
Appears in International Conference on Parallel Architectures and Compilation Techniques (PACT), Sept. 2001.

,
ns
ref-
ro-
al
4],
ip
f-

ata
is-

ff-
s,
e
e
nch
nd,
al
vel
his
s

me

at-
nt
-

fer-
nce
the
i-
ata
ms
ad/
This
dif-
f the

or
-of-
en-
o-
he
e

On the Stability of Temporal Data Reference Profiles

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way

Redmond, WA 98052
trishulc@microsoft.com
Abstract
Growing computer system complexity has made program

optimization based solely on static analyses increasingly dif-
ficult. Consequently, many code optimizations incorporate
information from program execution profiles. Most memory
system optimizations go further and rely primarily on pro-
files. This reliance on profiles makes off-line optimization
effectiveness dependent on profile stability across multiple
program runs. While code profiles such as basic block, edge,
and branch profiles, have been shown to satisfy this require-
ment, the stability of data reference profiles, especially tem-
poral data reference profiles that are necessary for cache-
level optimizations, has neither been studied nor established.

This paper shows that temporal data reference profiles
expressed in terms of hot data streams, which are data refer-
ence sequences that frequently repeat, are quite stable; an
encouraging result for memory optimization research. Most
hot data streams belong to one of two categories—those that
appear in multiple runs with their data elements referenced
in the same order, and those with the same set of elements
referenced in a different order—and this category member-
ship is extremely stable. In addition, the fraction of hot data
streams that belong to the first category is quite large.

1. Introduction
Computer systems continue to grow in complexity both at

the architectural and micro-architectural level. At the archi-
tectural level, multiple levels of high speed cache memories
result in variable data access times. At the micro-architec-
tural level, speculation and out-of-order execution have a
large impact on program performance. This increasing
machine complexity makes it harder to statically anticipate
and improve program performance.

To address this problem, many traditional code optimiza-
tions have evolved to incorporate profile information in the
optimization analysis. For example, profiles are used to
choose between several optimization plans based on the
expected run-time benefit [1, 2, 13, 23], or to specify the
optimization scope by directing procedure inlining [14] or
scheduling [15, 20].

While code optimizations use profiles to complement
static program analysis, most memory system optimizations
that attempt to improve a program’s data cache performance

by changing the data layout, rely primarily on profiles [4, 6
7, 9, 17, 26]. The success of many of these optimizatio
depends on access to accurate, fine-grain temporal data
erence information. Since static code analysis cannot p
vide this level of detail, these optimizations rely on tempor
data reference profiles. For example, both Calder et. al [
and Chilimbi and Larus [6], use the temporal relationsh
graph (TRG) [12], which approximates a temporal data re
erence profile by maintaining weighted edges between d
references that occur within a pre-selected reference d
tance.

This reliance on profiles makes the effectiveness of o
line optimizations, especially memory system optimization
dependent on profile stability across multiple runs of th
same program with different inputs. The stability of cod
profiles, such as procedure, basic block, edge, and bra
profiles, has been demonstrated [11, 27]. On the other ha
the stability of data reference profiles, especially tempor
data reference profiles which are necessary for cache-le
optimizations, has neither been studied nor established. T
is particularly unfortunate since data layout optimization
that target cache performance rely almost entirely on so
form of temporal data reference profile.

The paper attempts to address this problem by investig
ing the stability of temporal data reference profiles. In rece
research, Chilimbi describes a technique for efficiently com
puting hot data streams, which are sequences of data re
ences that frequently repeat, from a program’s data refere
trace [8]. Since these hot data streams precisely capture
temporal profile information needed by cache-level optim
zations, we use them to represent a program’s temporal d
reference profile. We “name” each of these hot data strea
by their access signature, which is an ordered list of the lo
store PCs that generate the hot data stream references.
naming permits comparison of hot data streams across
ferent program runs, despite changes in the addresses o
data objects referenced.

Our experimental analysis of hot data stream profiles f
several of the SPECint2000 benchmarks, boxsim, a state
the-art graphics application [5], and espresso, a heap-int
sive boolean minimization program, indicate that these pr
files are quite stable across different program runs with t
relative contributions of different hot data streams to th



in
m
g

re
-
e
v-
ri
p

are
st

d
ch
-
to

age
n-
re
er-
be
for

’s
ata
ite

re-
er-
ted
e
m
-

ee
er-
overall profile varying by only small amounts. Most impor-
tant (i.e., very “hot”) hot data streams belong to one of two
categories—those that occur in different program runs with
the same order of data element references, and those that
appear in different runs with the same set of data elements
referenced in a different order—and this category member-
ship is highly stable. In addition, for hot data stream sizes of
up to twenty elements (sufficiently long for cache-level
optimizations), the fraction of important hot data streams
that occur in different runs with data elements referenced in
the same order is quite large. These are encouraging results
for off-line cache-level optimizations that depend on such
temporal data reference profiles. Finally, for optimizations
where the order of data stream references is important, com-
bined profiles from multiple training runs outperform indi-
vidual train profiles by a small amount. On the other hand, if
the optimization does not rely on the order of data stream
references, then any individual train profile performs as well
as a combined train profile.

The rest of the paper is organized as follows. Section 2
surveys the different metrics used to compare profiles and
motivates our choice of comparison function for temporal
data reference profiles. Section 3 describes our representa-
tion of a program’s temporal data reference profile and dis-
cusses how these profiles may be compared across different
program runs despite changes in data object addresses. Sec-
tion 4 presents experimental results that demonstrate the sta-
bility of temporal data reference profiles.

2. Comparing Profiles
The literature discusses several methods for comparing

profiles [3, 10, 11, 18, 24, 27]. While some of the compari-
son functions described are abstract and can be used for
comparing various types of profiles, they have been prima-
rily applied to code profiles. Calder et al. compare branch
profiles with a coverage function that they define as the per-
centage of branches from a program run that were also exe-
cuted during a training run [3]. Fisher and Freudenberger
combine branch direction predictability with branch density
to compare branch profiles [11]. Wall uses a key matching
and weight matching metric to compare the top n elements
of two profiles [27]. Kistler and Franz treat ann item profile
as a vector inn-dimensional space and define a similarity
metric that computes a measure of the geometric angle
between the two profile vectors [18]. They use this similar-
ity metric in the context of a dynamic optimization system
to decide when program behavior has changed sufficiently
to warrant reoptimization. Savari and Young treat a fre-
quency profile as a probability distribution and compute the
relative entropy of the two probability distributions, which
is a measure of the inefficiency of assuming that the distri-
bution is the train profile when it actually is the test profile
[24]. Feller uses an overlap percentage metric to compare
value profiles [10]. The overlap for a profile event is the

minimum of its percentage contribution to the test and tra
profile. The overlap percentage for two profiles is the su
of these overlaps for all profile events. For example usin
the data in Table 1,Overlap(p1, p2) = min(25, 74.6) +
min(25, 24.9) +min(25, 0.5) +min(25, 0) = 50.4.

We use the example profiles shown in Table 1, which a
taken from [24], to motivate our choice of comparison func
tion for computing the stability of temporal data referenc
profiles. We applied Calder et al.’s static and dynamic co
erage metric, Kistler and Franz’s similarity metric, Sava
and Young’s relative entropy metric, and Feller’s overla
percentage metric to the example profiles. The results
shown in Table 2. All comparison metrics agree on the be
train-test profile combination. Not surprisingly, static an
dynamic coverage, which were devised to compare bran
profiles, do a poor job of distinguishing between the pro
files. The other three comparison functions mostly seem
be in agreement. Relative entropy and overlap percent
always agree on the relative ordering of the different trai
test profile combinations. Similarity and relative entropy a
fairly expensive to compute. On the other hand, overlap p
centage is simple to compute and intuitively appears to
the most satisfactory. Hence, we use overlap percentage
comparing temporal data reference profiles.

3. Representing Temporal Data Reference
Profiles

This section describes our representation of a program
temporal data reference profile. It discusses comparing d
reference profiles across multiple program runs desp
changes in the addresses of the data objects referenced.

3.1 Hot Data Streams
In recent research, Chilimbi describes a compact rep

sentation of a program’s data reference behavior that p
mits precise temporal data reference profiles to be compu
efficiently [8]. The process is summarized in Figure 1. H
uses an incremental, linear-time compression algorith
called SEQUITUR [21, 22] to generate a context-free gram
mar from an input data reference trace. This context-fr
grammar produces a single string, which is the data ref

Table 1: Example profiles

Profile Event 1 Event 2 Event 3 Event 4

P1 250 250 250 250

P2 1500 500 10 0

P3 300 150 10 0

P4 0 0 400 450

P5 400 500 600 0



eral
er
g

see
’s

can
t a
es
ted
to
ence trace. The grammar can be represented as a DAG, as
shown in Figure 1. The DAG representation, called Whole
Program Streams (WPS), can be efficiently analyzed (i.e., in
linear time) to discover hot data streams, which are fre-
quently occurring data reference sequences. The hot data
stream detection algorithm accepts three parameters—the
minimum hot data stream length, the maximum hot data
stream length, and the threshold (product of data stream
length and number of stream repetitions in the reference
trace) above which a data stream is deemed “hot”. The min-
imum hot data stream length is set at 2, and the maximum

hot data stream length is set at 100, since studies of sev
programs yielded extremely few hot data streams of long
length [8]. The “heat” threshold is set such that the resultin
hot data streams account for 90% of all data references (
[8] for details), and thus are representative of the program
data reference behavior. Finally, these hot data streams
be combined with the WPS representation to construc
Stream Flow Graph (SFG) as shown in Figure 1. The nod
of the SFG are hot data streams and weighted direc
edges, <src,dest>, indicate the number of times an access
hot data streamsrc is followed by an access to hot data

Table 2: Comparing profiles using different metrics.

Test profile Train profile
Static

Coverage
Dynamic
Coverage

Similarity
Relative
Entropy

Overlap

P1 P2 0.75 0.75 0.64 25.43 50

P3 0.75 0.75 0.69 24.85 52

P4 0.5 0.5 0.71 48.33 50

P5 0.75 0.75 0.86 24.12 75
P2 P1 1 1 0.64 1.15 50

P3 1 1 0.99 0.04 90
P4 0.33 0.01 0 98.31 0

P5 1 1 0.62 0.97 52

P3 P1 1 1 0.69 0.95 52

P2 1 1 0.99 0.05 90
P4 0.33 0.02 0.02 96.47 2

P5 1 1 0.68 0.74 62

P4 P1 1 1 0.71 1 50
P2 0.5 0.42 0 55.36 0

P3 0.5 0.42 0.02 54.36 2

P5 0.5 0.42 0.45 52.38 40

P5 P1 1 1 0.86 0.43 75
P2 1 1 0.62 2.28 52

P3 1 1 0.68 1.35 62

P4 0.33 0.4 0.45 58.66 40

abcbcabcabc SEQUITUR

S -> BABB

A->bc

B ->aA

abc
a’

Data reference grammar

Hot data streams

Stream

Data
reference trace

Figure 1. Temporal data reference representations and abstractions.

abc
Flow
Graph
(SFG)

3
Entry

Graph
a’

S

B

A

a b c

Hot data
stream
analysis

summarization

Whole program
streams (WPS)



ed

he
ph-
ean
rd

out
ion
s
ts
re
oice
i-
n the
ut
a-
ap

m-
en
d by
ata
a

is
na-
ch
ol-
xi-
set
0.
in
% of
ms,
na-
”
am
na-
o-

to
streamdest. The hot data streams and the SFG capture tem-
poral relationships that are potentially more precise than the
TRG since they are not determined by an arbitrarily selected
temporal reference window size. In addition, the hot data
streams represent a compact summary of a program’s tem-
poral data reference relationships since these account for
90% of all data references. For these reasons, we select a
program’s hot data stream profile, which consists of a list of
hot data streams along with their respective “heat” values, to
represent its temporal data reference profile. Each element
of a hot data stream is a <PC, data object> pair, where the
PC corresponds to the instruction that references the data
object. Global data objects are represented by their address,
whereas heap objects are represented by a <start_address,
allocation_time> pair, wherestart_addresscorresponds to
the beginning of the chunk of heap memory allocated for the
object, andallocation_timeis the value of a global counter
that is incremented after each heap allocation (Stack refer-
ences are filtered out prior to constructing the context-free
grammar from the trace since these typically have good ref-
erence locality and are rarely the focus of data locality opti-
mizations).

3.2 Naming Hot Data Streams
The hot data stream profile described in the previous sec-

tion cannot be compared across multiple program runs since
data object addresses change from one run to another. One
possible solution to this problem and the approach taken in
this paper is to compare the load/store instructions that gen-
erate the hot data stream references instead. In other words,
for comparison purposes, we represent a hot data stream by
its access signature, which is an ordered list of instruction
PCs that reference the hot data stream objects (see Figure 2).
While this naming scheme may introduce aliases, where the
same access signature corresponds to multiple hot data
streams, any off-line data locality optimization cannot
expect access to more precise hot data stream information.

4. Experimental Evaluation
This section investigates the stability of temporal data

reference profiles using several benchmarks that were run
with different input data sets. Further experiments explore
the differences between the best and worst training profiles
and consider the effect of combining different training pro-
files to synthesize a single representative train profile.
Finally, we present preliminary data that examines the effec-

tiveness of train profiles in driving a hot data stream-bas
prefetching optimization.

4.1 Experimental Methodology
The programs used in this study include several of t

SPECint2000 benchmarks, boxsim, a state-of-the-art gra
ics application [5], and espresso, a heap-intensive bool
minimization program. The benchmarks (and the standa
libraries) were instrumented with Microsoft’s Vulcan tool to
produce a data address trace along with information ab
heap allocations. Vulcan is an executable instrumentat
system similar to ATOM and EEL [19, 25]. The benchmark
were run with a minimum of three different input data se
as described in Table 3. 253.perlbmk’s train inputs we
scaled to generate a smaller data reference trace. Our ch
of benchmarks was influenced by the availability of mult
ple input data sets that generated data reference traces o
order of a few gigabytes. Stack references were filtered o
and do not appear in the trace. The heap allocation inform
tion was processed to build a map of heap objects. A he
object is a <start_address, allocation_time> pair as
described earlier, whereallocation_timeis a global counter
that is incremented after each allocation. We used this na
ing scheme to achieve maximum discrimination betwe
heap objects. Heap addresses in the trace were replace
their corresponding heap object name. The abstracted d
reference trace was fed to SEQUITUR, which produced
context-free grammar. The DAG representation of th
grammar, called Whole Program Streams (WPS), was a
lyzed to identify hot data streams (see Figure 1). For ea
input data set, eleven hot data stream profiles were c
lected. These hot data stream profiles differed in the ma
mum hot data stream size permitted (minimum size was
to 2 in all cases), which was varied from 5, 10, 20,..., 10
The hot data stream profiles were computed such that
each case the hot data stream references represented 90
all program data references. Each of these hot data strea
which were represented by their load/store PC access sig
ture, were written to a file along with their computed “heat
(product of number of stream data references and stre
repetition frequency). These hot data stream access sig
ture profiles were used to investigate the stability of the pr
gram’s temporal data reference profiles.

4.2 Comparing Temporal Data Reference Profiles
Figure 3 illustrates using the overlap percentage metric

pci: load a

...
pcj:store b

...
pck:load c

<<pci, a>,<pcj,b>,<pck,c>>: 1,576,425

...

Hot data stream Heat

<pci, pcj, pck,>: 1,576,425

...

Access signature Heat

Hot data stream profile Access signature profile

Figure 2. Access signature profile.



er
er-

ure
dif-
ure
ts for

to
ly

rlap
ot
e

d
n
s
h 2
n
s

ad/
as

les
ch

m

compare hot data stream profiles through their access signa-
tures. As discussed, eleven different temporal reference pro-
files (corresponding to increasing limits on the maximum
size of hot data streams) were gathered for each benchmark
input data set. The overlap percentage for each data point
reported in the graph shown in Figure 3 represents the aver-
age of all possible train-test permutations for the different
input data sets, excluding using the same data set as the test
and train profile. The termexact overlapis used to indicate
that access signatures from two different profiles were con-
sidered to represent the same profiled event only if they
were identical in terms of both the load/store PCs and the
order of these PCs. This metric is most relevant to optimiza-
tions such as prefetching, for which the order of data stream
references is important. With this comparison metric, box-
sim’s profiles are the most stable and 252.eon the least. Not
surprisingly, the graph shows that as the maximum hot data
stream size is increased, the exact overlap between different
profiles decreases as longer streams are less likely to have
access signatures that match exactly. For certain programs,
such as 175.vpr and 252.eon, the dropoff is fairly pro-
nounced, whereas for others it is more gradual. Most of the
dropoff occurs as the maximum stream length is increased
from 5 to 40, with little additional dropoff occurring as the
stream length is increased from 40 to 100. Closer examina-

tion of the profile data revealed that this is because long
hot data streams do not contribute substantially to the ov
all profile “heat”.

We wanted to estimate the impact of access signat
load/store PC order on matching hot data streams across
ferent program runs. To do this, we ignored access signat
load/store PC order and treated access signatures as se
matching purposes. We called thisset overlap and the
results are shown in Figure 4. This metric is most relevant
data layout optimizations such as clustering, that do not re
on the order of data stream element references. The ove
percentage metric is affected if high frequency events do n
appear in both the test and train profiles or if the relativ
weight of events is significantly different in the test an
train profile. Figure 4 confirms that the relative contributio
of different hot data streams to the overall profile i
extremely stable (especially for hot data streams of lengt
to 20) across the different profiles. In addition, compariso
with Figure 3 indicates that most important hot data stream
match (for e.g., see 252.eon) if the access signature lo
store PC order is ignored. Further, the decrease in overlap
longer hot data streams are included in the temporal profi
(maximum stream size is increased from 5 to 40) is mu
less significant when usingset overlapas the comparison
metric. With this comparison metric, 186.crafty and boxsi

Table 3: Benchmarks and input data sets.

Benchmark
Description

Inputs

175.vpr Performs placement and routing in
FPGAs (SPEC 2000)

Input 1: Place and route from SPEC test input
Input 2: Place and route from modified SPEC test input
Input 3: Place and route from modified SPEC test input

186.crafty Chess playing program (SPEC 2000) Input 1: game 1 from SPEC test input
Input 2: game 2 from SPEC test input
Input 3: game 3 from SPEC test input

252.eon Probabilistic ray tracer (SPEC 2000) Input 1: chair.cook from SPEC test input
Input 2: chair.kajiya from SPEC test input
Input 3: chair.rushmeier from SPEC test input
Input 4: chair.cook from SPEC train input

253.perlbmk Interpreter for the Perl scripting language
(SPEC 2000)

Input 1: modified perfect from SPEC train input
Input 2: modified scrabbl from SPEC train input
Input 3: modified diffmail from SPEC train input

boxedsim Event-driven simulation of spheres
bouncing in a box [5]

Input 1: 2 balls simulated for 100 msec
Input 2: 4 balls simulated for 300 msec
Input 3: 7 balls simulated for 500 msec

espresso Performs boolean function minimization Input 1: x2dn
Input 2: opa
Input 3: ti



set
na-

le
ap.
le
lap
s

have the most stable profiles and espresso the least. In addi-
tion, the difference between the most and least stable pro-
files is much less pronounced than the corresponding
difference in Figure 3.

From Figures 3 and 4 it appears that a large fraction of
the most important hot data streams have their data elements
referenced in the same order across different program runs
(especially for streams of length 2 to 20), while the rest have
their elements referenced in a different order. Hence, it
appears reasonable to investigate a comparison metric

where access signatures are first matched exactly and
matching is used for the remaining unmatched access sig
tures. We call thishybrid overlapand the results are shown
in Figure 5. The impact of hot data stream size on profi
overlap is smaller than in the case of exact and set overl
With this comparison metric, 175.vpr has the most stab
profile, and espresso the least, just as with the set over
metric. However, boxsim’s profile appears relatively les
stable than it did with the set overlap metric.

Figure 3. Exact overlap comparison of hot data stream profiles.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Maximum stream size

E
xa

ct
O

ve
rla

p

boxsim eon crafty espresso vpr perlbmk

Figure 4. Set overlap comparison of hot data stream profiles.

0

10
20

30

40
50

60

70

80
90

100

0 20 40 60 80 100 120

Maximum stream size

S
et

O
ve

rla
p

boxsim eon crafty espresso vpr perlbmk



rate
d
a

—
ta
to

six
nts
ndi-
e
nts
een
ly,
ed
4.3 Combining Temporal Data Reference Profiles
The next set of experiments examine the effect of com-

bining multiple train profiles and evaluating the resulting
synthesized profile. Fisher and Freudenberger tried three
different strategies—unscaled, scaled, and polling—for
combining branch profiles [11]. Scaled normalizes the exe-
cution profiles to give each data set equal total weight.
Unscaled simply adds the execution counts of the same
event in different profiles, giving more weight to longer run-
ning profiles. Polling, which gives one vote on branch direc-
tion to each profile, is not applicable to temporal data
reference profiles. They reported that polling performed
poorly and that scaled and unscaled were on average indis-
tinguishably close. We used both the scaled and unscaled
strategies to combine our temporal data reference profiles

(we used exact matching on access signatures to gene
the combined profile), but report results only for scale
since it was consistently better that unscaled, albeit by
very small amount (1–3% on average)

For each of the three different comparison strategies
exact, set, and hybrid—we report results for temporal da
reference profiles where the hot data streams were limited
a maximum size of twenty data elements. We compute
data points for each benchmark. The first three data poi
measure the average, best, and worst overlap between i
vidual train profiles and a test profile, excluding using th
same profile as train and test. The next three data poi
measure the average, best, and worst overlap betw
scaled train profiles and individual test profiles. Concrete
if a benchmark has four profiles: p1, p2, p3, p4. Then scal

Figure 5. Hybrid overlap comparison of hot data stream profiles.

0

10
20

30
40

50

60
70

80
90

100

0 20 40 60 80 100 120

Maximum stream size

H
yb

rid
O

ve
rla

p

boxsim eon crafty espresso vpr perlbmk

Figure 6. Exact overlap profile comparison (max. hot data stream size = 20).

0
20
40
60
80

100

boxs
im eon

cr
afty

esp
re

ss
o vp

r

perlb
m

k

ave
ra

ge

E
xa

ct
O

ve
rla

p

Average Best Worst Scaled-avrg Scaled-best Scaled-worst



ps
al
n,
eg-
er
ny
r-
e

am
is

it-
o-
s
on
he
ed
profiles p1p2p3, p1p2p4, p1p3p4, p2p3p4 were computed
and used as train profiles for p4, p3, p2, and p1 respectively.

The results for exact overlap comparison are shown in
Figure 6. Scaled profiles are on average slightly better than
individual profiles by around 4%. In addition, the difference
between the best and worst individual train profiles while
not always insignificant (18–20% for espresso, boxsim,
253.perlbmk), is much smaller than the difference reported
for branch profiles by Fisher and Freudenberger [11]. Using
scaled train profiles slightly reduces this variation. The
average profile overlap is around 60% when using scaled
train profiles. This suggests that a large fraction of impor-
tant hot data streams repeat across runs with the same data
element reference order. Closer examination of the profile
data indicates that these hot data streams that exactly match
are highly stable, with roughly 95% of these streams identi-
cal across all the different train profiles.

Figure 7 examines the effect of using set overlap to com-

pare profiles. The graph indicates consistently high overla
(over 90% in all cases), irrespective of whether individu
train profiles or scaled train profiles are used. In additio
the differences between the best and worst profiles are n
ligible. This suggests that for optimizations where the ord
of elements in a data stream is not important, practically a
train profile can be used to guide the optimization. Compa
ing this graph with Figure 6 suggests that almost all th
important hot data streams match across different progr
runs if the data element reference order within a stream
ignored.

Finally, Figure 8 shows a similarly plotted graph with
hybrid overlap as the comparison metric. Again, there is l
tle difference on average between using individual train pr
files or scaled train profiles. In addition, the difference
between the best and worst train profiles are around 10%
average, which is a smaller variation than in the case of t
exact overlap metric but a larger variation than observ

Figure 7. Set overlap profile comparison (max. hot data stream size = 20).

0
20
40
60
80

100

boxs
im eon

cr
afty

esp
re

ss
o vp

r

perlb
m

k

ave
ra

ge

S
et

O
ve

rla
p

Average Best Worst Scaled-avrg Scaled-best Scaled-worst

Figure 8. Hybrid overlap profile comparison (max. hot data stream size = 20).

0
20
40
60
80

100

boxs
im eon

cr
afty

esp
re

ss
o vp

r

perlb
m

k

ave
ra

ge

H
yb

rid
O

ve
rla

p

Average Best Worst Scaled-avrg Scaled-best Scaled-worst



h
ing

ain
a

ut
ta
the
tly

n-
s

le
not
a
till

f-
re

pre-
e
na-

ate
of

ite

v-
ble
ns
y
ng
ro-
es,
of
te-
t

ng
t

me
are
with the set overlap metric.

4.4 Impact on Optimization
The previous experiments compared and analyzed hot

data stream profiles from different runs of a program. While
the results appear encouraging, especially for hot data
streams that are smaller than twenty elements, the true test
is to explore the effectiveness of using a train profile to
drive an optimization.

We attempt to address this question by computing the
potential impact on cache miss rate of a prefetching scheme
based on hot data streams (we ignore misses that occur
when the data is prefetched, since these do not affect access
latency if the prefetch is scheduled sufficiently in advance).
While the details of this prefetching scheme is beyond the
scope of this paper, we briefly sketch how it works. It uses
prefetch arrays [16], and populates these arrays with point-
ers to hot data stream elements at runtime. All the load/store
PCs that are associated with any hot data stream are instru-
mented, and load/store PCs that correspond to the start of
any hot data stream have a prefetch array associated with
them. When the program executes any load/store instruction
that corresponds to the start of any hot data stream, the asso-
ciated set of prefetch arrays (possibly more than one since
multiple hot data streams may share the same start PC) are
examined and if none of them matches the current reference,
a fresh array is allocated (or an existing array is reused).
Subsequent references up to any load/store PC that ends a
hot data stream are recorded in this array. If on the other
hand a unique match is found, the remaining array elements
are prefetched. If multiple prefetch arrays match, subse-
quent references are used to distinguish between the arrays
until a unique match is found, or a predetermined limit is
exceeded. Saturating counters are used as a confidence
mechanism to avoid prefetching cold addresses that alias to
the same set of load/store PCs.

We simulated the effect of this prefetching scheme on
cache miss rate and Figure 9 shows preliminary results for
an 8K fully-associative cache with 64 byte blocks (we
scaled the cache size since we did not use the SPEC bench-

mark’s ref inputs). All miss rates are normalized wit
respect to the base cache miss rate. The Ideal prefetch
bar was computed using the test input to generate its tr
profile. The Expected prefetching bar was computed using
combined scaled profile that did not include the test inp
profile. Since the optimization depends on the hot da
stream element reference order to populate and use
prefetch arrays, only those hot data streams that exac
matched across all the individual train profiles used to sy
thesize the combined profile, had their load/store PC
instrumented. Most of the difference in results is attributab
to this decision, since the Ideal prefetching scenario was
limited in this manner and could prefetch all hot dat
streams. Nevertheless, using the combined train profile s
produced significant cache miss rate improvements.

5. Conclusions
This paper investigates the stability of temporal data re

erence profiles. We use hot data streams, which a
sequences of data references that frequently repeat, to re
sent a program’s temporal data reference profile. W
“name” each of these hot data streams by their access sig
ture, which is an ordered list of load/store PCs that gener
the hot data stream references. This permits comparison
hot data streams across different program runs, desp
changes in the addresses of the data objects referenced.

Experimental analysis of hot data stream profiles for se
eral benchmarks indicate that these profiles are fairly sta
across different program runs with the relative contributio
of different hot data streams to the overall profile varying b
only small amounts. Most important hot data streams belo
to one of two categories—those that appear in different p
gram runs with the same order of data element referenc
and those that appear in different runs with the same set
data elements referenced in a different order—and this ca
gory membership is highly predictable. In addition, for ho
data stream sizes of up to twenty elements (sufficiently lo
for cache-level optimizations), the fraction of important ho
data streams that appear in different runs with the sa
order of data element references is fairly large. These

Figure 9. Impact on prefetching optimization.

0
20
40
60
80

100

boxs
im eon

cr
afty

esp
re

ss
o vp

r

perlb
m

k

N
or

m
al

iz
ed

ca
ch

e
m

is
s

ra
te

Ideal prefetching

Expected prefetching



d

i-

r

g
s.”
c-

-

-

-

nt

n

e

o-

-
-

-

-

-

l

i-

le-
encouraging results for off-line cache-level optimizations
that depend on such temporal data reference profiles.
Finally, for optimizations where the order of data stream ref-
erences is important, combined train profiles should outper-
form individual train profiles by a small amount. On the
other hand, for optimizations that do not rely on data stream
reference order, any individual train profile should perform
as well as a combined train profile.

6. REFERENCES
[1] R. Bodik, R. Gupta, and M. L. Soffa. “Complete Removal

of Redundant Expressions.” InProceedings of the ACM
SIGPLAN’98 Conference on Programming Language De-
sign and Implementation, June 1998.

[2] R. Bodik, R. Gupta, and M. L. Soffa. “Load-Reuse Analy-
sis: Design and Evaluation.” InProceedings of the ACM
SIGPLAN’99 Conference on Programming Language De-
sign and Implementation, May 1999.

[3] B. Calder, D. Grunwald, and A. Srivastava. “The predict-
ability of branches in libraries.” InDigital WRL Technical
Report 95/6, Oct. 1995.

[4] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-con-
scious data placement.” InProceedings of the Eighth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIII) , pages 139-149, Oct. 1998.

[5] S. Chenney. “Controllable and scalable simulation for ani-
mation.”PhD. thesis, University of California at Berkeley,
2000.

[6] T. M. Chilimbi, and J. R. Larus. “Using generational gar-
bage collection to implement cache-conscious data place-
ment.” In Proceedings of the 1998 International
Symposium on Memory Management, Oct. 1998.

[7] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-con-
scious structure definition.” InProceedings of the ACM
SIGPLAN’99 Conference on Programming Language De-
sign and Implementation, May 1999.

[8] T. M. Chilimbi. “Efficient representations and abstractions
for quantifying and exploiting data reference locality.” To
appear inProceedings of the ACM SIGPLAN’01 Confer-
ence on Programming Language Design and Implementa-
tion, June 2001.

[9] C. Ding and K Kennedy. “Improving cache performance in
dynamic applications through data and computation reorga-
nization at run time.” InProceedings of the ACM SIG-
PLAN’99 Conference on Programming Language Design
and Implementation, pages 229-241, May 1999.

[10] P. T. Feller. “Value profiling for instructions and memory
locations.”M.S. thesis CS98-581, University of California
at San Diego, April 1998.

[11] J. A. Fisher and S. M. Freudenberger. “Predicting condi-
tional branch directions from previous runs of a program.”
In Proceedings of the Fifth International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems (ASPLOS V), pages 85-95, Oct. 1992.

[12] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder “Proce-
dure placement using temporal ordering information.” In
Proceedings of the 30th Annual ACM/IEEE International

Symposium on Microarchitecture,1997.
[13] R. Gupta, D. A. Berson, and J. Z. Fang. “Path profile guide

partial dead code elimination using predication.” InPro-
ceedings of the International Conference on Parallel Arch
tecture and Compilation Techniques (PACT),1997.

[14] A. M. Holler “Optimization for a superscalar out-of-order
machine.” InProceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture,1996.

[15] W. Hwu et al. “The Superblock: An effective technique fo
VLIW and superscalar compilation.” InJournal of Super-
computing, Kluwer Academic Publishers,pages 229-248,
1993.

[16] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetchin
technique for irregular accesses to linked data structure
In Symposium on High-Performance Computer Archite
ture, Jan.2000.

[17] T. Kistler and M. Franz. “Automated record layout for dy
namic data structures.” InDepartment of Information and
Computer Science, University of California at Irvine, Tech
nical Report 98-22,May 1998.

[18] T. Kistler and M. Franz. “Computing the similarity of pro-
filing data.” In Workshop on Profile and Feedback-Direct
ed Optimization,Oct. 1998.

[19] J. R. Larus and E. Schnarr. “EEL: Machine-Independe
Executable Editing.” InProceedings of the ACM SIG-
PLAN’95 Conference on Programming Language Desig
and Implementation, pages 291-300, 1995.

[20] S. A. Mahlke, D. C. Lin, W. Y. Chen, and R. E. Hank “Ef-
fective compiler support for predicated execution using th
hyperblock.” InProceedings of the 25th Annual ACM/IEEE
International Symposium on Microarchitecture,1992.

[21] C. G. Nevill-Manning and I. H. Witten. “Compression and
explanation using hierarchical grammars.” InThe Comput-
er Journal, vol. 40, pages 103-116, 1997.

[22] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incre-
mental hierarchy inference for compression.” InProceed-
ings of the Data Compression Conference (DCC’97), pages
3-11, 1997.

[23] G. Ramalingam. “Data flow frequency analysis.” InPro-
ceedings of the ACM SIGPLAN’96 Conference on Pr
gramming Language Design and Implementation, May
1996.

[24] S. Savari and C. Young. “Comparing and combining pro
files.” In Workshop on Profile and Feedback-Directed Op
timization,Nov. 1999.

[25] A. Srivastava and A. Eustace. “ATOM: A system for build
ing customized program analysis tools.” InProceedings of
the ACM SIGPLAN’94 Conference on Programming Lan
guage Design and Implementation, pages 196-205, May
1994.

[26] D. Truong, F. Bodin, and A. Seznec. “Improving cache be
havior of dynamically allocated data structures.” InPro-
ceedings of the International Conference on Paralle
Architecture and Compilation Techniques (PACT),1998.

[27] D. Wall. “Predicting program behavior using real or est
mated profiles.” InProceedings of the ACM SIGPLAN’91
Conference on Programming Language Design and Imp
mentation, pages 59-70, June 1991.


	1. Introduction
	2. Comparing Profiles
	Table 1: Example profiles

	P1
	250
	250
	250
	250
	P2
	1500
	500
	10
	0
	P3
	300
	150
	10
	0
	P4
	0
	0
	400
	450
	P5
	400
	500
	600
	0
	3. Representing Temporal Data Reference Profiles
	3.1 Hot Data Streams
	Table 2: Comparing profiles using different metrics.



	P1
	P2
	0.75
	0.75
	0.64
	25.43
	50
	P3
	0.75
	0.75
	0.69
	24.85
	52
	P4
	0.5
	0.5
	0.71
	48.33
	50
	P5
	0.75
	0.75
	0.86
	24.12
	75
	P2
	P1
	1
	1
	0.64
	1.15
	50
	P3
	1
	1
	0.99
	0.04
	90
	P4
	0.33
	0.01
	0
	98.31
	0
	P5
	1
	1
	0.62
	0.97
	52
	P3
	P1
	1
	1
	0.69
	0.95
	52
	P2
	1
	1
	0.99
	0.05
	90
	P4
	0.33
	0.02
	0.02
	96.47
	2
	P5
	1
	1
	0.68
	0.74
	62
	P4
	P1
	1
	1
	0.71
	1
	50
	P2
	0.5
	0.42
	0
	55.36
	0
	P3
	0.5
	0.42
	0.02
	54.36
	2
	P5
	0.5
	0.42
	0.45
	52.38
	40
	P5
	P1
	1
	1
	0.86
	0.43
	75
	P2
	1
	1
	0.62
	2.28
	52
	P3
	1
	1
	0.68
	1.35
	62
	P4
	0.33
	0.4
	0.45
	58.66
	40
	Figure 1. Temporal data reference representations and abstractions.
	3.2 Naming Hot Data Streams
	Figure 2. Access signature profile.

	4. Experimental Evaluation
	Table 3: Benchmarks and input data sets.


	175.vpr
	Performs placement and routing in FPGAs (SPEC 2000)
	Input 1: Place and route from SPEC test input
	Input 2: Place and route from modified SPEC test input
	Input 3: Place and route from modified SPEC test input
	186.crafty
	Chess playing program (SPEC 2000)
	Input 1: game 1 from SPEC test input
	Input 2: game 2 from SPEC test input
	Input 3: game 3 from SPEC test input
	252.eon
	Probabilistic ray tracer (SPEC 2000)
	Input 1: chair.cook from SPEC test input
	Input 2: chair.kajiya from SPEC test input
	Input 3: chair.rushmeier from SPEC test input
	Input 4: chair.cook from SPEC train input
	253.perlbmk
	Interpreter for the Perl scripting language (SPEC 2000)
	Input 1: modified perfect from SPEC train input
	Input 2: modified scrabbl from SPEC train input
	Input 3: modified diffmail from SPEC train input
	boxedsim
	Event-driven simulation of spheres bouncing in a box [5]
	Input 1: 2 balls simulated for 100 msec
	Input 2: 4 balls simulated for 300 msec
	Input 3: 7 balls simulated for 500 msec
	espresso
	Performs boolean function minimization
	Input 1: x2dn
	Input 2: opa
	Input 3: ti
	4.1 Experimental Methodology
	4.2 Comparing Temporal Data Reference Profiles
	Figure 3. Exact overlap comparison of hot data stream profiles.
	Figure 4. Set overlap comparison of hot data stream profiles.

	4.3 Combining Temporal Data Reference Profiles
	Figure 5. Hybrid overlap comparison of hot data stream profiles.
	Figure 6. Exact overlap profile comparison (max. hot data stream size = 20).
	Figure 7. Set overlap profile comparison (max. hot data stream size = 20).
	Figure 8. Hybrid overlap profile comparison (max. hot data stream size = 20).

	4.4 Impact on Optimization
	Figure 9. Impact on prefetching optimization.

	5. Conclusions
	6. REFERENCES
	[1] R. Bodik, R. Gupta, and M. L. Soffa. “Complete Removal of Redundant Expressions.” In Proceedi...
	[2] R. Bodik, R. Gupta, and M. L. Soffa. “Load-Reuse Analysis: Design and Evaluation.” In Proceed...
	[3] B. Calder, D. Grunwald, and A. Srivastava. “The predictability of branches in libraries.” In ...
	[4] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-conscious data placement.” In Proceeding...
	[5] S. Chenney. “Controllable and scalable simulation for animation.” PhD. thesis, University of ...
	[6] T. M. Chilimbi, and J. R. Larus. “Using generational garbage collection to implement cache-co...
	[7] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious structure definition.” In Proc...
	[8] T. M. Chilimbi. “Efficient representations and abstractions for quantifying and exploiting da...
	[9] C. Ding and K Kennedy. “Improving cache performance in dynamic applications through data and ...
	[10] P. T. Feller. “Value profiling for instructions and memory locations.” M.S. thesis CS98-581,...
	[11] J. A. Fisher and S. M. Freudenberger. “Predicting conditional branch directions from previou...
	[12] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder “Procedure placement using temporal orderi...
	[13] R. Gupta, D. A. Berson, and J. Z. Fang. “Path profile guided partial dead code elimination u...
	[14] A. M. Holler “Optimization for a superscalar out-of-order machine.” In Proceedings of the 29...
	[15] W. Hwu et al. “The Superblock: An effective technique for VLIW and superscalar compilation.”...
	[16] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetching technique for irregular accesses ...
	[17] T. Kistler and M. Franz. “Automated record layout for dynamic data structures.” In Departmen...
	[18] T. Kistler and M. Franz. “Computing the similarity of profiling data.” In Workshop on Profil...
	[19] J. R. Larus and E. Schnarr. “EEL: Machine-Independent Executable Editing.” In Proceedings of...
	[20] S. A. Mahlke, D. C. Lin, W. Y. Chen, and R. E. Hank “Effective compiler support for predicat...
	[21] C. G. Nevill-Manning and I. H. Witten. “Compression and explanation using hierarchical gramm...
	[22] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incremental hierarchy inference for com...
	[23] G. Ramalingam. “Data flow frequency analysis.” In Proceedings of the ACM SIGPLAN’96 Conferen...
	[24] S. Savari and C. Young. “Comparing and combining profiles.” In Workshop on Profile and Feedb...
	[25] A. Srivastava and A. Eustace. “ATOM: A system for building customized program analysis tools...
	[26] D. Truong, F. Bodin, and A. Seznec. “Improving cache behavior of dynamically allocated data ...
	[27] D. Wall. “Predicting program behavior using real or estimated profiles.” In Proceedings of t...


	On the Stability of Temporal Data Reference Profiles
	Trishul M. Chilimbi
	Microsoft Research
	One Microsoft Way
	Redmond, WA 98052
	trishulc@microsoft.com



