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ABSTRACT
We present a new polynomial-time randomized algorithm for
discovering affine equalities involving variables in a program.
The key idea of the algorithm is to execute a code fragment
on a few random inputs, but in such a way that all paths
are covered on each run. This makes it possible to rule out
invalid relationships even with very few runs.

The algorithm is based on two main techniques. First,
both branches of a conditional are executed on each run and
at joint points we perform an affine combination of the join-
ing states. Secondly, in the branches of an equality condi-
tional we adjust the data values on the fly to reflect the truth
value of the guarding boolean expression. This increases the
number of affine equalities that the analysis discovers.

The algorithm is simpler to implement than alternative
deterministic versions, has better computational complexity,
and has an extremely small probability of error for even a
small number of runs. This algorithm is an example of how
randomization can provide a trade-off between the cost and
complexity of program analysis, and a small probability of
unsoundness.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs; F.3.2
[Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—Program analysis
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1. INTRODUCTION
In this paper, we take a fresh look at program analysis and

explore what can be learned about a program by running it
on a small number of input values. At first sight, the answer
appears to be discouraging. After all, we know that testing is
only as good as the coverage of the test cases, and that even
loop-free programs have an exponential number of paths.

The problem is that with a small number of inputs we
cannot cover the entire program. This is because at each
branching point we make a binary decision: if the decision
variable has value 0 we take one path and if it has value 1
we take the other. But what if we relax the semantics of the
program and take a “middle” path instead? For example,
we could take 30% of one path and 70% of the other. This
means that we execute both paths, and at the join point we
combine the two values for each variable using a factor 30/70
(i.e., the value of variable x after the join is 0.3×x1+0.7×x2

where x1 and x2 are the values on the joining branches).
This gives us a continuum of choices at each branch, among
which we choose randomly, with the overall effect that each
such “run” of the program involves all of the paths.

It is not obvious that such a contrived execution has much
in common with a real run of the program. However, we
prove in this paper that this strategy captures most of the
affine relationships among variables at any point in a pro-
gram. An affine relationship among variables xi (i = 1 . . n)
is a relationship of the form

Pn
i=1 αixi + c = 0, where

αi (i = 1..n) and c are some constants. Several classical
data flow analysis problems can be modeled as the problem
of detecting affine relationships among variables. Exam-
ples are: constant propagation (such as x = 2), discovery
of symbolic constants (such as x = 5 × N + 1), detection
of common sub-expressions. Several loop invariant compu-
tations and loop induction variables can also be identified
by detecting affine relationships. Translation validation [11,
10] also requires checking the equivalence of variables in two
versions of a program before and after optimization.

Consider, for example, the program shown in Figure 1 (ig-
noring for the moment the annotations shown on the side).
Of the two assertions at the end of the program, the first
is true on all four paths, and the second is true on three
of them (it is false when the first conditional is false and
the second is true). Regular testing would have to exercise
that precise path to avoid inferring that the second equality

1



holds. Instead, we propose to use a non-standard execution
model. At branches we proceed on both the true and false
branch. At joins we choose a random weight w, and we use
it to combine the values v1 and v2 of variable v in the two
branches, as follows: w×v1+(1−w)×v2. In the example, all
variables are dead on entry, so we start the execution with
some arbitrary values (shown as ∗ in the figure). We use the
random weights w1 = 5 for the first branch and w2 = −3
for the second branch. We can then verify easily that the
resulting state satisfies the first assertion but does not sat-
isfy the second. Thus, in one run of the program we have
noticed that one of the exponentially many paths breaks the
invariant.

The price for the simplicity of this analysis is that some-
times it may be unsound, meaning that it may incorrectly
claim that a relationship holds, even when there are execu-
tion paths on which the relationship does not hold. However,
we prove that the probability that this happens can be made
infinitesimally small, so that for practical purposes we can
assume that the analysis is a sound one. A close analysis of
our example shows that there are quite a few choices for w1

and w2 that would make it appear that the second assertion
also holds (precisely those when either w1 = 1 or w2 = 0). If
the random choice of weights were restricted to 0 or 1 (that
is, those modeling actual executions in the program) then
the probability of unsound results in one run would be 3

4
in

this case, or 2n−1
2n worst case in general for a program of size

n. However, if we relax the choice of weights and let w1 and
w2 be 32-bit numbers, there are 233−1 choices for which we
obtain incorrect results. Since the total number of choices
for choosing w1 and w2 are 264, the probability of obtaining
an unsound conclusion is less than 2−31.

If we try to discover relationships by analyzing the values
of the variables, we may draw incorrect conclusions. For
example, in Figure 1, it may appear that a = −4 is an in-
variant at the end of the program, which is incorrect. To
avoid this problem, we execute the program several times
and then look for common relationships among all those ex-
ecutions. A close analysis of our example shows that if we
execute the program once more, the probability of a evalu-
ating to −4 again is precisely the probability that we choose
the random weight w1 to be 5 again, which is equal to 2−32,
if the weights are 32-bit numbers.

There are numerous algorithms in the literature [2, 5, 9]
that can verify or discover affine relationships. Our pro-
posed algorithm differs from these in several respects. It is
simpler to implement since it resembles an interpreter, and
does not involve complex computations of convex hulls [5]
or affine unions of spaces [9]. Our algorithm can be wrong
on rare occasions, but by repeated runs we can reduce the
probability of failure to a negligible value. Finally, the in-
ferred relationships are represented implicitly in the form
of all the linear relationships that the set of runs satisfies.
However, the information is easy to extract when needed,
and we can quickly answer questions about whether a cer-
tain relationship holds by simply checking whether all runs
satisfy that relationship.

In contrast to the simplicity of the algorithm, the for-
mal proofs that the soundness probability is high are subtle,
as is usually the case with randomized algorithms. In this
paper we present the formal proofs for the case when the
program involves only linear computations. We discuss first
how the algorithm handles basic control-flow elements such

a = *, b =*, c = *, d = *

T F

a := 0; b := 1; a := 1; b := 0;

c := b – a; d := 1 – 2b;

assert (c + d = 0); assert (c = a + 1)

a = -4, b = 5, c = *, d= *

a = -4, b = 5, c = -39, d = 39 

c := 2a + b; d := b - 2;

a = 1, b = 0, c = *, d = *a = 0, b = 1, c = *, d = *

a = -4, b = 5, c = -3, d = 3a = -4, b = 5, c = 9, d = -9

T F

w1 = 5

w2 = -3

Figure 1: A code fragment with four paths. Of the
two equations asserted at the end the first one holds
on all paths but the second one holds only on three
paths. The numbers shown next to each edge repre-
sent values in a random execution. The join points
are affine combinations of the inputs to the join with
the weights w1 = 5 and respectively w2 = −3.

as assignments (Section 3), joins (Section 4) and branches
(Section 5). Then, in Section 6, we put these pieces together
and we state and prove the main completeness theorem and
the probabilistic soundness theorem. In Section 7 we make
a number of observations related to possible extensions of
these techniques beyond linear arithmetic.

2. NOTATION
In this paper we work with a simple imperative language

containing the following affine expressions over integers Z
(here q ∈ Z and x is one of n variables):

e ::= x | q | e1 + e2 | e1 − e2 | e× q

We write e[e′/x] to denote the result of substituting e′ for
x in e.

The random interpreter needs to perform divisions and
hence it must work with values chosen from a field F (recall
that a field is a mathematical structure whose elements have
multiplicative inverses). For the purpose of the discussion
in the following three sections, the reader may consider that
the field F is the set of rationals Q. However, as we will see
later, another choice for F appears to be more appropriate
both for technical as well as for implementation reasons.

A state ρ is an assignment of field values to the n vari-
ables. Occasionally, in order to expose the geometric intu-
itions behind the algorithms, we also refer to the n variables
as coordinates and to states as points in Fn. We write [[e]]ρ
for the meaning of e in the state ρ (using the usual interpre-
tation of the arithmetic operations over F). The notation
ρ[x ← q] denotes the state obtained from ρ by setting the
value of variable x to q. We say that a state ρ satisfies an
equation e = 0 when [[e]]ρ = 0. We write ρ |= e = 0 when
this is the case.

Our algorithm requires several runs with random input
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values. The random interpreter can be thought of as exe-
cuting the program in parallel on a collection of states. We
refer to such a collection of states S as a sample and we
write Si to refer to the ith element of the sample S (the
state corresponding to the ith run). In the geometric inter-
pretation, a sample is a sequence of points. Throughout this
paper we assume that all samples have r elements, where r
is a parameter of the algorithm. We say that a sample sat-
isfies a linear equation e = 0 when all of its states satisfy
the equation. We write S |= e = 0 when this is the case.

Whenever the interpreter must choose some field value at
random, it does so independently of the previous choices and
uniformly at random (u.a.r.) from some finite subset F̃ of F
of size d, which is another parameter of the algorithm. With
a larger value of d, the probability of errors in the algorithm
is smaller, but the interpreter must have more random bits
to make the choices.

Throughout the paper we use the affine combination oper-
ation on field values and on states. An affine combination is
a weighted average of a number of values such that the sum
of the weights is 1. We perform this operation most often
on two values, in which case we write q ⊕w q′ for the value
q×w+ q′× (1−w). We refer to w as the weight of the com-
bination. We extend this operation to states, in which case
we perform the combination with the same weight for each
variable. If the states ρ1 and ρ2 are viewed as points in Fn

then their affine combinations are the points situated on the
line passing through ρ1 and ρ2. We further extend the affine
combination to samples, in which case we combine each pair
of corresponding states using a separate weight factor:

(S ⊕[w1,...,wr ] S′)i = Si ⊕wi S′
i (i = 1 . . r)

In the following sections we consider separately the oper-
ation of the random interpreter on various nodes of a flow-
chart. Then, in Section 6 we put the pieces together and we
define precisely the random interpreter algorithm.

3. THE ASSIGNMENT OPERATION
In the case of assignments the random interpreter behaves

exactly as a concrete interpreter. For the assignment x := e,
it transforms each state in the sample by setting x to the
value of e in that state. If the sample before the assignment
is S then the sample after the assignment is S′ such that:

S′
i = Si[x← [[e]]Si]

4. THE UNION OPERATION
The random interpreter executes both branches of con-

ditionals. Assume that the interpreter reaches a join point
with two samples S and S′. Each of these samples encodes
implicitly a number of affine relationships between variables.
In order to continue with only one sample after the join
point, we perform a union operation in which the resulting
sample Su encodes (implicitly) all of the relationships that
S and S′ have in common, and no other relationships. In
previous work, the union operation is quite involved, requir-
ing complex algorithms for computing the affine union of
affine spaces [9] or convex hulls when affine inequalities are
also handled [5]. In contrast, a random interpreter simply

chooses r random weights w1, . . . , wr from F̃ and computes

Su = S ⊕[w1,...,wr ] S′

S1

S’1

S’2

S2

Su
1

Su
2

S3 S4

Su
3

Su
4

S’3

S’4

x

y
y = 4

y =
 x 

- 2

Figure 2: Example of union operation on two 4-
point samples, S and S′ with result Su. The sample
S satisfies the equation y = 4, and the sample S′

satisfies the equation y = x − 2. The points in the
resulting sample Su are marked with stars and are
chosen at random on the lines joining corresponding
points in S and S′. All the points lie in the plane
z = 0.

The union operation has a simple geometric intuition as
shown in Figure 2 for 4-point samples. The sample S is ob-
tained after the sequence of assignments “y := 4; z := 0”
and S′ after “x := x + 1; y := x− 2; z := 0”. In both cases,
the samples are obtained with the initial random values of
x being 0, 2, 3 and 4. For each pair of corresponding points
in the two samples, a point is chosen at random on the line
joining the points. For example, the weight w1 is 0.5 and
thus Su

1 is at midway between S1 and S′
1. The weight factor

can be greater than one or less than zero, as is the case for
the third and fourth points. This example demonstrates two
important aspects of the union operation. First, the states
in both original samples satisfy the equation z = 0 (and no
other common affine relationship among variables). Notice
that Su also satisfies this relationship. Thus, the union op-
eration preserves common affine relationships. This is the
completeness property that we state and prove below. The
other notable aspect is that it is possible but highly unlikely
for the Su points to satisfy some other affine relationship
(i.e., for all the points in Su to be aligned). This is the
probabilistic soundness property that we state precisely be-
low.

An example using the union operation is shown in Fig-
ure 1 for a 1-point sample. The initial values of variables
are not relevant because the variables are not live on input
(we show these values in figure as ∗). The first union oper-
ation is performed with the weight w1 = 5. Notice that the
common relationship a + b = 1 is preserved after the first
union operation. The second union operation is performed
with the weight w2 = −3. On the resulting state, we can
verify the first assertion but not the second. In fact, we
prove below that the probability that the second assertion
would be satisfied accidentally is extremely small because
there is at least one path on which it is not satisfied.

We conclude the discussion of the union operation with
the statement and proof of the completeness and probabilis-
tic soundness.

The completeness lemma for the union operation states
that the resulting sample satisfies all affine relationships that
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are satisfied by both of the original states.

Lemma 1 (Union Completeness Lemma). Let S and
S′ be two r-point samples whose points satisfy the affine
equation g = 0. Then, for any choice of weights w1, . . . , wr

the union Su = S⊕[w1,...,wr ] S
′ also satisfies the same equa-

tion.

Proof. It is easy to verify that if g is affine, then for any
affine combination of two states ρ ⊕w ρ′, we have [[g]](ρ ⊕w

ρ′) = [[g]]ρ ⊕w [[g]]ρ′. Thus if the value of g is zero in both
the states ρ and ρ′, then the value of g is zero also on their
affine combination. From here the completeness statement
follows immediately.

The following probabilistic soundness lemma for the union
operation states that the probability of choosing the com-
bination weights such that a new affine relationship is in-
troduced is extremely small (for a large enough choice of
weights).

Lemma 2 (Union Soundness Lemma). Let S and S′

be two samples and let g be an expression such that S 6|= g =
0. More specifically, let t be the number of points in S that
do not satisfy g = 0. Let w1, . . . , wr be chosen u.a.r. from F̃
and independently of each other and of the expression g. Let
Su = S ⊕[w1,...,wr ] S′. Then the probability that Su |= g = 0
is at most ( 1

d
)t.

Proof. Without any loss of generality, let S1, . . . , St be
the t states in S that do not satisfy g = 0. For any i ∈ 1 . . . t,
consider the line joining the points Si and S′

i. If [[g]]Si =
[[g]]S′

i, then this line is parallel to the hyperplane g = 0, and
hence, no point on this line satisfies the equation g = 0. In
other words, for any choice of wi, [[g]]Su

i = [[g]]Si = [[g]]S′
i 6= 0

and thus the probability that Su |= g = 0 is zero. If on
the other hand [[g]]Si 6= [[g]]S′

i, then this line intersects the
hyperplane g = 0 in exactly one point. In other words,

there is only one choice for wi (i.e.,
[[g]]S′

i
[[g]]S′

i−[[g]]Si
) such that

[[g]]Su
i = 0. Thus, the probability that the weight wi was

chosen such that state Su
i satisfies the equation g = 0 is

precisely 1
d
. Since w1, . . . , wt are all independent, it follows

that the probability that all the states Su
1 , . . . , Su

t satisfy
the equation g = 0 is less than or equal to ( 1

d
)t. This is

an upper bound on the probability that all the states in Su

satisfy g = 0.

5. THE INTERSECTION OPERATION
Next we consider the affine relationships that are intro-

duced by conditionals. Consider the following program:

a := x + y ;

if x = y then b := a else b := 2 * x ;

assert (b = 2 * x)

The assert statement is true but in order to prove it we
must notice that x = y in the true branch of the conditional.
The random interpreter reaches the conditional with some
sample. In order to reflect the conditional in the branches,
we must change the sample (since all relationships are ex-
pressed implicitly as those satisfied by the sample). We
could try to restart the interpretation with values that sat-
isfy the conditional, but finding such initial values is hard.
Or we could split the sample into two parts, one that satis-
fies the conditional and one that does not. But splitting is
undesirable because working with smaller samples increases

x = (1,  2, 3)
y = (-1, 4, 1)
a = (>, >, >)
b = (>, >,.>)

a := x + y
Sx = ( 1, 2, 3)

y = (-1, 4, 1)
a = ( 0, 6, 4)
b = ( >,>, >)

x = (3/2, 3/2, 9/2)
y = (3/2, 3/2, 9/2)
a = (  3,     3,    9)
b = (  >,    >,   >)

S’

b := a b := 2 * x

assert (b = 2x)

x = ( 0,   1/2,    -3)
y = (-6,  -7/2,  -13)
a  =(-6,     -3,  -16)
b  =( 0,      1,    -6)

x = ( 1, 2, 3)
y = (-1, 4, 1)
a = ( 0, 6, 4)
b = ( 2, 4, 6)

x = (3/2, 3/2, 9/2)
y = (3/2, 3/2, 9/2)
a = (  3,     3,    9)
b = (  3,     3,    9)

x = ( 1, 2, 3)
y = (-1, 4, 1)
a = ( 0, 6, 4)
b = (>, >, >)

T F
If (x = y)

w1 = -2
w2 = 3
w3 = -4

Figure 3: A code fragment showing the use of 3-
point sample intersection. The numbers shown next
to each edge represent random samples. Adjust-
ment is used to obtain the sample S′ from S, as
detailed in Figure 4.

the probability that some accidental relationship holds. Fur-
thermore, as we shall see, the probability that enough points
satisfy the equality is extremely small anyway. Notice that
we could not do something cheap such as replacing the oc-
currences of x with y in the true branch; this would not help
in this case. We have to somehow adjust all of the previously
computed variables as well, such as a in this example.

One of the novel aspects of this work is a procedure for
transforming the sample in such a way that all of the pre-
viously existing relationships still hold, and additionally ex-
actly one new relationship holds: the one given by the con-
ditional. We do this by essentially “projecting” the sample
points onto the plane given by the conditional. Orthogonal
projection does not work since it destroys affine relation-
ships. Instead we use the following function Adjust(S, e) to
adjust the sample S according to the conditional e = 0:

Adjust(S, e) =

Pick Si and Sj in S such that [[e]]Si 6= [[e]]Sj.

Pick w ∈ F such that ρ0 = Si ⊕w Sj has the property

that [[e]]ρ0 6= 0 and [[e]]ρ0 6= [[e]]Sk for all k ∈ {1 . . . r}.
For all k, let S′

k be the intersection of the plane

e = 0 with the line passing through ρ0 and Sk,

i.e., S′
k = Sk ⊕wk ρ0, where wk = [[e]]ρ0

[[e]]ρ0−[[e]]Sk
.

The result is [S′
1, . . . , S

′
r].

An example of such an adjustment is shown in Figure 3.
Here the program mentioned at the beginning of this section
is executed on the 3-point sample shown at the top of the
figure. Adjustment is used to obtain the sample S′ from S.
Notice that all of the states in S satisfy a = x + y (due to
the assignment). Now consider the distribution of the points
in S when viewed inside the plane a = x + y (as shown in
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x =
 y

y

S1

S2

S3

S’1, S’2

S’3

ρ0

x

Figure 4: The detailed adjustment operation used in
the example from Figure 3. The adjusted points are
obtained as the intersections of the lines connecting
the original points with ρ0.

Figure 4). We pick the points S1 and S2 to play the role of
Si and Sj from the definition of Adjust (since the expression
x − y has different values on those points). Then we pick
another point ρ0 on the line determined by these two points.
We picked ρ0 at the intersection with the y axis but the only
requirements for ρ0 are that it is not in the plane x− y = 0,
and that the lines passing through it and all the points in S
are not parallel to the plane x− y = 0. Then we obtain the
points S′

k(k = 1, 2, 3) as the intersections of the lines that
pass through ρ0 and Sk with the plane x = y. Notice that
two of the points will coincide.

The intuition behind this construction is that all of the
points S′

k are obtained as affine combinations of three points
Si, Sj and Sk. As such they will satisfy all affine relation-
ships between variables that are satisfied by all points in the
original sample S. Furthermore, it is intuitive that since the
original points are spread in the plane a = x+y the resulting
points are spread in the intersection of that plane with x = y
(with the exception that one of the points is “sacrificed” and
will be equal to some other point).

Returning to the example from Figure 3, we see that the
sample is adjusted only in the “true” branch of the equality
conditional, since there is no affine equality that we can infer
from a disequality. Notice that after adjustment the sample
satisfies both the original relationships (a = x + y) and also
the new one due to the conditional (x = y). Finally, the
join operation is done using the random weights −2, 3 and
−4 and the resulting sample now clearly reflects the desired
assertion b = 2× x (precisely because both sides of the join
reflect the same assertion).

There are a few details in the definition of Adjust that
deserve discussion. The first step of the algorithm presumes

the existence of two points at which e has different values. If
there are no such points, it means that e has the same value
q on all the points in the sample. In such a case we need not
perform any adjustment. Instead we declare that e = q holds
before the conditional and accordingly we consider only one
branch depending on whether the constant q is zero or not.
When this is the case we say that Adjust is not defined on
the pair (S, e).

The second line in the Adjust algorithm finds a point on
the line Si to Sj that makes e have a non-zero value distinct
from the values at the original points. Since e has differ-
ent values at Si and Sj this is always possible and finding
such a value is a linear-time operation. Also, finding the
intersection of a line with a plane is a simple computation.

To complete the discussion of the intersection operation,
we state and prove below the completeness and then the
soundness lemmas. The completeness lemma states that the
adjusted sample satisfies all of the affine relationships satis-
fied by the original sample and satisfies also the relationship
for which the original sample was adjusted.

Lemma 3 (Intersection Completeness Lemma).
Let e and g be expressions and let S be a sample such that
S′ = Adjust(S, e) is defined. Then for any choice of the
intermediate point ρ0 we have that S′ |= e = 0 and if
S |= g = 0 then S′ |= g = 0.

Proof. By definition of S′ we have that each S′
k from

S′ satisfies e = 0. Since ρ0 is an affine combination of Si

and Sj (the two points picked in the first step of Adjust)
then it satisfies all affine relationships that both Si and Sj

satisfy, hence also g = 0. Now each S′
k from S′ is an affine

combination of Sk and ρ0 and therefore it also satisfies g =
0.

The following soundness lemma implies that the adjusted
sample satisfies exactly one more linearly independent affine
relationship than the original sample.

Lemma 4 (Intersection Soundness Lemma).
Let e and g be expressions and let S be a sample such that
Adjust(S, e) is defined. For any choice of the intermediate
point ρ0, there exists α ∈ F such that if any t states in
the sample Adjust(S, e) satisfy the equation g = 0, then the
corresponding t states in the sample S satisfy the equation
g + αe = 0.

Proof. Let S′ = Adjust(S, e) and let α be − [[g]]ρ0
[[e]]ρ0

(which

is defined by the choice of ρ0). Without any loss of general-
ity, let S′

1, . . . , S
′
t be the t states in the sample S′ that satisfy

the equation g = 0. For any k ∈ {1, . . . , t}, we have that

S′
k = Sk ⊕wk ρ0, where wk = [[e]]ρ0

[[e]]ρ0−[[e]]Sk
. Since S′

k satis-

fies the equation g = 0, we can verify that Sk satisfies the

equation g − [[g]]ρ0
[[e]]ρ0

e = 0. This completes the proof.

The geometric intuition behind the soundness lemma is
that if some subset of the adjusted points lie in the hyper-
plane g = 0, then the corresponding subset of the original
points lie in the hyperplane that contains the point ρ0 and
passes through the intersection of the hyperplanes g = 0
and e = 0. The soundness lemma implies that any equa-
tion g = 0 that is satisfied by the adjusted sample can be
expressed as a linear combination of the equation e = 0 and
some equation g′ = 0 that is satisfied by the original sample.
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Note that the soundness lemma indicates one such g′ (i.e.,
g + αe).

We can see from the proofs of the lemmas that as long
as the adjusted points are affine combinations of the orig-
inal points, the completeness lemma will be satisfied. Ini-
tially, we tried to compute affine combinations of just two
points (by computing the intersection of the line they deter-
mine and e = 0). This made it impossible to state a clean
soundness result in some corner cases; hence the three-point
combination that we use at the moment. More complicated
affine combinations could also be used and they might have
the benefit of avoiding the overlap of two adjusted points.

Notice that during adjustment two distinct points in the
original sample are transformed into the same point in the
adjusted sample, thereby effectively reducing the number
of points in a sample after each adjustment. This is not
entirely unexpected. Since each adjustment “crowds” the
sample into one fewer dimensions (e.g. from 3-d space into a
2-d plane), we expect that not all of the r points are going to
remain independent. We shall see in Section 6 that because
of this we need to start our random interpreter with a sample
larger than the maximum number of adjustments on any
path through the program. If we don’t, then it is very likely
that our algorithm will announce false relationships. For
example, if we redo the example from Figure 3 with just the
first two states (meaning that we ignore the third column
in all samples), then after adjustment we will falsely infer
many relationships, such as a = 3 and many others (there
are many planes that pass through the point S′

1 = S′
2).

6. THE RANDOMIZED INTERPRETER
We now put together the ideas mentioned in the previous

sections to define the randomized interpreter R. For nota-
tional convenience, let us extend the definition of a sample
as follows. A sample is either a sequence of r states or is
undefined, in which case we write it as ⊥. We also say that
⊥ |= g = 0 for any expression g. Essentially, R interprets a
program like an abstract interpreter. The action of R over
the various nodes of a flow-chart is defined below.

• Assignment Node: See Figure 5 (a).
S = ⊥, if S′ = ⊥.
Si = S′

i[x← [[e]]Si], otherwise.

• Conditional Node: See Figure 5 (b).
S1 = ⊥ and S2 = ⊥, if S′ = ⊥
S1 = S′ and S2 = ⊥, if S′ |= e = 0
S1 = ⊥ and S2 = S′, if S′ |= e− q = 0 for some non-
zero constant q
S1 = Adjust(S′, e) and S2 = S′, otherwise

• Join Node: See Figure 5 (c).
S = S1, if S2 = ⊥
S = S2, if S1 = ⊥
S = S1⊕[w1,...,wr ]S

2, otherwise, where {wi} are chosen

independently and u.a.r. from F̃ .

If R concludes that a conditional is always true (or always
false), then it executes only the true (or false) branch of
the conditional. Otherwise, it executes both branches of
the conditional. To start the execution of the program, R
chooses r points, each with n variables, independently and
uniformly at random from F̃ n as the initial sample.

The resulting samples can then be used to verify whether
desired affine relationships hold at certain points in the pro-
gram. Moreover, a sample can also be used to discover affine
relationships by computing the affine subspace in which all
the points of a sample lie. It is possible that the random
interpreter is unsound, meaning that the resulting samples
satisfy affine relationships that are false on some concrete
execution. We prove in the rest of this section that the
probability of this happening is extremely small, and can be
reduced even further by repeating the experiment several
times.

6.1 Error Probability Analysis
In our proof of an upper bound on the error probability

we make use of the fact that F is a finite field. (However, we
feel that it may be possible to prove similar results without
this assumption). Working with a finite field is also desir-
able from an implementation point of view; otherwise the
size of the values involved during the random interpretation
doubles with each adjust operation. For these reasons we
choose d to be a prime number and F to be the field of in-
tegers modulo d. We let F̃ = F and thus d also represents
the size of the field F. The arithmetic operations over F are
performed modulo the prime number d and division of a by
b is implemented as multiplication of a by the multiplicative
inverse of b in the field F. However, our results are valid only
if the concrete arithmetic operations of the program are in-
terpreted over the same field F as opposed to the intended
domain of integers. Thus we choose d larger that any value
arising in a concrete execution of the program. For example,
if the program operates on 32-bit numbers and if we make
the assumption that its operations do not overflow, then we
can choose d to be any prime larger than 232, and we make
the interpreter use enough precision to be able to represent
the entire field F. In these conditions we can let F̃ = F.

For the purpose of the probability analysis we introduce
an abstract interpreter A that computes a sound approxi-
mation of the set of affine relationships in a program. In the
following definition we use the letter U to range over sets
of affine relationships. We write U ⇒ g = 0 to say that
the conjunction of the relationships in U imply g = 0. We
write U1 ∩ U2 for the set of relationships that are implied
by both U1 and U2. (This operation is sometimes called the
union of affine spaces [9]). Finally, we write U [e/x] for the
relationships that are obtained from those in U by substitut-
ing e for x. For notational convenience, we let ⊥ represent
an inconsistent set of affine relationships. We also say that
⊥ ⇒ g = 0 for any expression g. With these definitions we
can define the action of A over the nodes of a flow-chart as
follows:

• Assignment Node: See Figure 5 (a).
U = ⊥, if U ′ = ⊥
U = {x = e[x′/x]} ∪ U ′[x′/x], otherwise, where x′ is a
fresh variable

• Conditional Node: See Figure 5 (b).
U1 = U ′ and U2 = ⊥, if U ′ ⇒ e = 0
U1 = ⊥ and U2 = U ′, if U ′ ⇒ e − q = 0 for some
non-zero constant q
U1 = U ∪ {e = 0} and U2 = U ′, otherwise

• Join Node: See Figure 5 (c).
U = U1, if U2 = ⊥
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Figure 5: Flow-chart nodes

U = U2, if U1 = ⊥
U = U1 ∩ U2, otherwise

The abstract interpreter starts with the empty set of affine
relationships between variables.

Implementations of abstract interpretations such asA have
been described in the literature. The major concern there
is the concrete representation of the set U and the imple-
mentation of the operation U1 ∩ U2. For example, Karr’s
algorithm [9] uses the union of affine spaces, while Cousot’s
algorithm [5] uses convex hulls to implement the stronger
operation that also handles affine inequalities. Here we use
A only to state and prove the soundness and completeness
results of the random interpreter R.

Given a program, the sets of affine relationships U com-
puted by A at every point in the program is uniquely de-
fined. Corresponding to each such U , there is a random
sample S (which depends on the random choices made by
R). We state below the relationship between U and S, in
the form of completeness and soundness theorems.

Theorem 5 (Completeness Theorem). Let U be a
set of affine relationships computed by A at a given point
in the program and let S be the corresponding sample. For
any expression g, if U ⇒ g = 0, then S |= g = 0.

The proof of Theorem 5 is based on Lemma 1 and Lemma 3,
and is given in Appendix A.1. The completeness theorem
implies that the random interpreterR discovers all the affine
relationships that the abstract interpreter A discovers.

The next definition is necessary for the statement of the
soundness theorem.

Definition 6. For any set of affine relationships U 6= ⊥
computed by A for a program point, any subset S̃ of the
random sample S computed by R for the same point, and
any expression g such that U 6⇒ g = 0, let E(U, S̃, g) be the

event that all points in S̃ satisfy the equation g = 0. Let
Pr(E(U, S̃, g)) denote the probability of this event over the
random choices made by the random interpreter R. Let
P (U, t) = max{Pr(E(U, S̃, g)) | S̃ ⊆ S, |S̃| = t}.

Note that the undesirable event E(U, S, g) occurs only
when the random interpreter claims that g = 0 holds but
the abstract interpreter claims that it does not. The proba-
bility of this event is bounded by the quantity P (U, r). The
soundness theorem provides a bound for P (U, r). However,
in order for the inductive proof to work, the soundness the-
orem actually provides a bound for P (U, t), where 1 ≤ t ≤ r
is a parameter.

Theorem 7 (Soundness Theorem). For any set of
affine relationships U computed by A for a program point,
P (U, t) ≤ (2d)b × ( j+1

d
)t, where b and j are the maximum

number of intersection (branches) and union (join) opera-
tions respectively performed by A on any path before com-
puting U .

According to Theorem 7, given any relationship not ver-
ified by the abstract interpreter, the probability (over the
random choices made by the random interpreter) that the re-
lationship is verified by the random interpreter is extremely
small. The proof of Theorem 7 is non-trivial, but is easy
to follow once the reader is comfortable with the above no-
tation. The proof is given in Appendix A.2. We use this
soundness theorem in the next section to prove Theorem 8,
which establishes an upper bound on the probability that R
is unsound even for programs involving loops.

The bound on P (U, t) can be interpreted as follows. Each
intersection operation increases the probability of error by
a factor of 2d while all the j join operations together con-
tribute a factor of ( j+1

d
)t. The latter can be explained in a

rather interesting manner. If R does not perform any ad-
just operations (b = 0), then it can be viewed as evaluating
multivariate polynomials of degree j +1 whose variables are
the input variables of the program along with a variable cor-
responding to each join operation. For example, in Figure 1
the multivariate polynomial corresponding to variable a is
w1(0) + (1 − w1)(1) ≡ 1 − w1, and that corresponding to b
is w1(1) + (1 − w1)(0) ≡ w1. Similarly the polynomial cor-
responding to variable c is w2(b − a) + (1 − w2)(2a + b) ≡
w2(w1−1+w1)+(1−w2)(2−2w1+w1) ≡ 3w1w2−w1−3w2+2
and that corresponding to d is w2(1−2b)+(1−w2)(b−2) ≡
w2(1− 2w1) + (1−w2)(w1 − 2) ≡ −3w1w2 + w1 + 3w2 − 2.
Note that the multivariate polynomial corresponding to the
expression c+d is identically equal to 0 and hence R always
succeeds in verifying the assertion c+d = 0, while the multi-
variate polynomial corresponding to the expression c−a−1
is 3w1w2−3w2 which is not identically equal to 0 and hence
R declares the assertion c−a−1 = 0 to be invalid with high
probability. The classic random testing procedure to check
whether a multivariate polynomial of degree j + 1 is iden-
tically equal to 0 or not has an error probability at most
( j+1

d
)t, where d is the size of the set from which random

values are chosen and t is the number of trials [13]. This is
precisely the factor contributed by j join operations to the
bound for P (U, t).

For the informal intuition behind the factor corresponding
to intersections consider the case when j = 0. Then each
adjust operation has the effect of reducing the number of
useful points by 1 (along with an additional factor of 2 that
is necessary to accommodate some corner cases).
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6.2 Fixed Point Computation
The lattice of sets of affine relationships (under the set

union operation, and the intersection operation as described
in Section 6.1) has finite depth n since there can be at most
n linearly independent affine relationships involving n vari-
ables. Thus the abstract interpreter A interpreting a pro-
gram with loops is guaranteed to reach a fixed point. Given
the close relationship between A and R as mentioned in
Theorem 5 and Theorem 7, R also reaches a fixed point
with high probability.

One way to detect when R has reached the fixed point is
to compare the rank of the samples (viewed as matrices) at
relevant locations in two successive iterations of a loop. The
rank of a sample is always equal to the number of variables
minus the number of linearly independent relationships that
the sample satisfies. Thus, if the rank has stabilized, the
number of linearly independent relationships satisfied by S
has been stabilized, and so has the set of affine relationships
satisfied by S.

We now state and prove the final result that bounds the
probability of error in the operation of R. In particular,
it also bounds the error probability that R does not reach
a fixed point, or that the rank testing mechanism fails to
correctly detect the fixed point.

Theorem 8 (Probabilistic Soundness Theorem).
The probability that some random sample S models a rela-
tionship g = 0 that is not implied by its corresponding set of
affine relationships U , is at most m× 2dn × (2d)b × ( j+1

d
)r,

where m is the total number of operations performed by A
before reaching the fixed point (among which there are b in-
tersections and j union operations).

Proof. Consider one particular sample S and the corre-
sponding set of affine relationships U . There are less than
2dn different affine relationships with coefficients from F be-
tween the n variables and hence this is an upper bound on
the number of relationships not implied by U . Thus, it fol-
lows from Theorem 7 that the probability that there exists
an expression g such that S |= g = 0 and U 6⇒ g = 0 is
at most 2dn × (2d)b × ( j+1

d
)r. And since there are m such

samples, the desired result follows easily.

Note that if all samples S model only relationships that
are implied by the corresponding set of affine relationships
U , then R reaches a fixed point when A does so, and the
rank testing mechanism faithfully tells whether or not the
fixed point has been reached. Theorem 8 says that the prob-
ability that this happens is high.

Theorem 8 implies that r must be O(n + b) to achieve a
small error probability. In particular, if d > max{j3, 2m, 8}
and we pick r > 1.5(n + 1) + 2b, then the error probability

is bounded above by ( 1
d
)

2
3 (r−1.5(n+1)−2b).

6.3 Computational Complexity
The cost of each intersection and union operation per-

formed by the randomized interpreter is O(nr). Each as-
signment operation takes O(r) time assuming that each as-
signment operation involves a constant number of arithmetic
operations. On the other hand, Karr’s deterministic algo-
rithm [9] incurs a cost of O(n3) for each union operation and
O(n2) for each intersection operations.

Computing the rank of a sample takes O(n3) time. This
may be expensive considering that the other operations per-
formed by R are at most O(nr). An alternative way to

ensure that a fixed point was reached is to estimate an up-
per bound on the number of iterations required by A to
reach a fixed point for a loop and then let R go around
that loop that many number of times. Note that since n
is the depth of the lattice of the sets of affine relationships,
it determines an upper bound on the number of iterations
required to reach a fixed point.

7. BEYOND AFFINE EQUALITIES
The language of expressions that we have considered so far

allows only for affine arithmetic expressions. In this section
we speculate about the uses of randomized algorithms for
programs containing other features as well.

We have experimented successfully with the algorithm
presented here even for arithmetic expressions that are non-
linear. We believe that the probabilistic soundness results
still hold but we have yet to prove this formally. Another dif-
ficulty is that completeness would be seriously compromised
by the union operation and it is not clear how to implement
efficiently an appropriate intersection operation. In the ab-
sence of union and intersections (e.g. for a basic-block anal-
ysis) both completeness and probabilistic soundness can be
attained. Consider, for example, the following basic block:
a := (y + 1) × (y - 1) ;

b := y × y - 1;

assert (a = b)

To prove the assert statement, we need to prove that (y +
1) × (y − 1) ≡ y × y − 1. There is no known deterministic
polynomial-time algorithm to solve the above problem (the
full monomial expansion of a polynomial can be exponential
in the size of the original polynomial). However, there is a
very simple and fast randomized algorithm (see [13]) that is
complete and probabilistically sound: compare the values of
the two polynomial expressions on a few random inputs.

We consider in this paper only equality and disequality
conditionals. The algorithm can be applied to other kinds of
conditionals, by not doing any adjustment. The soundness
results still hold but this weakens the analysis since it is not
able to exploit the information from such conditionals. In
future work we plan to explore alternatives for the union and
intersection procedures that work with inequalities as well.
Interestingly, if we restrict the weights to the range [0, 1]
then not only affine equations but also affine inequalities
are preserved.

It is worth mentioning that the random interpreter ap-
proach seems to be ill suited for verifying disequalities. For
example, just because a number of random runs for a pro-
gram yield non-zero results we cannot conclude that there
is no run in which the result is zero. However, we can in-
fer some disequalities that are consequences of affine equal-
ities. For example, if x, y and z are integer variables and
x−y = a×z+b such that either a = 0 and b 6= 0 or 0 < b < a
(for some integer constants a and b), then we know that it
cannot be the case that x and y are equal.

The analysis that we have described is a path-insensitive
analysis. However, by choosing the random values for each
join carefully, we can capture some path-sensitive informa-
tion. For example, consider verifying the assert statement
at the end of the following program:

if (x = y) then a := 1 else a := 4;

if (x = y) then b := 2 else b := 5;

assert (b = a + 1)
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If R chooses different random values for the two joins in
the above program, it fails to verify the assert statement.
However, if the same random values are chosen for the two
joins, R is able to verify the assert statement. Note that
choosing same random values for joins that correspond to
equivalent conditionals does not break any of our proba-
bilistic soundness results.

8. COMPARISON WITH RELATED WORK
Blum, Chandra and Wegman [3] showed how to compute

fingerprints of read-once branching programs in order to de-
cide their equivalence in probabilistically polynomial time.
Their idea was to assign random values to boolean variables
instead of the usual 0 or 1 boolean values and then evalu-
ate the branching program by performing multiplication in
place of conjunction, addition in place of disjunction and
subtraction from 1 in place of negation. Our technique for
handling joins is reminiscent of their idea, where we also as-
sign a random value instead of the typical 0 or 1 boolean
values at join points.

Aiken, Fähndrich and Su [1] have used random sampling
for race detection in Relay Ladder Logic programs with
probabilistic guarantees. Fähndrich, Foster, Su and Aiken [7]
have used randomization for efficiently solving general in-
clusion constraints in the context of pointer analysis for C
programs.

Value numbering is a technique whereby hash values are
assigned to expressions and variables with equivalent hash
values are declared to be equal [12]. However, the problem
with this technique is that it is very closely tied to the struc-
ture of expressions rather than their semantics. For example
it cannot detect that (x + y) + z = (z + x) + y. In some
sense, a sample can be thought of as a set of hash values
for the program variables at that location, except that we
can maintain it across assignments, union and intersection
operations. Wegman, Sreedhar and Bodik [14] have inde-
pendently extended value numbering to be less sensitive to
the syntax of the expressions. They are also using an affine
combination for joins but do not have an intersection oper-
ation.

Random testing [8] is most commonly used to verify as-
sertions in a program, and this technique has recently been
used to discover useful invariants from program traces [6].
However, the greatest problem with this kind of approach is
its lack of soundness since it is only practical to explore a
limited number of paths. Our technique is similar in spirit
to this technique but avoids these problems by executing
both sides of a branch (and locally adjusting the values of
variables to account for the latest path predicate) and then
merging the results at join points.

Symbolic analysis techniques have also been used to dis-
cover linear relationships among variables. For example,
Karr [9] describes an abstract interpretation on a lattice of
affine relationships between variables. His analysis is able
to infer the same relationships as the one presented in this
paper, in the case when the program has only linear compu-
tation. In the presence of non-linear computations our al-
gorithm is slightly more complete as explained in Section 7.
Karr’s algorithm works on a lattice of finite depth whose
union and intersection operations require O(n3) and O(n2)
arithmetic operations respectively while our algorithm re-
quires O(nr) arithmetic operations for both joins and inter-
section. The real complexity however in Karr’s algorithm is

in the implementation. The computation of an affine union
of spaces is significantly more involved than our join opera-
tion. Just like for our algorithm, their union and intersection
operations require multiplication of two numbers of the same
size. Although the paper is silent about this aspect, an im-
plementation of the algorithm must deal with exponentially
large numbers. The abstract interpretation algorithm used
by Cousot and Halbwachs [5] goes a step further and dis-
covers also linear inequality relationships among variables.
This algorithm also appears to suffer from the presence of
exponentially large numbers.

It is interesting to compare the random interpreter ap-
proach described in this paper with abstract interpretation [4]
in general. In both cases there are union and intersection
operations (called join and meet in abstract interpretation).
The samples used by the random interpreter are represen-
tatives of the sets of affine relationships (satisfied by them)
which form a lattice (under the set union operation, and the
intersection operation as described in Section 6.1). However,
on rare occasions, the random interpreter might perform an
unsound join operation (returning a sample whose represen-
tative is not greater than the lowest upper bound of the
representatives of the joined samples).

9. CONCLUSION
We have presented in this paper the preliminary results

of our investigation of the use of randomized algorithms in
program analysis. We have found that by running the pro-
gram on random inputs and by relaxing the semantics of
the conditionals, such that we execute both branches of each
conditional, we can quickly compute a “fingerprint” of the
program that reflects affine invariants of the program and,
with high probability, nothing more. The surprising result
is that with this form of testing, a single run through the
program captures information about all the possible paths,
thus making it possible to filter out quickly the invariants
that hold only on certain paths.

The algorithms discussed in this paper are a selection from
a set of algorithms that we are exploring. A general char-
acteristic of the progress in our project has been that the
algorithms for random interpretation are fairly easy to de-
sign and most often trivial to implement. In each case our
intuition suggests that the probability of unsound results is
extremely small, and in fact experiments do not reveal any
unsoundness. But proving an upper bound for the probabil-
ity of unsoundness has been an extremely challenging task,
and most often we have to settle with conservative bounds.
Nevertheless, we believe that randomization has much to
offer to program analysis and this area is worth of future
research.

Program analysis is provably hard, and we have all learned
not to expect perfect results. However, this attitude has
manifested itself mostly in a large number of static analy-
sis approaches in which completeness is sacrificed and false
positives are accepted as a fact of life, while soundness re-
mains the sine qua non of program analysis. The results
of this paper show that it might be profitable to relax this
strict view of soundness, and trade off minuscule amounts
of soundness in return for other advantages such as better
computational complexity, or simplicity, or even more pre-
cise results. And when we think that in the grand scheme of
things, program analyses are used to produce software that
interacts with other potentially buggy libraries running on

9



fallible hardware, we realize that maybe a minuscule proba-
bility of unsoundness in the analysis is tolerable after all.
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APPENDIX

A. PROOF OF SOUNDNESS AND
COMPLETENESS THEOREMS

We now give the proofs for the completeness and sound-
ness theorems stated in Section 6. Both the abstract inter-
preter A and the randomized interpreter R perform simi-
lar operations for each node in the flow-graph. The proofs
are by induction on the number of operations performed by
the interpreters. The computation performed by the inter-
preters can be viewed as going forward in the sense that the
outputs of a flowchart node are determined by the inputs
of the node. Hence, for the inductive case of the proof, we
prove that the required property holds for the outputs of the
node given that it holds for the inputs of the node.

A.1 Proof of Completeness (Theorem 5)
The proof is by induction on the number of operations

performed by the interpreters. The base case is trivial since
initially U = ∅ and hence for any expression g, U 6⇒ g = 0.
For the inductive case, the following scenarios arise. Let g
be any expression.

• Assignment Node: See Figure 5 (a).
Assume that U ⇒ g = 0. We prove that S |= g = 0.
Consider the expression g′ = g[e/x]. Since U ⇒ g = 0,
U ′ ⇒ g′ = 0. It follows from the induction hypothesis
on U ′ and S′ that S′ |= g′ = 0. Hence, S |= g = 0.

• Conditional Node. See Figure 5 (b).
We prove that
(a) if U1 ⇒ g = 0, then S1 |= g = 0, and
(b) if U2 ⇒ g = 0, then S2 |= g = 0.
Three possibilities arise here.

(i) U ′ ⇒ e = 0. It follows from induction hypothesis
on U ′ and S′ that S′ |= e = 0. By definition of A,
U1 = U ′ and U2 = ⊥. Similarly, S1 = S′ and S2 = ⊥.
(a) Assume that U1 ⇒ g = 0. Thus, U ′ ⇒ g = 0 and
by induction hypothesis S′ |= g = 0. Thus, S1 |= g = 0.
(b) The proof obligation for S2 follows immediately.

(ii) U ′ ⇒ e − q = 0 for some non-zero constant q. It
follows from induction hypothesis on U ′ and S′ that
S′ |= e − q = 0. By definition, U1 = ⊥ and U2 = U ′.
Similarly, S1 = ⊥ and S2 = S′. The proof for this case
is similar to the symmetric case shown above.

(iii) U ′ 6⇒ e− q = 0 for any constant q.
By definition, U1 = U ′ ∪ {e = 0} and U2 = U ′.
(a) Assume that U1 ⇒ g = 0. There exists an expres-
sion g′ such that U ′ ⇒ g′ = 0 and g = g′ + λe for some
constant λ. It follows from induction hypothesis on U ′

and S′ that S′ |= g′ = 0. It follows from Lemma 3 that
S1 |= g′ = 0 and S1 |= e = 0. Hence, S1 |= g′ +λe = 0.
(b) Assume that U2 ⇒ g = 0. Thus, U ′ ⇒ g = 0.
It follows from induction hypothesis on U ′ and S′ that
S′ |= g = 0. Either S2 = S′ or S2 = ⊥. In either case,
S2 |= g = 0.
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• Join Node: See Figure 5 (c).
Assume that U ⇒ g = 0. We prove that S |= g = 0.
By definition of A, U1 ⇒ g = 0 and U2 ⇒ g = 0. By
induction hypothesis on U1 and S1 and on U2 and S2,
we have that S1 |= g = 0 and S2 |= g = 0. It now
follows from Lemma 1 that S |= g = 0.

A.2 Proof of Soundness (Theorem 7)
The proof is again by induction on the number of op-

erations performed by the interpreters. For the base case,
j = b = 0 and U = ∅. Let g be any expression which is
identically not equal to 0. We have S = S0, all of whose
states are chosen independently and u.a.r. from F̃ n. The
probability that a particular point in sample S0 satisfies the
equation g = 0 is at most 1

d
. Thus, the probability that some

particular t points from sample S0 satisfy the equation g = 0
is at most ( 1

d
)t. Hence, P (U, t) ≤ ( 1

d
)t.

For the inductive case, the following scenarios arise.

• Assignment Node: See Figure 5 (a).
We prove that P (U, t) = P (U ′, t) and the result follows
from induction hypothesis on U ′ and S′.
Let g be any expression such that U 6⇒ g = 0. Consider
the expression g′ = g[e/x]. Let S̃ be any subset of

sample S. Let S̃′ be the corresponding subset of sample
S′. Note that event E(U, S̃, g) happens iff E(U ′, S̃′, g′)
happens. Thus,
P (U, t) = P (U ′, t).

• Conditional Node: See Figure 5 (b).
We prove that
(a) P (U1, t) ≤ (2d)× P (U ′, t), and
(b) P (U2, t) ≤ (2d)× P (U ′, t)
and the result follows from the induction hypothesis on
U1 and S1, and on U2 and S2. The following possibil-
ities arise:

(i) U ′ ⇒ e = 0
It follows from Theorem 5 that S′ |= e = 0.
(a) U1 = U ′. S1 = S′. Thus, P (U1, t) = P (U ′, t).
(b) U2 = ⊥. Thus, P (U2, t) = 0.

(ii) U ′ ⇒ e− q = 0 for some non-zero constant q
It follows from Theorem 5 that S′ |= e− q = 0. Hence,
(a) U1 = ⊥. Thus, P (U1, t) = 0
(b) U2 = U ′ and S2 = S′. Thus, P (U2, t) = P (U ′, t).

(iii) U ′ 6⇒ e− q = 0 for any constant q
It is possible that S′ |= e − q = 0 for some constant
q (note that Theorem 5 does not help us here). This
may be a cause of unsoundness and hence we consider
this possibility while computing P (U1, t) and P (U2, t)
below.
(a) U1 = U ′ ∪ {e = 0}. Let g be any expression such
that U1 6⇒ g = 0. Note that U ′ 6⇒ g + λe = 0 for any
constant λ. Let S̃1 be any subset of t points of sample
S1. Let S̃′ be the corresponding subset of sample S′.
The event E(U1, S̃1, g) occurs only if S′ |= e − q = 0
for some constant q, or S′ 6|= e − q = 0 for any con-
stant q (hence, Adjust(S’,e) is defined) and the event
E(U ′, S̃′, g+λe) occurs for any constant λ (this follows
from Lemma 4). Thus, Pr(E(U1, S̃1, g))
≤

P
q∈F

Pr(S′ |= e− q = 0) +
P
λ∈F

Pr(E(U ′, S̃′, g + λe))

≤
d−1P
q=0

P (U ′, r) +
d−1P
λ=0

P (U ′, t)

= d× P (U ′, r) + d× P (U ′, t)
≤ (2d)× P (U ′, t)
Hence, P (U1, t) ≤ (2d)× P (U ′, t)
(b) U2 = U ′. Let g be any expression such that U2 6⇒
g = 0. Let S̃2 be any subset of t points of sample
S2. Let S̃′ be the corresponding subset of sample S′.
The event E(U2, S̃2, g) occurs only if S′ |= e = 0, or
S′ 6|= e = 0 (hence S2 = S′) and the event E(U ′, S̃′, g)
occurs. Thus,

Pr(E(U2, S̃2, g)) ≤ Pr(S′ |= e = 0) + Pr(E(U ′, S̃′, g))
≤ P (U ′, r) + P (U ′, t)
≤ 2P (U ′, t) ≤ (2d)× P (U ′, t)

Hence, P (U2, t) ≤ (2d)× P (U ′, t)

• Join Node: See Figure 5 (c).
We prove that P (U, t) ≤ (2d)t × ( j+1

d
)t, where b and

j are the maximum number of intersection and union
operations performed by A for computing U . Let b1

and j1 be the maximum number of intersection and
union operations performed by A for computing U1.
Let b2 and j2 be the maximum number of intersection
and union operations performed by A for computing
U2. Clearly, j = 1 + max(j1, j2) and b = max(b1, b2).
Let g be any expression such that U 6⇒ g = 0. Thus,
either U1 6⇒ g = 0 or U2 6⇒ g = 0. Consider the case
when U1 6⇒ g = 0. (The other case is symmetric).

Let S̃ be any subset of t points of sample S. We are
going to compute the probability that S̃ |= g = 0 (or,

Pr(E(U, S̃, g))). Let S̃1 be the corresponding subset
of t points of sample S1. For i ∈ {0, . . . , t}, let event

Ei be the event that exactly i states in S̃1 satisfy the
equation g = 0. The events Ei form a disjoint partition
of the event space. This means that:

Pr(E(U, S̃, g)) =

tX
i=0

Pr(Ei)× Pr(E(U, S̃, g) | Ei)

By Lemma 2, Pr(E(U, S̃, g) | Ei) (the probability that

S̃ |= g = 0 if it is known that exactly i states in S̃1

satisfy g = 0, or equivalently that t − i states do not
satisfy g = 0) is at most ( 1

d
)t−i.

In order to compute Pr(Ei) we observe that there are`
t
i

´
ways to choose a subset of i states from S̃1. For

each such subset, the probability that it satisfies g = 0
is at most (2d)b1 × ( j1+1

d
)i (by induction hypothesis).

In conclusion, Pr(Ei) ≤
`

t
i

´
×(2d)b1 × ( j1+1

d
)i.

Thus, Pr(E(U, S̃, g)) =
tP

i=0

Pr(Ei)× Pr(E(U, S̃, g) | Ei)

≤
tP

i=0

`
t
i

´
(2d)b1( j1+1

d
)i × ( 1

d
)t−i

= (2d)b1 × ( j1+2
d

)t

≤ (2d)b × ( j+1
d

)t

Thus, P (U, t) ≤ (2d)b × ( j+1
d

)t.
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