are SFP, these admissible closures can
safely be ignored in proofs.

The game-theoretic view of T0(E, ε1, ε2, ε3) may be understood
as follows. Given U,U′ ∈ TV we can consider a game between
a proponent (who believes (U,U′) ∈ TV) and an opponent who
believes otherwise. The game begins by the opponent selecting an
element ((h1, k1) . . . (hn, kn), a) ∈ U and h1 |= w, the pilot trace,
and a start heap h′1 |= w such that h1

rds(ε3)
∼ h′1 to begin a trace
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Γ ` true ≤ true : bool Γ ` false ≤ false : bool Γ ` n ≤ n : int Γ, x : τ ` x ≤ x : τ
Γ ` v ≤ v′ : τ1 × τ2

Γ ` v.i ≤ v′.i : τi

Γ ` e1 ≤ e2 : τ & ε1 | ε2 | ε3 Γ ` e1 ≤ e2 : τ & ε1 | ε2 | ε3

Γ ` e1 ≤ e3 : τ & ε1 | ε2 | ε3

Γ ` v ≤ v′ : τ
Γ ` v ≤ v′ : τ & ε1 | ε2 | ε3

Γ ` vi ≤ v′i : τ1 i = 1, 2
Γ ` (v1, v2) ≤ (v′1, v

′
2) : τ1 × τ2

Γ ` v1 ≤ v′1 : τ1
ε1 | ε3
−−−−→
ε2

τ2 Γ ` v2 ≤ v′2 : τ1

Γ ` v1 v2 ≤ v′1 v′2 : τ2 & ε1 | ε2 | ε3

Γ ` v ≤ v′ : bool
Γ ` e1 ≤ e′1 : τ & ε1 | ε2 | ε3 Γ ` e2 ≤ e′2 : τ & ε1 | ε2 | ε3

Γ ` if v then e1 else e2 ≤ if v′ then e′1 else e′2 : τ & ε1 | ε2 | ε3

Γ ` e1 ≤ e′1 : τ1 & ε1 | ε2 | ε3
Γ, x:τ1 ` e2 ≤ e′2 : τ2 & ε1 | ε2 | ε3

Γ ` let x=e1 in e2 ≤ let x=e′1 in e′2 : τ2 & ε1 | ε2 | ε3

Γ, f :τ1
ε1 | ε3
−−−−→
ε2

τ2, x:τ1 ` e ≤ e′ : τ2 & ε1 | ε2 | ε3

Γ ` rec f x = e ≤ rec f x = e′ : τ1
ε1 | ε3
−−−−→
ε2

τ2

Γ ` e1 ≤ e′1 : τ1 & ε1 | ε ∪ ε2 | ε ∪ ε2 ∪ ε
′ Γ ` e2 ≤ e′2 : τ2 & ε2 | ε ∪ ε1 | ε ∪ ε1 ∪ ε

′

Γ ` e1‖e2 ≤ e′1‖e
′
2 : τ1 × τ2 & ε1 ∪ ε2 | ε | ε ∪ ε

′ ∪ (ε1 t ε2)

Γ ` e ≤ e : τ & ε1 | ε2 | ε3 ~e� = ~e′�
Γ ` e′ ≤ e′ : τ & ε1 | ε2 | ε3

Sem1
Γ ` e ≤ e : τ & ε1 | ε2 | ε3 ~e� = ~e′�

Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3
Sem2

(v, v′, τ) an axiom
Γ ` v ≤ v : τ

Ax1

Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3 ε1 ⊆ ε
′
1 ε′2 ⊆ ε2 ε3 ⊆ ε

′
3

Γ ` e ≤ e′ : τ & ε′1 | ε
′
2 | ε

′
3

Γ ` e ≤ e′ : τ & ε1 | ∅ | ε3

Γ ` atomic(e) ≤ atomic(e′) : τ & ε3 | ε2 | ε2 ∪ ε3
Atom

(v, v′, τ) an axiom
Γ ` v′ ≤ v′ : τ

Ax2

Figure 4. Typing and congruence rules

Γ ` e1 : τ1 & ε1 | ε
C ∪ εC

2 | ε
C ∪ εC

2 ∪ ε
′
1 Γ ` e2 : τ2 & ε2 | ε

C ∪ εC
1 | ε

C ∪ εC
1 ∪ ε

′
2 ε1 ⊥ ε2 ε1 ⊥ ε ε2 ⊥ ε

Γ ` e1‖e2 ≤ (let x=e1 in let y=e2 in (x, y)) : τ1 × τ2 & εC
1 ∪ ε

C
2 | ε | ε ∪ ε

′
1 ∪ ε

′
2

Parallelization

Γ ` e1 : τ1 & ε1 | ε
C | εC ∪ ε′1 Γ ` e2 : τ2 & ε2 | ε

C | εC ∪ ε′2 ε′1 ⊥ ε
′
2 ε1 ⊥ ε ε2 ⊥ ε

Γ ` (let x=e1 in let y=e2 in (x, y)) = (let y=e2 in let x=e1 in (x, y)) : τ1 × τ2 & εC
1 ∪ ε

C
2 | ε | ε ∪ ε

′
1 ∪ ε

′
2

Commuting

Γ ` e : τ & ε1 | ε
C
2 | ε

C
2 ∪ ε

′ rds(ε′) ∩ wrs(ε′) = ∅ ε2 ⊥ ε1

Γ ` (let x=e in (x, x)) ≤ (let x=e in let y=e in (x, y))) : τ × τ & εC
1 | ε2 | ε2 ∪ ε

′
Duplicated

(v, v′, τ) an axiom
Γ ` v ≤ v′ : τ Ax

Γ ` e1 : τ1 & ε1 | ε
C | εC Γ, x : τ3, y : τ1 ` e2 : τ2 & ε2 | ε | ε ∪ ε2 ε ⊥ ε1

Γ ` let y=e1 in λx.e2 ≤ λx.let y=e1 in e2 : τ3

εC
1 ∪ε2 | ε∪ε3
−−−−−−−−−→

ε
τ2 & εC

1 | ε | ε

Lambda Hoist

Γ ` e1 : τ1 & ε1 | ε
C | εC ∪ ε′1 Γ ` e2 : τ2 & ε2 | ε | ε

′
2 ε1 ⊥ ε wrs(ε′1) = ∅

Γ ` e2 ≤ (let x=e1 in e2) : τ2 & εC
1 ∪ ε2 | ε | ε ∪ ε

′
2

Deadcode

Figure 5. Effect-dependent transformations.

in U′. Then, the proponent answers with a matching heap k′1 so
that [ε1](h1, h′1, k1, k′1). If h1

rds(ε1)
∼ h′1 does not hold, proponent

does not need to ensure that writes are in sync. The opponent then
plays a heap h′2 so that [ε2](k1, k′1, h2, h′2). At this point, it is in
the proponents interest to make sure that k1

rds(ε2)
∼ k′1 for otherwise

opponent may make “funny” moves.
Then, again, proponent plays a heap k′2 such that [ε1](h2, h′2, k2, k′2)

and so on until, proponent has played k′n so that [ε1](hn, h′n, kn, k′n).
After that final heap has been played, it is checked that [ε3](h, h′, kn, k′n)
holds. If not, proponent loses. If yes, then proponent must also play
a value a′ and it is then checked whether or not ((h′1, k

′
1) . . . (h′n, k

′
n), a′) ∈

U′ and (a E a′). If this is the case or if at any one point in the game
the opponent was unable to move because there exists no appro-
priate heap then the proponent has won the game. Otherwise the
opponent wins and we have (U,U′) ∈ T0(E, ε1, ε2, ε3) iff the pro-
ponent has a winning strategy for that game.

Remark that by Lemma 6.2(6) well-formedness of heaps w.r.t.
the ambient world is a global invariant which we can henceforth
assume. We now illustrate the game with a few examples.

Example 7.6. Consider again the programs e1 = (X := !X + 1; X :=
!X + 1) and e2 = (X := !X + 2). Let l = int(X) be the ab-
stract location for a single integer stored at X (see Section 4). Let
E = ~unit� = {((), ())} be the value specification for the unit type.

We show that (~e1�, ~e2�) ∈ T (E, {chl}, ε, ε ∪ {rdl,wrl}} under
the assumption that {chl} ⊥ ε, that is, when the environment does
not read nor write X. This condition is clearly necessary, for e1 and
e2 can be distinguished by an environment that reads or writes X.

Let us now prove the claim when {chl} ⊥ ε. The opponent picks
a pilot trace in the semantics of e1, for example, ((h1, k1)(h2, k2), ())
where h1(X) = n and k1(X) = n + 1 and h2(X) = n′ and k2(X) =
n′+1. The other possible traces are stuttering or mumbling variants
of this one and do not present additional difficulties. The opponent
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also chooses a heap h′1 such that h1
l
∼ h′1, i.e., h′1(X) = n. Now

the proponent will choose to stutter for the time being and thus
selects k′1 := h′1. Indeed, [chl](h1, h′1, k1, k′1) holds, so this is legal.
The opponent now presents h′2 such that [ε](k1, k′1, h2, h′2). By the
assumption on ε we know that n′ = h2(X) = k1(X) = n + 1
and also h′2(X) = k′1(X) = n. The proponent now answers with
k′2 := h′2[X 7→n + 2]. It follows that [chl](h2, h′2, k2, k′2) and also
[rdl,wrl](h1, h′1, k2, k′2). Finally, by stuttering (h′1, h

′
1)(h′2, h

′
2[X 7→n+

2]) ∈ ~e2� so that proponent wins the game.

Example 7.7. Consider the following programs e1 and e2:
(X := !X + 1‖Y := !Y + 1) and (X := !X + 1; Y := !Y + 1).

We show (~e1�, ~e2�) ∈ T (E, {chX , chY }, ε, ε∪{rdX , rdY ,wrX ,wrY }),
provided ε does not read nor modify X and Y . This equivalence
could be deduced syntactically using our parallelization equation
shown in Figure 5. For illustrative purpose, however, we describe
its semantic proof using a game.

The opponent picks a pilot trace in ~e1�, for example, the trace
([n1|n2], [n1|n2 +1])([n1|n2 +1], [n1 +1|n2 +1])((), ()), where [nX |nY ]
denotes a heap where X and Y store nX and nY , respectively. Notice
that in this trace, Y is incremented before X and since ε does
not read nor modify X and Y , the environment move does not
change the values in X nor Y . We are also given an initial heap
h′1 that agrees with the initial heap [n1|n2] on the reads of ε ∪
{rdX , rdY ,wrX ,wrY }. Thus, h′1 should be of the form [n1|n2].

We now play the move ([n1|n2], [n1 +1|n2]). This is a valid move
in the game as [chX , chY ]([n1|n2], [n1|n2], [n1|n2 + 1], [n1 + 1|n2]).
The environment moves returning [n1 + 1|n2] as it does not read
nor modify X and Y . We can now match the trace above by playing
([n1 +1|n2], [n1 +1|n2 +1]) and returning ((), ()), winnning the game.

The following is one of the main technical result of our pa-
per and shows that the computation specifications T (. . . ) can in-
deed serve as the basis for a logical relation. We just show here
the soundness proof for the parallel congruence rule. The missing
proofs appear in the attached Appendix.

Theorem 7.8. The following hold whenever well-formed.
1. If (U,U′) ∈ T (E, ε1, ε2, ε3) then (qi(U), qi(U′)) ∈ T (E, ε1, ε2).
2. T (E, ε1, ε2, ε3) is a computation specification.
3. If (U,U′) ∈ T (E, ε1, ε2, ε3) then (U†,U′†) ∈ T (E, ε1, ε2, ε3).
4. If (a, a′) ∈ E then (rtn(a), rtn(a′)) is in T (E, ε1, ε2, ε3).
5. Suppose that (ε1, ε2, ε3) is an effect specification where ε1 ∪

ε2 ⊆ ε3. Suppose that whenever h rds(ε1)
∼ h′ and c(h) =

(h1, a) then there exist (h′1, a
′) such that c′(h′) = (h′1, a

′)
and [ε1](h, h′, h1, h′1) and aEa′. We then have for any ε2,
(fromstate(c), fromstate(c′)) ∈ T (E, ε1, ε2, ε3).

6. If ( f , f ′) ∈ E1→T (E2, ε1, ε2, ε3) and (U,U′) ∈ T (E1, ε1, ε2, ε3)
then (bnd( f ,U), bnd( f ′,U′)) ∈ T (E2, ε1, ε2, ε3).

7. If (U1,U′1) ∈ T (E1, ε1, ε ∪ ε2, ε ∪ ε2 ∪ ε′) and (U2,U′2) ∈
T (E2, ε2, ε ∪ ε1, ε ∪ ε1 ∪ ε

′) then (U1 | U′1,U2 | U′2) ∈ T (E1 ×

E2, ε1 ∪ ε2, ε, ε ∪ ε
′ ∪ (ε1 t ε2)).

8. (U,U′) ∈ T (E, ε1, ∅, ε3)⇒ (at(U), at(U′)) ∈ T (ε3, ε2, ε2 ∪ ε3).

Proof. Ad 7. Suppose that (U1,U′1) ∈ T (E1, ε1, ε∪ε2, ε∪ε2∪ε
′) and

(U2,U′2) ∈ T (E2, ε2, ε ∪ ε1, ε ∪ ε1 ∪ ε
′) and let (t, (a, b)) ∈ U1 | U2,

thus inter(t1, t2, t) (ignoring † by item 3) where (t1, a) ∈ U1 and
(t2, b) ∈ U2. Let S 1, S 2 be corresponding winning strategies. The
idea is to use S 1 when we are in t1 and to use S 2 when we are in
t2. Supposing that t starts with a t1 fragment we begin by playing
according to S 1. Let t be of the form:

t = (h1, k1) · · · (hn, kn)(hn+1, kn+1) · · · (hn+m, kn+m)
(hn+m+1, kn+m+1) · · · (hn+m+k, kn+m+k) · · · (hp, kp)

composed of pieces of the traces t1 and t2. Assume w.l.o.g. that
the first piece (h1, k1) · · · (hn, kn) is a part of t1. We are given a

initial heap h′1 such that h rds(ε∪ε′∪(ε1tε2))
∼ h′. Since rds(ε1 t ε2) =

rds(ε1) ∪ rds(ε2), we can apply strategy S 1 to guide us through the
first part of the game, obtaining:

(h′1, k
′
1) · · · (h′n, k

′
n)

Moreover, we have an environment move which forms the tile
[ε](kn, k′n, hn+1, hn′+1). Thus, we have the tile [ε∪ε1](h1, h′1, hn+1, h′n+1)
which can be seen as an environment move for t2. Therefore, we
can use strategy S 2 for the U′ and continue the game, obtaining the
trace piece:

(h′n+1, k
′
n+1) · · · (h′n+m, k

′
n+m)

Now, we can return to the S 1 game as the trace above is seen as
an environment move for U. Alternating these strategies, we get a
trace t which is in (U | U′). Let (a′, b′) be the final values reached
at the end. It is clear that [ε ∪ ε′ ∪ ε1 ∪ ε2](h, h′, hp, h′p) and also
aE1a′ and bE2b′.

It remains to assert the stronger statement [ε ∪ ε′ ∪ (ε1 t

ε2)](h, h′, hp, h′p). To see this suppose that wrl ∈ ε1 \ ε2 \ ε \ ε
′.

Since the entire game can be viewed as an instance of the game
U1 vs U′1 with interventions by U2 vs. U′2 regarded as environ-
ment interactions we have [ε ∪ ε2 ∪ ε

′](h, h′, hp, h′p) so that in fact

h l
= hp and h′ l

= h′p. The case of chl and ε1,ε2 interchanged is
analogous. �

We assign a value specification ~τ� to each refined type by

• ~int� = {(v, v′) | v = v′ ∈ Z} • ~τ1 × τ2� = ~τ1� × ~τ2�

• ~τ1
ε1 | ε3
−−−−→
ε2

τ2� = ~τ1�→T (~τ2�, ε1, ε2, ε3)

We omit the obvious definition of the other basic types and assume
value specifications for user-specified types as given.

Assumption 1. We henceforth make the following soundness as-
sumption, which must be established for every concrete instance of
our framework.

• The initial heap satisfies the current world: hinit |= w.
• Each axiom is type sound: whenever (v, v′, τ) is an axiom then

(v, v) ∈ ~τ� and (v′, v′) ∈ ~τ�.
• Each axiom is inequationally sound: whenever (v, v′, τ) is an

axiom then (v, v′) ∈ ~τ�.

Corollary 7.9. Suppose that Γ ` v : τ and Γ ` e : τ & ε1 | ε2 | ε3.
Then (η, η′) ∈ ~Γ� (interpreting a context as a cartesian product)
implies (VvWη,VvWη′) ∈ ~τ� and (~e�η, ~e�η′) ∈ T (~τ�, ε1, ε2, ε3).

Proof. By induction on derivations. Most cases are already sub-
sumed by Theorem 7.8. The typing rules regarding functions and
recursion follow from the definitions and from the fact that all spec-
ifications are admissible. �

8. Typed observational approximation
Definition 8.1 (Observational approximation). Let v, v′ be value
expressions where ` v : τ and ` v′ : τ. We say that v observationally

approximates v′ at type τ if for all f such that ` f : τ
ε1 | ε3
−−−−→

ε
int

(“observations”) it is the case that if ((hinit, k), n) ∈ ~ f v� for
v ∈ Z and starting from hinit then ((hinit, k′), n) ∈ ~ f v′� for some
k′. We write ` v ≤obs v′ in this case. We say that v and v′ are
observationally equivalent at type τ, written ` v =obs v′ if both
` v ≤obs v′ : τ and ` v′ ≤obs v : τ.

This means that for every test harness f we build around v and
v′, no matter how complicated it is and whatever environments
it sets up to run concurrently with v and v′, it is the case that
each terminating computation of v (in the environment installed by
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f ) can be matched by a terminating computation with the same
result by v′ in the same environment. It is important, however,
that the environment be well typed, thus will respect the contracts
set up by the type τ. E.g. if τ is a functional type expecting,
say, a pure function as argument then, by the typing restriction,
the environment f cannot suddenly feed v and v′ a side-effecting
function as input.

We remark that observational approximation extends canon-
ically to open terms by lambda abstracting free variables (and
adding a dummy abstraction in the case of closed terms) [6].

As usual, the logical relation is sound with respect to typed ob-
servational approximation and thus can be used to deduce nontriv-
ial observational approximation relations. We state and prove the
precise formulation of this result.

Theorem 8.2. Let v, v′ be closed values and suppose that (~v�, ~v′�) ∈
~τ�. Then ` v ≤obs v′ : τ.

Proof. If ` f : τ
ε1 | ε3
−−−−→
ε2
int then by Thm 7.9 we have (~ f �, ~ f �) ∈

~τ
ε1 | ε3
−−−−→
ε2
int�, so (~ f v�, ~ f v′�) ∈ T (~int�, ε1, ε2, ε3)+.

Let ((hinit, k), v) ∈ ~ f v�. We have hinit |= w and thus in particular
hinit

rds(ε3)∪rds(ε1)
∼ hinit. There must therefore exist a matching heap k′

and a value v′ such that ((hinit, k′), v′) ∈ ~ f v′� and v = v′ ∈ Z. �

This means that the examples from earlier on give rise to valid
transformations in the sense of observational approximation. For
instance, for e1 and e2 form Example 7.6 we find that λ .e1 =obs

λ .e2 at type unit
{chl} | ε∪{rdl ,wrl
−−−−−−−−−−−→

ε
unit whenever X does not appear

in ε.

9. Effect-dependent transformations
We will now establish the semantic soundness of the inequa-

tional theory of effect-dependent program transformations given in
Figure 5. It includes concurrent versions of the effect-dependent
equations from [9, 30], but the side conditions on the environmen-
tal interaction are by no means obvious. We also note that some
equations now only hold in one direction thus become inequations.
This is in particular the case for duplicated computations. Suppose
that ? is a computation that nondeterministically chooses a boolean
value and let e := let x = ? in (x, x). Then, even though ? does
not read nor write any location we only have e ≤ (?, ?), but not
(?, ?) ≤ e for (?, ?) admits the result (true, false) but e does not.
Furthermore, due to presence of nontermination the equations for
dead code elimination and pure lambda hoist also hold in one di-
rection only. It might be possible to restore both directions of said
equations by introducing special effects for nondeterminism and
nontermination; we have not explored this avenue. We concentrate
the individual effect-dependent transformations before summaris-
ing the foregoing results in the general soundness Theorem 9.2.

In many of the equations, co-effects play an important role. For
example, in the commuting and parallelization equations, the inter-
nal effects ε1 and ε2 in the premises are replaced by εC

1 and εC
2 in

the internal effects of the conclusion. This makes sense intuitively
because the computations are run in a different order, so for the
internal moves, the locations in ε1 and ε2 can be modified in any
way (see Example 7.7). However, in the global effect, we can still
guarantee the effects ε′1 and ε′2 because of the ⊥-conditions. This
intuition appears directly in the soundness proofs.

The following thus constitutes the second main technical result
of our paper. We sketch the soundness proof for parallelization. The
detailed proofs appear in the attached Appendix.

Theorem 9.1. The following hold whenever well-formed.

• Commuting If (U1,U′1) ∈ T (E1, ε1, ε
C , εC ∪ ε′1) and (U2,U′2) ∈

T (E2, ε2, ε
C , εC ∪ ε′2) and ε1 ⊥ ε and ε2 ⊥ ε and ε′1 ⊥ ε

′
2 then

({(t1t2, (v1, v2)) | (t1, v1) ∈ U1, (t2, v2) ∈ U2}
†,

{(t′2t′1, (v
′
1, v
′
2)) | (t′1, v

′
1) ∈ U′1, (t

′
2, v
′
2) ∈ U′2}

†)
∈ T (E1 × E2, (ε1 ∪ ε2)C , ε, ε ∪ ε′1 ∪ ε

′
2)

• Duplicated If (U,U′) ∈ T (E, ε1, ε
C
2 , ε

C
2 ∪ ε′) and rds(ε′) ∩

wrs(ε′) = ∅ and ε2 ⊥ ε1, then

({(t, (v, v)) | (t, v) ∈ U}†, {(t′1t′2, (v
′
1, v
′
2)) | (t′1, v

′
1) ∈ U′,

(t′2, v
′
2) ∈ U′}†) ∈ T (E, ε1, ε2, ε2 ∪ ε

′)

• Pure Let (U,U′) ∈ T (E, ε1, ε
C
2 , ε

C
2 ), such that ε1 ⊥ ε2.

If ((q1, k1) . . . (qn, kn), v) ∈ U for some arbitrary trace t =
(q1, k1) . . . (qn, kn) (with q1 |= w) and value v, then (rtn(v),U′) ∈
T (E, εC

1 , ε2, ε2);
• Dead Suppose that (U,U′) ∈ T (unit, ε1, ε2, ε2 ∪ ε

′
1), where

wrs(ε′1) = ∅ and ε1 ⊥ ε2. Then (U, rtn(())) ∈ T (unit, εC
1 , ε2, ε2∪

ε′1).
• Parallelization If (U1,U′1) ∈ T (E1, ε1, ε

C ∪ εC
2 , ε

C ∪ εC
2 ∪ ε

′
1)

and (U2,U′2) ∈ T (E2, ε2, ε
C ∪ εC

1 , ε
C ∪ εC

1 ∪ ε
′
2) and ε1 ⊥ ε2 and

ε1 ⊥ ε and ε2 ⊥ ε, then

(U1‖U2, {(t′1t′2(v′1, v
′
2)) | (t′1, v

′
1) ∈ U′1, (t

′
2, v
′
2) ∈ U′2}

†) ∈
T (E1 × E2, ε

C
1 ∪ ε

C
2 , ε, ε ∪ ε

′
1 ∪ ε

′
2)

Proof. (Sketch) Parallelization.
Assume w.l.o.g. that the pilot trace takes the form (t, (v1, v2))

where inter(t1, t2, t) and (ti, vi) ∈ Ui. Just as in the commuting case
we set up two side games Ui vs. U′i on ti, vi. Unlike, in that case,
however, these games are running simultaneously and along with
the main game. Moves by the environment in the main game are
forwarded to the side game we are currently in, i.e., the one to
which the current portion of t being played on belongs. At each
change of control, we switch between the two side games making
last sequence of moves of the other game into a single environment
move. It is here that the resilience against chaotic modification is
needed. Once the play is over we then assert the claims about the
end-to-end effect ε∪ε′1∪ε

′
2 location by location using the definition

of tiling. �

Theorem 9.2. Suppose that Γ ` v ≤ v′ : τ and Γ ` e ≤
e′ : τ & ε1 | ε2 | ε3 and assume that for each axiom (v, v′, τ)
it holds that (v, v′) ∈ ~τ�+. Then (η, η′) ∈ ~Γ�+ (interpreting a
context as a cartesian product) implies (VvWη,Vv′Wη′) ∈ ~τ�+ and
(~e�η, ~e′�η′) ∈ T (~τ�, ε1, ε2, ε3)+.

Sketch. In essence the proof is by induction on derivations of in-
equalities. However, we need to slightly strengthen the induction
hypothesis as follows:

Define
~Γ ` τ� = {( f , f ′) | ∀(η, η′) ∈ ~Γ�.( f (η), f ′(η′)) ∈ ~τ�}
~Γ ` τ&(ε1, ε2, ε3)� = {( f , f ′) | ∀(η, η′) ∈ ~Γ�.

( f (η), f ′(η′)) ∈ T (~τ�, ε1, ε2, ε3)}

We now show by induction on derivations that Γ ` v ≤ v′ : τ
implies (~v�, ~v′�) ∈ ~Γ ` τ�+ and that Γ ` e ≤ e′ : τ & ε1 | ε2 | ε3
implies (~e�, ~e′�) ∈ ~Γ ` τ&(ε1, ε2, ε3)�+.

The various cases now follow from earlier results in a straight-
forward manner. We use Theorem 7.8 for the congruence rules and
Theorem 9.1 for the effect-dependent transformations.

As a representative case we show the case where e ≡ let x =
e1ine2 and e′ ≡ letx=e′1ine

′
2. Inductively, we know (~e1�, ~e′1�) ∈

~Γ ` τ1&(ε1, ε2, ε3)�n1 and (~e1�, ~e′1�) ∈ ~Γ, x:τ1 ` τ&(ε1, ε2, ε3)�n2

for some n1, n2 > 0. By Theorem 7.9, we also have (~e1�, ~e1�) ∈
~Γ ` τ1&(ε1, ε2, ε3)� and analogous statements for e′1, e2, e′2. We
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can, therefore, assume, w.l.o.g. that n1 = n2 and then use Theo-
rem 7.8 (6) repeatedly (n1 times) so as to conclude (~e�, ~e�) ∈
~Γ ` τ&(ε1, ε2, ε3)�n1 .

The rules for dead code and pure lambda hoist rely on the cases
“Dead” and “Pure” of Thm 9.1 in a slightly indirect way. We sketch
the argument for pure lambda hoist. The pilot trace begins with a
trace belonging to e1 and yielding a value v for x. We can then
invoke case “Pure” on subsequent occurrences of e1 in the right
hand side. �

Theorem 9.3. Suppose that ` v : τ and ` v′ : τ and that
(~v�, ~v′�) ∈ ~τ�+ where (−)+ denotes transitive closure. Then
` v ≤obs v′ : τ.

Proof. If ` f : τ1
ε1 | ε3
−−−−→
ε2
int then by Thm 7.9 we have (~ f �, ~ f �) ∈

~τ
ε1 | ε3
−−−−→
ε2
int�, so (~ f v�, ~ f v′�) ∈ T (~int�, ε1, ε2, ε3)+.

Let ((hinit, k), v) ∈ ~ f v�. We have hinit |= w and thus in particular
hinit

rds(ε3)∪rds(ε1)
∼ hinit. There must therefore exist a matching heap k′

and a value v′ such that ((hinit, k′), v′) ∈ ~ f v′� and v = v′ ∈ Z. �

We now return to the examples that we discussed in Section 1
and demonstrate how to prove using our denotational semantics the
properties that have been discussed informally.

Overlapping references. With this example, we illustrate the par-
allelization rule. In particular, the functions declared in Section 1
have the following type, where ε does not read nor write X:

readFst : unit
∅ | εC ,chsnd(X) ,rdfst(X)
−−−−−−−−−−−−−−−−→

εC ,chsnd(X)

int

writeFst : int
wrfst(X) | ε

C ,chsnd(X) ,wrfst(X)
−−−−−−−−−−−−−−−−−−−−−→

εC ,chsnd(X)

unit

The obvious and analogous typings for readSnd and writeSnd
are elided. We justify this typing semantically as described in
Theorem 7.8. To illustrate how this is done, consider the function
(writeSnd 17). We show how the game is played against itself
using the typing shown above. We start with a “pilot trace”, say:
([2|3], [2|3]), ([2|17], [2|17]), (())
where [x|y] denotes a store with X = p(x, y) and other components
left out for simplicity. The first step corresponds to our reading
of X and in the second step – since there was no environment
intervention – we write 17 into the first component.

We now start to play: Say that we start at the heap [13|12].
We answer [13|12]. If the environment does not change X, then
we write 17 to its first component resulting in the following trace,
which is possible for writeFst(17).

([13|12], [13|12]), ([13|12], [17|12]), (())
If, however, the environment plays [18|21] (a modification of both
components of X has occurred), then we answer [17|21]. Again,

([13|12], [13|12]), ([18|21], [17|21]), (())
is a possible trace for writeFst(17). It is easy to check that there is
a strategy that justifies the typing given above.
Now, consider a program, e1, that only calls readFst,writeFst,
and another program, e2, that only calls readSnd,writeSnd. Since
the former functions have disjoint effects to the latter ones, e1
and e2 will have effect specifications, respectively, of the form
(ε1, ε

C ∪ εC
2 , ε

C ∪ εC
2 ∪ ε1) and (ε2, ε

C ∪ εC
1 , ε

C ∪ εC
1 ∪ ε2), where

ε1 ∩ ε2 = ε1 ∩ ε = ε2 ∩ ε = ∅. Thus we can use the parallelization
rule shown in Figure 5 to conclude that the behavior of e1‖e2 is the
same as executing these programs sequentially, although they read
and write to the same concrete location.

Michael-Scott queue. We now show that the enqueue and
dequeue functions described in Section 1 for the Michael-Scott
Queue have the same behavior as their atomic versions. We only

show the case for dequeue, as the case for enqueue is similar.
More precisely, we now justify the axiom

(dequeue, atomic(dequeue), unit
MSQ |MSQ
−−−−−−−→

MSQ
int)

where MSQ = {rdmsq(X),wrmsq(X)}. That is, they approximate each
other at a type where the environment is allowed to operate on the
queue as well. We also note that the converse of the axiom is obvi-
ous by stuttering and mumbling. After consuming a dummy argu-
ment () let the resulting pilot trace be (h1, k1) . . . (hi, ki) . . . (hn, kn)a
and h′1 be the start heap to match. We can now assume that the pas-

sages from ki to hi+1 follow the protocol, i.e. ki
msq(X)
−−−−−→ hi+1. (Should

this not be the case we are free to make arbitrary moves and still win
the game by default of the environment player.) Therefore, there
must exist i such that in the move (hi, ki) the element a is dequeued
and h j = k j holds for j , i. We can thus match this trace by a trace
in the semantics of atomic(dequeue ()) by stuttering until i:

(h′1, h
′
1) . . . (h′i , . . .

where h j and h′j have the same content, but not necessarily the exact
same layout. Given the environment’s allowed effects it is then clear
that also hi and h′i have the same content, but not necessarily the
same as h1 and h′1 because in the meantime other operations on the
queue might have succeeded. We then dequeue the corresponding
element from h′i leading to k′i and continue by stuttering.

. . . , k′i )(h
′
i+1, h

′
i+1) . . . (h′n, h

′
n)a′

It is now clear that this is a matching trace and that a = a′ so we
are done.

Notice that the congruence rules now allow us to deduce
the equivalence of op1 ‖ · · · ‖ opn and atomic(op1) ‖ · · · ‖
atomic(opn) for opi being enqueues or dequeues, which effectively
amounts to linearizability [19].

10. Discussion
We have shown how a simple effect system for stateful compu-

tation and its relational semantics, combined with the notion of ab-
stract locations, scales to a concurrent setting. This provides a nat-
ural and useful degree of control over the otherwise anarchic pos-
sibilities for interference in shared variable languages, as demon-
strated by the fact that we can delineate and prove the conditions
for non-trivial contextual equivalences, including fine-grained data
structures.

Interesting as those proofs are, we include them only to demon-
strate the scope of our semantics. The most important contribution
is the theory of effect-dependent equivalences. The theory smoothly
but considerably extends earlier such theories proposed in the se-
quential settings [9, 30]. Notably, in the presence of concurrency
the rules for code duplication, motion, and deletion, which in the
sequential realm are fairly intuititive, get nontrivial side conditions.
The same is true for the – effect-dependent – parallel congruence
rule. Such rules are presented and justified here for the first time.

There is much research on modelling and verification of con-
currency and some of the broad ideas here, such as rely-guarantee
[17], are widely used. The traditional focus was simple program
logics, but there is a growing body of impressive work on equiva-
lences, abstraction and refinement, building on earlier work on sep-
aration and encapsulated state in sequential settings. Abstract loca-
tions, with custom notions of equivalence and evolution, are like the
islands of Ahmed et al [3], and recent work of Turon et al [31] on
relational models for fine-grained concurrency develops richer ab-
stractions, notably state transition systems expressing inter-thread
protocols that can involve ownership transfer, as well as a treat-
ment of refinement for concurrent ADTs. Similarly, the ‘RGSim’
relation of Liang et al. for proving concurrent refinements under
contextual assumptions also has many similarities with our logical
relation [24, Def.4]. The idea of abstract locations that can over-
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lap in concrete storage whilst appearing independent to clients also
appears in work on ‘fictional’ separation [18, 22].

Most previous work aims at proving particular, concrete equiv-
alences and refinements. Sophisticated logics like CaReSL [31]
can verify more complex fine-grained algorithms than our system.
However, such logics do not directly capture the simpler, more gen-
eral patterns of behaviour expressed by effect-refined types, or the
soundness of the associated generic transformation rules.

Birkedal et al [12] have also studied relational semantics for ef-
fects in a concurrent language. The language considered there has
dynamic allocation via regions and higher-order store, neither of
which we have here. On the other hand, the invariants are based
on simply-typed concrete locations and thus do not capture effects
at the level of whole datastructures, as abstract locations do. The
examples in [12] are consequently more elementary than ours. Fur-
thermore, we offer a subtler parallelization rule, distinguish tran-
sient and end-to-end effects, and validate other effect-dependent
equivalences like commuting, lambda hoist, deadcode and dupli-
cation. Our use of a denotational model gives a rather simpler and
more extensional definition of the logical relation by comparison
with [12]. While some of the complexity is certainly attributable to
dynamic allocation and higher-order store, others like the explicit
step counting, the need for effect-instrumented operational seman-
tics, and the separation of branches in the definition of safety are
not. We thus see our work also as a proof-of-concept for denota-
tional semantics for higher-order concurrent programming.

Brookes’s trace model is also used in, for example, Turon and
Wand’s work on refinement [32], and we certainly found it a use-
fully simpler base than transition systems or resumptions. Brookes
[16] extends his original semantics to model a parallel Algol-like
language. Explicit powerdomains are not required for that lan-
guage, but the semantics incorporates both a possible-worlds treat-
ment of local variables and potentially infinite traces for modelling
liveness as well as safety.

There are various directions for further work. We would like
to add dynamic allocation of abstract locations following [6]. In
addition to relieving us from having to set up all data structures
in the initial heap this would, we believe, allow us to model and
reason about lock-based protocols in an elegant way. It would
also be natural to integrate this work with effects that track non-
determinism [10]. Other possible extensions include higher-order
store and weak concurrency models. It might be possible to factor
the semantics of an effect system into an abstract layer treating
single locations, like [12], with a separate refinement, like [31], to
concrete implementations using multiple, potentially overlapping,
real locations. That would involve working with two levels of code
and we do not yet know if it would work.
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A. Proof of Theorem 7.8
We write Adm(P) for the admissible closure of the predicate P.

Lemma A.1. Let A, B be predomains and P ⊆ A and Q ⊆ B. We
have Adm(P × Q) = Adm(P) × Adm(Q).

Proof. The direction ⊆ is obvious. For the other one, fix b ∈
Adm(Q) and define S ⊆ A by S = {a | (a, b) ∈ Adm(P × Q)}.
Since S is admissible and contains P, we have Adm(P) ⊆ S and the
claim follows. �

Lemma A.2. Let A, B be predomains and let (pi)i be a chain of
retracts on B such that pi(b) is compact for each i and supi pi = idB
and b ∈ Q implies pi(b) ∈ Q for all i. Then P→Adm(Q) =
Adm(P→ Q).

Proof. The second equality and the ⊆-direction of the first equation
are obvious. So, for “⊇” assume f : P → Adm(Q). Thus, for each
a ∈ P, we can chose a chain (b j,a) j so that sup j b j,a = f (a) and
b j,a ∈ Q for each j. Now, for each i we have r′i ( f (a)) = sup j r′i (b j,a)
and, since r′i ( f (a)) is compact, we even have r′i ( f (a)) = r′i (b j,a) for
some j. Note that r′i ( f (a)) ≥ r′i (b j,a) always holds by monotonicity.
Thus, since b j,a ∈ Q and r′i : Q ⇁ Q we obtain r′i ( f (a)) ∈ Q for
all i. As a result, for each i we have r′i ◦ f : P ⇁ Q and thus, since
f = supi r′i ◦ f , we finally get f ∈ Adm(P→ Q) as required. �

Proof of Theorem 7.8 In each case, using Lemmas A.1 and A.2
(for case 6), we can in fact assume w.l.o.g. that the assumed pairs
are in T0(. . . ) rather than T (. . . ).

Ad 1. Let (t, a) ∈ qi(U), i.e. a = pi(a0) where (t, a0) ∈ U. By
down-closure ([Down]) we also have (t, a) ∈ U. We can now play
the strategy guaranteed by the assumption (U,U′) ∈ T (E, ε1, ε2, ε3)
which will yield (depending on the opponent’s moves) a trace t′
and a value a′ such that (t′, a′) ∈ U′ and (pi(a), a′) ∈ E. Now,
since E is a specification we get (pi(a), pi(a′)) ∈ E noting that pi is
idempotent. So, we modify the strategy so as to return pi(a′) rather
than a′ and thus obtain a winning strategy asserting the desired
conclusion.

Ad 2 This is an easy consequence from 1.
Ad 3 Pick (U,U′) ∈ T0(E, ε1, ε2, ε3). Since T (E, ε1, ε2, ε3) is

closed under suprema it suffices to show that (q j(U†), q j(U′†)) ∈
T (E, ε1, ε2, ε3) for each j. Fix such j and pick (t, p j(a)) ∈ q j(U†),
thus (t, a) ∈ U†.

By induction on the closure process we can assume w.l.o.g. that
(t, a) arises from (t1, a) ∈ U by a single mumbling or stuttering step
or that (t, a1) ∈ U for some a1 ≥ a or else that (t, ai) ∈ U where
supi ai = a.

In the former two cases fix a strategy for the original element of
U. We will use this strategy to build a new one demonstrating that
(t, a) ∈ U′, hence (t, p j(a)) ∈ q j(U′) as required.

If (t, a) arises by stuttering, so t = u(h, h)v and t1 = uv we play
the strategy until u is worked off. If the opponent then produces a
heap h′ to match h we answer h′.

Now [ε1](h, h′, h, h′) is always true (Lemma 6.2) so this is
a legal move. Thereafter, we continue just as in the original
strategy. In the special case where v is empty, we must also
show that [ε3](h1, h′1, h, h

′) knowing [ε3](h1, h′1, kn, k′n) where u =
(h1, k1) . . . (hn, kn) and u′ = (h′1, k

′
1) . . . (h′n, k

′
n) is the matching

trace. We have [ε2](kn, k′n, h, h
′) for otherwise opponent’s play-

ing h′ would have been illegal. Since, by assumption ε2 ⊆ ε3,
we can conclude [ε3](kn, k′n, h, h

′) and then [ε3](h1, h′1, h, h
′) by

Lemma 6.2(3&1).
If (t, a) arises by mumbling then we must have t = u(h1, h3)v and

t1 = u(h1, h2)(h2, h3)v. We play until the strategy has produced a
match h′2 for h2. So far, the play has produced a trace u′ matching u,

and a state h′1 so that [ε1](h1, h′1, h2, h′2). Now, we can ask what the
original strategy would produce if we gave it (temporarily assuming
opponent’s role) the state h′2 as a match for h2. Note that this is
legal because [ε2](h2, h′2, h2, h′2). The strategy will then produce
h′3 such that [ε1](h2, h′2, h3, h′3) and our answer in the play on the
new trace against the challenge h′1 will be this very h′3. Indeed,
by composing tiles (Lemma 6.2) we have [ε1](h1, h′1, h3, h′3) as
required. Thereafter, the play continues according to the original
strategy.

For down-closure, we play the strategy against (t, a1) yielding
a match (t′, a′1) ∈ U′ where a1Ea′1. That same strategy also wins
against (t, a) because aEa′1 since E is a value specification.

For closure under [Sup], finally, pick i so that ai ≥ p j(a) recall-
ing that a = supi ai. Since we have a winning strategy for (t, ai),
we also have one (by down-closure which was already proved) for
(t, p j(a)) as required.

Ad 4. Suppose aEa′. By 3 which we have just proved we only
need to match elements of the form ((h, h)a). The opponent plays
h′ where h

rds(ε3)
∼ h′ and we answer with h′ itself and a′. This is

always a legal move (Lemma 6.2) and aEa′, so we win the game.

Ad 5. Again, we only need to match traces of the form ((h, h1), a)
where c(h) = (h1, a). In this case, suppose that the opponent
plays h′ where h

ε3
∼ h′. The assumption gives (h′1, a

′) such that
c′(h′) = (h′1, a

′) and [ε1](h, h′, h1, h′1) and aEa′. We thus play h′1
and a′ and indeed [ε1/3](h, h′, h1, h′1) and aEa′ hold so this is a
winning move.

Ad 6. Suppose ( f , f ′) ∈ E1→T (E2, ε1, ε2, ε3) and (U,U′) ∈
T (E1, ε1, ε2, ε3). Suppose that (uv, b) ∈ ap(f,U) where (u, a) ∈ U
and (v, b) in f (a) (note that we can ignore the †-closure). We need
to produce a trace (u′v′, b′) ∈ ap(f ’,U′) such that (u′, a′) ∈ U′ and
(v′, b′) in f ′(a′) and bE2b′. Assume that:

u = (h1, k1) · · · (hn, kn) and v = (hn+1, kn+1) · · · (hn+m, kn+m)

We are given a heap h′1, such that h1
rds(ε3)
∼ h′1. We can use the

strategy S 1 from (U,U′) ∈ T (E1, ε1, ε2, ε3) for (u, a). We play
according to S 1 to work off the u-part. This results in a matching
trace u′ ∈ U′:

u′ = (h′1, k
′
1) · · · (h′n, k

′
n)

where [ε3](h1, h′1, kn, k′n) and (a, a′) ∈ E2. We get ( f (a), f (a′)) ∈
T (E2, ε1, ε2, ε3). Now, we are given a heap h′n+1 that is an environ-
ment move forming the tile [ε2](kn, k′n, hn+1h′n+1). From the fact that

ε2 ⊆ ε3 and Lemma 6.2(5) we can conclude hn+1
rds(ε3)
∼ h′n+1.

Thus we can continue our play by using the strategy S 2 from
( f (a), f (a′)) ∈ T (E2, ε1, ε2, ε3) which yields a continuation v′ of
our trace and a final answer b′. It is then clear that (u′v′, b′) ∈
bnd( f ′,U′) so this combination of strategies does indeed win.

Ad 7. Suppose that (U1,U′1) ∈ T (E1, ε1, ε ∪ ε2, ε ∪ ε2 ∪ ε
′) and

(U2,U′2) ∈ T (E2, ε2, ε ∪ ε1, ε ∪ ε1 ∪ ε
′) and let (t, (a, b)) ∈ U1 | U2,

thus inter(t1, t2, t) (ignoring † by item 3) where (t1, a) ∈ U1 and
(t2, b) ∈ U2. Let S 1, S 2 be corresponding winning strategies. The
idea is to use S 1 when we are in t1 and to use S 2 when we are in
t2. Supposing that t starts with a t1 fragment we begin by playing
according to S 1. Let t be of the form:

t = (h1, k1) · · · (hn, kn)(hn+1, kn+1) · · · (hn+m, kn+m)
(hn+m+1, kn+m+1) · · · (hn+m+k, kn+m+k) · · · (hp, kp)

composed of pieces of the traces t1 and t2. Assume w.l.o.g. that
the first piece (h1, k1) · · · (hn, kn) is a part of t1. We are given a
initial heap h′1 such that h rds(ε∪ε′∪(ε1tε2))

∼ h′. Since rds(ε1 t ε2) =
rds(ε1) ∪ rds(ε2), we can apply strategy S 1 to guide us through the
first part of the game, obtaining:

(h′1, k
′
1) · · · (h′n, k

′
n)
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Moreover, we have an environment move which forms the tile
[ε](kn, k′n, hn+1, hn′+1). Thus, we have the tile [ε∪ε1](h1, h′1, hn+1, h′n+1)
which can be seen as an environment move for t2. Therefore, we
can use strategy S 2 for the U′ and continue the game, obtaining the
trace piece:

(h′n+1, k
′
n+1) · · · (h′n+m, k

′
n+m)

Now, we can return to the S 1 game as the trace above is seen as
an environment move for U. Alternating these strategies, we get a
trace t which is in (U | U′). Let (a′, b′) be the final values reached
at the end. It is clear that [ε ∪ ε′ ∪ ε1 ∪ ε2](h, h′, hp, h′p) and also
aE1a′ and bE2b′.

It remains to assert the stronger statement [ε ∪ ε′ ∪ (ε1 t

ε2)](h, h′, hp, h′p). To see this suppose that wrl ∈ ε1 \ ε2 \ ε \ ε
′.

Since the entire game can be viewed as an instance of the game
U1 vs U′1 with interventions by U2 vs. U′2 regarded as environment
interactions we have [ε∪ε2∪ε

′](h, h′, hp, h′p) so that in fact h l
= hp

and h′ l= h′p. The case of chl and ε1,ε2 interchanged is analogous.
Ad 8. This is direct from the definition of atomic and appealing

on the fact that (U,U′) ∈ T (E, ε1, ∅, ε3).

B. Proof of Theorem 9.1
Proof. Commuting. By Theorem 7.8(3) we can assume our pilot
trace t to be of the form:

(h1, k1)(h2, k2) · · · (hn, kn) (hn+1, kn+1) · · · (hn+m, kn+m) (a, b)

where
t1 = (h1, k1)(h2, k2) · · · (hn, kn) v1 ∈ U1
t2 = (hn+1, kn+1) · · · (hn+m, kn+m) v2 ∈ U2

We make similar use of Theorem 7.8(3) in the subsequent cases
without explicit mention.

We are also given a heap h′1 such that h1
rds(ε∪ε′1∪ε

′
2)

∼ h′1. Because
ε′1 ⊥ ε′2, h1 and hn+1 agree on the reads of ε′2. Thus we can start
a game U2 vs. U′2 using h′1 and t2. We forward all environment’s
moves from the main game to the side game and use the responses
from the side game to answer in the main game. Suppose that the
side game leads to the valid U2-trace

(h′1, k
′
1)(h′2, k

′
2) · · · (h′m, k

′
m) v′2

where v2E2v′2 and (1) [εC ∪ε′2](hn+1, h′1, kn+m, k′m). Notice that in the
global game these are legal responses as [εC

1 ∪ ε
C
2 ](hi, h′i , ki, k′i ) for

1 ≤ i ≤ m.
We now have an environment move [ε](km, k′m, hm+1, h′m+1).

Since ε′1 ⊥ ε and ε′2 ⊥ ε′1, the heaps h′1 and h′m+1 agree in the
reads of ε′1. Therefore, we can run a game U1 vs. U′1 using h′m+1
and t1, obtaining the trace:

(h′m+1, k
′
m+1)(h′m+2, k

′
m+2) · · · (h′m+n, k

′
m+n) v′1

where v1E1v′1 and (2) [εC ∪ ε′1](h1, h′m+1, kn, k′m+n). The reasoning is
similar to the use of the previous game.

Thus we have that (v1, v2)(E1 × E2)(v′1, v
′
2).

Now, we need to conclude that [εC ∪ ε′1 ∪ ε
′
2](h1, h′1, kn+m, k′m+n).

This follows from the fact that ε′1 ⊥ ε
′
2 and (1) and (2). In particular,

from (1) and ε′1 ⊥ ε′2, we get that km+n and k′m+n agree on the
locations in ε′2, while from (2), we get that km+n and k′m+n agree
on the locations in ε′1. This finishes the proof.

Duplicated. Assume given a trace in U:

t = (h1, k1) · · · (hn, kn) v

and a heap h′1 such that h1
rds(ε2∪ε

′)
∼ h′1. Recall that rds(ε′)∩wrs(ε′) =

∅ and moreover, since εC
2 ∪ε

′ is well formed, we also have rds(ε′)∩
(wrs(ε2)∪chs(ε2)) = ∅. Thus h1 and kn agree on the reads of ε′∪εC

2 ,
i.e., the reads of ε′.

We start by simply stuttering:

t′ = (h′1, h
′
1)(h′2, h

′
2) · · · (h′n, ??).

leaving the final heap ?? yet to be determined. So far, this is
a legal play in the main game because for 1 ≤ i ≤ n − 1,
we have [εC

1 ](hi, h′i , ki, h′i ) and a chaotic effect on a location al-
lows any changes to that location. Moreover, we may assume
[ε2](ki, hi+1, h′i , h

′
i+1) for otherwise we would have won immedi-

ately. As a result, since ε1 ⊥ ε2, we inductively get hi
rds(ε2)
∼ h′i and,

of course, hi
rds(ε2)
∼ ki.

We will now play two side-games U vs. U′ with pilot trace t so
as to construct the missing heap “??”. We first run a game starting at
h′n, where the environment moves are simply stutter moves. Recall

that h1
rds(ε′∪chs(εC

2 ))
∼ h′n has already been asserted above. We thus

obtain the following trace t1 ∈ U′

t1 = (h′n, q1)(q1, q2) · · · (qn−1, qn) v′1
where vEv′1 and [εC

2 ∪ε
′](h1, h′n, kn, qn). Notice that using stuttering

environment moves is valid as [εC
2 ](ki, qi, hi+1, qi) for 1 ≤ i ≤ n− 1.

Since h1 and kn agree on the reads of ε′ and qn and kn agree on
rds(ε′) from [εC

2 ∪ ε
′](h1, h′n, kn, qn), we can run the game U vs. U′

again on qn and t with stutter environment moves:

(qn, qn+1)(qn+1, qn+2) · · · (qn+n−1, qn+n) v′2
where vEv′2 and [εC

2 ∪ε
′](h1, qn, kn, qn+n). Thus, (v, v)(E×E)(v′1, v

′
2).

This trace is again valid for the same reasons above, namely εC
1

allows any internal moves, and since ε1 ⊥ ε2, the environment
moves are also legal.

We now put ?? := qn+n which leads to a valid trace due to re-
peated mumbling. Finally, we shall show that [ε2∪ε

′](h1, h′1, kn, qn+n)
that is kn and qn+n agree on the reads of ε2 and of ε′:

• They agree on the reads of ε′ because [εC
2 ∪ ε

′](h1, qn, kn, qn+n)
obtained from the game above;
• They agree on the reads of ε2 because ε1 ⊥ ε2. The internal

moves did not affect the locations read by ε2.

Duplicated for result value unit: We can show that equality
holds and not just ≤ when the result type is unit. The reverse
direction is proved as follows: For a given pilot trace t of U, where e
is executed twice, we can construct a trace t′ in U′ by first stuttering
and then mimicking the second execution of e. Since the resulting
type is unit, there values obtained in t are necessarily () which is
also necessarily the same value obtained in the trace t′.

Pure. We start with a trace from rtn(v), for example (h1, h1), v
and an arbitrary heap h′1. We now consider the game involving U
vs. U′ on t, v and h′1:

t = (q1, k1)(q2, k2) · · · (qn, kn), v
t′ = (h′1, k

′
1)(k′1, k

′
2) · · · (k′n−1, k

′
n), v′

We have that vEv′ and [ε3](q1, h′1, kn, k′n). By mumbling, (h′1, k
′
n) ∈

U′. We can reply with k′n in the main game.
Dead. Assume given a trace of the form:

(h1, k1) · · · (hn, kn) v

and h′1 such that h1
rds(ε3)
∼ h′1. We now initiate a side game U

vs. U′ on this trace and respond in the main game by stuttering.
Thus, we obtain traces (h′1, h

′
1) · · · (h′n, h

′
n) () in the main game and

(h′1, k
′
1) · · · (h′n, k

′
n) v′ in the side game.

The main trace is in rtn(()). The side game tells us that v = ()
and that hi

ε1
−→ ki and therefore [εC

1 ](hi, h′i , ki, h′i ). It remains to show
that [ε ∪ ε′1 ∪ ε

′
2](h1, h′1, kn, k′n). This follows from the fact that ε1

has only reads as hi and ki agree on all locations.
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Parallelization. We start with a trace in U1‖U2. Assume that the
trace is of the following form:

t1,1t2,1t1,2t2,2 . . . t1,nt2,n (v1, v2)

where each ti, j is a possibly empty sequence of moves of the form
(h1

i, j, k
1
i, j) · · · (h

mi, j
i, j , k

mi, j
i, j ) and

t1 = t1,1 · · · t1,n v1 ∈ U1
t2 = t2,1 · · · t2,n v2 ∈ U2

are traces from U1 and U2, respectively. We are also given a heap

h′1 such that h1
1,1

rds(ε∪ε′1∪ε
′
2)

∼ h′1. We also have h1
1,1

rds(εC∪εC
2 ∪ε

′
1)

∼ h′1. We
run a side game U1 vs. U′1 using h′1 and t1, yielding:

t′1,1 · · · t
′
1,n v′1

Assume that (h′1, k
′
1) and (h′o, k

′
o) are, respectively, the first and

last moves of this trace. We have v1E1v′1 and (1) [εC ∪ εC
2 ∪

ε′1](h1
1,1, h

′
1, k

m
1,n, k

′
o). Notice that these are legal moves in the global

game as we have [εC
1 ∪ ε

C
2 ] tiles for the player moves and [ε] times

for the environment moves.
Now, assume there is an environment move (ko, h′o+1). Since

ε1 ⊥ ε2 and ε ⊥ ε2, the heaps h1
1,1 and h1

2,1 agree on the reads
of ε′2 and h′1 and h′o+1 also agree on the reads of ε′2. (Notice as well
that wrs(ε1)∩rds(ε′2) = ∅ as εC∪εC

1 ∪ε2 is a valid effect.) Therefore,
we can invoke an U2 game using h′o+1 and t2, obtaining the trace:

t′2,1 · · · t
′
2,n v′2

Assume that (h′o+1, k
′
o+1) and (h′o+p, k

′
o+p) are, respectively, the first

and last moves of this trace. We have v2E2v′2 and (2) [εC ∪ εC
1 ∪

ε′2](h1
2,1, h

′
o+1, k

m
2,n, k

′
o+p). For the same reasons as above, these are

legal moves in the global game.
Therefore (v1, v2)(E1 × E2)(v′1, v

′
2).

We need now to prove that [ε∪ε′1∪ε
′
2](h1

1,1, h
′
1, k

m
2,n, ko+p). From

(1) and ε1 ⊥ ε2 and ε ⊥ ε1, we have that km
2,n and ko+p agree on the

locations of ε1. Similarly, km
2,n and ko+p agree on the locations of ε2.

Since there are only ε tiles and ε ⊥ ε1 and ε ⊥ ε2, km
2,n and ko+p

agree on the locations of ε. This finishes the proof.
�
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