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ABSTRACT
The design of concurrent programs is error-prone due to the
interaction between concurrently executing threads. Tra-
ditional automated techniques for finding errors in concur-
rent programs, such as model checking, explore all possi-
ble thread interleavings. Since the number of thread inter-
leavings increases exponentially with the number of threads,
such analyses have high computational complexity. In this
paper, we present a novel analysis technique for concurrent
programs that avoids this exponential complexity. Our anal-
ysis transforms a concurrent program into a sequential pro-
gram that simulates the execution of a large subset of the
behaviors of the concurrent program. The sequential pro-
gram is then analyzed by a tool that only needs to under-
stand the semantics of sequential execution. Our technique
never reports false errors but may miss errors. We have im-
plemented the technique in KISS, an automated checker for
multithreaded C programs, and obtained promising initial
results by using KISS to detect race conditions in Windows
device drivers.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—assertion checkers, model checking, formal methods;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—assertions,
mechanical verification; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages—pro-
gram analysis

General Terms
Verification, Reliability
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Model checking, race detection, program analysis, concur-
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Figure 1: The KISS architecture.

1. INTRODUCTION
The design of concurrent programs is a complex endeavor.

The main intellectual difficulty of this task lies in reason-
ing about the interaction between concurrently executing
threads. Concurrency results in insidious programming er-
rors that are difficult to reproduce, locate, and fix. There-
fore, analysis techniques that can automatically detect and
pinpoint errors in concurrent programs can be invaluable. In
this paper, we present and evaluate such an analysis tech-
nique for detecting violations of safety properties in concur-
rent programs.

Traditionally, model checkers [27, 23, 11, 35] have been
used to check safety properties of concurrent programs. These
tools ensure high coverage of program behavior by explor-
ing all possible thread interleavings. But the large coverage
comes at the price of computational complexity. The anal-
ysis must explore the set of all reachable control states of
the concurrent program. This set grows exponentially with
the number of threads, thus severely limiting the scalability
of the analysis. The subject of this paper is a new tech-
nique for avoiding this exponential complexity in analyzing
interleavings.

Our analysis is based on a technique to transform a con-
current program P into a sequential program P ′ that sim-
ulates the execution of a large subset of the behaviors of
P . The program P ′ is then analyzed by a checker that
only needs to understand the semantics of sequential ex-
ecution. In particular, the checker does not need to un-
derstand thread interleavings. The transformation has the
property that if P ′ goes wrong by failing an assertion, then
P must also go wrong by failing an assertion. Moreover,



the error trace leading to the assertion failure in P is easily
constructed from the error trace in P ′.

The problem of checking safety properties on concurrent
programs with finite data is undecidable. Ramalingam [33]
has shown that the undecidable problem of checking the
emptiness of the intersection of context-free languages is re-
ducible to this problem. Our technique provides a complete
(no false errors) but unsound (may miss errors) reduction of
this undecidable problem to the problem of checking safety
properties on sequential programs (with finite data). The
latter problem is decidable [37, 34] and there are several
efficient tools for solving it [8, 15, 13, 3, 25]. Thus, our
technique provides a method for finding errors in concur-
rent programs by leveraging a variety of analysis techniques
developed for sequential programs.

We have implemented our technique in a tool called KISS
(Keep It Simple and Sequential!). KISS is an assertion
checker for multithreaded C programs built on top of the
SLAM [3] model checker for sequential C programs. It
would be straightforward to adapt our technique to other
similar tools such as PREfix [8], MC [15], ESP [13], and
Blast [25]. The architecture of KISS is illustrated in Fig-
ure 1. KISS transforms the control flow graph of the input
multithreaded C program into the control flow graph of a
sequential C program, which is then analyzed by SLAM.
An error trace produced by SLAM is transformed into an
error trace of the original concurrent program. We have ap-
plied KISS to the problem of detecting race conditions in
Windows NT device drivers. So far, KISS has analyzed 18
drivers ranging from 1 KLOC to 10 KLOC for a total of 70
KLOC and found 30 race conditions of which several have
been determined to be bugs.

2. OVERVIEW
KISS translates a concurrent program P into a sequen-

tial program P ′ that simulates a large subset of the be-
haviors of P . In a concurrent program, each thread has
its own stack. On the other hand, the unique thread in a
sequential program has a single stack. Thus, we need to
use a single stack to generate behaviors that will simulate
interleavings generated by multiple stacks. The sequential
program P ′ is essentially the concurrent program P execut-
ing under the control of a nondeterministic scheduler. This
scheduler follows a stack discipline for scheduling threads; it
supports partial thread resumption. At any point in time,
the frames on the unique stack can be partitioned into con-
tiguous blocks. Each contiguous block is the stack of one
of the threads executing currently. The scheduler nonde-
terministically chooses to do one of the following tasks. It
may terminate the thread executing at the top of the stack
by popping its contiguous block of stack frames and resume
the execution of the thread whose block of stack frames is
just below that of the terminated thread. Otherwise, it may
schedule another thread by calling its starting function. To
perform these scheduling decisions, the scheduler requires
only a few extra global variables. Keeping the number of
extra global variables small is important since the complex-
ity of most sequential-program analyses varies exponentially
with the number of global variables.

The algorithm for stack-based nondeterministic schedul-
ing is based on two ideas. The first idea allows us to nonde-
terministically terminate a thread at any time during its ex-
ecution. We introduce a fresh global boolean variable raise

to encode the effect of raising an exception; this variable
is initialized to false. Preceding every statement in every
function, we also introduce new instrumentation code that
nondeterministically chooses to either do nothing or set raise
to true and execute a return statement. To propagate the
return, we add code after each function call to test the value
of raise and execute another return statement if the value
of raise is true .

The second idea allows us to schedule a nondeterminis-
tically chosen number of existing threads at any time dur-
ing the execution of a thread. We introduce a fresh global
variable ts , whose value is a bounded-size multiset of the
starting functions of threads that have been forked but not
scheduled. Whenever the concurrent program invokes the
function f asynchronously, we add f to ts if ts is not full.
In this case, this function will be executed at some nonde-
terministically chosen time later on. If the set ts is full, then
we replace the asynchronous call to f with a synchronous
call to f , thus executing it immediately. The instrumen-
tation code preceding every statement, prior to executing
the nondeterministic return, performs the following task a
nondeterministic number of times: it nondeterministically
chooses a function from the set ts , invokes it, and sets raise
to false when it returns.

Using raise , ts , and the instrumentation described above,
we can simulate a large number of the executions of the con-
current program. The set ts provides a tuning knob to trade
off coverage for computational cost of analysis. Increasing
the size of ts increases the number of simulated behaviors
at the cost of increasing the global state space of the trans-
lated sequential program. In practice, we expect to start
KISS with a small size for ts and then increase it as permit-
ted by the computational resources available for debugging.

The generated sequential program only simulates a sub-
set of all executions of the concurrent program. The static
nature of our analysis allows us to formalize this unsound-
ness: given a 2-threaded concurrent program, the sequential
program simulates all executions with at most two context
switches. Thus, the unsoundness of our analysis is qual-
itatively different from that of dynamic techniques which
may explore executions with multiple context switches but
cannot provide any guarantees. In Section 4, we present a
precise characterization of the executions of a general con-
current program (with many threads) that are simulated by
the transformed sequential program.

We illustrate our technique by showing how it can be used
to find concurrency errors in Windows device drivers. A
device typically processes a number of concurrent requests
from the operating system. These requests share a data
structure called device extension, which is allocated once
when the device starts up. Concurrent conflicting accesses
to the fields of the device extension is a significant source
of errors. A second source of errors is in the synchroniza-
tion required for reference counting of allocated resources.
The operating system may issue a request to stop the de-
vice at any time. The thread performing this request must
wait until all other threads executing in the driver have fin-
ished their work and then free all allocated resources. We
illustrate both these types of errors on a simplified model of
one of the Bluetooth drivers in Windows NT. To keep the
example simple yet illustrative, we have abstracted away a
lot of the complexity of the data structures but modeled the
synchronization used in the driver accurately.



struct DEVICE_EXTENSION {

int pendingIo;

bool stoppingFlag;

bool stoppingEvent;

};

bool stopped;

void main() {

DEVICE_EXTENSION *e =

malloc(sizeof(DEVICE_EXTENSION));

e->pendingIo = 1;

e->stoppingFlag = false;

e->stoppingEvent = false;

stopped = false;

async BCSP_PnpStop(e);

BCSP_PnpAdd(e);

}

void BCSP_PnpAdd(DEVICE_EXTENSION *e) {

int status;

status = BCSP_IoIncrement (e);

if (status == 0) {

// do work here

assert !stopped;

}

BCSP_IoDecrement(e);

}

void BCSP_PnpStop(DEVICE_EXTENSION *e) {

e->stoppingFlag = true;

BCSP_IoDecrement(e);

assume e->stoppingEvent;

// release allocated resources

stopped = true;

}

int BCSP_IoIncrement(DEVICE_EXTENSION *e) {

if (e->stoppingFlag)

return -1;

atomic {

e->pendingIo = e->pendingIo + 1;

}

return 0;

}

void BCSP_IoDecrement(DEVICE_EXTENSION *e) {

int pendingIo;

atomic {

e->pendingIo = e->pendingIo - 1;

pendingIo = e->pendingIo;

}

if (pendingIo == 0)

e->stoppingEvent = true;

}

Figure 2: The simplified model of Bluetooth driver.

2.1 Bluetooth driver
The simplified model of the Bluetooth driver is shown

in Figure 2. The device extension of the driver has four

fields—pendingIo, stoppingFlag, stoppingEvent. The in-
teger field pendingIo keeps count of the number of threads
that are currently executing in the driver. It is initialized
to 1, incremented atomically whenever a thread enters the
driver, and decremented atomically whenever a thread exits
the driver. The boolean field stoppingFlag is initialized to
false and set to true by a thread that is trying to stop the
driver. New threads are not supposed to enter the driver
once this field is true . The boolean field stoppingEvent

models an event. This field is initialized to false, and set
to true when the event happens. The event fires when a
decrement of pendingIo results in a value of 0. Finally, the
global variable stopped is introduced to conveniently spec-
ify an important safety property of the driver. This field is
initialized to false. The thread stopping the driver sets this
field to true after it has established that there are no other
threads executing in the driver. Other threads assert that
this field is false just before starting their work in the driver.

There are two dispatch functions in the simplified driver—
BCSP PnpAdd and BCSP PnpStop. The first dispatch function
BCSP PnpAdd is a prototypical routine called by the operat-
ing system to perform I/O in the driver. The second dis-
patch function BCSP PnpStop is called to stop the driver.
The assume statement in its body blocks until the condi-
tion e->stoppingEvent becomes true ; this statement is ex-
plained in more detail in Section 3. We model concurrent
execution of the driver by a program that begins by calling
the function main. This function allocates a device exten-
sion, initializes its fields, forks off a thread to asynchronously
execute BCSP PnpStop and then calls BCSP PnpAdd.

2.2 Race detection
We now show how our analysis detects a race condition

on the field stoppingFlag of the device extension. For this
example, a size 0 for the multiset ts is enough to expose the
race. In the translation, bounding ts by 0 effectively replaces
the asynchronous function calls in the function main by the
corresponding synchronous function calls. In addition, the
instrumentation before every statement in every function
allows a function to return from any control location after
setting raise to true .

When we run the model checker on the transformed se-
quential program, it explores the following erroneous path.
The path starts execution at the beginning of main and
makes a synchronous function call to BCSP PnpStop. In the
function BCSP PnpStop, just after the write to stoppingFlag,
raise is set to true and a return statement is executed.
When control returns to main, raise is reset to false and
BCSP PnpAdd is called. The function BCSP PnpAdd calls the
function BCSP IoIncrement, where there is a read of the field
stoppingFlag. Thus, this execution exposes a race condi-
tion on the field stoppingFlag.

2.3 Assertion checking
We now show how our analysis detects the violation of the

assertion in the dispatch function BCSP PnpAdd. The error
trace leading to the assertion violation cannot be simulated
by the transformed sequential program if the size of ts is 0.
However, the error trace can be simulated if the size of ts is
increased to 1.

The erroneous path explored by the model checker in the
transformed sequential program is as follows. After the main
function finishes initializing the allocated device extension,



function names f ::= f0 | f1 | . . .

integers i ::= . . . | − 1 | 0 | 1 | . . .

boolean constants b ::= true | false
constants c ::= i | b | f

primitives op ::= + | − | × | ==
variables v ::= v0 | v1 | . . .

values u ::= v | c

statements s ::= v0 = c

| v0 = &v1

| v0 = ∗v1

| ∗v0 = v1

| v0 = v1 op v2

| assert(v0)
| assume(v0)
| atomic{s}
| v = v0()
| async v0()
| return
| s1; s2

| choice{s1 [] . . . [] sn}
| iter{s}

Figure 3: A parallel language.

it adds BCSP PnpStop to ts and then calls BCSP PnpAdd. The
function BCSP PnpAdd calls BCSP IoIncrement which reads
the field stoppingFlag. Since the value of stoppingFlag

is false, control moves to the beginning of the atomic in-
crement. At this point, BCSP PnpStop is removed from ts
and its execution begins. It sets stoppingFlag to true and
calls BCSP IoDecrement. The function BCSP IoDecrement

decrements pendingIo to 0 and sets stoppingEvent to true .
Consequently, when BCSP IoDecrement returns, the assume
statement in BCSP PnpStop does not block and stopped is
set to true . Now the execution of BCSP PnpStop termi-
nates. At this point, the execution stack has two entries—
BCSP IoIncrement at the top and BCSP PnpAdd at the bot-
tom. The function BCSP IoIncrement resumes execution, in-
crements pendingIo to 1, and returns 0. Since the returned
value is 0, the conditional of the if statement in BCSP PnpAdd

is true and control moves to the assertion, which is violated
since the value of stopped is true .

The examples discussed in this section suggest that the
executions explored by the transformed sequential program,
although a subset of the set of all behaviors of the concur-
rent program, are still varied enough to catch a variety of
common concurrency errors.

3. A PARALLEL LANGUAGE
KISS is capable of handling general multithreaded C pro-

grams. To succinctly present the main idea behind KISS,
we formalize its analysis for a simple parallel language that
is capable of modeling conventional concurrent programs.
The syntax for this language is shown in Figure 3. We
essentially have a procedural language extended with asyn-
chronous procedure calls (async), atomic statements (atomic),
and blocking statements (assume). The language is equipped
with pointer operations for taking the address of a variable
and for obtaining the contents of an address. Fields have
been omitted for simplicity of exposition; however, KISS
can handle them just as well.

The asynchronous function call async v0() creates a new
thread whose starting function is the value of the variable
v0. After this thread is created, its actions get interleaved
with the actions of the existing threads.

The statement assume(v0) blocks until the variable v0 be-
comes true . In a sequential program, if control arrives at
assume(v0) when v0 is false, then the program is blocked for-
ever. However, in a concurrent program a thread blocked at
the assume statement might get unblocked if another thread
changes the value of v0.

The statement atomic{s} executes just like s except that
the execution may not be interrupted in the middle by other
threads. The atomic statement, together with the assume
statement, is used to implement synchronization primitives,
such as lock acquire and lock release .

lock acquire(l)
def
= atomic{assume(∗l == 0); ∗l = 1; }

lock release(l)
def
= atomic{∗l = 0; }

Here, the type of the variable l is a pointer to a integer.
The nondeterministic choice statement makes choices be-

tween different branches; exactly one branch will be exe-
cuted nondeterministically. The iteration statement iter{s}
does not have a termination condition. It executes s a non-
deterministic number of times. The conventional conditional
and loop statements can be modeled as follows:

if (v) s1 else s2
def
= choice{assume(v); s1 [] assume(¬v); s2}

while (v) s
def
= iter{assume(v); s}; assume(¬v)

Here, the symbol ¬ is logical negation as usual. There are
no explicit boolean expressions in the language; decisions
are made on variables. Decisions on an expression can be
modeled by first assigning the expression to a fresh variable.

We assume that other analyses are used to check that a
program written in this parallel language is well-typed. In
addition to the usual requirements, we also require that the
statement s in atomic{s} is free of function calls (both syn-
chronous and asynchronous), return statements, and nested
atomic statements. This requirement does not pose any re-
striction on the expressiveness of the language since the most
common use of the atomic statement is to implement syn-
chronization primitives.

4. PROGRAM TRANSFORMATION
In this section, we present our method for translating a

concurrent program into a sequential program. For the pur-
pose of this section, a concurrent program is one express-
ible in the parallel language of Section 3 and a sequential
program is one expressible in the parallel language without
using asynchronous function calls and atomic statements.

The translation function [[·]] for translating a concurrent
program to a sequential program is defined recursively in
Figure 4. For any statement s, the transformed code [[s]] is a
statement without any asynchronous function calls and syn-
chronization statements. For any function f in the program
with body s, we introduce a new function [[f ]] with body [[s]].

To achieve nondeterministic termination of a thread at
any time during its execution, we introduce a fresh global
boolean variable raise. To terminate a thread, this vari-
able is set to true and a return statement is executed. The



[[v0 = c]] = schedule(); choice{skip [] RAISE}; v0 = c

[[v0 = &v1]] = schedule(); choice{skip [] RAISE}; v0 = &v1

[[v0 = ∗v1]] = schedule(); choice{skip [] RAISE}; v0 = ∗v1

[[∗v0 = v1]] = schedule(); choice{skip [] RAISE}; ∗v0 = v1

[[v0 = v1 op v2]] = schedule(); choice{skip [] RAISE}; v0 = v1 op v2

[[assert (v0)]] = schedule(); choice{skip [] RAISE}; assert (v0)
[[assume(v0)]] = schedule(); choice{skip [] RAISE}; assume(v0)
[[atomic{s}]] = schedule(); choice{skip [] RAISE}; s
[[v = v0()]] = schedule(); choice{skip [] RAISE}; v = [[v0]](); if (raise) return
[[async v0()]] = schedule(); choice{skip [] RAISE};

if (size() < MAX ) put(v0)
else {[[v0]](); raise = false}

[[return ]] = schedule(); return
[[s1; s2]] = [[s1]]; [[s2]]
[[choice{s1[]. . .[]sn}]] = choice{[[s1]] [] . . . [] [[sn]]}
[[iter{s}]] = iter{[[s]]}

Figure 4: Instrumentation for assertion checking.

RAISE statement performs this task.

RAISE
def
= raise = true ; return

Let skip represent the statement assume(true). At every
control location, we introduce the following code to execute
the RAISE statement nondeterministically.

choice{skip [] RAISE}

A thread may return after setting raise to true with a num-
ber of functions on its stack. To terminate the thread, all of
these functions need to be popped. Therefore, we introduce
after each function call, a statement that checks the value
of raise and returns if the value is true . As described later,
the variable raise is reset to false when all stack frames of
the terminated thread have been popped.

In addition to terminating a thread nondeterministically,
we also need to schedule other threads at any point dur-
ing a thread’s execution. We introduce a fresh global vari-
able ts to keep track of the set of threads that have been
forked but not scheduled yet. The variable ts is a multiset
of function names; each name indicates the start function of
an unscheduled thread. Our translation is parameterized by
MAX , the maximum size of this set. There are three special
functions to access and modify the variable ts . The function
get requires that ts is not empty; it removes and returns a
nondeterministically chosen element of ts . The function put
requires that the number of elements in ts is less than MAX ;
it takes as argument a function name and adds it to ts . The
function size returns the number of elements in ts .

The function schedule allows us to schedule a nondeter-
ministically chosen set of threads from ts .

schedule() {
var f ;
iter {

if (size() > 0) {
f = get();
[[f ]]();
raise = false;

}
}

}

This function gets an arbitrary number of existing threads
in the set ts and executes them one after another. After a
thread returns, potentially because it set raise to true , the
variable raise is reset to false.

The function schedule encapsulates the scheduling policy
for the concurrent program. The implementation of this
function presented above assumes a completely nondeter-
ministic scheduler. A more sophisticated scheduler can be
provided by writing a different implementation of schedule .

Before most statements, the translation function inserts a
call to schedule followed by the nondeterministic execution
of RAISE . The instrumentation for asynchronous and syn-
chronous function calls is noteworthy. When a function f is
called asynchronously, the instrumentation checks the size
of ts . If ts is full, the function [[f ]] is called synchronously.
Otherwise, the function f is added to ts . Thus, the maxi-
mum size of ts determines the number of possible executions
of the original program that can be simulated by the trans-
lated program. When a function f is called synchronously,
the instrumentation calls [[f ]] instead. When [[f ]] returns, the
value of raise is checked and if it is true , a return statement
is executed to propagate the “exception.”

Given a concurrent program s, the sequential program to
be analyzed is defined as follows:

Check(s)
def
= raise = false; ts = ∅; [[s]]; schedule();

The program Check(s) initializes raise and ts appropriately,
executes [[s]], and finally schedules the remaining unsched-
uled threads.

For a sequential program with boolean variables, the com-
plexity of model checking (or interprocedural dataflow anal-
ysis) is O(|C| ·2g+l), where |C| is the size of the control-flow
graph, g is the number of global variables, and l is the max-
imum number of local variables in scope at any location.
Our instrumentation introduces a small constant blowup in
the control-flow graph of the concurrent program and adds
a small constant number of global variables. Thus, the com-
plexity of using KISS on a concurrent program of a certain
size is about the same as using a standard interprocedural
dataflow analysis or model checking on a sequential program
of the same size.



[[v = c]] = schedule(); choice{skip [] checkw(&v);RAISE}; v = c

[[v = &v1]] = schedule(); choice{skip [] checkw(&v);RAISE}; v = &v1

[[v = ∗v1]] = schedule();
choice{skip [] checkr(&v1);RAISE [] check r(v1);RAISE [] checkw(&v);RAISE};
v = ∗v1

[[∗v = v1]] = schedule();
choice{skip [] checkr(&v1);RAISE [] check r(&v);RAISE [] checkw(v);RAISE};
∗v = v1

[[v = v1 op v2]] = schedule();
choice{skip [] checkr(&v1);RAISE [] check r(&v2);RAISE [] checkw(&v);RAISE};
v = v1 op v2

[[assert (v)]] = schedule(); choice{skip [] checkr(&v);RAISE}; assert(v)
[[assume(v)]] = schedule(); choice{skip [] checkr(&v);RAISE}; assume(v)
[[atomic{s}]] = schedule(); choice{skip [] RAISE}; s

[[v = v0()]] = schedule();
choice{skip [] checkr(&v0);RAISE [] checkw(&v);RAISE};
v = [[v0]]();
if (raise) return

[[async v0()]] = schedule();
choice{skip [] checkr(&v0);RAISE};
if (size() < MAX ) put(v0)
else {[[v0]](); raise = false}

[[return ]] = schedule(); return
[[s1; s2]] = [[s1]]; [[s2]]
[[choice{s1[]. . .[]sn}]] = choice{[[s1]] [] . . . [] [[sn]]}
[[iter{s}]] = iter{[[s]]}

Figure 5: Instrumentation for race checking.

4.1 Coverage analysis
Every path in the sequential program Check(s) simulates

a potential execution of the original program s. However,
the sequential program Check(s) does not simulate all ex-
ecutions of s. Therefore, if an assertion is violated in the
translated sequential program, it is violated in some exe-
cution of the multithreaded program as well, but not vice
versa. In this section, we characterize more formally the set
of executions of s that are covered by Check(s).

We first introduce some notation to enable the formal
characterization. Suppose that each thread created by a
concurrent program has a unique identifier in the set N =
{1, 2, . . . }. For any finite set X ⊆ N , we define a language
LX ⊆ N∗ recursively as follows:

LX = {i∗ · LX1
· . . . · i∗ · LXk

· i∗ |
{i}, X1, . . . , Xk form a partition of X}

where “·” denotes concatenation over strings and string lan-
guages as usual, and “∗” stands for Kleene closure. A string
in N∗ is balanced if it belongs to LX for some finite X ⊆ N .

An execution of a concurrent program is a finite sequence
of states and transitions, where each transition is labeled
with the identifier of the thread that performed the transi-
tion. From each execution, we generate a string in N∗ by
concatenating the identifiers labeling the transitions in the
execution. An execution is balanced if the corresponding
string is balanced. We can now state the following theorem
characterizing the executions simulated by Check(s).

Theorem 1 (Completeness). Suppose the multiset ts
is unbounded. If a balanced execution of a concurrent pro-
gram s goes wrong by failing an assertion, then the sequential
program Check(s) also goes wrong, and vice versa.

5. RACE DETECTION
In this section, we augment the translation of Section 4

with auxiliary information to enable the detection of race
conditions. We fix a distinguished variable r and describe
instrumentation that checks for race conditions on r.

In addition to the variables added by the instrumentation
described in Section 4, the new instrumentation also requires
a fresh global variable access that takes values from the set
{0, 1, 2}. The value of access is 0 if no access to r has oc-
curred, 1 if a read access has occurred, and 2 if a write
access has occurred. We also need two functions, checkr

and checkw, which are defined below.

check r(x) {
if (x == &r)

{assert(¬(access == 2)); access = 1; }
}

A call check r(x) checks that there is no race on r due to a
read of the address contained in x. If the address x is an
alias of &r, the address of the variable being checked for
race conditions, the function check r asserts that there has
not been a write access to r. Since we check for read/write
and write/write races, two simultaneous read accesses are
allowed. If the assertion passes, the variable access is set to
1 to indicate that a read access to r has happened.

checkw(x) {
if (x == &r)

{assert(access == 0); access = 2; }
}

Similarly, a call checkw(x) checks that there is no race on r

due to a write to the address contained in x. If the address



Driver KLOC Fields Races No Races
tracedrv 0.5 3 0 3
moufiltr 1.0 14 7 7
kbfiltr 1.1 15 8 7
imca 1.1 5 1 4
startio 1.1 9 0 9
toaster/toastmon 1.4 8 1 7
diskperf 2.4 16 2 14
1394diag 2.7 18 1 17
1394vdev 2.8 18 1 17
fakemodem 2.9 39 6 31
gameenum 3.9 45 11 24
toaster/bus 5.0 30 0 22
serenum 5.9 41 5 21
toaster/func 6.6 24 7 17
mouclass 7.0 34 1 32
kbdclass 7.4 36 1 33
mouser 7.6 34 1 27
fdc 9.2 92 18 54
Total 69.6 481 71 346

Table 1: Experimental results (I).

x is an alias of &r, it asserts that there has not been either a
read or a write access to r. Moreover, if the assertion passes,
it sets access to 2 to indicate that a write access to r has
happened.

The translation function is shown in Figure 5. The trans-
lation looks very similar to that for assertion checking, ex-
cept that we introduce a call checkr(&v) for each read access
to variable v, and a call checkw(&v) for each write access
to v. Every such call by a thread is followed immediately
by RAISE which causes the thread to terminate. Thus, an
assertion in one of these calls is violated only if there are con-
flicting (read/write or write/write) accesses by two different
threads.

We use a static alias analysis [12] to optimize away most
of the calls to check r and checkw. If the alias analysis deter-
mines that the variable v being accessed cannot be aliased
to the distinguished variable r, then the call to checkr (or
checkw) has no effect and is therefore omitted in the instru-
mentation. Thus, our analysis generates a separate sequen-
tial program for detecting race conditions on each shared
variable.

Given a concurrent program s, the sequential program to
be analyzed is as follows:

Check(s)
def
= raise = false; ts = ∅; access = 0; [[s]]; schedule();

As for the translation in Section 4, every path in Check(s)
simulates a potential execution of the original program s,
but Check(s) does not capture all possible executions of s.
If an assertion is violated in Check(s), there is an execution
of s in which either an assertion is violated or there is a race
condition on r.

6. EVALUATION
We have used KISS to detect race conditions in a number

of device drivers in the Windows Driver Development Kit.
In this section, we present the results of our experiments.
As mentioned earlier in Section 2, each device driver has
a data structure called the device extension that is shared

Driver Races
moufiltr 0
kbfiltr 0
imca 1
toaster/toastmon 1
diskperf 0
1394diag 1
1394vdev 1
fakemodem 6
gameenum 1
serenum 2
toaster/func 5
mouclass 1
kbdclass 1
mouser 1
fdc 9
Total 30

Table 2: Experimental results (II).

among the various threads executing in it. For each de-
vice driver, we checked for race conditions on each field of
the device extension separately. A device driver is writ-
ten as a library of dispatch routines that may be called by
the operating system. For each device driver, we created a
concurrent program with two threads, each of which nonde-
terministically calls a dispatch routine. To have a complete
concurrent program, we also need models for the routines of
the operating system called by the driver. SLAM already
provided stubs for these calls; we augmented them to model
the synchronization operations accurately. Some of the syn-
chronization routines we modeled were KeAcquireSpinLock,
KeWaitForSingleObject, InterlockedCompareExchange,
InterlockedIncrement, etc. Guided by the intuition of the
Bluetooth driver example in Section 2.2, we set the size of
ts to 0.

We performed the experiments on a 2.2 GHz PC running
Windows XP. For each run of KISS on a device driver and
a field of the device extension, we set a resource bound of
20 minutes of CPU time and 800MB of memory. Table 1
gives a summary of our results. For each driver, we give the
code size in KLOC (thousand lines of code), the number of
fields in the device extension, the number of fields on which
a race condition was detected, and the number of fields on
which the analysis terminated within the resource bound
without reporting any errors. We ran KISS on 18 device
drivers ranging from 0.5 KLOC to 9.2 KLOC for a total of
69.6 KLOC. The tool reported at least one race condition
in 15 drivers for a total of 71 race conditions.

Due to the large number of reported race conditions, it
was infeasible to carefully review them all. Therefore, we
showed a small subset of these race conditions to the Win-
dows driver quality team. We found that KISS was reporting
spurious race conditions primarily because of the impreci-
sion of the concurrent harness executing dispatch functions
in the device driver. Drivers are written under the (typically
undocumented) assumption that certain pairs of dispatch
routines cannot be called concurrently by operating system,
but out harness allowed all such pairs to be executed con-
currently. The most important such assumptions mentioned
by the driver quality team are the following:



A1. Two Pnp IRPs (interrupt request packets) will not be
sent by the operating system concurrently.

A2. The operating system will not send any IRP concur-
rently with a Pnp IRP for starting or removing a de-
vice.

A3. There are two categories of Power IRPs—system and
device. Two Power IRPs sent concurrently by the op-
erating system must belong to different categories.

The above rules are general and applicable to all drivers.
But some rules are specific to particular drivers, as in the
case of kbfiltr and moufiltr. The error traces for all race
conditions reported by KISS on these two drivers involved
two concurrent Ioctl IRPs. However, the position of these
two drivers in the driver stack ensures that they will never
receive two concurrent Ioctl IRPs; consequently, the race
conditions reported by KISS were spurious.

We used the feedback from the driver quality team to
refine the harness and ran KISS again on the fields on which
race conditions were reported in the first set of experiments.
We present the results of this second set of experiments in
Table 2. The total number of reported race conditions went
down from 71 to 30.

After examining a subset of the remaining race conditions,
the driver quality team confirmed that the race conditions in
toaster/toastmon, mouclass, and kbdclass are bugs. In addi-
tion, the race conditions on three fields of fdc generated a lot
of debate and were considered serious enough to be tabled
for further discussion. The feedback from the driver quality
team suggested that the warnings produced by KISS were
useful for more than just finding concurrency bugs. These
warnings also served to focus costly manual code inspection
resources on tricky areas of the driver code.

We illustrate the errors found by KISS with the race con-
dition on the field DevicePnPState of the device extension
in toaster/toastmon. This field is accessed in most places
while holding a lock but there is an unprotected read to it
as well. The read/write race condition is exposed by the
concurrent execution of the two dispatch functions shown in
Figure 6.

Another interesting source of spurious warnings are be-
nign race conditions. Consider the race condition found by
KISS on the field OpenCount of the device extension of the
fakemodem driver. This field keeps track of the number
of threads executing in the driver. In all places but one,
OpenCount is incremented while holding a lock. But there
is a single unprotected access in which a decision is based
on whether the value read for OpenCount is 0. The read op-
eration is atomic already; performing it while holding the
protecting lock will not reduce the set of values that may be
read. So the programmer chose to not pay for the overhead
of locking.

We are continuing our dialogue with the driver quality
team to establish which races are benign. In future work, we
intend to deal with the problem of benign races by allowing
the programmer to annotate an access as benign. KISS can
then use this annotation as a directive to not instrument
that access. We are also planning to use the ideas behind
the type system for atomicity [20] to automatically prune
such benign race conditions.

We have also used KISS to find concurrent reference count-
ing errors in device drivers, as exemplified by the assertion

NTSTATUS

ToastMon_DispatchPnp (

IN PDEVICE_OBJECT DeviceObject,

IN PIRP Irp )

{
...

status = IoAcquireRemoveLock

(&deviceExtension->RemoveLock, Irp);
...

switch (irpStack->MinorFunction) {
...

case IRP_MN_QUERY_STOP_DEVICE:

// Race: write access

deviceExtension->DevicePnPState =

StopPending;

status = STATUS_SUCCESS;

break;
...

}
...

IoReleaseRemoveLock

(&deviceExtension->RemoveLock, Irp);

return status;

}

NTSTATUS

ToastMon_DispatchPower(

IN PDEVICE_OBJECT DeviceObject,

IN PIRP Irp )

{
...

// Race: read access

if (Deleted == deviceExtension->DevicePnPState) {
PoStartNextPowerIrp(Irp);

Irp->IoStatus.Status = STATUS_DELETE_PENDING;

IoCompleteRequest(Irp, IO_NO_INCREMENT );

return STATUS_DELETE_PENDING;

}
...

}

Figure 6: Race condition in toaster/toastmon.

violation in our simple model of the bluetooth driver (Sec-
tion 2.3). Just as in the simple model, we manually in-
troduced into the code of each driver an auxiliary boolean
global variable stopped to model the stopping of the driver.
We introduced assignments initializing stopped to false and
updating it to true when the driver is stopped, and asser-
tions at appropriate places in the code of the various dis-
patch routines stating that this variable is false. Guided by
the intuition of Section 2.3, we set the size of ts to 1.

We ran KISS on two drivers—bluetooth and fakemodem.
Not surprisingly, since our example in Section 2.3 is based on
the bluetooth driver, KISS found the assertion violation in
the actual driver as well. The bug is in the implementation
of the BCSP IoIncrement function. After fixing the bug as



suggested by the driver quality team, we ran KISS again
and this time KISS did not report any errors. KISS did not
report any errors in the fakemodem driver. We examined
the code dealing with reference counting in the fakemodem
driver and observed that it behaved exactly according to
the fixed implementation of BCSP IoIncrement. Hence, we
believe that the fakemodem driver does not have this error.

6.1 Discussion
Our experience with KISS shows that it is a useful and

viable approach for finding errors in concurrent programs.
Although unsound, the KISS approach has managed to un-
cover a number of subtle concurrency errors in device drivers.
We believe that the flexibility of our approach sets it apart
from other existing work on race-detection.

Flexibility in implementation: Our checker can con-
veniently support a variety of synchronization mechanisms
and is easily extensible to new ones. For analyzing systems
code, this flexibility is essential as illustrate by our experi-
ence with NT drivers. To analyze these drivers, we mod-
eled several synchronization mechanisms such locks, events,
interlocked compare and exchange, etc. Most existing race-
detection tools, both static and dynamic, are based on the
lockset algorithm which can handle only the simplest syn-
chronization mechanism of locks.

Flexibility in environment modeling: Our experi-
ence with checking low-level systems code indicates that to
avoid being inundated with false alarms, care must be taken
in modeling the environment of the module being analyzed.
Our tool provides a flexible mechanism for writing an ex-
perimenting with such environments.

Flexibility in specification: Our tool is a general asser-
tion checker for concurrent programs and can check safety
properties other than just race-freedom. For example, the
reference counting error in the bluetooth driver manifested
itself through an assertion violation. This error is not a
race condition according to the traditional definition of race-
freedom.

7. RELATED WORK
There has been a substantial amount of research on the

problem of debugging and verifying concurrent programs.
Here, we discuss the more relevant research along several
axes.

Model checking: Model checkers systematically explore
the state space of a model of the concurrent program. The
model is constructed either manually or extracted automat-
ically by a tool. The model checker SPIN [27] checks mod-
els written in the Promela [26] modeling language. Other
model checkers such as the JPF [23, 39], Bandera [11], and
Bogor [35] directly analyze multithreaded Java programs.
These model checkers exploit partial-order reduction tech-
niques [31, 21] to reduce the number of explored interleav-
ings. But in the worst case, they must still explore an
exponential number of control states. The model checkers
SLAM [3] and Blast [25] analyze sequential C programs. Re-
cently, Blast has been extended to check properties of multi-
threaded C programs using the approach of thread-modular
model checking [19, 24]. This approach is sound but may
report false errors. Our technique is complementary because
although it is unsound, it will never report false errors.

Static analysis: Static analysis tools for concurrent pro-
grams are typically based on type systems and dataflow

analyses. In general, they do not directly analyze thread
interleavings. Consequently, they are less precise but more
scalable than model checkers. Warlock [38] is a static race
detection tool for ANSI C programs. Aiken and Gay [1] in-
vestigate static race detection in the context of SPMD pro-
grams. The Race Condition Checker (RccJava) [16, 17] uses
a type system to catch race conditions in Java programs.
This approach has been extended [6, 5] and adapted to other
languages [22]. Engler and Ashcraft [14] have developed a
static tool RacerX based on interprocedural dataflow anal-
ysis to detect both race conditions and deadlocks. The Ex-
tended Static Checker for Java (ESC/Java) [18], which uses
a verification-condition generator and an automatic theorem
prover to find errors, catches a variety of software defects in
addition to race conditions. ESC/Java has been extended
to catch “higher-level” race conditions, where a stale value
from one synchronized block is used in a subsequent synchro-
nized block [7]. Flanagan and Qadeer [20] have developed
a type and effect system, which is a synthesis of Lipton’s
theory of reduction [29] and type systems for race detec-
tion, for checking atomicity of methods in multithreaded
Java programs. The advantage of our approach over these
static analyses is that it is more precise and it can check
more general specifications such as program assertions.

Dynamic analysis: Dynamic tools work by instrument-
ing and executing the program. They are easy to use but
their coverage is typically small since only a few executions
are explored. Several methods [2, 30, 32] have been de-
veloped to detect race conditions by computing Lamport’s
happens-before relation [28] dynamically. Eraser [36] is a
dynamic race-detection tool aimed at the lock-based syn-
chronization. Eraser finds races by keeping track of locks
held during program execution. This algorithm has been
extended to object-oriented languages [40] and improved for
precision and performance [10]. A race detection tool has
also been developed for Cilk programs [9]. Although both
the dynamic approach and our static approach are unsound,
the coverage provided by them seem to be complementary in
nature. Our approach can schedule threads only according
to the stack discipline but for each such schedule all possi-
ble paths in each thread are explored. A dynamic approach
may allow schedules not allowed by our approach but for
each schedule only a small number of paths in each thread
are explored.

Others: Bouajjani et al. [4] present a generic approach to
the static analysis of concurrent programs, focusing on the
synchronous message-passing mechanism. Their verification
method is not automated whereas the approach described
in this paper is fully automated.

8. CONCLUSION
We have introduced a novel technique for checking as-

sertions in multithreaded programs. The technique never
reports false errors but may miss errors. The key idea of
our analysis is the transformation of a concurrent program
into a sequential program which simulates a large subset of
the behaviors of the concurrent program. The transformed
sequential program may then be checked by any sequential
analysis tool.

We have implemented our debugging technique in KISS
(Keep It Simple and Sequential!), an automated checker for
multithreaded C programs built on top of the SLAM [3]
model checker for sequential C programs. It is straightfor-



ward to adapt our technique to other similar tools such as
PREfix [8], MC [15], ESP [13], and Blast [25]. Thus, our
technique is a general framework for checking safety prop-
erties of concurrent programs, that can leverage a variety of
analysis techniques developed for sequential programs. We
have applied KISS to the problem of detecting race condi-
tions in Windows NT device drivers and obtained promising
initial results. KISS has analyzed 18 drivers for a total of 70
KLOC and found 30 race conditions of which several have
been determined to be bugs.
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