Computing Summaries
for Interprocedural Analysis

Ashish Tiwari
Tiwari@csl.sri.com

Computer Science Laboratory
SRI International
Menlo Park CA 94025
http://www.csl.sri.com/~tiwari

Joint work with Sumit Gulwani, Microsoft Research
Outline of this Talk

- The Assertion Checking Problem
- Example
- Interprocedural Analysis
- A methodology for interprocedural backward analysis
- Special Cases: Abstract domains defined by
 - Linear Arithmetic
 - Uninterpreted Symbols
- Conclusion
Assertion Checking Problem

Given a program P annotated with an assertion ϕ, verify that ϕ evaluates to true in every run of P.

$P \in \mathcal{P}$, $\mathcal{P} := \text{set of all programs in some programming model}$

$\phi \in \Phi$, $\Phi := \text{set of all assertions in some assertion language}$

This problem is undecidable for even simple \mathcal{P} and Φ.
P() { // inputs: u, v
 x := u ;
 y := v ;
 while (*) {
 x := x + 1 ;
 y := y - 1 ;
 }
 // return x, y
}
An Example

main() {
 u := 0 ;
 v := n ;
 Call P() ;
 u := x + 1 ;
 v := y ;
 Call P() ;
 assert(x + y == n+1)
}

main:

u := 0

v := n

Call P()

u := x + 1

v := y

Call P()

assert(x + y = n+1)
Program Model

Programming Model in the example:

- Assignments: \(x := e, \ x := ? \)
- Nondeterministic conditionals: \(\text{if (*)} \)
- Join: Control flow merge
- Procedure call node: \(\text{Call P()} \)

(a) Assignment Node

(b) Non-deterministic Assignment Node

(c) Non-deterministic Conditional Node

(d) Join Node

(e) Procedure Call Node
Known Results on Assertion Checking

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)-(d)</td>
<td>Lin Arith</td>
<td>PTime</td>
<td>[Karr 77,...]</td>
</tr>
<tr>
<td>(a)-(d)</td>
<td>UFS</td>
<td>PTime</td>
<td>([Gulwani,Necula 04), (Müller-Olm, Rüthing, Seidl)]</td>
</tr>
<tr>
<td>(a)-(d)</td>
<td>UFS + LA</td>
<td>co-NP-hard</td>
<td>[Gulwani,T. 06]</td>
</tr>
<tr>
<td>(a)-(d)*</td>
<td>UFS + LA</td>
<td>decidable</td>
<td>[Gulwani,T. 06]</td>
</tr>
</tbody>
</table>

For generalizations of above results to other abstract domains and program models, see [Gulwani, T. VMCAI 07]

What about program models with procedure calls?
New Results

Present a general framework for interprocedural analysis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)-(e)</td>
<td>Lin Arith</td>
<td>PTime</td>
<td>[Müller-Olm and Seidl ’04,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>this paper]</td>
</tr>
<tr>
<td>(a)-(e)</td>
<td>Unary UFS</td>
<td>PTime</td>
<td>[this paper]</td>
</tr>
<tr>
<td>(a)-(e)</td>
<td>UFS</td>
<td>Open</td>
<td></td>
</tr>
</tbody>
</table>

Some results on interprocedural analysis on UFS abstraction, but under restrictions, given by Müller-Olm, Seidl, and Steffen (ESOP’05)
Interprocedural Analysis

Two approaches for interprocedural analysis:

1. Inlining

2. Computing Summaries
Interprocedural Analysis: Inlining

P() {
 [u + v == n+1]
 x := u;
 y := v;
 [x + y == n+1]
 while (*) {
 x++; y--;
 }
 [x + y == n+1]
}

main() {
u := 0;
 v := n;
 Call P();
 [x + 1 + y == n+1]
 u := x + 1;
 v := y;
 [u + v == n+1]
 Call P();
 [x + y == n+1]
 assert(x + y == n+1)
}
Interprocedural Analysis: Inlining

\[\text{P}() \{ \]
\[\text{[} u + v == n \text{]} \]
\[x := u; \]
\[y := v; \]
\[\text{[} x + y == n \text{]} \]
\[\text{while } (*) \{ \]
\[\text{x++;} \]
\[\text{y--;} \]
\[\} \]
\[\text{[} x + y == n \text{]} \]
\[\} \]

\[\text{main}() \{ \]
\[\text{[} n + 0 == n \text{]} \]
\[u := 0; \]
\[v := n; \]
\[\text{[} u + v == n \text{]} \]
\[\text{Call P();} \]
\[\text{[} x + 1 + y == n+1 \text{]} \]
\[u := x + 1; \]
\[v := y; \]
\[\text{[} u + v == n+1 \text{]} \]
\[\text{Call P();} \]
\[\text{[} x + y == n+1 \text{]} \]
\[\text{assert}(x + y == n+1) \]
\[\} \]
Interprocedural Analysis

Inlining: Re-analyzes P()

Summary Computation: Compute a summary of a procedure just once and use it to backward propagate across Call P() nodes

In the example, we required:

\[
\begin{align*}
\text{[?] } & \text{ Call P() } \quad [x + y = n + 1] \\
\text{[?] } & \text{ Call P() } \quad [x + y = n]
\end{align*}
\]

Main idea: Propagate back a set of generic assertions

For example: \(\alpha x + \beta y = \gamma \)
Generic Assertions

Assertion that involves context-variables apart from regular program variables.

Examples of context-variables and their possible instantiations:

\[\alpha(__) \mapsto f(f(__)), \ 2(_), \ _ + 1 \]
\[\beta(_1, _2) \mapsto 2(_1) + _2, \ f(_1, f(_2)) \]

A generic term: \(\alpha(x) + \beta(y) \)

A generic assertion: \(\alpha(x) + \beta(y) = \gamma \)
A is a complete set of generic assertions if, for any generic assertion A_1, there exists $A_2 \in A$ s.t.

$$A_1 = A_2 \sigma$$

<table>
<thead>
<tr>
<th>Expr. Lang.</th>
<th>Complete Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lin. Arith.</td>
<td>${ \sum_{i \in V} \alpha_i x_i = \alpha }$</td>
</tr>
<tr>
<td>Unary UFS</td>
<td>${ \alpha(x_1) = \beta(x_2) \mid x_1, x_2 \in V, x_1 \neq x_2 }$</td>
</tr>
</tbody>
</table>

We need a finite complete set of generic assertions
Computing Procedure Summaries

Summary := \{ (\psi_i, A_i) \mid [\psi_i] \text{Call P}() [A_i], \ A_i \in \mathcal{A} \}

Method to compute procedure summaries:

1. WP based backward propagation over \textit{generic} assertions

2. For procedure call nodes: requires \textit{matching} current ψ with an assertion in \mathcal{A} and using its current summary

\[
\left[\bigwedge_i \psi_i' \sigma_i \right] \text{Call P}() \left[\bigwedge_i B_i \right]
\]

if (ψ_i', A_i) is in current summary of P() and $B_i = A_i \sigma_i$.
Computing Summaries: Linear Arithmetic

\[
P() \{ \\
 [true] \\
 x := u; \\
 y := v; \\
 [\alpha(x + 1) + \beta(y - 1) == \gamma, \\
 \alpha x + \beta y == \gamma] \\
 \text{while (*)} \{ \\
 x++; \\
 y--; \\
 \} \\
 [\alpha x + \beta y == \gamma] \\
}\]

Summary: \{ (\alpha == \beta \land \alpha u + \beta v == \gamma, \ \alpha x + \beta y == \gamma) \}

\[
P() \{ \\
 [\alpha - \beta == 0, \alpha u + \beta v == \gamma] \\
 x := u; \\
 y := v; \\
 [\alpha - \beta == 0, \\
 \alpha x + \beta y == \gamma] \\
 \text{while (*)} \{ \\
 x++; \\
 y--; \\
 \} \\
 [\alpha x + \beta y == \gamma] \\
}\]
Computing Summaries: Linear Arithmetic

- **Termination**: There can be at most $k^2 + k + 1$ independent facts over the variables \{$\alpha_i x_j, \alpha_i, \gamma$\} where $i, j \in \{1, \ldots, k\}$

- Since every fact is a linear equation over these $k^2 + k + 1$ variables

- Complexity of interprocedural assertion checking: $O(nk^{10})$
 where $n =$ number of program points and $k =$ live variables

- Assuming arithmetic operations take $O(1)$ time
main() {
 [0 + n == n]
 u := 0;
 v := n;
 [1 - 1 == 0, u + v == n]
 Call P(); // α ↦ 1, β ↦ 1, γ ↦ n
 [x + 1 + y == n + 1]
 u := x + 1;
 v := y;
 [1 - 1 == 0, u + v == n + 1]
 Call P(); // α ↦ 1, β ↦ 1, γ ↦ n + 1
 [x + y == n + 1]
 assert(x + y == n + 1)
}
The same general idea works.

- Complete Set of Generic Assertions: \(\{ \alpha(x) == \beta(y) \mid x, y \in V \} \), \(\alpha \) and \(\beta \) are strings over the unary symbols

- Backward propagation gives generic assertions: \(\{ \alpha(C(x)) == \beta(D(y)) \} \)

- Termination: Any finite set of such assertions is essentially equivalent to a set containing at most two equations

- Summary:
 \(\{ (\psi_{xy}, \alpha(x) == \beta(y)) \mid x, y \in V, \ [\psi_{xy}] \text{ Call } P() [\alpha(x) == \beta(y)] \} \)
 where \(\psi_{xy} \) contains at most \(k(k - 1)/2 + 1 \) equations

- All this takes polynomial number of string operations

However, programs can succinctly represent really large strings
Consider the n procedures P_0, \ldots, P_{n-1}:

$$P_i(x_i) \{ t := P_{i-1}(x_i); \ y_i := P_{i-1}(t); \ \text{return}(y_i); \}$$

$$P_0(x_0) \{ \ y_0 := fx_0; \ \text{return}(y_0); \}$$

The summary of procedure P_i is:

$$\alpha = f^{2^i} \land \beta = \epsilon, \ \alpha x_i = \beta y_i$$
Computing Summaries: Unary UFS: Representation

- SCFGs: *singleton context-free grammars*
 A CFG where each nonterminal represents *exactly* one (terminal) string.

- An SCFG can represent strings in an exponentially succinct way

- We use SCFGs to represent strings during our interprocedural analysis

- Plandowski (1994) showed that equality (largest common prefix) checking of two strings represented as SCFGs can be done in PTime

- Summaries can be computed in time $O(nk^6T_{base}(n))$ on the abstraction of unary symbols.
Computing Summaries: General Case

Interprocedural analysis on a logical lattice defined by Th:

- Finite complete set of generic assertions
- Finite essential ascending chain property: Every increasing sequence of generic assertions (over k regular variables) finitely essentially converges

What is essential equivalence?
In case of non-deterministic programs, do not need to distinguish between ϕ and $Unif(\phi)$

ψ is essentially equivalent to ψ' if $\psi\sigma$ and $\psi'\sigma$ have the same set of unifiers for every σ that assigns context variables to a ground term with holes
Presented a general framework for interprocedural analysis

|-------|-------------|------------|--------------------------|
| (a)-(e) | Lin Arith | PTime | [Müller-Olm and Seidl ’04,
this paper] |
| (a)-(e) | Unary UFS | PTime | [this paper] |
| (a)-(e) | UFS | Open | |

Main ideas:

- Summary computation requires dealing with context variables
- Context unification can be used to simplify assertions to essentially equivalent assertions for non-det programs