Appears in International Conference on Parallel Architectures and Compilation Techniques (PACT), Sept. 2001.

On the Stability of Temporal Data Reference Profiles

Trishul M. Chilimbi
Microsoft Research
One Microsoft Way
Redmond, WA 98052
trishulc@microsoft.com

Abstract by changing the data layout, rely primarily on profiles [4, 6,

Growing computer system complexity has made prograni, 9, 17, 26]. The success of many of these optimizations
optimization based solely on static analyses increasingly difdepends on access to accurate, fine-grain temporal data ref-
ficult. Consequently, many code optimizations incorporateerence information. Since static code analysis cannot pro-
information from program execution profiles. Most memoryvide this level of detail, these optimizations rely on temporal
system optimizations go further and rely primarily on pro- data reference profiles. For example, both Calder et. al [4],
files. This reliance on profiles makes off-line optimizationand Chilimbi and Larus [6], use the temporal relationship
effectiveness dependent on profile stability across multiplgraph (TRG) [12], which approximates a temporal data ref-
program runs. While code profiles such as basic block, edgegrence profile by maintaining weighted edges between data
and branch profiles, have been shown to satisfy this requirereferences that occur within a pre-selected reference dis-
ment, the stability of data reference profiles, especially temtance.
poral data reference profiles that are necessary for cache- This reliance on profiles makes the effectiveness of off-
level optimizations, has neither been studied nor establishedine optimizations, especially memory system optimizations,

This paper shows that temporal data reference profilesdependent on profile stability across multiple runs of the
expressed in terms of hot data streams, which are data refersame program with different inputs. The stability of code
ence sequences that frequently repeat, are quite stable; aprofiles, such as procedure, basic block, edge, and branch
encouraging result for memory optimization research. Mostprofiles, has been demonstrated [11, 27]. On the other hand,
hot data streams belong to one of two categories—those thahe stability of data reference profiles, especially temporal
appear in multiple runs with their data elements referenceddata reference profiles which are necessary for cache-level
in the same order, and those with the same set of elementgptimizations, has neither been studied nor established. This
referenced in a different order—and this category memberis particularly unfortunate since data layout optimizations
ship is extremely stable. In addition, the fraction of hot datathat target cache performance rely almost entirely on some
streams that belong to the first category is quite large. form of temporal data reference profile.
: The paper attempts to address this problem by investigat-
1. Introduction . i) ing the stability of temporal data reference profiles. In recent

Computer systems continue to grow in complexity both aesearch, Chilimbi describes a technique for efficiently com-
the architectural and mlcro-archﬁectural level. At the arch"puting hot data streams, which are sequences of data refer-
tectural level, multiple levels of high speed cache memorieg,ces that frequently repeat, from a program’s data reference
result in variable da_ta access times. At the mlc_ro—arch|tecfrace [8]. Since these hot data streams precisely capture the
tural level, speculation and out-of-order execution have gemnoral profile information needed by cache-level optimi-
large impact on program performance. This increasing, aiions, we use them to represent a program’s temporal data
machine complexity makes it harder to statically anticipat€eference profile. We “name” each of these hot data streams
and improve program performance. . by their access signature, which is an ordered list of the load/
~ To address this problem, many traditional code optimiza,re pCs that generate the hot data stream references. This
tions have evolved to incorporate profile information in the naming permits comparison of hot data streams across dif-

optimization analysis. For example, profiles are used Qgrent program runs, despite changes in the addresses of the
choose between several optimization plans based on thgyio objects referenced.

expected run-time benefit [1, 2, 13, 23], or to specify the

A . ; St Our experimental analysis of hot data stream profiles for
optimization scope by directing procedure inlining [14] or

! several of the SPECint2000 benchmarks, boxsim, a state-of-
scheduling [15, 20]. _ the-art graphics application [5], and espresso, a heap-inten-

While code optimizations use profiles to complementgjye poolean minimization program, indicate that these pro-
static program analysis, most memory system optimization§jjes are quite stable across different program runs with the

that attempt to improve a program’s data cache performancgative contributions of different hot data streams to the

overall profile varying by only small amounts. Most impor- Table 1: Example profiles
tant (i.e., very “hot”) hot data streams belong to one of two

categories—those that occur in different program runs with Profile | Event1 | Event 2 | Event 3| Event 4
the same order of data element references, and those that
appear in different runs with the same set of data elements P1 250 250 25(250

referenced in a different order—and this category member-

ship is highly stable. In addition, for hot data stream sizes of P2 1500 500 1)
up to twenty elements (sufficiently long for cache-level P3 300 150 1d 0
optimizations), the fraction of important hot data streams

that occur in different runs with data elements referenced in P4 0 0 400 45(
the same order is quite large. These are encouraging results

for off-line cache-level optimizations that depend on such PS5 400 509 60()

temporal data reference profiles. Finally, for optimizations
where the order of data stream references is important, com-minimum of its percentage contribution to the test and train
bined profiles from multiple training runs outperform indi- profile. The overlap percentage for two profiles is the sum
vidual train profiles by a small amount. On the other hand, if of these overlaps for all profile events. For example using
the optimization does not rely on the order of data stream the data in Table 1Overlappl, p2) = min(25, 74.6) +
references, then any individual train profile performs as well min(25, 24.9) +min(25, 0.5) +min(25, 0) = 50.4.
as a combined train profile. We use the example profiles shown in Table 1, which are
The rest of the paper is organized as follows. Section 2 taken from [24], to motivate our choice of comparison func-
surveys the different metrics used to compare profiles andtion for computing the stability of temporal data reference
motivates our choice of comparison function for temporal profiles. We applied Calder et al.’s static and dynamic cov-
data reference profiles. Section 3 describes our representaerage metric, Kistler and Franz’s similarity metric, Savari
tion of a program’s temporal data reference profile and dis- and Young's relative entropy metric, and Feller’s overlap
cusses how these profiles may be compared across differenpercentage metric to the example profiles. The results are
program runs despite changes in data object addresses. Seghown in Table 2. All comparison metrics agree on the best
tion 4 presents experimental results that demonstrate the statrain-test profile combination. Not surprisingly, static and
bility of temporal data reference profiles. dynamic coverage, which were devised to compare branch
. . rofiles, do a poor job of distinguishing between the pro-
2. Compa“”g F_>rof|Ies . Eles. The othe[r)three comparison functions mostly see?n to
T_he literature discusses severql methods for comparingy . agreement. Relative entropy and overlap percentage
profiles [3.' 10, 11, 12.3’ 24, 27]. While some of the compari- always agree on the relative ordering of the different train-
son fun_ctlons _descrlbed are ab_stract and can be usgd foEest profile combinations. Similarity and relative entropy are
comparing various types_ of profiles, they have been prima- fairly expensive to compute. On the other hand, overlap per-
rily applied to code profiles. Calder et al. compare branch centage is simple to compute and intuitively appears to be

profiles W']Ehba co;era?e function that they geflne as tTe PE™ the most satisfactory. Hence, we use overlap percentage for
centage of branches from a program run that were also exe'comparing temporal data reference profiles.

cuted during a training run [3]. Fisher and Freudenberger
combine branch direction predictability with branch density 3. Representing Temporal Data Reference

to compare branch profiles [11]. Wall uses a key matching Profiles

and weight matching metric to compare the top n elements Thjs section describes our representation of a program’s
of two profiles [27]. Kistler and Franz treat aritem profile temporal data reference profile. It discusses comparing data
as a vector im-dimensional space and define a similarity reference profiles across multiple program runs despite

metric that computes a measure of the geometric anglechanges in the addresses of the data objects referenced.
between the two profile vectors [18]. They use this similar-

ity metric in the context of a dynamic optimization system 3-1 Hot Data Streams

to decide when program behavior has changed sufficiently Irt] ?acentf research, (?hl(l;rr;bl d?scnbesba ﬁo”?paf; rtepre—
to warrant reoptimization. Savari and Young treat a fre- sentation of a program's data reterence behavior that per-

quency profile as a probability distribution and compute the mits precise temporal data reference profiles to be computed

relative entropy of the two probability distributions, which efficiently [8]. The process is summarized in Figure 1. He

. P uses an incremental, linear-time compression algorithm
is a measure of the inefficiency of assuming that the distri- '
bution is the train profile when it actually is the test profile called SEQUITUR [21, 22] to generate a context-free gram-

[24]. Feller uses an overlap percentage metric to comparemar from an c;nput datr?\ relferi:nce trahc'eh Th'tsh C%ntte xt—f;ee
value profiles [10]. The overlap for a profile event is the grammar produces a singie string, which 1S the data reter-

Table 2: Comparing profiles using different metrics.

Test profile | Train profile Cc?\ztrlacge ggc:glgce Similarity Er?tlsc:g; Overlap

P1 P2 0.75 0.75 0.64 25.43 5
P3 0.75 0.75 0.69 24.85 52
P4 0.5 0.5 0.71 48.33 50
P5 0.75 0.75 0.86 24.1p 75

P2 P1 1 1 0.64 1.15 50
P3 1 1 0.99 0.04 9(
P4 0.33 0.01 i 98.311 0
P5 1 1 0.62 0.97 52

P3 P1 1 1 0.69 0.95 52
P2 1 1 0.99 0.05 9(
P4 0.33 0.02 0.02 96.47 2
P5 1 1 0.68 0.74 62

P4 P1 1 1 0.71 1 50
P2 0.5 0.42 @ 55.36 0
P3 0.5 0.42 0.02 54.36 2
P5 0.5 0.42 0.4% 52.38 40

P5 P1 1 1 0.86 0.43 71
P2 1 1 0.62 2.28 52
P3 1 1 0.68 1.35 62
P4 0.33 0.4 0.4% 58.66 40

ence trace. The grammar can be represented as a DAG, abot data stream length is set at 100, since studies of several
shown in Figure 1. The DAG representation, called Whole programs yielded extremely few hot data streams of longer
Program Streams (WPS), can be efficiently analyzed (i.e., in length [8]. The “heat” threshold is set such that the resulting
linear time) to discover hot data streams, which are fre- hot data streams account for 90% of all data references (see
quently occurring data reference sequences. The hot datd8] for details), and thus are representative of the program’s
stream detection algorithm accepts three parameters—thalata reference behavior. Finally, these hot data streams can
minimum hot data stream length, the maximum hot data be combined with the WPS representation to construct a
stream length, and the threshold (product of data streamStream Flow Graph (SFG) as shown in Figure 1. The nodes
length and number of stream repetitions in the referenceof the SFG are hot data streams and weighted directed
trace) above which a data stream is deemed “hot”. The min- edges, src,dest, indicate the number of times an access to
imum hot data stream length is set at 2, and the maximumhot data streansrc is followed by an access to hot data

S ->BABB I
Hot data
A->bc stream
[abcbeabcabd —#- —> — [A v v—> .
Data B ->aA 5 analysig

reference trace Data reference grammar

Whole program

streams (WPS)
a b ¢

Entry 3
Stream
Flow ‘ Graph . a’
Grapha’ summarization _g abe

(SFG)
Hot data streams

Figure 1. Temporal data reference representations and abstractions.

pG: load a Hot data stream Heat Access signature Heat

<<pg, a>,<pg,b>,<pg,c>>: 1,576,425 <pG, PG, PG,>: 1,576,425

pc:store b >

pg:load ¢ Hot data stream profile Access signature profile

Figure 2. Access signature profile.

streamdest The hot data streams and the SFG capture tem-tiveness of train profiles in driving a hot data stream-based
poral relationships that are potentially more precise than the prefetching optimization.

TRG since they are not determined by an arbitrarily selected
temporal reference window size. In addition, the hot data
streams represent a compact summary of a program’s tem-
poral data reference relationships since these account fori
90% of all data references. For these reasons, we select
program'’s hot data stream profile, which consists of a list of

hot data st_reams along with their respective_ “heat” values, to roduce a data address trace along with information about
represent its tempora_l data reference proﬂle. E_ach elementgeap allocations. Vulcan is an executable instrumentation
of a hot data stream is a <PC, data object> pair, where theSystem similar to ATOM and EEL [19, 25]. The benchmarks

PC corresponds to the instruction that references the dat%ere run with a minimum of three different input data sets
object. Global data objects are represented by their address

h h biect ted betark add as described in Table 3. 253.perlomk’s train inputs were
whereas heap objects are represented bglart aodress scaled to generate a smaller data reference trace. Our choice
allocation_time pair, wherestart_addresscorresponds to

the beginni f the chunk of h located for th of benchmarks was influenced by the availability of multi-
€ beginning ot the chunk of heap memory aflocated for the ple input data sets that generated data reference traces on the
object, andallocation_timeis the value of a global counter

that is i ted aft hh locati Stack ref order of a few gigabytes. Stack references were filtered out
atis incremented after €ach heap aflocation (Stack re €"and do not appear in the trace. The heap allocation informa-
ences are filtered out prior to constructing the context-free

tion was processed to build a map of heap objects. A hea
grammar from the trace since these typically have good ref- lon was p 53 ! P b objects P

localit d v the f f data localit i object is a -start address allocation_time> pair as
(ra;qriezr;(t:iin(;():alyan are rarely the focus ot data locality opli- jeqcripeqd earlier, wherdlocation_timeis a global counter

that is incremented after each allocation. We used this nam-
3.2 Naming Hot Data Streams ing scheme to achieve maximum discrimination between
The hot data stream profile described in the previous sec-heap objects. Heap addresses in the trace were replaced by
tion cannot be compared across multiple program runs sincetheir corresponding heap object name. The abstracted data
data object addresses change from one run to another. Oneeference trace was fed to SEQUITUR, which produced a
possible solution to this problem and the approach taken incontext-free grammar. The DAG representation of this
this paper is to compare the load/store instructions that gen-grammar, called Whole Program Streams (WPS), was ana-
erate the hot data stream references instead. In other worddyzed to identify hot data streams (see Figure 1). For each
for comparison purposes, we represent a hot data stream bynput data set, eleven hot data stream profiles were col-
its access signature, which is an ordered list of instruction lected. These hot data stream profiles differed in the maxi-
PCs that reference the hot data stream objects (see Figure 2mum hot data stream size permitted (minimum size was set
While this naming scheme may introduce aliases, where theto 2 in all cases), which was varied from 5, 10, 20,..., 100.
same access signature corresponds to multiple hot datarhe hot data stream profiles were computed such that in
streams, any off-line data locality optimization cannot each case the hot data stream references represented 90% of
expect access to more precise hot data stream information. all program data references. Each of these hot data streams,
. . which were represented by their load/store PC access signa-
4. E_Xpe”men_tal EYa'Ua“O“ - ture, were written to a file along with their computed “heat”
This section investigates the stability of temporal data (,roquct of number of stream data references and stream
reference profiles using several benchmarks that were r“”repetition frequency). These hot data stream access signa-

with different input data sets. Further experiments explore 1o hrofiles were used to investigate the stability of the pro-
the differences between the best and worst training profllesgram,S temporal data reference profiles.

and consider the effect of combining different training pro- _ _
fles to synthesize a single representative train profile. 4.2 Comparing Temporal Data Reference Profiles
Finally, we present preliminary data that examines the effec- Figure 3 illustrates using the overlap percentage metric to

4.1 Experimental Methodology
The programs used in this study include several of the

PECint2000 benchmarks, boxsim, a state-of-the-art graph-

cs application [5], and espresso, a heap-intensive boolean
inimization program. The benchmarks (and the standard

libraries) were instrumented with Microsoft’s Vulcan tool to

Table 3: Benchmarks and input data sets.

Benchmark Description Inputs
175.vpr Performs placement and routing in |Input 1: Place and route from SPEC test input
FPGAs (SPEC 2000) Input 2: Place and route from modified SPEC test input

Input 3: Place and route from modified SPEC test input

186.crafty Chess playing program (SPEC 2000) Input 1: game 1 from SPEC test input
Input 2: game 2 from SPEC test input
Input 3: game 3 from SPEC test input

252.eon Probabilistic ray tracer (SPEC 2000) Input 1: chair.cook from SPEC test input
Input 2: chair.kajiya from SPEC test input
Input 3: chair.rushmeier from SPEC test input
Input 4: chair.cook from SPEC train input

253.perlbmk | Interpreter for the Perl scripting langudg@ut 1: modified perfect from SPEC train input
(SPEC 2000) Input 2: modified scrabbl from SPEC train input
Input 3: modified diffmail from SPEC train input

boxedsim Event-driven simulation of spheres |Input 1: 2 balls simulated for 100 msec
bouncing in a box [5] Input 2: 4 balls simulated for 300 msec
Input 3: 7 balls simulated for 500 msec
espresso Performs boolean function minimization Input 1: x2dn
Input 2: opa
Input 3: ti

compare hot data stream profiles through their access signation of the profile data revealed that this is because longer
tures. As discussed, eleven different temporal reference pro-hot data streams do not contribute substantially to the over-
files (corresponding to increasing limits on the maximum all profile “heat”.

size of hot data streams) were gathered for each benchmark We wanted to estimate the impact of access signature
input data set. The overlap percentage for each data pointoad/store PC order on matching hot data streams across dif-
reported in the graph shown in Figure 3 represents the aver-ferent program runs. To do this, we ignored access signature
age of all possible train-test permutations for the different load/store PC order and treated access signatures as sets for
input data sets, excluding using the same data set as the teshatching purposes. We called thiet overlapand the

and train profile. The ternexact overlags used to indicate results are shown in Figure 4. This metric is most relevant to
that access signatures from two different profiles were con- data layout optimizations such as clustering, that do not rely
sidered to represent the same profiled event only if they on the order of data stream element references. The overlap
were identical in terms of both the load/store PCs and the percentage metric is affected if high frequency events do not
order of these PCs. This metric is most relevant to optimiza- appear in both the test and train profiles or if the relative
tions such as prefetching, for which the order of data streamweight of events is significantly different in the test and
references is important. With this comparison metric, box- train profile. Figure 4 confirms that the relative contribution
sim’s profiles are the most stable and 252.eon the least. Notof different hot data streams to the overall profile is
surprisingly, the graph shows that as the maximum hot dataextremely stable (especially for hot data streams of length 2
stream size is increased, the exact overlap between differento 20) across the different profiles. In addition, comparison
profiles decreases as longer streams are less likely to havewith Figure 3 indicates that most important hot data streams
access signatures that match exactly. For certain programsmatch (for e.g., see 252.eon) if the access signature load/
such as 175.vpr and 252.eon, the dropoff is fairly pro- store PC order is ignored. Further, the decrease in overlap as
nounced, whereas for others it is more gradual. Most of the longer hot data streams are included in the temporal profiles
dropoff occurs as the maximum stream length is increased(maximum stream size is increased from 5 to 40) is much
from 5 to 40, with little additional dropoff occurring as the less significant when usinget overlapas the comparison
stream length is increased from 40 to 100. Closer examina-metric. With this comparison metric, 186.crafty and boxsim

100

Exact Overlap

—e— boxsim —m—eon —a— crafty espresso —x— wpr —=— perlbmk

0 20 40 60 80 100 120

Maximum stream size

Figure 3. Exact overlap comparison of hot data stream profiles.

have the most stable profiles and espresso the least. In addiwhere access signatures are first matched exactly and set
tion, the difference between the most and least stable pro-matching is used for the remaining unmatched access signa-
files is much less pronounced than the correspondingtures. We call thiswybrid overlapand the results are shown

difference in Figure 3.

in Figure 5. The impact of hot data stream size on profile

From Figures 3 and 4 it appears that a large fraction of overlap is smaller than in the case of exact and set overlap.
the most important hot data streams have their data element§Vith this comparison metric, 175.vpr has the most stable
referenced in the same order across different program runsprofile, and espresso the least, just as with the set overlap
(especially for streams of length 2 to 20), while the rest have metric. However, boxsim’s profile appears relatively less
their elements referenced in a different order. Hence, it stable than it did with the set overlap metric.
appears reasonable to investigate a comparison metric

100
90
80
70
60
50
40
30
20
10

Set Overlap

WW
Fk‘i

‘—o—boxsim —m—eon —a— crafty espresso —k— vpr —=— perlbmk ‘

0 20 40 60 80 100 120

Maximum stream size

Figure 4. Set overlap comparison of hot data stream profiles.

—e— boxsim —m—eon —a— crafty espresso —x— wpr —=— perlbmk

100
90 +
80 A A
70 - >
60
50
40
30
20
10

0 ‘ T T T T
0 20 40 60 80 100 120

Hybrid Overlap

Maximum stream size

Figure 5. Hybrid overlap comparison of hot data stream profiles.

4.3 Combining Temporal Data Reference Profiles (we used exact matching on access signatures to generate
The next set of experiments examine the effect of com- the combined profile), but report results only for scaled
bining multiple train profiles and evaluating the resulting since it was consistently better that unscaled, albeit by a

synthesized profile. Fisher and Freudenberger tried threevery small amount (1-3% on average)

different strategies—unscaled, scaled, and polling—for For each of the three different comparison strategies—
combining branch profiles [11]. Scaled normalizes the exe- exact, set, and hybrid—we report results for temporal data
cution profiles to give each data set equal total weight. reference profiles where the hot data streams were limited to
Unscaled simply adds the execution counts of the samea maximum size of twenty data elements. We compute six
event in different profiles, giving more weight to longer run- data points for each benchmark. The first three data points
ning profiles. Polling, which gives one vote on branch direc- measure the average, best, and worst overlap between indi-
tion to each profile, is not applicable to temporal data vidual train profiles and a test profile, excluding using the
reference profiles. They reported that polling performed same profile as train and test. The next three data points
poorly and that scaled and unscaled were on average indismeasure the average, best, and worst overlap between
tinguishably close. We used both the scaled and unscaledscaled train profiles and individual test profiles. Concretely,
strategies to combine our temporal data reference profilesif a benchmark has four profiles: p1, p2, p3, p4. Then scaled

@ Average W Best OWorst [0 Scaled-avrg B Scaled-best @ Scaled-worst
100
Q.
S 80
g 60 -
+— 40 B
3
L|>j 20 1
O _
. Q o) $ W+ 2
s & &S R
& Q &

Figure 6. Exact overlap profile comparison (max. hot data stream size = 20).

M@ Average B Best O0Worst O Scaled-avrg B Scaled-best @ Scaled-worst
100 +

g 80 — — — — — 5
o 60 1 — — — — — 5
>
O 40 — — — — — 5
S 20 — — — — — 5

0 . |

S+ ¢ @ ¥ <
S X N v

Figure 7. Set overlap profile comparison (max. hot data stream size = 20).

profiles p1p2p3, plp2p4, plp3p4, p2p3p4 were computedpare profiles. The graph indicates consistently high overlaps
and used as train profiles for p4, p3, p2, and p1 respectively.(over 90% in all cases), irrespective of whether individual
The results for exact overlap comparison are shown in train profiles or scaled train profiles are used. In addition,
Figure 6. Scaled profiles are on average slightly better thanthe differences between the best and worst profiles are neg-
individual profiles by around 4%. In addition, the difference ligible. This suggests that for optimizations where the order
between the best and worst individual train profiles while of elements in a data stream is not important, practically any
not always insignificant (18-20% for espresso, boxsim, train profile can be used to guide the optimization. Compar-
253.perlbmk), is much smaller than the difference reported ing this graph with Figure 6 suggests that almost all the
for branch profiles by Fisher and Freudenberger [11]. Using important hot data streams match across different program
scaled train profiles slightly reduces this variation. The runs if the data element reference order within a stream is
average profile overlap is around 60% when using scaledignored.
train profiles. This suggests that a large fraction of impor- Finally, Figure 8 shows a similarly plotted graph with
tant hot data streams repeat across runs with the same dathybrid overlap as the comparison metric. Again, there is lit-
element reference order. Closer examination of the profile tle difference on average between using individual train pro-
data indicates that these hot data streams that exactly matcliles or scaled train profiles. In addition, the differences
are highly stable, with roughly 95% of these streams identi- between the best and worst train profiles are around 10% on
cal across all the different train profiles. average, which is a smaller variation than in the case of the
Figure 7 examines the effect of using set overlap to com- exact overlap metric but a larger variation than observed

@ Average B Best O0Worst O Scaled-avrg B Scaled-best @ Scaled-worst
o~ 100
S 80 -
g 60 |
- 40
=3 20
T 0 -
& Q o) $ - Q
O.@\ o ()(5@ @é’ K N Q}fz@
Q Q &)
& <Q >

Figure 8. Hybrid overlap profile comparison (max. hot data stream size = 20).

[
I 100
5 80
é) 60 @ Ideal prefetching
o 40 1 W Expected prefetching
S 20
© 0
°
N Q Q o Q& \E
g & & o &) *Q@
= A Q Q
5 & Q
z
Figure 9. Impact on prefetching optimization.
with the set overlap metric. mark’s ref inputs). All miss rates are normalized with

respect to the base cache miss rate. The Ideal prefetching
bar was computed using the test input to generate its train
profile. The Expected prefetching bar was computed using a

the results appear encouraging, especially for hot datacombined scaled profile that did not include the test input

streams that are smaller than twenty elements, the true tesPtrOf'le' Sllnce t:\e ?ptlmlzatloz detpends (I)nt the cTOt da:ﬁ
is to explore the effectiveness of using a train profile to stream element retérence order to populate ‘and use the

drive an optimization prefetch arrays, only those hot data streams that exactly

We attempt to address this question by computing the matched across all the individual train profiles used to syn-

potential impact on cache miss rate of a prefetching schemtheSlze the combined profile, had their load/store PCs

based on hot data streams (we ignore misses that OCCUIlnstrumented. Most of the difference in results is attributable
when the data is prefetched, since these do not affect acces t.his dgcisign, since the Ideal prefetching scenario was not
latency if the prefetch is scheduled sufficiently in advance). Imited in this manner ar_1d could prefetch a_ll hot_datq
While the details of this prefetching scheme is beyond the streams. N(lave.r.theless, usmg_the combmed train profile still
scope of this paper, we briefly sketch how it works. It uses produced significant cache miss rate improvements.
prefetch arrays [16], and populates these arrays with point-5 Conclusions

ers to hot data stream elem_ents at runtime. All the Ioad(store This paper investigates the stability of temporal data ref-
PCs that are associated with any hot data stream are instrugrence profiles. We use hot data streams, which are

mented, and load/store PCs that correspond to the start okequences of data references that frequently repeat, to repre-
any hot data stream have a prefetch array associated withgepnt g program’s temporal data reference profile. We
them. When the program executes any load/store instructionsname” each of these hot data streams by their access signa-
that corresponds to the start of any hot data stream, the assopre, which is an ordered list of load/store PCs that generate
ciated set of prefetch arrays (possibly more than one sincethe not data stream references. This permits comparison of
multiple hot data streams may share the same start PC) arg,qt gata streams across different program runs, despite
examined and if none of them matches the current referencechanges in the addresses of the data objects referenced.
a fresh array is allocated (or an existing array is reused). Experimental analysis of hot data stream profiles for sev-
Subsequent references up to any load/store PC that ends @ra| henchmarks indicate that these profiles are fairly stable
hot data stream are recorded in this array. If on the other 5¢ross different program runs with the relative contributions
hand a unique match is found, the remaining array elementsys gifferent hot data streams to the overall profile varying by
are prefetched. If multiple prefetch arrays match, subse- only small amounts. Most important hot data streams belong
quent references are used to distinguish between the arrayg, one of two categories—those that appear in different pro-
until a unique match is found, or a predetermined limit is gram runs with the same order of data element references,
exceeded. Saturating counters are used as a confidencgng those that appear in different runs with the same set of
mechanism to avoid prefetching cold addresses that alias tQjata elements referenced in a different order—and this cate-
the same set of load/store PCs. gory membership is highly predictable. In addition, for hot
We simulated the effect of this prefetching scheme on gata stream sizes of up to twenty elements (sufficiently long
cache miss rate and Figure 9 shows preliminary results forfor cache-level optimizations), the fraction of important hot
an 8K fully-associative cache with 64 byte blocks (We gata streams that appear in different runs with the same
scaled the cache size since we did not use the SPEC benchyrger of data element references is fairly large. These are

4.4 Impact on Optimization
The previous experiments compared and analyzed hot

data stream profiles from different runs of a program. While

encouraging results for off-line cache-level optimizations
that depend on such temporal data reference profiles.[13]
Finally, for optimizations where the order of data stream ref-
erences is important, combined train profiles should outper-
form individual train profiles by a small amount. On the
other hand, for optimizations that do not rely on data stream
reference order, any individual train profile should perform
as well as a combined train profile. [15]

6. REFERENCES

[1] R. Bodik, R. Gupta, and M. L. Soffa. “Complete Removal
of Redundant Expressions.” IRroceedings of the ACM
SIGPLAN’98 Conference on Programming Language De-
sign and Implementatiodune 1998.

[2] R. Bodik, R. Gupta, and M. L. Soffa. “Load-Reuse Analy-
sis: Design and Evaluation.” IRroceedings of the ACM
SIGPLAN'99 Conference on Programming Language De-
sign and ImplementatigiMay 1999.

[3] B. Calder, D. Grunwald, and A. Srivastava. “The predict-
ability of branches in libraries.” IDigital WRL Technical
Report 95/6Oct. 1995.

[4] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-con-
scious data placement.” Proceedings of the Eighth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIIl), pages 139-149, Oct. 1998.

[5] S. Chenney. “Controllable and scalable simulation for ani-
mation.” PhD. thesis, University of California at Berkeley
2000.

[6] T. M. Chilimbi, and J. R. Larus. “Using generational gar-
bage collection to implement cache-conscious data place-
ment.” In Proceedings of the 1998 International
Symposium on Memory Managemedtt. 1998.

[7] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-con-
scious structure definition.” IfProceedings of the ACM
SIGPLAN’99 Conference on Programming Language De-
sign and ImplementatigiMay 1999.

[8] T. M. Chilimbi. “Efficient representations and abstractions
for quantifying and exploiting data reference locality.” To
appear inProceedings of the ACM SIGPLAN’'01 Confer-
ence on Programming Language Design and Implementa-
tion, June 2001.

[9] C. Ding and K Kennedy. “Improving cache performance in
dynamic applications through data and computation reorga-
nization at run time.” InProceedings of the ACM SIG-
PLAN’'99 Conference on Programming Language Design
and Implementatigrpages 229-241, May 1999.

[10] P.T. Feller. “Value profiling for instructions and memory
locations.”M.S. thesis CS98-581, University of California
at San DiegpApril 1998.

[11] J. A. Fisher and S. M. Freudenberger. “Predicting condi-
tional branch directions from previous runs of a program.”
In Proceedings of the Fifth International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems (ASPLOS, gages 85-95, Oct. 1992.

[12] N.Gloy, T. Blackwell, M. D. Smith, and B. Calder “Proce-
dure placement using temporal ordering information.” In
Proceedings of the 30th Annual ACM/IEEE International

[14]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Symposium on Microarchitectur£997.

R. Gupta, D. A. Berson, and J. Z. Fang. “Path profile guided
partial dead code elimination using predication.”Rno-
ceedings of the International Conference on Parallel Archi-
tecture and Compilation Techniques (PACI997.

A. M. Holler “Optimization for a superscalar out-of-order
machine.” InProceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitectufe96.

W. Hwu et al. “The Superblock: An effective technique for
VLIW and superscalar compilation.” ldournal of Super-
computing, Kluwer Academic Publishersges 229-248,
1993.

M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetching
technique for irregular accesses to linked data structures.”
In Symposium on High-Performance Computer Architec-
ture, Jan.2000.

T. Kistler and M. Franz. “Automated record layout for dy-
namic data structures.” IBepartment of Information and
Computer Science, University of California at Irvine, Tech-
nical Report 98-22May 1998.

T. Kistler and M. Franz. “Computing the similarity of pro-
filing data.” In Workshop on Profile and Feedback-Direct-
ed OptimizationQct. 1998.

J. R. Larus and E. Schnarr. “EEL: Machine-Independent
Executable Editing.” InProceedings of the ACM SIG-
PLAN’95 Conference on Programming Language Design
and Implementatigrpages 291-300, 1995.

S. A. Mahlke, D. C. Lin, W. Y. Chen, and R. E. Hank “Ef-
fective compiler support for predicated execution using the
hyperblock.” InProceedings of the 25th Annual ACM/IEEE
International Symposium on Microarchitectufe92.

C. G. Nevill-Manning and I. H. Witten. “Compression and
explanation using hierarchical grammars."The Comput-

er Journal vol. 40, pages 103-116, 1997.

C. G. Nevill-Manning and I. H. Witten. “Linear-time, incre-
mental hierarchy inference for compression.”Rroceed-
ings of the Data Compression Conference (DCC@apes
3-11, 1997.

G. Ramalingam. “Data flow frequency analysis.” Bro-
ceedings of the ACM SIGPLAN'96 Conference on Pro-
gramming Language Design and Implementatidhay
1996.

S. Savari and C. Young. “Comparing and combining pro-
files.” In Workshop on Profile and Feedback-Directed Op-
timization,Nov. 1999.

A. Srivastava and A. Eustace. “ATOM: A system for build-
ing customized program analysis tools.”Pnoceedings of
the ACM SIGPLAN’94 Conference on Programming Lan-
guage Design and Implementatiopages 196-205, May
1994.

D. Truong, F. Bodin, and A. Seznec. “Improving cache be-
havior of dynamically allocated data structures.”Rno-
ceedings of the International Conference on Parallel
Architecture and Compilation Techniques (PACI998.

D. Wall. “Predicting program behavior using real or esti-
mated profiles.” InProceedings of the ACM SIGPLAN’91
Conference on Programming Language Design and Imple-
mentation pages 59-70, June 1991.

	1. Introduction
	2. Comparing Profiles
	Table 1: Example profiles

	P1
	250
	250
	250
	250
	P2
	1500
	500
	10
	0
	P3
	300
	150
	10
	0
	P4
	0
	0
	400
	450
	P5
	400
	500
	600
	0
	3. Representing Temporal Data Reference Profiles
	3.1 Hot Data Streams
	Table 2: Comparing profiles using different metrics.

	P1
	P2
	0.75
	0.75
	0.64
	25.43
	50
	P3
	0.75
	0.75
	0.69
	24.85
	52
	P4
	0.5
	0.5
	0.71
	48.33
	50
	P5
	0.75
	0.75
	0.86
	24.12
	75
	P2
	P1
	1
	1
	0.64
	1.15
	50
	P3
	1
	1
	0.99
	0.04
	90
	P4
	0.33
	0.01
	0
	98.31
	0
	P5
	1
	1
	0.62
	0.97
	52
	P3
	P1
	1
	1
	0.69
	0.95
	52
	P2
	1
	1
	0.99
	0.05
	90
	P4
	0.33
	0.02
	0.02
	96.47
	2
	P5
	1
	1
	0.68
	0.74
	62
	P4
	P1
	1
	1
	0.71
	1
	50
	P2
	0.5
	0.42
	0
	55.36
	0
	P3
	0.5
	0.42
	0.02
	54.36
	2
	P5
	0.5
	0.42
	0.45
	52.38
	40
	P5
	P1
	1
	1
	0.86
	0.43
	75
	P2
	1
	1
	0.62
	2.28
	52
	P3
	1
	1
	0.68
	1.35
	62
	P4
	0.33
	0.4
	0.45
	58.66
	40
	Figure 1. Temporal data reference representations and abstractions.
	3.2 Naming Hot Data Streams
	Figure 2. Access signature profile.

	4. Experimental Evaluation
	Table 3: Benchmarks and input data sets.

	175.vpr
	Performs placement and routing in FPGAs (SPEC 2000)
	Input 1: Place and route from SPEC test input
	Input 2: Place and route from modified SPEC test input
	Input 3: Place and route from modified SPEC test input
	186.crafty
	Chess playing program (SPEC 2000)
	Input 1: game 1 from SPEC test input
	Input 2: game 2 from SPEC test input
	Input 3: game 3 from SPEC test input
	252.eon
	Probabilistic ray tracer (SPEC 2000)
	Input 1: chair.cook from SPEC test input
	Input 2: chair.kajiya from SPEC test input
	Input 3: chair.rushmeier from SPEC test input
	Input 4: chair.cook from SPEC train input
	253.perlbmk
	Interpreter for the Perl scripting language (SPEC 2000)
	Input 1: modified perfect from SPEC train input
	Input 2: modified scrabbl from SPEC train input
	Input 3: modified diffmail from SPEC train input
	boxedsim
	Event-driven simulation of spheres bouncing in a box [5]
	Input 1: 2 balls simulated for 100 msec
	Input 2: 4 balls simulated for 300 msec
	Input 3: 7 balls simulated for 500 msec
	espresso
	Performs boolean function minimization
	Input 1: x2dn
	Input 2: opa
	Input 3: ti
	4.1 Experimental Methodology
	4.2 Comparing Temporal Data Reference Profiles
	Figure 3. Exact overlap comparison of hot data stream profiles.
	Figure 4. Set overlap comparison of hot data stream profiles.

	4.3 Combining Temporal Data Reference Profiles
	Figure 5. Hybrid overlap comparison of hot data stream profiles.
	Figure 6. Exact overlap profile comparison (max. hot data stream size = 20).
	Figure 7. Set overlap profile comparison (max. hot data stream size = 20).
	Figure 8. Hybrid overlap profile comparison (max. hot data stream size = 20).

	4.4 Impact on Optimization
	Figure 9. Impact on prefetching optimization.

	5. Conclusions
	6. REFERENCES
	[1] R. Bodik, R. Gupta, and M. L. Soffa. “Complete Removal of Redundant Expressions.” In Proceedi...
	[2] R. Bodik, R. Gupta, and M. L. Soffa. “Load-Reuse Analysis: Design and Evaluation.” In Proceed...
	[3] B. Calder, D. Grunwald, and A. Srivastava. “The predictability of branches in libraries.” In ...
	[4] B. Calder, C. Krintz, S. John, and T. Austin. “Cache-conscious data placement.” In Proceeding...
	[5] S. Chenney. “Controllable and scalable simulation for animation.” PhD. thesis, University of ...
	[6] T. M. Chilimbi, and J. R. Larus. “Using generational garbage collection to implement cache-co...
	[7] T. M. Chilimbi, B. Davidson, and J. R. Larus. “Cache-conscious structure definition.” In Proc...
	[8] T. M. Chilimbi. “Efficient representations and abstractions for quantifying and exploiting da...
	[9] C. Ding and K Kennedy. “Improving cache performance in dynamic applications through data and ...
	[10] P. T. Feller. “Value profiling for instructions and memory locations.” M.S. thesis CS98-581,...
	[11] J. A. Fisher and S. M. Freudenberger. “Predicting conditional branch directions from previou...
	[12] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder “Procedure placement using temporal orderi...
	[13] R. Gupta, D. A. Berson, and J. Z. Fang. “Path profile guided partial dead code elimination u...
	[14] A. M. Holler “Optimization for a superscalar out-of-order machine.” In Proceedings of the 29...
	[15] W. Hwu et al. “The Superblock: An effective technique for VLIW and superscalar compilation.”...
	[16] M. Karlsson, F. Dahlgren, and P. Stenstrom. “A prefetching technique for irregular accesses ...
	[17] T. Kistler and M. Franz. “Automated record layout for dynamic data structures.” In Departmen...
	[18] T. Kistler and M. Franz. “Computing the similarity of profiling data.” In Workshop on Profil...
	[19] J. R. Larus and E. Schnarr. “EEL: Machine-Independent Executable Editing.” In Proceedings of...
	[20] S. A. Mahlke, D. C. Lin, W. Y. Chen, and R. E. Hank “Effective compiler support for predicat...
	[21] C. G. Nevill-Manning and I. H. Witten. “Compression and explanation using hierarchical gramm...
	[22] C. G. Nevill-Manning and I. H. Witten. “Linear-time, incremental hierarchy inference for com...
	[23] G. Ramalingam. “Data flow frequency analysis.” In Proceedings of the ACM SIGPLAN’96 Conferen...
	[24] S. Savari and C. Young. “Comparing and combining profiles.” In Workshop on Profile and Feedb...
	[25] A. Srivastava and A. Eustace. “ATOM: A system for building customized program analysis tools...
	[26] D. Truong, F. Bodin, and A. Seznec. “Improving cache behavior of dynamically allocated data ...
	[27] D. Wall. “Predicting program behavior using real or estimated profiles.” In Proceedings of t...

	On the Stability of Temporal Data Reference Profiles
	Trishul M. Chilimbi
	Microsoft Research
	One Microsoft Way
	Redmond, WA 98052
	trishulc@microsoft.com

