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ABSTRACT: In this paper, we improve the perform-
ance of the embedded coder by reorganising its output
bitstream in the rate-distortion (R-D) sense. In the
proposed rate-distortion optimized embedding (RDE),
the coding bit is first allocated to the coefficient with
the steepest R-D slope, i.e. the biggest distortion de-
crease per coding bit. To avoid transmission of the
position of the coded coefficient, RDE uses the ex-
pectation R-D slope that can be calculated by the
coded bits that have already been transmitted to the
decoder. RDE also takes advantage of the probability
estimation table of the QM-coder so that the calcula-
tion of the R-D slope is just a lookup table operation.
Extensive experimental results show that RDE signifi-
cantly improves the coding efficiency.

1. INTRODUCTION

The embedded image coding receives great attention
recently. The representative works of embedding in-
clude the embedded zerotree wavelet coding (EZW)
proposed by Shapiro [1] , the set partitioning in hier-
archical trees (SPIHT) proposed by Said and Pearlman
[2] , and the layered zero coding (LZC) proposed by
Taubman and Zakhor [3] . In addition to providing a
very good rate-distortion (R-D) performance, embed-
ded coder has a desirable property that the bitstream
can be truncated at any point and still decode reason-
able quality image. Such embedding property is ideal
for a number of applications such as progressive image
transmission, rate control, scalable coding, etc.. EZW
and its derivatives achieve embedding by organizing
the quantization bit-plane by bit-plane and entropy
encoding the significant status or refinement bit. How-
ever, there is no guarantee that the rate-distortion
performance was optimized at the truncation point.
It is well known that the coding achieves optimality if
the rate-distortion slopes for all coded coefficients are
constant. Xiong and Ramchandran [4] fixed the rate-
distortion slope, and applied tree-pruning to spatial
frequency quantization to exactly encode each coeffi-
cient with the same rate-distortion slope. Although
achieving good coding efficiency, the scheme was
very complex, and it lost the bitstream embedding
property which was very useful in many applications.
Li and Kuo [5] showed that the R-D slopes of signifi-
cance identification and refinement coding was differ-
ent, and by placing the significance identification
before refinement coding in each layer, the coding
efficiency could be improved. However, the improve-
ment of [5] was fairly limited.

In this research, we propose a rate-distortion opti-
mized embedding (RDE) by allocating the available
coding bits first to the coefficient with the steepest R-
D slope, i.e. the biggest distortion decrease per coding
bit. Considering the synchronization between the en-
coder and the decoder, the actual optimization is based
on the expectation R-D slope that can be calculated on
the decoder side. We take advantage of the probability
estimation table of the QM-coder [6] [7]  to simplify
the calculation of the R-D slope and speed up the
algorithm. The algorithm significantly improves the
coding efficiency.
The paper is organized as follows. The initiative of
the rate-distortion optimization is introduced in Sec-
tion 2. The framework and the implementation detail
of RDE are investigated in Section 3. We focus pri-
marily on the two key steps of RDE, i.e., the R-D
slope calculation and the coefficient selection. Exten-
sive experimental results are shown in Section 4 to
compare the performance of RDE with various other
algorithms. Concluding remarks are presented in Sec-
tion 5.

2. CODING OPTIMIZATION BASED
ON THE RATE-DISTORTION SLOPE

For convenience, let us assume that the image has
already been converted into the transform domain. The
transform used in embedded coding is usually wavelet
decomposition, but it can be DCT as well, as in [10] .
Let the index position of the image be denoted as
i=(x,y), let the coefficient at index position i be de-
noted as wi. Suppose the coefficients have been nor-
malized with absolute maximum value of 1. Because
wi is between –1 and +1, it can be represented by a
binary bit stream as:

±0.b1b2b3…bj… (1)
where bj is the jth most significant bit (MSB) of coef-
ficient wi. Traditional coding first determines the bit-
depth n (or quantization precision), then sequentially
encodes one coefficient by another. For each coeffi-
cient wi, the most significant n bits are bound together
with the sign

±0.b1b2b3…bn (2)
and encoded by the entropy coder. The quantization
precision is predetermined before coding. If the coding
bitstream is truncated, the bottom half of the coeffi-
cients will be lost. Embedded coding is distinctive
from traditional coding in the sense that the image is
coded bit-plane by bit-plane rather than coefficient by



coefficient. It first encodes bit b1 of coefficient w1,

then bit b1 of w2, then bit b1 of w3, etc.. After the bit

plane b1 of all coefficients has been encoded, it moves

on to bit plane b2, and then bit plane b3. In the em-

bedded coding, each bit is an independent coding unit.
Whenever a coefficient wi becomes nonzero, its sign is
encoded right after. The embedded coding bitstream
can be truncated at any point with graceful quality
degradation since at least part of each coefficient has
been coded.
Although the bit-plane oriented embedded coding is
better than the coefficient oriented coding, it is still not
optimal in the rate-distortion (R-D) sense. We illus-
trate the initiative in Figure 1. Suppose there are five
symbols a, b, c, d and e that can be coded independ-
ently. Coding each symbol requires a certain amount
of bits and results in a certain amount of coding dis-
tortion decrease. Coding of all symbols sequentially
gives an R-D curve shown as the solid line in Figure 1.
If the coding order is reorganized so that the symbol
with the steepest R-D slope is encoded first, we can
get an R-D curve shown as the dashed line in Figure 1.
Though both lines reach the same final R-D point, the
algorithm that follows the dashed line performs better
when the coding is truncated at an intermediate bit
rate. Therefore, the initiative of the rate-distortion
optimized embedding (RDE) is to allocate the avail-
able coding bits first to the coefficient with the steep-
est R-D slope, i.e., the coefficient with the biggest
distortion decrease per coding bit. Note when all bits
have been coded (i.e., the coding achieves lossless),
RDE will have exactly the same performance as its
counterpart without R-D optimization. However, in a
practical wide bit rate range, RDE will outperforms
traditional embedding significantly.

3. IMPLEMENTATION OF RATE-
DISTORTION OPTIMIZED EMBED-
DING (RDE)

The framework of the RDE can be shown in Figure 2.
In general, RDE calculates the R-D slope, or the dis-
tortion decrease divided by the coding bits, for the
candidate bit of all coefficients. It then encodes the
coefficient wi that has the steepest R-D slope, i.e., the
biggest distortion decrease per coding bit. Such coding
strategy achieves embedding with optimal R-D per-
formance. If the coding bit stream is truncated, the
performance of coding at that bit rate will be optimal.
Since the actual R-D slope will not be available at the
decoder, RDE uses the expectation R-D slope that can
be calculated by the already coded bits. By doing so,
the decoder can derive the same R-D slope and track
the coefficient to be transmitted next just the same as
the encoder. Therefore, the location information of wi
does not need to be transmitted.

3.1 Calculation of Rate-Distortion Slope

The two key steps of RDE are coefficient selection
and R-D slope calculation. In this subsection, we de-
velop a very efficient algorithm which calculate the R-
D slope with just a lookup table operation.
For coefficient wi, assume the most significant ni-1
bits have already been coded, and the nith bit is the
next bit to be processed. We call ni as the current
coding layer, and the nith bit of wi as the candidate bit.
The situation is shown in Figure 3, where the coded
bits are marked with slashes, and the candidate bits are
marked with horizontal or vertical bars. As traditional
embedded coding, RDE classifies the coding of candi-
date bits into two categories – significance identifica-
tion and refinement coding. For coefficient wi, if all

previous coded bits bj are ‘0’ for j=1...ni-1, the sig-
nificance identification mode is used for the nith bit. If
either one of the previous coded bits is ‘1’, the refine-
ment mode is used. We show an example in Figure 3,
where the bits undergone significance identification
are marked by vertical bars, and the bits undergone
refinement coding are marked by horizontal bars. The
R-D slopes for the two modes are very different.
The significance identification mode classifies coeffi-
cient wi from interval (-2T,2T) to interval (-2T,-T] of
negative significance, (-T,T) of non-significance, and

[T,2T) of positive significance, where T=2-ni is the
width of the coding interval determined directly by the
current coding layer ni. From the coding interval, we
can easily derive the decoding reconstruction before
significance identification as:

rb=0 (3)
and the decoding reconstruction for negative signifi-
cance, non-significance, positive significance as:

rs-,a=1.5T,  ri,a=0 ,  rs-,a=1.5T (4)
respectively. In significance identification, the coded
symbol is highly biased towards non-significance. We
encode the result of significance identification with a
QM-coder, which estimates the probability of signifi-
cance pi with a state machine, and then arithmetic
encodes the result. As shown in Figure 4, the QM-
coder uses a context which is a 7-bit string with each
bit representing the significant status of one spatial
neighbor coefficient or one coefficient at the same
spatial position but in the parent band of current coef-
ficient wi. By monitoring the pattern of past 0s (‘insig-
nificance’) and 1s (‘significance’) under the same
context (i.e., the same neighborhood configuration),
the QM-coder estimates the probability of significance
pi of the current coding symbol. The probability esti-
mation is very simple for QM-coder, as it is just a state
table transition operation. For details of the QM-coder
and its probability estimation, we refer to [6] [7] .
Assuming the QM-coder performs closely to the
Shannon bound for coding the result of significance
identification, we may calculate the expectation coding
rate as:



E[DR]=(1-pi) DRinsig+piDRsig 
=(1-pi) [-log2(1-pi)]+pi(-log2pi+1) =pi+H(pi) (5)

where H(pi) is the entropy of a binary symbol with
probability of 1 equals to pi. Note that in (5), when the
symbol becomes significant, it needs one additional bit
to encode the sign of significance. With the known
probability of significance pi, the expectation distor-
tion decrease of significance identification can be
calculated as:

E[DD] =(1-pi) DDinsig+pi DDsig (6)

where DDsig and DDinsig can be further calculated by
taking the probability weighted average of the coding
distortion decrease:

DDinsig=��
-T

T

[(x-rb)2-(x-ri,a)2]p(x)dx (7)

DDsig= ��
-2T

-T

[(x-rb)2-(x-rs-,a)2]p(x)dx 

+��
T

2T

[(x-rb)2-(x-rs+,a)2]p(x)dx (8)

By substituting (3) and (4) into (7), it becomes:
DDinsig=0 (9)

There is no coding distortion decrease if wi is still

insignificant. To calculate DDsig, we need the a priori

probability distribution of coefficient wi within the
significance interval (-2T,-T] and [T,2T). Note that the
probability distribution of wi within interval (-T,T) is
irrelevant to the calculation of distortion decrease.
Assuming that the a priori probability distribution
within the significance interval is uniform, we can
derive:

p(x)=
1

2T ,                for T<|x|<2T (10)

Based on (3), (4), (8) and (10), we conclude that

DDsig=2.25T2 (11)
The expectation distortion decrease for significance
identification is therefore:

E[DD]=pi 2.25T2 (12)
It is straightforward to derive the R-D slope of signifi-
cant identification wi as:

lsig=
E[DD]
E[DR]

=
2.25T2

1+H(pi)/pi
(13)

Function

fs(pi)=
1

1+H(pi)/pi
(14)

is plotted in Figure 5. It is apparent that the symbol
with higher probability of significance has a larger
rate-distortion slope and is thus favored to be encoded
first.
We may similarly calculate the R-D slope of refine-
ment coding mode. The refinement coding classifies
coefficient wi from interval [S,S+2T) to interval

[S,S+T) or [S+T,S+2T), where T=2-ni is again deter-
mined by the coding layer ni, and S is the start of the
refinement interval, which is the value indicated by the
coded bits of the coefficients. The decoding recon-
struction before refinement coding is:

rb=S+T (15)
Depending on the coding result, the decoding recon-
struction after refinement becomes:

r0,a=S+0.5T, r1,a=S+1.5T (16)
Because the refinement coding is equilibrium between
‘0’ and ‘1’, the expectation coding rate is close to one
bit.

E[DR]=1.0 (17)
Similar to (6), the expectation distortion decrease can
be calculated as:

E[DD] = ��
S

S+T

[(x-rb)2-(x-r0,a)2]p(x)dx 

+ ��
S+T

S+2T

[(x-rb)2-(x-r1,a)2]p(x)dx (18)

Assuming that the a priori probability distribution
with in interval [S,S+2T) is uniform, i.e., p(x)=1/2T,
we conclude for refinement coding:

E[DD] =0.25 T2 (19)
The R-D slope of refinement coding is thus:

lref=
E[DD]
E[DR]

=0.25T2 (20)

Compare (13) and (20), it is apparent that for the same
coding layer ni, the R-D slope of refinement coding is
smaller than that of significance identification when-
ever the significance probability pi is above 0.01. Thus
in one coding layer, significance identification should
be in general placed before the refinement coding, as
indicated in [5] .
We have also modeled the a priori probability func-
tion of coefficient wi to be Laplacian. In such case, the
R-D slope for significance identification and refine-
ment coding becomes:

lsig= 
2.25T2

1+H(pi)/pi
 gsig(s,T) (21)

lref= 0.25T2 gref(s,T) (22)

where s is the variance of Laplacian distribution
which is again estimated from the already coded bits,
and gsig(s,T) and gref(s,T) are Laplacian modifica-

tion factors in the form of:

gsig(s,T)=
1

2.25�
�
�

�
�
�

0.75 + 
3s
T  - 

3e-T/s

1-e-T/s
(23)

gref(s,T)=4
�
�
�
�

�
�
�
�

0.75 + 
2
s

Te-T/s- 
s

T( )1+e-2T/s

1-e-2T/s
(24)

However, experiments show that the additional per-
formance improvement provided by the Laplacian
model is minor.  Since the uniform probability distri-



bution model is much simpler to implement, it is used
throughout the experiment.
Because the probability of significance pi determined
by the QM-coder state is discrete, and the width of
interval T determined by the coding layer ni is dis-
crete, both R-D slope (13) and (20) have a discrete
number of states. For fast calculation, (13) and (20)
may be pre-computed and stored in a table indexed by
the coding layer ni and the probability state of QM-
coder. Thus, computation of the R-D slope will be
only a lookup table operation. The number of entries
M of the lookup table can be calculated by:

M=2xNxL+N (25)
where N is the maximum coding layer, L is the num-
ber of states in the QM-coder. In the current imple-
mentation of RDE, there are a total of 113 states in the
QM-coder, and a maximum of 20 coding layers. This
brings a lookup table of size 4540.

3.2 Coefficient Selection and Flowchart of Rate-
Distortion Optimization

The second key step in RDE is selecting the coeffi-
cient with the maximum R-D slope. Since an exhaus-
tive search or a sorting over all image coefficients is
computational expensive, a threshold based selection
approach is introduced in this subsection. We first set
an R-D slope threshold l. The whole image is scanned
and those coefficients with R-D slope greater than l
are encoded. The R-D slope threshold l is then re-
duced by a certain factor and the whole image is
scanned again.
The coding operation of RDE can be shown in Figure
6. It can be described step by step as:
1) The image is decomposed by the wavelet

transform.
2) The initial R-D slope threshold l is set to l0, with:

l0 =0.25x0.52=0.03125 (26)

3) The image is scanned and coded.
The scan goes from the coarse scale to the fine

scale, and follows the raster line order within the
subband.
4) For each coefficient, its expectation R-D slope is

calculated.
Depending on whether the coefficient is already

significant, the R-D slope is calculated by (13) and
(20), respectively. Note that the calculation of the R-D
slope is only a lookup table operation indexed by the
QM-coder state and the coding layer ni.

5) The calculated R-D slope is compared with l.
If the R-D slope is smaller than l, the coding

proceeds to the next coefficient. Only those
coefficients with R-D slope greater than l are
encoded.
6) The coefficient is encoded with significant

identification or refinement coding.
      The bit of significance identification is encoded by
a QM-coder with context designated in Figure 4. The

bit of sign and the bit of refinement are encoded by a
QM-coder with fixed probability 0.5.
7) The coder checks if the assigned coding rate is

reached. If not, it repeats step 4) until the entire
image has been scanned.

8) The R-D slope threshold is reduced by a factor of
a:

l¬l/a (27)
In our current implementation, a is set to 1.25. The

coder then goes back to step 3) and scans the entire
image again.

4. EXPERIMENT RESULTS

Extensive experiments are performed to compare
RDE with two existing algorithms. One is a predictive
embedded zerotree wavelet (PEZW) coding which is
an improved version of the original EZW and is cur-
rently in the MPEG4 verification mode (VM) 6.0. We
use PEZW as a reference for the state-of-the-art
wavelet coding technique. The other one is the layered
zero coding (LZC) proposed by Taubman and Zakhor.
RDE encodes the bit of significance identification and
the bit of refinement very similar to the one used by
the LZC. In essence, RDE shuffles the embedded
bitstream of LZC to improve its performance. We
therefore compare the RDE with LZC to show the
advantage of rate-distortion optimization. Two ex-
perimental images are used. One is the famous Lena of
size 512x512, the other one is the first frame of Akiyo,
which is a MPEG4 test image of size 176x144 (QCIF)
or size 352x288 (CIF). The Lena image is decom-
posed by a 5-level 9-7 tap biorthogonal Daubechies
filter [8]  as in most of the other coding literature. The
Akiyo image is decomposed according to the specifi-
cation in MPEG4 VM 6.0 with a 9-3 tap biorthogonal
Daubechies filter [8]  of 4-levels for QCIF and 5-
levels for CIF.
The performance of RDE versus LZC of Lena for bit
rate range 0.15bpp to 1.0bpp is shown in Figure 7. We
plot the R-D performance curve of LZC with dashed
line, and plot the R-D performance curve of RDE with
solid line. For the clarity of the result, we split the
result into 3 subgraphs with bitrate range 0.15-
0.30bpp, 0.40-0.60bpp and 0.70-1.00bpp. RDE out-
performs LZC by 0.2-0.4dB over the entire bit rate
range. The performance advantage becomes larger at
higher bitrate. The R-D performance curve of RDE is
also much smoother than that of LZC. In Table 1, we
show the performance comparison of PEZW, LZC and
RDE on Akiyo image at 10k, 20k and 30k bits for
QCIF and 25k, 50k and 70kbits for CIF. The result of
PEZW is obtained from document [9] . It is shown that
the performance gap between LZC and RDE becomes
larger for a low-detailed image as Akiyo. In general,
RDE outperforms LZC for 0.4-0.8dB, and outperforms
PEZW for 0.3-1.2dB for Akiyo image over a variety
of bitrate.



5. CONCLUSIONS

In this paper, we propose a rate-distortion optimized
embedding (RDE) algorithm. By reordering the em-
bedding bitstream so that the available coding bit is
first allocated to the coefficient with the steepest R-D
slope, i.e. the biggest distortion decrease per coding
bit, RDE substantially improves the performance of
embedded coding. For synchronisation between the
encoder and the decoder, RDE uses the expectation R-
D slope which can be calculated at the decoder side
with the already coded bits. RDE also takes advantage
of the probability estimation table of the QM-coder so
that the calculation of the R-D slope is just one lookup
table operation. Extensive experimental results con-
firm that RDE significantly improves the coding effi-
ciency.
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Figure 4 Context for QM-coder. (  is the current
coding coefficient wi ,  are its context coefficients. )
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Table 1 Experimental result for image Akiyo.

LZC PEZW RDE
Size Bit

Rate

(bits)

PSNR_Y
PSNR_U
PSNR_V

(dB)

Bit
Rate

(bits)

PSNR_Y
PSNR_U
PSNR_V

(dB)

Bit
Rate

(bits)

PSNR_Y
PSNR_U
PSNR_V

(dB)
QCIF 10000 32.38

34.67
37.12

10256
 32.3
 34.2
 36.9

10000 33.13
35.02
37.90

QCIF 20000 37.30
39.18
41.18

20816
 37.5
 39.1
 41.0

20000 37.97
40.03
42.17

QCIF 30000 41.40
43.56
44.00

29240
 40.8
 41.5
 42.6

30000 42.01
44.23
44.75

CIF 25000 34.69
38.25
40.38

25112
 34.7
 37.7
 40.1

25000 35.03
38.23
41.03

CIF 50000 39.23
41.72
44.24

49016
 39.3
 41.3
 43.6

50000 40.04
42.46
44.73

CIF 70000 42.35
44.58
46.12

70448
 42.2
 43.2
 45.2

70000 43.03
44.35
46.39


