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ABSTRACT

This paper proposes an advanced spatially scalable video
coding approach that exploits the inter layer correlation
between different resolution layers by classified patch
learning. The novelty of our proposed scheme is twofold.
First, the correlation between low and high resolution
frames is explored at patch level with regard to image
features. Patches extracted from the previous coded frame
are classified into structural and textural sets according to
the gradient information. Then the inter layer correlation is
separately studied for the two sets, resulting in two

databases containing pairs of patches at different resolutions.

Second, our proposed patch-based compensation manages to
simultaneously  exploit the spatial and temporal
redundancies without overhead bit for motion. Based on the
two databases, a high resolution prediction is derived from
the current low resolution reconstruction at structural and
textural regions, respectively. Experimental results show
that our proposed approach improves the performance of
H.264/MPEG spatially scalable coding up to 1.9dB and
significantly enhances the subjective quality, especially at
low bit rates.

Index Terms— Scalable video coding, spatially
scalable, inter layer correlation, classified patch learning

1. INTRODUCTION

Spatially scalable coding provides adaptation to the
diversity of user devices as well as the heterogeneity on
network infrastructures by representing video signals in one
bit stream but serving different displaying resolutions. In a
pyramidal layered spatially scalable video coding scheme, a
base layer bit stream is generated by coding the lowest
resolution version of an input video. Then the enhancement
layer bit streams are produced by taking advantage of the
correlations across neighboring layers as well as that
between adjacent frames.

One way to exploit the inter layer correlation between
different resolutions is to up-sample the reconstructions at
low resolution to predict the frames at high resolution [2][3].
In addition to pixel values, the motion vectors and modes at
low resolution layers can also be utilized in the
mode/motion estimation at high resolutions [4]. In fact,
some of these schemes have been adopted in the current
video coding standards, such as MPEG-2 and H.264/MPEG
spatially scalable coding (SVC in short) [1].
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Recently, learning-based approaches have shown their
potential in studying the relationship of image features at
different resolutions. Databases consisting of co-occurrence
image patches at two different resolutions are introduced as
priors for image recovery, such as image hallucination
[5][6]. Moreover, it has been extended to image
compression, where the database is regarded as a codebook
and the indices are embedded in the coded low resolution
image [7][8].

In this paper, we propose to exploit the inter layer
correlation in spatially scalable video coding by classified
patch learning. In the proposed scheme, pairs of reference
patches are extracted from low and high resolution
reconstructions at the previous frame. Gradient information
is involved to classify the reference pairs into two sets,
which are then clustered separately to form the structural
and textural databases. During compensation, patches
extracted from the current low resolution reconstruction are
also classified. By finding their matches in the
corresponding  database, our proposed patch-based
compensation scheme conducts a high resolution prediction
based on both the current low resolution reconstruction and
the two databases. The present scheme can be readily
integrated with the current SVC coding scheme.
Experimental results demonstrate the effectiveness of our
proposed spatially scalable video coding method.

The rest of this paper is organized as follows. The
framework of our proposed spatially scalable coding scheme
with classified patch learning is introduced in Section II.
Then the classified patch learning as well as compensation
is described in detail in Section III. Performance of our
proposed coding scheme is evaluated in Section IV. Finally,
Section V concludes this paper.

2. FRAMEWORK OF OUR PROPOSED CODING
SCHEME

Let Fi= {ft‘} represents an input video, where the
superscript i indicates the spatial resolution layer and the
subscript ¢ is the frame index. The superscript i equals to
zero at base layer resolution. Given a low-pass filter, a low
resolution video is generated from an original high
resolution video via a down-sampling process D(-)

fi=D(fi*1),i = 0,1in a 2-layer system. (1)
Also, a down-sampled frame can be converted back to high
resolution via an up-sampling process U(-).
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Fig. 1. Framework of our proposed spatially scalable coding scheme
with classified patch learning.

The framework of our proposed spatially scalable video
coding with classified patch learning is illustrated in Fig.1.
Some modules, such as entropy coding, are omitted for
simplicity. The classified patch learning along with the
patch compensation is exhibited by the dashed blocks.

In this framework, the base layer encoding as well
decoding is traditional, while the enhancement layer coding
employs our proposed classified patch learning in the inter
layer prediction. As shown in Fig. 1, at enhancement layer,
the high resolution reconstruction f;*! stored in the frame
buffer (FB) is input into the classified patch learning (CL)
module. Two databases, the structural database (Ds) and the
textural database (Dr), are generated. In addition to the
traditional motion compensated prediction, the patch
compensation module (PC) produces another prediction
from the base layer reconstruction fi; and the two
databases derived from f/*'. These two predictions are
selective utilized at macroblock level by a rate distortion
optimal selection.

The corresponding decoding process is exhibited on the
right side in Fig. 1. The classified patch learning as well as
compensation is as same as that in decoding. It can be
observed that the learning and compensation can be
performed on-line at the decoder side so that no additional
motion bits are required.

3. CLASSIFIED PATCH LEARNING AND
COMPENSATION

The essential part of our proposed scheme is classified patch
learning and compensation. Supposing the current frame is
L, the available reconstructions for predicting f;'{{ are
fE, fi*Y, and £, . Fig. 2 illustrates our classified patch
learning and compensation process, where the solid lines
indicate the learning process, while the dashed lines exhibit

the compensation steps.
3.1 Classified patch learning

Classified patch learning can be summarized as the
following steps.

Step 1: Simulation of low resolution image. Images at
different resolutions are required in our scheme to study the
inter layer correlation. In the CL module, a low resolution
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Fig. 2. Illustration of our classified patch learning and compensation.
The solid lines indicate the learning process and the dashed lines
exhibit the compensation process. Green and orange lines present
procedures for structural and textural patches, respectively. Images
involved in learning process are (a) high resolution reconstruction
£+, (b) fine reference hi*!, (c) structural map of (a), (d) simplified
reference hi*'. Images involved in the compensation process are (e)
fine predication P{{7, (f) structural map of (i), (j) simplified reference

hi*, (h) patch compensated prediction B{1, (i) up-sampled version of

low resolution reconstruction fi.
image f; is obtained by down-sampling the high resolution
image fi*! (as shown in Fig.2 (a)).

fti — @(ﬁi+1) (2)

Step 2: Generation of references. There are two
references involved in patch learning. First, a interpolated
high resolution frame fi*! (fi*! = U(f})) is subtracted
from f*1, resulting in the fine reference hi*!, as shown in
Fig.2 (b).

hi‘+1 — fti+1 _ﬁi+1_ (3)
Second, the high frequency component of i1 brings in the
simplified reference hi*! (as shown in Fig.2 (d)) which is
the counterpart of the fine signal hit1.

],"lé'+1 — fti+1 x GH: (4)
where Gy, is a high pass filter. The two references, hi*t! and
hi*1, are inputs for classified patch learning.

Step 3: Classification of patches. Given a reference
image, a rotated match filtering is introduced that involves
the computation of two factors — magnitude and orientation
— at every point. Mathematically, the orientation is estimated
as

6°(f) = argmaxy |f * hy * Gp|, (6))
and the magnitude is calculated by
M(f) = |f * hg- * Gp|, (6)

where Gp stands for derivative Gaussian filtering and hy is
a rotation matrix. Then the structural points are identified by
checking out the local maximum in the magnitude spectrum
(as indicated in Fig.2 (c¢) by the white points). The other
points in the image are regarded as textural ones.

Accordingly, two kinds of patches, the structural and
textural patches, are extracted from images at integer
structural and textural positions, respectively. The patch size
is nxn.

Step 4: Design of patch databases. There are two
databases generated in the classified patch learning. The
structure database Dg = {(v]", v} )} consists of pairs of
collocated structural patches extracted from the simplified



and find references, and the textural database D =
{(uf,up)} is composed of collocated textural patches as
well. Here the superscript m and n are the patch indices, and
subscript L and H indicate the simplified and fine patches
that extracted from simplified and fine references,
respectively. The databases can be further clustered by using
a k-mean clustering method.

3.2 Classified patch compensation

The classified patch compensation is illustrated in Fig. 2 by
the dashed lines. During compensation, a simplified
reference (Fig.2 (j)) is generated by (4) from the up-sampled
low resolution reconstruction (Fig.2 (i)) at the current frame.
Similar to the learning process, each patch extracted from
the simplified reference is classified into either the structural
or textural set and accordingly retrieves its fine patch from
the corresponding database. The structure map is denoted in
Fig.2 (f).

Taking structural patches as example, for each input
patch v, an approximate nearest neighbor (ANN) search [9]
is used to retrieve a candidate fine patch v, subject to

v = argminv'LEDSd(vl,v), (7)
where d(-) stands for the Euclidean distance. In other
words, a candidate fine patch is selected when its coupled
simplified patch is the most similar one to the input
reference patch.

As patches can be overlapped in the fractional
compensation, pixel values in the overlapped regions are
determined by an average operator. Thus a fine prediction
Fig.2 (e)) is obtained by

; 1

P G y) = SEE o) ®)
where R is the number of overlapped patches at (x,y).
Together ~with the up-sampled frame £ (x,y)

(Fii e, y) = U(fL1(x,¥)) as exhibited in Fig.2 (i)), the
final blended prediction B{11(x,y) (Fig.2 (h)) is achieved
by

Bifi(x,y) = a- f{{(x,y) + B - P (%), )
where o and f are weighted factors.
3.3 Why classification?

Here we used Receiver Operating Characteristics (ROC)
curves to demonstrate the effectiveness of the classification.
A ROC curve presents the relationship between hit rate 7
and match error e. Let p denote a test patch and p’ be its
nearest sample in the database. The match error is defined as

e(@) = llp —o'll/lIpll. ©)
For a given match error e, the hit rate 4 represents the
percentage of test data whose match errors are less than e.
Clearly, at a given match error, the higher the hit rate is, the
better the mapping efficiency.

Fig.3 shows the ROC curves. Here, we perform three
tests: (a) testing on general patches (without classification),
(b) testing on structural patches only, and (c) testing on
textural patches only. In each test, 100 empirical images
(from [10] and [11]) are used. These images are equally

2303

ROC Curves

7

Hit Rate
o
d

General

Structural

Textural
1

0 0.2 0.4 Error 0.6 0.8

N

Fig.3 ROC curves of classified patch mapping.

divided into a test image set and a training image set. 10°
test patches are uniformly selected from training as well as
mapping.

It can be observed that, compared with the general
patch case, the classified patches result in a higher hit rate
under the same match error and same training set size. As
shown in Fig. 3, more than 70% of structural patches and
nearly 60% of textural patches have a match error less than
0.2, while only 40% of general patches can fall within the
same error range. It indicates that classified patches are
relatively low dimensional. The classification facilitates the
learning process and enhances the effectiveness of
compensation, which enables the high compensation
performance in our proposed coding scheme.

4. EXPERIMENTAL RESULTS

Before evaluation, we would like to point out that our
proposed classified patch learning is only used in the coding
of luminance component in the current scheme.

In our experiments, the patch size is 11x11. The high
pass filter in (4) is performed as subtracting the low-
frequency component which is calculated by convolution
with a Gaussian kernel, from the original signal. o and f in
(9) are 1.0. The simulation to evaluate our scheme is
implemented with JSVM 10 [12]. For each sequence, only
the first frame is coded as I frame; the others are coded as P
frame. Two scalable layers, the QCIF base layer and the CIF
spatial enhancement layer, are generated at frame rate 15. In
the tests, the base layer quantization parameter (QPy) is 30,
while the enhancement layer quantization parameter (QP,)
changes from 27 to 45 at intervals of 3.

The coding performance of our proposed spatially
scalable coding scheme is evaluated in Fig. 5 in terms of
PSNR. Compared with the current JSVM scheme (denoted
as JSVM), our approach (denoted as CL) is able to achieve
1.9dB gain. For the Football sequence, our scheme
averagely outperforms JSVM by more than 1.2dB over the
tested bit rates. Also, the comparison results of the Foreman
and Stefan sequences shows that our scheme achieves more
than 1.8dB and 1.9dB improvements over JSVM at low bit
rate, respectively,

We also test on the subjective quality of our proposed
scheme in comparison with that of JSVM. As shown in Fig.
4, our scheme significantly enhances the perceptual quality



(a) JISVM
Fig.4. Visual quality comparison (QP,=42). (a) and (b) are Foreman 35" frame, (c) and (d) are Football 115" frame, (e) and () are Stefan 92" frame.

(b)CL (c)ISVM

of the reconstructed frames, which presents vivid details
(faces, grasses, and characters) and clear structures (walls
numbers, and lines).

Here we would like to point out that multi-loop
decoding is enabled in our proposed spatially scalable
coding approach, while the current JSVM 10 is a single-loop
decoding scheme. It has been reported that the rate-
distortion penalty of single loop restriction in JSVM is
found for most sequences to be small while only a few
sequences are found with PSNR losses up to 0.7dB [13]. In
contrast, our approach significantly improves the coding
performance by up to 1.9dB, which obviously makes use of
the inter-layer correlation in a much more efficient way.

5. CONCLUSION

In this paper, we propose to exploit the inter layer
correlation in spatially scalable video coding by classified
patch learning. Pairs of reference patches are extracted from
the previous coded frame at different resolutions and
classified according to the gradient information to form the
structural and textural databases. Based on the two
databases, our proposed patch-based compensation scheme
derives a high resolution prediction by patch mapping at
structural and textural regions, respectively. Our proposed
scheme can be readily integrated with the current SVC
coding scheme. Experimental results demonstrate the
effectiveness of our proposed classified patch learning for
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spatially scalable video coding.
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Fig.5. Performance comparison of JSVM and our approach (CL) at 15fps. Test sequences from left to right are Football, Foreman, and Stefan.
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