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ABSTRACT 

This paper proposes an advanced spatially scalable video 
coding approach that exploits the inter layer correlation 
between different resolution layers by classified patch 
learning. The novelty of our proposed scheme is twofold. 
First, the correlation between low and high resolution 
frames is explored at patch level with regard to image 
features. Patches extracted from the previous coded frame 
are classified into structural and textural sets according to 
the gradient information. Then the inter layer correlation is 
separately studied for the two sets, resulting in two 
databases containing pairs of patches at different resolutions. 
Second, our proposed patch-based compensation manages to 
simultaneously exploit the spatial and temporal 
redundancies without overhead bit for motion. Based on the 
two databases, a high resolution prediction is derived from 
the current low resolution reconstruction at structural and 
textural regions, respectively. Experimental results show 
that our proposed approach improves the performance of 
H.264/MPEG spatially scalable coding up to 1.9dB and 
significantly enhances the subjective quality, especially at 
low bit rates. 

Index Terms— Scalable video coding, spatially 
scalable, inter layer correlation, classified patch learning 

1. INTRODUCTION 

Spatially scalable coding provides adaptation to the 
diversity of user devices as well as the heterogeneity on 
network infrastructures by representing video signals in one 
bit stream but serving different displaying resolutions. In a 
pyramidal layered spatially scalable video coding scheme, a 
base layer bit stream is generated by coding the lowest 
resolution version of an input video. Then the enhancement 
layer bit streams are produced by taking advantage of the 
correlations across neighboring layers as well as that 
between adjacent frames.  

One way to exploit the inter layer correlation between 
different resolutions is to up-sample the reconstructions at 
low resolution to predict the frames at high resolution [2][3]. 
In addition to pixel values, the motion vectors and modes at 
low resolution layers can also be utilized in the 
mode/motion estimation at high resolutions [4]. In fact, 
some of these schemes have been adopted in the current 
video coding standards, such as MPEG-2 and H.264/MPEG 
spatially scalable coding (SVC in short) [1].  

Recently, learning-based approaches have shown their 
potential in studying the relationship of image features at 
different resolutions. Databases consisting of co-occurrence 
image patches at two different resolutions are introduced as 
priors for image recovery, such as image hallucination 
[5][6]. Moreover, it has been extended to image 
compression, where the database is regarded as a codebook 
and the indices are embedded in the coded low resolution 
image [7][8].  

In this paper, we propose to exploit the inter layer 
correlation in spatially scalable video coding by classified 
patch learning. In the proposed scheme, pairs of reference 
patches are extracted from low and high resolution 
reconstructions at the previous frame. Gradient information 
is involved to classify the reference pairs into two sets, 
which are then clustered separately to form the structural 
and textural databases. During compensation, patches 
extracted from the current low resolution reconstruction are 
also classified. By finding their matches in the 
corresponding database, our proposed patch-based 
compensation scheme conducts a high resolution prediction 
based on both the current low resolution reconstruction and 
the two databases. The present scheme can be readily 
integrated with the current SVC coding scheme. 
Experimental results demonstrate the effectiveness of our 
proposed spatially scalable video coding method. 

The rest of this paper is organized as follows. The 
framework of our proposed spatially scalable coding scheme 
with classified patch learning is introduced in Section II. 
Then the classified patch learning as well as compensation 
is described in detail in Section III. Performance of our 
proposed coding scheme is evaluated in Section IV. Finally, 
Section V concludes this paper.  

2. FRAMEWORK OF OUR PROPOSED CODING 
SCHEME 

Let  represents an input video, where the 
superscript i indicates the spatial resolution layer and the 
subscript t is the frame index. The superscript i equals to 
zero at base layer resolution. Given a low-pass filter, a low 
resolution video is generated from an original high 
resolution video via a down-sampling process  

in a 2-layer system.  (1) 
Also, a down-sampled frame can be converted back to high 
resolution via an up-sampling process .  

2301978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009



The framework of our proposed spatially scalable video 
coding with classified patch learning is illustrated in Fig.1. 
Some modules, such as entropy coding, are omitted for 
simplicity. The classified patch learning along with the 
patch compensation is exhibited by the dashed blocks.  

In this framework, the base layer encoding as well 
decoding is traditional, while the enhancement layer coding 
employs our proposed classified patch learning in the inter 
layer prediction. As shown in Fig. 1, at enhancement layer, 
the high resolution reconstruction   stored in the frame 
buffer (FB) is input into the classified patch learning (CL) 
module. Two databases, the structural database ( ) and the 
textural database ( ), are generated. In addition to the 
traditional motion compensated prediction, the patch 
compensation module (PC) produces another prediction 
from the base layer reconstruction  and the two 
databases derived from . These two predictions are 
selective utilized at macroblock level by a rate distortion 
optimal selection.  

The corresponding decoding process is exhibited on the 
right side in Fig. 1. The classified patch learning as well as 
compensation is as same as that in decoding. It can be 
observed that the learning and compensation can be 
performed on-line at the decoder side so that no additional 
motion bits are required. 

3. CLASSIFIED PATCH LEARNING AND 
COMPENSATION 

The essential part of our proposed scheme is classified patch 
learning and compensation. Supposing the current frame is 

, the available reconstructions for predicting  are 
, , and . Fig. 2 illustrates our classified patch 

learning and compensation process, where the solid lines 
indicate the learning process, while the dashed lines exhibit 
the compensation steps. 
3.1 Classified patch learning  
Classified patch learning can be summarized as the 
following steps. 

Step 1: Simulation of low resolution image. Images at 
different resolutions are required in our scheme to study the 
inter layer correlation. In the CL module, a low resolution 

image   is obtained by down-sampling the high resolution 
image   (as shown in Fig.2 (a)). 

      (2) 
Step 2: Generation of references. There are two 

references involved in patch learning. First, a interpolated 
high resolution frame  ( ) is subtracted 
from , resulting in the fine reference , as shown in 
Fig.2 (b) . 

    (3) 
Second, the high frequency component of  brings in the 
simplified reference  (as shown in Fig.2 (d)) which is 
the counterpart of the fine signal . 

     (4) 
where  is a high pass filter. The two references,  and 

, are inputs for classified patch learning.   
Step 3: Classification of patches. Given a reference 

image, a rotated match filtering is introduced that involves 
the computation of two factors – magnitude and orientation 
– at every point. Mathematically, the orientation is estimated 
as  

  (5)  
and the magnitude is calculated by 

        (6) 
where  stands for derivative Gaussian filtering and  is 
a rotation matrix. Then the structural points are identified by 
checking out the local maximum in the magnitude spectrum 
(as indicated in Fig.2 (c) by the white points). The other 
points in the image are regarded as textural ones.  

 Accordingly, two kinds of patches, the structural and 
textural patches, are extracted from images at integer 
structural and textural positions, respectively. The patch size 
is n×n.  

Step 4: Design of patch databases. There are two 
databases generated in the classified patch learning. The 
structure database consists of pairs of 
collocated structural patches extracted from the simplified 

 
Fig. 1. Framework of our proposed spatially scalable coding scheme 
with classified patch learning. 
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Fig. 2. Illustration of our classified patch learning and compensation. 
The solid lines indicate the learning process and the dashed lines 
exhibit the compensation process. Green and orange lines present 
procedures for structural and textural patches, respectively. Images 
involved in learning process are (a) high resolution reconstruction  

, (b) fine reference  (c) structural map of (a), (d) simplified 
reference . Images involved in the compensation process are (e) 
fine predication , (f) structural map of (i), (j) simplified reference 

, (h) patch compensated prediction , (i) up-sampled version of 
low resolution reconstruction . 
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and find references, and the textural database 
 is composed of collocated textural patches as 

well. Here the superscript m and n are the patch indices, and 
subscript L and H indicate the simplified and fine patches 
that extracted from simplified and fine references, 
respectively. The databases can be further clustered by using 
a k-mean clustering method.      
3.2 Classified patch compensation 
The classified patch compensation is illustrated in Fig. 2 by 
the dashed lines. During compensation, a simplified 
reference (Fig.2 (j)) is generated by (4) from the up-sampled 
low resolution reconstruction (Fig.2 (i)) at the current frame. 
Similar to the learning process, each patch extracted from 
the simplified reference is classified into either the structural 
or textural set and accordingly retrieves its fine patch from 
the corresponding database. The structure map is denoted in 
Fig.2 (f). 

Taking structural patches as example, for each input 
patch , an approximate nearest neighbor (ANN) search [9] 
is used to retrieve a candidate fine patch  subject to   

,    (7) 
where  stands for the Euclidean distance. In other 
words, a candidate fine patch is selected when its coupled 
simplified patch is the most similar one to the input 
reference patch.  

As patches can be overlapped in the fractional 
compensation, pixel values in the overlapped regions are 
determined by an average operator. Thus a fine prediction 
Fig.2 (e)) is obtained by  

 ,  (8) 
where  is the number of overlapped patches at . 
Together with the up-sampled frame  
( ) as exhibited in Fig.2 (i)), the 
final blended prediction  (Fig.2 (h)) is achieved 
by  

 , (9) 
where α and β are weighted factors. 
3.3 Why classification? 
Here we used Receiver Operating Characteristics (ROC) 
curves to demonstrate the effectiveness of the classification. 
A ROC curve presents the relationship between hit rate h 
and match error e. Let  denote a test patch and  be its 
nearest sample in the database. The match error is defined as   

  .      (9) 
For a given match error e, the hit rate h represents the 
percentage of test data whose match errors are less than e. 
Clearly, at a given match error, the higher the hit rate is, the 
better the mapping efficiency.  

Fig.3 shows the ROC curves. Here, we perform three 
tests: (a) testing on general patches (without classification), 
(b) testing on structural patches only, and (c) testing on 
textural patches only. In each test, 100 empirical images 
(from [10] and [11]) are used. These images are equally 

divided into a test image set and a training image set. 105 
test patches are uniformly selected from training as well as 
mapping.  

It can be observed that, compared with the general 
patch case, the classified patches result in a higher hit rate 
under the same match error and same training set size. As 
shown in Fig. 3, more than 70% of structural patches and 
nearly 60% of textural patches have a match error less than 
0.2, while only 40% of general patches can fall within the 
same error range. It indicates that classified patches are 
relatively low dimensional. The classification facilitates the 
learning process and enhances the effectiveness of 
compensation, which enables the high compensation 
performance in our proposed coding scheme.  

4. EXPERIMENTAL RESULTS 

Before evaluation, we would like to point out that our 
proposed classified patch learning is only used in the coding 
of luminance component in the current scheme.  

In our experiments, the patch size is 11×11. The high 
pass filter in (4) is performed as subtracting the low-
frequency component which is calculated by convolution 
with a Gaussian kernel, from the original signal. α and β in 
(9) are 1.0. The simulation to evaluate our scheme is 
implemented with JSVM 10 [12]. For each sequence, only 
the first frame is coded as I frame; the others are coded as P 
frame. Two scalable layers, the QCIF base layer and the CIF 
spatial enhancement layer, are generated at frame rate 15. In 
the tests, the base layer quantization parameter (QPb) is 30, 
while the enhancement layer quantization parameter (QPe) 
changes from 27 to 45 at intervals of 3.  

The coding performance of our proposed spatially 
scalable coding scheme is evaluated in Fig. 5 in terms of 
PSNR. Compared with the current JSVM scheme (denoted 
as JSVM), our approach (denoted as CL) is able to achieve 
1.9dB gain. For the Football sequence, our scheme 
averagely outperforms JSVM by more than 1.2dB over the 
tested bit rates. Also, the comparison results of the Foreman 
and Stefan sequences shows that our scheme achieves more 
than 1.8dB and 1.9dB improvements over JSVM at low bit 
rate, respectively,  

We also test on the subjective quality of our proposed 
scheme in comparison with that of JSVM. As shown in Fig. 
4, our scheme significantly enhances the perceptual quality 

 
Fig.3 ROC curves of classified patch mapping. 
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of the reconstructed frames, which presents vivid details 
(faces, grasses, and characters) and clear structures (walls 
numbers, and lines).   

Here we would like to point out that multi-loop 
decoding is enabled in our proposed spatially scalable 
coding approach, while the current JSVM 10 is a single-loop 
decoding scheme. It has been reported that the rate-
distortion penalty of single loop restriction in JSVM is 
found for most sequences to be small while only a few 
sequences are found with PSNR losses up to 0.7dB [13]. In 
contrast, our approach significantly improves the coding 
performance by up to 1.9dB, which obviously makes use of 
the inter-layer correlation in a much more efficient way. 

5. CONCLUSION 

In this paper, we propose to exploit the inter layer 
correlation in spatially scalable video coding by classified 
patch learning. Pairs of reference patches are extracted from 
the previous coded frame at different resolutions and 
classified according to the gradient information to form the 
structural and textural databases. Based on the two 
databases, our proposed patch-based compensation scheme 
derives a high resolution prediction by patch mapping at 
structural and textural regions, respectively. Our proposed 
scheme can be readily integrated with the current SVC 
coding scheme. Experimental results demonstrate the 
effectiveness of our proposed classified patch learning for 

spatially scalable video coding. 
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(a) JSVM (b)CL (c)JSVM (d)CL (e)JSVM (f)CL 
Fig.4. Visual quality comparison (QPe=42). (a) and (b) are Foreman 35th frame, (c) and (d) are Football 115th frame, (e) and (f) are Stefan 92nd frame. 

   
Fig.5. Performance comparison of JSVM and our approach (CL) at 15fps. Test sequences from left to right are Football, Foreman, and Stefan. 
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