Bound Analysis of Imperative Programs with the Size-change Abstraction

Florian Zuleger¹, Sumit Gulwani², Moritz Sinn¹, and Helmut Veith^{1*}

¹ TU Wien, {zuleger,sinn,veith}@forsyte.at ² Microsoft Research, sumitg@microsoft.com

Abstract. The size-change abstraction (SCA) is an important program abstraction for termination analysis, which has been successfully implemented in many tools for functional and logic programs. In this paper, we demonstrate that SCA is also a highly effective abstract domain for the *bound analysis* of *imperative programs*.

We have implemented a bound analysis tool based on SCA for imperative programs. We abstract programs in a pathwise and context dependent manner, which enables our tool to analyze real-world programs effectively. Our work shows that SCA captures many of the essential ideas of previous termination and bound analysis and goes beyond in a conceptually simpler framework.

1 Introduction

Computing symbolic bounds for the resource consumption of imperative programs is an active area of research [15,14,13,12,11,9]. Most questions about resource bounds can be reduced to counting the number of visits to a certain program location [15]. Our research is motivated by the following technical challenges:

(A) Bounds are often *complex non-linear arithmetic expressions* built from +, *, max etc. Therefore, abstract domains based on linear invariants (e.g. intervals, octagons, polyhedra) are not directly applicable for bound computation. (B) The proof of a given bound often requires *disjunctive invariants* that can express loop exit conditions, phases, and flags which affect program behavior. Although recent research made progress on computing disjunctive invariants [15,13,23,7,4,25,10], this is still a research challenge. (Note that the domains mentioned in (A) are conjunctive.)

(C) It is *difficult to predict a bound in terms of a template* with parameters because the search space for suitable bounds is huge. Moreover the search space cannot be reduced by compositional reasoning because bounds are global program properties.

(D) It is not clear how to *exploit the loop structure* to achieve compositionality in the analysis for bound computation. This is in contrast to automatic termination analysis where the cutpoint technique [7,4] is used standardly.

^{*} Research supported by the FWF research network RiSE, the WWTF grant PRO-SEED and Microsoft Research through a PhD Scholarship.

In this paper we demonstrate that the size-change abstraction (SCA) by Lee et al. [20,3] is the right abstract domain to address these challenges. SCA is a predicate abstraction domain that consists of (in)equality constraints between integer-valued variables and boolean combinations thereof in disjunctive normal form (DNF).

SCA is well-known to be an attractive abstract domain: First, SCA is rich enough to capture the progress of many real-life programs. It has been successfully employed for automatic termination proofs of recursive functions in functional and declarative languages, and is implemented in widely used systems such as ACL2, Isabelle etc. [21,17]. Second, SCA is simple enough to achieve a good trade-off between expressiveness and complexity. For example, SCA termination is decidable and ranking functions can be extracted on terminating instances in PSPACE [3]. The simplicity of SCA sets it apart from other disjunctive abstract domains used for termination/bounds such as transition predicate abstraction [24] and powerset abstract domains [15,4].

Our method starts from the observation that progress in most software depends on the *linear change* of integer-valued functions on the program state (e.g., counter variables, size of lists, height of trees, etc.), which we call *norms*. The vast majority of non-linear bounds in real-life programs stems from two sources – nested loops and loop phases – and not from inherent non-linear behavior as in numeric algorithms. For most bounds, we have therefore the potential to exploit the nesting structure of the loops, and compose global bounds from bounds on norms. Upper bounds for norms typically consist of simple facts such as size comparisons between variables and can be computed by classical conjunctive domains. SCA is the key to convert this observation into an efficient analysis:

(1) Due to its built-in disjunctiveness and the transitivity of the order relations, SCA is closed under taking transitive hulls, and transitive hulls can be efficiently computed. We will use this for summarizing inner loops.

(2) We use SCA to compose global bounds from bounds on the norms. To extract norms from the program, we only need to consider small program parts. After the (local) extraction we have to consider only the size-change-abstracted program for bound computation.

(3) SCA is the natural abstract domain in connection with two program transformations – *pathwise analysis* and *contextualization* – that make imperative programs more amenable to bound analysis. Pathwise analysis is used for reasoning about complete program paths, where inner loops are overapproximated by their transitive hulls. Contextualization adds path-sensitivity to the analysis by checking which transitions can be executed subsequently. Both transformations make use of the progress in SMT solver technology to reason about the long pieces of straight-line code given by program paths.

Summary of our Approach. To determine how often a location l of program P can be visited, we proceed in two steps akin to [15]: First, we compute a disjunctive transition system \mathcal{T} for l from P. Second, we use \mathcal{T} to compute a bound on the number of visits to l. For the first step we recursively compute transition systems for nested loops and summarize them disjunctively by transitive hulls

Fig. 1. Example 1 with its (simplified) CFG and transition relations.

computed with SCA. We enumerate all cycle-free paths from l back to l, and derive a disjunctive transition system \mathcal{T} from these paths and the summaries of the inner loops using *pathwise analysis*. For the second step we exploit the potential of SCA for automatic bound computation by first abstracting \mathcal{T} using norms extracted from the program and then computing bounds solely on the abstraction. We use *contextualization* to increase the precision of the bound computation. Our method thus clearly addresses the challenges (A) to (D) discussed above. In particular, we make the following new contributions:

- We are the first to exploit SCA for bound analysis by using its ability of composing global bounds from bounds on locally extracted norms and disjunctive reasoning. Our technical contributions are the first algorithm for computing bounds with SCA (Algorithm 2) and the disjunctive summarization of inner loops with SCA (Algorithm 1).
- We are the first to describe how to apply SCA on imperative programs. Our technical contributions are two program transformations: pathwise analysis (Subsection 5.2), which exploits the looping structure of imperative programs, and contextualization (Subsection 6.1). These program transformations make imperative programs amenable to bound analysis by SCA.
- We obtain a competitive bound algorithm that captures the essential ideas of earlier termination and bound analyses in a simpler framework. Since bound analysis generalizes termination analysis, many of our methods are relevant for termination. Our experimental section shows that we can handle a large percentage of standard C programs. We give a detailed comparison with related work on termination and bound analysis in the extended version of this paper available on the website of the first author.

2 Examples

We use two examples to demonstrate the challenges in the automatic generation of transition systems and bound computation, and give an overview of our approach. In the examples, we denote transition relations as expressions over primed and unprimed state variables in the usual way.

Example 1: Transition System Generation. Let us consider the source code of Example 1 together with its (simplified) CFG and transition relations

The size-change abstractions of the transition relations:

 $\begin{array}{ll} \rho_{1} \colon & l > 0 \land s' > s \land s' \leq 255 \land l' = l \\ \rho_{2} \colon & l > 0 \land s' < s \land s' \geq 0 \land l' = l \\ \rho_{3} \text{ and } \rho_{5} \colon l > 0 \land l' < l \land s' > s \land s' \leq 255 \\ \rho_{4} \text{ and } \rho_{6} \colon l > 0 \land l' < l \land s' < s \land s' \geq 0 \end{array}$

Fig. 2. The CFG obtained from contextualizing the transition system of Example 2 (left) and the size-change abstractions of the transition relations (right)

in Figure 1. Computing a bound for the header of the outer loop l_1 exhibits the following difficulties: The inner loop cannot be excluded in the analysis of the outer loop (e.g. by the standard technique called *slicing*) as it modifies the counter of the outer loop; this demonstrates the need for global reasoning in bound analysis. Further one needs to distinguish whether the inner loop has been skipped or executed at least one time as this determines whether j = 0or j > 0. This exemplifies why we need disjunctive invariants for inner loops. Moreover, the counter i may decrease, but this can only happen when i has been increased by at least 2 before. This presents a difficulty to an automatic analysis since the used abstract domains need to be precise enough to capture such reasoning. In particular, a naive application of the size-change abstraction is too imprecise, since it contains only inequalities.

Our Algorithm 1 computes a transition system for the outer loop with header l_1 as follows: The algorithm is based on the idea of enumerating all paths from l_1 back to l_1 in order to derive a precise disjunctive transition system. However, this enumeration is not possible as there are infinitely many such paths because of the inner loop at l_2 . Therefore Algorithm 1 recursively computes a transition system $\{i < n \land i' = i + 1 \land j' = j + 1 \land n' = n\}$ for the inner loop at l_2 , and then summarizes the inner loop disjunctively by size-change abstracting its transition system to $\{n - i > 0 \land n' - i' < n - i \land j < j'\}$ (our analysis extracts the norms n-i, j from the program using heuristics, cf. Section 7) and computing the reflexive transitive hull $\{n' - i' = n - i \land j' = j, n - i > 0 \land n' - i' < n - i \land j < j'\}$ in the abstract. (Note that we use sets of formulae to denote disjunctions of formulae.) Then Algorithm 1 enumerates all cycle-free paths from l_1 back to l_1 . There are two such paths: $\pi_1 = l_1 \xrightarrow{\rho_1} l_2 \xrightarrow{\rho_3} l_1$ and $\pi_2 = l_1 \xrightarrow{\rho_1} l_2 \xrightarrow{\rho_4} l_1$. Algorithm 1 inserts the reflexive transitive hull \mathcal{T} of the inner loop on the paths π_1, π_2 at the header of the inner loop l_2 and contracts the transition relations. This results in the two transition relations $\{false, n - i - 1 > 0 \land n' - i' < n - i \land$ j' > 0 for π_1 (one for each disjunct of the summary of the inner loop), and $\{n-i>0 \land n'-i'=n-i-1 \land j'=0, false\}$ for π_2 . Note that for each path, false indicates that one transition relation was detected to be unsatisfiable, e.g. $n-i-1 > 0 \land n'-i' < n-i-1 \land j' > 0 \land j' \leq 0$ in π_2 . Algorithm 1 returns the satisfiable two transitions as a transition system \mathcal{T} for the outer loop.

Our Algorithm 2 size-change abstracts \mathcal{T} (resulting in $\{n-i > 0 \land n'-i' < n-i \land j' > 0, n-i > 0 \land n'-i' < n-i \land j' > 0\}$) and computes the bound

 $\max(n, 0)$ from the abstraction. The difficult part in analyzing Example 1 is the transition system generation, while computing a bound from \mathcal{T} is easy.

Example 2: Bound Computation. Bound analysis is complicated when a loop contains a finite state machine that controls its dynamics. Example 2, found during our experiments on the **cBench** benchmark [1], presents such a loop.

```
Example 2. // cBench/consumer_lame/src/quantize-pvt.c
int bin_search_StepSize2 (int r, int s) {
 static int c = 4; int n; int f = 0; int d = 0;
 do {
    n = nondet();
    if (c == 1 ) break;
    if (f) c /= 2;
    if (n > r) {
      if (d == 1 && !f) {f = 1; c /= 2; }
      d = 2; s += c;
      if (s > 255) break; }
    else if (n < r) {
      if (d == 2 && !f) {f = 1; c /= 2; }
      d = 1; s -= c;
      if (s < 0) break; }
    else break; }
 while (1); }
```

The loop has three different phases: in its first iteration it assigns 1 or 2 to d, then either increases or decreases s until it sets f to true; then it divides c by 2 until the loop is exited. Note that disjunctive reasoning is crucial to distinguish the phases!

Our method first uses a standard invariant analysis (such as the octagon analysis) to compute the invariant $c \ge 1$, which is valid throughout the execution of the loop. Then Algorithm 1 obtains a transition system from the loop by collecting all paths from loop header back to the loop header. Omitting transitions that belong to infeasible paths we obtain six transitions:

```
\begin{split} \rho_1 &\equiv c \geq 1 \land \neg f \land d \neq 1 \land d' = 2 \land s' = s + c \land s' \leq 255 \land c' = c \land f' = f \\ \rho_2 &\equiv c \geq 1 \land \neg f \land d \neq 2 \land d' = 1 \land s' = s - c \land s' \geq 0 \land c' = c \land f' = f \\ \rho_3 &\equiv c \geq 1 \land \neg f \land d = 1 \land f' \land c' = c/2 \land d' = 2 \land s' = s + c' \land s' \leq 255 \\ \rho_4 &\equiv c \geq 1 \land \neg f \land d = 2 \land f' \land c' = c/2 \land d' = 1 \land s' = s - c' \land s' \geq 0 \\ \rho_5 &\equiv c \geq 1 \land f \land c' = c/2 \land d' = 2 \land s' = s + c' \land s' \leq 255 \land f' = f \\ \rho_6 &\equiv c \geq 1 \land f \land c' = c/2 \land d' = 1 \land s' = s - c' \land s' \geq 0 \land f' = f \end{split}
```

Our bound analysis reasons about this transition system automatically by applying the program transformation called *contextualization*, which determines in which context transitions can be executed, and size-change abstracting the transitions. By our heuristics (cf. Section 7) we consider s and the logarithm of c (which we abbreviate by l) as program norms.

Figure 2 shows the CFG obtained from contextualizing the transition system of Example 2 on the left. The CFG vertices carry the information which transition is executed next. The CFG edges are labeled by the transitions of the transition system, where presence of edges indicates that, e.g., l_4 can be directly executed after l_1 , and absence of an arc from l_4 to l_1 means that this transition is infeasible. The CFG shows that the transitions cannot interleave in arbitrary order; particularly useful are the strongly-connected components (SCCs) of the CFG. Our bound Algorithm 2 exploits the SCC decomposition. It computes bounds for every SCC separately using the size-change abstracted transitions (cf. Figure 2 on the right) and composes them to the overall bound max(255, s) + 3, which is precise.

We point out how the above described approach *enables* automatic bound analysis by SCA. Note that the variables d and f do not appear in the abstracted transitions. It is sufficient for our analysis to work with the CFG obtained from contextualization because the loop behavior of Example 2, which is controlled by d and f, has been encoded into the CFG. This has the advantage that less variables have to be considered in the actual bound analysis. Further note that the CFG decomposition gives us compositionality in bound analysis. Our analysis is able to combine the bounds of the SCCs to an (fairly complicated) overall bound using the operators max and + by following the structure of the CFG.

3 Program Model and Size-change Abstraction

Sets and Relations. Let A be a set. The concatenation of two relations $B_1, B_2 \in 2^{A \times A}$ is the relation $B_1 \circ B_2 = \{(e_1, e_3) \mid \exists e_2.(e_1, e_2) \in B_1 \land (e_2, e_3) \in B_2\}$. $Id = \{(e, e) \mid e \in A\}$ is the *identity relation* over A. Let $B \in 2^{A \times A}$ be a relation. We inductively define the k-fold exponentiation of B by $B^k = B^{k-1} \circ B$ and $B^0 = Id$. $B^+ = \bigcup_{k \ge 1} B^k$ resp. $B^* = \bigcup_{k \ge 0} B^k$ is the transitive- resp. reflexive transitive hull of B. We lift the concatenation operator \circ to sets of relations by defining $\mathcal{C}_1 \circ \mathcal{C}_2 = \{B_1 \circ B_2 \mid B_1 \in \mathcal{C}_1, B_2 \in \mathcal{C}_2\}$ for sets of relations $\mathcal{C}_1, \mathcal{C}_2 \subseteq 2^{A \times A}$. We set $\mathcal{C}^0 = \{Id\}; \mathcal{C}^k, \mathcal{C}^+$ etc. are defined analogously.

Program Model. We introduce a simple program model for sequential imperative programs without procedures. Our definition models explicitly the essential features of imperative programs, namely branching and looping. In Section 5 we will explain how to exploit the graph structure of programs in our analysis algorithm. We leave the extension to concurrent and recursive programs for future work.

Definition 1 (Transition Relations / Invariants). Let Σ be a set of states. The set of transition relations $\Gamma = 2^{\Sigma \times \Sigma}$ is the set of relations over Σ . A transition set $\mathcal{T} \subseteq \Gamma$ is a finite set of transition relations. Let $\rho \in \Gamma$ be a transition relation. \mathcal{T} is a transition system for ρ , if $\rho \subseteq \bigcup \mathcal{T}$. \mathcal{T} is a transition invariant for ρ , if $\rho^* \subseteq \bigcup \mathcal{T}$.

Definition 2 (Program, Path, Trace, Termination). A program is a tuple P = (L, E), where L is a finite set of locations, and $E \subseteq L \times \Gamma \times L$ is a finite set of transitions. We write $l_1 \xrightarrow{\rho} l_2$ to denote a transition (l_1, ρ, l_2) .

A path of P is a sequence $l_0 \xrightarrow{\rho_0} l_1 \xrightarrow{\rho_1} \cdots$ with $l_i \xrightarrow{\rho_i} l_{i+1} \in E$ for all i. Let $\pi = l_0 \xrightarrow{\rho_0} l_1 \xrightarrow{\rho_1} l_2 \cdots l_k \xrightarrow{\rho_k} l_{k+1}$ be a finite path. π is cycle-free, if π does not visit a location twice except for the end location, i.e., $l_i \neq l_j$ for all $0 \leq i < j \leq k$. The contraction of π is the transition relation $\operatorname{rel}(\pi) = \rho_0 \circ \rho_1 \circ \cdots \circ \rho_k$ obtained from concatenating all transition relations along π . Given a location l, $\operatorname{paths}(P,l)$ is the set of all finite paths with start and end location l. A path $\pi \in \operatorname{paths}(P,l)$ is simple, if all locations, except for the start and end location, are different from l.

A trace of P is a sequence $(l_0, s_0) \xrightarrow{\rho_0} (l_1, s_1) \xrightarrow{\rho_1} \cdots$ such that $l_0 \xrightarrow{\rho_0} l_1 \xrightarrow{\rho_1} \cdots$ \cdots is a path of P, $s_i \in \Sigma$ and $(s_i, s_{i+1}) \in \rho_i$ for all i. P is terminating, if there is no infinite trace of P.

Note that a cycle-free path $\pi \in \operatorname{paths}(P, l)$ is always simple. Further note that our definition of programs allows to model branching and looping precisely and naturally: imperative programs can usually be represented as CFGs whose edges are labeled with assign and assume statements.

Definition 3 (Transition Relation of a Location). Let P = (L, E) be a program and $l \in L$ a location. The transition relation of l is the set $P|_l = \bigcup_{simple \ \pi \in paths(P,l)} rel(\pi)$.

3.1 Order Constraints

Let X be a set of variables. Given a variable x we denote by x' its *primed* version. We denote by X' the set $\{x' \mid x \in X\}$ of the primed variables of X. We denote by \triangleright any element from $\{>, \ge\}$.

Definition 4 (Order Constraint). An order constraint over X is an inequality $x \triangleright y$ with $x, y \in X$.

Definition 5 (Valuation). The set of all valuations of X is the set $Val_X = X \to \mathbb{Z}$ of all functions from X to the integers. Given a valuation $\sigma \in Val_X$ we define its primed valuation as the function $\sigma' \in Val_{X'}$ with $\sigma'(x') = \sigma(x)$ for all $x \in X$. Given two valuations $\sigma_1 \in Val_{X_1}, \sigma_2 \in Val_{X_2}$ with $X_1 \cap X_2 = \emptyset$ we define their union $\sigma_1 \cup \sigma_2 \in Val_{X_1 \cup X_2}$ by $(\sigma_1 \cup \sigma_2)(x) = \begin{cases} \sigma_1(x) & \text{for } x \in X_1, \\ \sigma_2(x) & \text{for } x \in X_2. \end{cases}$

Definition 6 (Semantics). We define a semantic relation \models as follows: Let $\sigma \in Val_X$ be a valuation. Given an order constraint $x_1 \triangleright x_2$ over X, $\sigma \models x_1 \triangleright x_2$ holds, if $\sigma(x_1) \triangleright \sigma(x_2)$ holds in the structure of the integers (\mathbb{Z}, \geq) . Given a set O of order constraints over X, $\sigma \models O$ holds, if $\sigma \models o$ holds for all $o \in O$.

3.2 Size-change Abstraction (SCA)

We are using integer-valued functions on the program states to measure progress of a program. Such functions are called norms in the literature. Norms provide us sizes of states that we can compare. We will use norms for abstracting programs.

Definition 7 (Norm). A norm $n \in \Sigma \to \mathbb{Z}$ is a function that maps the states to the integers.

We fix a finite set of norms N for the rest of this subsection, and describe in Section 7 how to extract norms from programs automatically. Given a state $s \in \Sigma$ we define a valuation $\sigma_s \in Val_N$ by setting $\sigma_s(n) = n(s)$.

We will now introduce SCA. Our terminology diverts from the seminal papers on SCA [20,3] because we focus on a logical rather than a graph-theoretic representation. The set of norms N corresponds to the SCA "variables" in [20,3].

Definition 8 (Monotonicity Constraint, Size-change Relation / Set, Concretization). The set of monotonicity constraints MCs is the set of all order constraints over $N \cup N'$. The set of size-change relations (SCRs) SCRs = 2^{MCs} is the powerset of MCs. An SCR set $S \subseteq$ SCRs is a set of SCRs. We use the concretization function $\gamma : SCRs \to \Gamma$ to map an SCR $T \in$ SCRs to a transition relation $\gamma(T)$ by defining $\gamma(T) = \{(s_1, s_2) \in \Sigma \times \Sigma \mid \sigma_{s_1} \cup \sigma'_{s_2} \models T\}$ as the set of all pairs of states such that the evaluation of the norms on these states satisfy all the constraints of T. We lift the concretization function to SCR sets by setting $\gamma(S) = \{\gamma(T) \mid T \in S\}$ for an SCR set S.

Note that the abstract domain of SCRs has only finitely many elements, namely $3^{(2|N|)^2}$. Further note that an SCR set corresponds to a formula in DNF.

Definition 9 (Abstraction Function). The abstraction function $\alpha : \Gamma \rightarrow$ SCRs takes a transition relation $\rho \in \Gamma$ and returns the greatest SCR containing it, namely $\alpha(\rho) = \{c \in MCs \mid \rho \subseteq \gamma(c)\}$. We lift the abstraction function to transition sets by setting $\alpha(\mathcal{T}) = \{\alpha(\rho) \mid \rho \in \mathcal{T}\}$ for a transition set \mathcal{T} .

Implementation of the abstraction. α can be implemented by an SMT solver under the assumption that the norms are provided as expressions and that the transition relation is given as a formula such that the order constraints between these expressions and the formula fall into a logic that the SMT solver can decide.

Using abstraction and concretization we can define concatenation of SCRs:

Definition 10 (Concatenation of SCRs). Given two SCRs $T_1, T_2 \in SCRs$, we define $T_1 \circ T_2$ to be the SCR $\alpha(\gamma(T_1) \circ \gamma(T_2))$. We lift the concatenation operator \circ to SCR sets by defining $S_1 \circ S_2 = \{T_1 \circ T_2 \mid T_1 \in S_1, T_2 \in S_2\}$ for SCR sets $S_1, S_2 \in 2^{SCRs}$. $S^0 = \{Id\}, S^k, S^+, S^*$ etc. are defined in the natural way.

Concatenation of SCRs is conservative by definition, i.e., $\gamma(T_1 \circ T_2) \supseteq \gamma(T_1) \circ \gamma(T_2)$ and associative because of the transitivity of order relations. Concatenation of SCRs can be effectively computed by a modified all-pairs-shortest-path algorithm (taking order relations as weights). Because the number of SCRs is finite, the transitive hull is computable.

The following theorem can be directly shown from the definitions. We will use it to summarize the transitive hull of loops disjunctively, cf. Section 5.

Theorem 1 (Soundness). Let ρ be a transition relation and \mathcal{T} a transition system for ρ . Then $\gamma(\alpha(\mathcal{T})^*)$ is a transition invariant for ρ .

4 Main Steps of our Analysis

Let P = (L, E) be a program and $l \in L$ be a location for which we want to compute a bound. Our analysis consists of four main steps:

1. Extract a set of norms N using heuristics	(Section 7)
2. Compute global invariants by standard abstract domains	
3. Compute $\mathcal{T} = \texttt{TransSys}(P, l)$	(Section 5)
4. Compute $b = \text{Bound}(\text{Contextualize}(\mathcal{T}))$	(Section 6)

In Step 1 we extract a set of norms N using the heuristics described in Section 7. The abstraction function α that we use in Steps 3 and 4 is parameterized by the set of norms N. In Step 2 we compute global invariants by standard abstract domains such as interval, octagon or polyhedra. As this step is standard, we do not discuss it in this paper. In Step 3 we compute a transition system $\mathcal{T} =$ **TransSys**(P,l) for $P|_l$ by Algorithm 1. In Step 4 we compute a bound b =**Bound**(Contextualize(\mathcal{T})) for the number of visits to l, where we first use the program transformation contextualization of Definition 11 to transform \mathcal{T} into a program from which we then compute a bound b by Algorithm 2.

```
Procedure: TransSys(P, l)

Input: a program P = (L, E), a location l \in L

Output: a transition system for P|_l

Global: array summary for storing transition invariants

foreach (loop, header) \in NestedLoops(P, l) do

\mathcal{T} := TransSys(loop, header);

hull := \gamma(\alpha(\mathcal{T})^*);

summary[header] := hull;

foreach cycle-free \ path \ \pi = l \xrightarrow{\rho_0} l_1 \xrightarrow{\rho_1} l_2 \cdots l_k \xrightarrow{\rho_k} l \in paths(P, l) do

\mathcal{T}_{\pi} := \{\rho_0\} \circ ITE(IsHeader(l_1), summary[l_1], \{Id\}) \circ \{\rho_1\} \circ

ITE(IsHeader(l_2), summary[l_2], \{Id\}) \circ \{\rho_2\} \circ \cdots \circ

ITE(IsHeader(l_k), summary[l_k], \{Id\}) \circ \{\rho_k\};

return \bigcup_{cycle-free \ path \ \pi \in paths(P, l) \ \mathcal{T}_{\pi};
```

Algorithm 1: TransSys(P, l) computes a transition system for $P|_l$

5 Computing Transition Systems

In this section we describe our algorithm for computing transition systems. We first present the actual algorithm, and then discuss specific characteristics. The function **TransSys** in Algorithm 1 takes as input a program P = (L, E) and a location $l \in L$ and computes a transition system for $P|_l$, cf. Theorem 2 below. The key ideas of Algorithm 1 are (1) to summarize inner loops disjunctively by transition invariants computed with SCA, and (2) to enumerate all cycle-free paths for pathwise analysis. Note that for loop summarization the algorithm 1 to Example 1 in the extended version.

Loop Summarization. In the first foreach-loop, Algorithm 1 iterates over all nested loops of P w.r.t. l. A loop loop of P is a nested loop w.r.t. l, if it is strongly connected to l but does not contain l, and if there is no loop with the same properties that strictly contains loop. Let loop be a nested loop of Pw.r.t. l and let header be its header. (We assume that the program is reducible, see discussion below.) **TransSys** calls itself recursively to compute a transition system \mathcal{T} for loop|_header.

In statement $hull := \gamma(\alpha(\mathcal{T})^*), \alpha(\mathcal{T})$ size-change abstracts \mathcal{T} to an SCR set, $\alpha(\mathcal{T})^*$ computes the transitive hull of this SCR set, and $\gamma(\alpha(\mathcal{T})^*)$ concretizes the abstract transitive hull to a transition set, which is then assigned to *hull*. Algorithm 1 stores *hull* in the array summary, which is a transition invariant for $loop|_{header}$ by the soundness of SCA as stated in Theorem 1.

After the first foreach-loop, Algorithm 1 has summarized all inner loops, not only the nested loops, because the recursive calls reaches all nesting levels. For each inner loop *loop* with header *header* a transition invariant for $loop|_{header}$ has been stored at summary[*header*]. Summaries of inner loops are visible to all outer loops, because the array summary is a global variable.

Pathwise Analysis. In the second foreach-loop, Algorithm 1 iterates over all cycle-free paths of P with start and end location l. Let $\pi = l \stackrel{\rho_0}{\longrightarrow} l_1 \stackrel{\rho_1}{\longrightarrow} \cdots l_k \stackrel{\rho_k}{\longrightarrow} l$ be such a cycle-free path. The expression ITE(IsHeader (l_i) , summary $[l_i]$, $\{Id\}$) evaluates to summary $[l_i]$ for each location l_i , if l_i is the header of an inner loop $loop_i$, and evaluates to the transition set $\{Id\}$, which contains only the identity relation over the program states, else. Algorithm 1 computes the set $\mathcal{T}_{\pi} = \{\rho_0\} \circ$ ITE(IsHeader (l_1) , summary $[l_1]$, $\{Id\}$) $\circ\{\rho_1\} \circ$ ITE(IsHeader (l_2) , summary $[l_2]$, $\{Id\}$) $\circ\{\rho_2\} \circ \cdots \circ$ ITE(IsHeader (l_k) , summary $[l_k]$, $\{Id\}$) $\circ\{\rho_k\}$, which is an overapproximation of the contraction of π , where the summaries of the inner loops $loop_i$ are inserted at their headers l_i . The transition set \mathcal{T}_{π} overapproximates all paths starting and ending in l that iterate arbitrarily often through inner loops along π , because for every loop $loop_i$ the transition set summary $[l_i]$ overapproximates all paths starting and ending in l_i that iterate arbitrarily often through $loop_i$ (as summary $[l_i]$ is a transition invariant for $loop_i|_{l_i}$). Algorithm 1 returns the union $\bigcup_{cycle-free path \pi \in paths(P,l)} \mathcal{T}_{\pi}$ of all those transition sets \mathcal{T}_{π} .

Theorem 2. Algorithm 1 computes a transition system TransSys(P, l) for $P|_l$.

Proof (Sketch). Let $\pi' \in \text{paths}(P, l)$ be a simple path. We obtain a cycle-free path $\pi \in \text{paths}(P, l)$ from π' by deleting all iterations through inner loops of (P, l) from π' . The transition set \mathcal{T}_{π} overapproximates all paths starting and ending in l that iterate arbitrarily often through inner loops of (P, l) along π . As π' iterates through inner loops of (P, l) along π we have $\operatorname{rel}(\pi) \subseteq \bigcup \mathcal{T}_{\pi}$.

Implementation. We use conjunctions of formulae to represent individual transitions. This allows us to implement the concatenation of transition relations by conjoining their formulae and introducing existential quantifiers for the intermediate variables. We detect empty transition relations by asking an SMT solver whether their corresponding formulae are satisfiable. We use these emptiness checks at several points during the analysis to reduce the number of transition relations.

Algorithm 1 may exponentially blow up in size because of the enumeration of all cycle-free paths and the computation of transitive hulls of inner loops. We observed in our experiments that by first extracting norms from the program under scrutiny and then slicing the program w.r.t. these norms before continuing with the analysis normally results into programs small enough for making our analysis feasible.

Irreducible programs. Algorithm 1 refers to loop headers, and thus implicitly assumes that loops are reducible. (Recall that in a reducible program each SCC has a unique entry point called the header.) We have formulated Algorithm 1 in this way to make clear how it exploits the looping structure of imperative programs. However, Algorithm 1 can be easily extended to irreducible loops by a case distinction on the (potentially multiple) entry points of SCCs.

5.1 Disjunctiveness in Algorithm 1

Disjunctiveness is crucial for bound analysis. We have given two examples for this fact in Section 2 and refer the reader for further examples to [15,4,23]. We emphasize that our analysis can handle *all examples* of these publications. Our analysis is disjunctive in two ways:

(1) We summarize inner loops disjunctively. Given a transition system \mathcal{T} for some inner loop loop, we want to summarize loop by a transition invariant. The most precise transition invariant $\mathcal{T}^* = \{Id\} \cup \mathcal{T} \cup \mathcal{T}^2 \cup \mathcal{T}^3 \cup \cdots$ introduces infinitely many disjunctions and is not computable in general. In contrast to this the abstract transitive hull $\alpha(\mathcal{T})^* = \alpha(\{Id\}) \cup \alpha(\mathcal{T}) \cup \alpha(\mathcal{T})^2 \cup \alpha(\mathcal{T})^3 \cup \cdots$ has only finitely many disjunctions and is effectively computable. This allows us to overapproximate the infinite disjunction \mathcal{T}^* by the finite disjunction $\gamma(\alpha(\mathcal{T})^*)$.

We underline that the need for disjunctive summaries of inner loops in the bound analysis is a major motivation for SCA, as it allows us to compute disjunctive transitive hulls naturally, cf. definition and discussion in Section 3.2.

(2) We summarize local transition relations disjunctively. Given a program P = (L, E) and location $l \in L$, we want to compute a transition system for $P|_l$. For a cycle-free path $\pi \in \text{paths}(P, l)$ the transition set \mathcal{T}_{π} computed in Algorithm 1 overapproximates all simple paths in paths(P, l) that iterate through inner loops along π . As all \mathcal{T}_{π} are sets, the set union $\bigcup_{\text{cycle-free path } \pi \in \text{paths}(P, l)} \mathcal{T}_{\pi}$ is a disjunctive summarization of all \mathcal{T}_{π} that keeps the information from different paths separated. This is important for our analysis which relies on the observation that monotonic changes of norms can be observed along single paths from loop header back to the header.

5.2 Pathwise Analysis in Algorithm 1

It is well-known that analyzing large program parts jointly improves the precision of static analyses, e.g. [6]. Owing to the progress in SMT solvers this idea has recently seen renewed interested by static analyses such as abstract interpretation [22] and software model checking [5], which use SMT solvers for abstracting large blocks of straight-line code jointly to increase the precision of the analysis.

We call the analyses of [22,5] and classical SCA [20,3] *blockwise*, because they do joint abstraction only for loop-free program parts. In contrast, our *pathwise analysis* abstracts complete paths at once: Algorithm 1 enumerates all cycle-free paths from loop header to loop header and inserts summaries for inner loops on these paths. These paths are then abstracted jointly in a subsequent loop summarization or bound computation. In this way our pathwise analysis is strictly more precise than blockwise analysis. We illustrate this issue on Example 1 for SCA the extended version of this paper.

Parsers are a natural class of programs which illustrate the need for pathwise analysis. In our experiments we observed that many parsers increase an index while scanning the input stream and use lookahead to detect which token comes next. As in Example 1, lookaheads may temporarily decrease the index. Pathwise abstraction is crucial to reason about the program progress with SCA.

6 Bound Computation

Our bound computation consists of two steps. Step 1 is the program transformation contextualization which transforms a transition system into a program. Step 2 is the bound algorithm which computes bounds from programs.

6.1 Contextualization

Contextualization is a program transformation by Manolios and Vroon [21], who report on an impressive precision of their SCA-based termination analysis of functional programs. Note that we do not use their terminology (e.g. "calling context graphs") in this paper. Our contribution lies in adopting contextualization to imperative programs and in recognizing its relevance for bound analysis.

Definition 11 (Contextualization). Let \mathcal{T} be a transition set. The contextualization of \mathcal{T} is the program $P = (\mathcal{T}, E)$, where $E = \{\rho \xrightarrow{\rho} \rho' \mid \rho, \rho' \in \mathcal{T} \text{ and } \rho \circ \rho' \neq \emptyset\}.$

The contextualization of a transition system is a program in which every location determines which transition is executed next; the program has an edge between two locations only if the transitions of the locations can be executed one after another.

Contextualization restricts the order in which the transitions of the transition system can be executed. Thus, contextualization encodes information that could otherwise be deduced from the pre- and postconditions of transitions directly into the CFG. Since pathwise analysis contracts whole loop paths into single transitions, contextualization is particularly important after pathwise analysis: our subsequent bound algorithm does not need to compute the pre- and postcondition of the contracted loop paths but only needs to exploit the structure of the CFGs for determining in which order the loop paths can be executed.

We illustrate contextualization on Example 3. The program has two paths, and gives rise to the transition system $\mathcal{T} = \{\rho_1, \rho_2\}$. Keeping track of the boolean

Example 3.			
<pre>void main (int x, int b){</pre>	$a = 0 < m < 255 \land h \land m' = m + 1 \land h'$	l_1	l_2
while (0 < x < 255){	$p_1 = 0 < x < 255 \land b \land x' = x + 1 \land b$	U	υ
if (b) $x = x + 1;$	$p_2 \equiv 0 < x < 255 \land 0 \land x = x = 1 \land 0$	ρ_1	ρ_2
else $x = x - 1; \}$			

Fig. 3. Example 3 with its transition relations and CFG obtained from contextualization.

variable b is important for bound analysis: Without reference to b not even the termination of main can be proven. In Figure 3 (right) we show the contextualization of \mathcal{T} . Note that contextualization has encoded information about the variable b into the CFG in such a way that we do not need to keep track of the variable b anymore. Thus, contextualization releases us from taking the precondition b resp. $\neg b$ and the postcondition b' resp. $\neg b'$ into account for bound analysis.

At the beginning we gave an application of contextualization on the sophisticated loop in Example 2, where contextualization uncovers the control structure of the finite state machine encoded into the loop. An application of contextualization to the flagship example of a recent publication [13] can be found in the extended version of this paper.

Note that in our definition of contextualization we only consider the consistency of two consecutive transitions. It would also have been possible to consider three or more consecutive transitions. This would result in increased precision. However, we found two transitions to be sufficient in practice.

Implementation. We implement contextualization by encoding the concatenation $\rho_1 \circ \rho_2$ of two transitions ρ_1, ρ_2 into a logical formula and asking an SMT solver whether this formula is satisfiable. Note that such a check is very simple to implement in comparison to the explicit computation of pre- and postconditions.

```
Procedure: Bound(P)

Input: a program P = (L, E)

Output: a bound b on the length of the traces of P

SCCs := \text{computeSCCs}(P); b := 0;

while SCCs \neq \emptyset do

SCCsOnLevel := \emptyset;

forall the SCC \in SCCs \ s.t. \ no \ SCC' \in SCCs \ can \ reach \ SCC \ do

r := \text{BndSCC}(SCC);

Let r \leq b_{SCC} be a global invariant;

SCCsOnLevel := SCCsOnLevel \cup \{SCC\};

b := b + \max_{SCC \in SCCsOnLevel} b_{SCC};

SCCs := SCCs \setminus SCCsOnLevel;

return b:
```


6.2 Bound Algorithm

Our bound algorithm reduces the task of bound computation to the computation of local bounds and the composition of these local bounds to an overall bound. To this end, we exploit the structure of the CFGs obtained from contextualization: We partition the CFG of programs into its strongly connected components (SCCs) (SCCs are maximal strongly connected subgraphs). For each SCC, we compute a bound by Algorithm 3, and then compose these bounds to an overall bound by Algorithm 2.

Algorithm 2 arranges the SCCs of the CFG into levels: The first level consists of the SCCs that do not have incoming edges, the second level consists of the SCCs that can be reached from the first level, etc. For each level, Algorithm 2 calls Algorithm 3 to compute bounds for the SCCs of this level. Let *SCC* be an SCC of some level and let r := BndSCC(SCC) be the bound returned by Algorithm 3 on *SCC*. r is a (local) bound of *SCC* that may contain variables of P that are changed during the execution of P. Algorithm 2 uses global invariants (e.g. interval, octagon or polyhedra) in order to obtain a bound b_{SCC} on r in terms of the initial values of P. The SCCs of one level are collected in the set *SCCsOnLevel*. For each level, Algorithm 2 composes the bounds b_{SCC} of all SCCs $SCC \in SCCsOnLevel$ to a maximum expression. Algorithm 2 sums up the bounds of all levels for obtaining an overall bound.

Procedure: BndSCC(P) Input: strongly-connected program P = (L, E)Output: a bound b on the length of the traces of P if $E = \emptyset$ then return 1; NonIncr := \emptyset ; DecrBnded := \emptyset ; BndedEdgs := \emptyset ; foreach $n \in N$ do if $\forall l_1 \xrightarrow{\rho} l_2 \in E \ n \ge n' \in \alpha(\rho)$ then $\ NonIncr := NonIncr \cup \{n\};$ foreach $l_1 \xrightarrow{\rho} l_2 \in E, \ n \in NonIncr$ do if $n \ge 0, n > n' \in \alpha(\rho)$ then $\ DecrBnded := DecrBnded \cup \{\max(n, 0)\};$ $BndedEdgs := BndedEdgs \cup \{l_1 \xrightarrow{\rho} l_2\};$ if $BndedEdgs = \emptyset$ then fail with "there is no bound for P"; $b = Bound((L, E \setminus BndedEdgs));$ return $((\sum DecrBnded) + 1) \cdot b;$

Algorithm 3: BndSCC computes a bound for a single SCC

Algorithm 3 computes the bound of a strongly-connected program P. First Alg. 3 checks if P = (L, E) is trivial, i.e., $E = \emptyset$, and returns 1, if this is the case. Next Alg. 3 collects all norms in the set *NonIncr* that either decrease or stay equal on all transitions. Subsequently Alg. 3 checks for every norm $n \in NonIncr$ and transition $l_1 \xrightarrow{\rho} l_2 \in E$, if n is bounded from below by zero and decreases on ρ . If this is the case, Alg. 3 adds $\max(n, 0)$ to the set *DecrBnded* and $l_1 \xrightarrow{\rho} l_2$ to *BndedEdgs*. Note that the transitions included in the set *BndedEdgs* can only be executed as long as their associated norms are greater than zero. Every transition in *BndedEdgs* decreases an expression in *DecrBnded* when it is taken. As the expressions in *DecrBnded* are never increased, the sum of all expressions in *DecrBnded* is a bound on how often the transitions in *BndedEdgs* can be

taken. If *DecrBnded* is empty, Alg. 2 fails, because the absence of infinite cycles could not be proven. Otherwise we recursively call Alg. 2 on $(L, E \setminus BndedEdgs)$ for a bound b on this subgraph. The subgraph can at most be entered as often as the transitions in *BndedEdgs* can be taken plus one (when it is entered first). Thus, $((\sum DecrBnded) + 1) \cdot b$ is an upper bound for P.

Role of SCA in our Bound Analysis. Our bound analysis uses the size-change abstractions of transitions to determine how a norm n changes according to $n \ge n', n > n', n \ge 0$ in Alg. 3. We plan to incorporate inequalities between different norms (like $n \ge m'$) in future work to make our analysis more precise. Termination analysis. If in Algorithm 2 the global invariant analysis cannot infer an upper bound on some local bound, the algorithm fails to compute a bound, but we can still compute a lexicographic ranking function, which is sufficient to prove termination. The respective adjustment of our algorithm is straightforward.

We give an example for the application of Algorithm 2 to Example 2 and to the flagship example of [13] in the extended version of this paper.

7 Heuristics for Extracting Norms

In this section we describe our heuristic for extracting norms from programs. Let P = (L, E) be a program and $l \in L$ be a location. We compute all cyclefree paths from l back to l. For all arithmetic conditions $x \geq y$ appearing in some of these paths we take x - y as a norm if x - y decreases on this path; this can be checked by an SMT solver. Note that in such a case x - y is a local ranking function for this program path. Similar patterns and checks can be implemented for iterations over bitvectors and data structures. For a more detailed discussion on how to extract the local ranking functions of a program path we refer the reader to [15]. We also compute norms for inner loops on which already extracted norms are control dependent and add them to the set of norms until a fixed point is reached (similar to program slicing). We also include the sum and the difference of two norms, if an inner loop affects two norms at the same time. Further, we include the rounded logarithm of a norm, if the norm is multiplied by a constant on some program path. In general any integer-valued expression can be used as a program norm, if considered useful by some heuristic. Clearly the analysis gets more precise the more norms are taken into account, but also more costly.

8 Related Work

In recent work [16] it was shown that SCA [20,3] is an instance of the more general technique of transition predicate abstraction (TPA) [24]. We argue that precisely because of its limited expressiveness SCA is suitable for bound analysis: abstracted programs are simple enough such that we can compute bounds for them. While we describe how to make imperative programs amenable to bound analysis by SCA, [16] is not concerned with practical issues. The TERMINATOR tool [7] uses TPA for constructing a Ramsey based termination argument [23].

This argument does not allow to construct ranking functions or bounds from termination proofs and requires reasoning about the transitive hulls of programs by a software model checker, which is the most expensive step in the analysis. Our light-weight static analysis uses SCA for composing global bounds from bounds on norms and requires only the computation of transitive hulls of abstracted programs, which is markedly less expensive. Recent papers [18,26] propose to construct abstract programs for which termination is obvious and which are closed under transitivity in order to avoid analyzing transitive hulls of programs. Others [15,4] propose to lift standard abstract domains (as octagon, polyhedra) to powerset domains for the computation of disjunctive transition invariants, which requires a difficult lifting of the widening operator. In contrast, SCA is a finite powerset abstract domain, which can handle disjunction but does not require widening. In earlier work [15] we stated ad hoc proof rules for computing global bounds from local bounds of transitions. We generalize these rules by our bound algorithm and identify SCA as a suitable abstraction for bound analysis. Our contextualization technique is a sound generalization of the flawed enabledness check of [15]. Like our paper, [13] proposes the use of program transformation for bound analysis. While the algorithm of [13] is involved and parameterized by an abstract domain, our program transformations are easy to implement and rely only on an SMT solver. Despite its success in functional/declarative languages, e.g. [21,17], SCA [20,3] has not yet been applied to imperative programs. We are the first to describe such an analysis.

We give a detailed comparison with the cited approaches and others in the extended version.

9 Experiments

Our tool LOOPUS applies the methods of this paper to obtain upper bounds on loop iterations. The tool employs the LLVM compiler framework and performs its analysis on the LLVM intermediate representation [19]. We are using ideal integers in our analysis instead of exact machine representation (bitvectors). Our analysis operates on the SSA variables generated by the mem2reg pass and handles memory references using optimistic assumptions. For logical reasoning we use the *yices* SMT solver [8]. Our experiments were performed on an Intel Xeon CPU (4 cores with 2.33 GHz) with 16 GB Ram. LOOPUS computed a bound for 93% of the 262 loops of the Mälardalen WCET [2] benchmark (72%) for loops with more than one path) in less than 35 seconds total time. LOOPUS computed a bound for 75% (65% for loops with more than one path) of the 4090 loops of the compiler optimization benchmark cBench [1] within a 1000 seconds timeout for each loop (3923 loops in less than 4 seconds). 1102 of the 4090 loops required the summarization of inner loops. LOOPUS computed a bound for 56%of these loops. We give more details about our experiments and the cases in which we failed in the extended version of this paper.

Acknowledgement. We would like to thank the anonymous reviewers for their insightful comments.

References

- 1. http://ctuning.org/wiki/index.php/CTools:CBench.
- 2. http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.
- A. M. Ben-Amram. Monotonicity constraints for termination in the integer domain. Technical report, 2011.
- J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O'Hearn. Variance analyses from invariance analyses. In *POPL*, pages 211–224, 2007.
- D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. Software model checking via large-block encoding. In *FMCAD*, pages 25–32, 2009.
- C. Colby and P. Lee. Trace-based program analysis. In *POPL*, pages 195–207, 1996.
- B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In *PLDI*, pages 415–426, 2006.
- 8. B. Dutertre and L. de Moura. The yices smt solver. Technical report, 2006.
- S. Goldsmith, A. Aiken, and D. S. Wilkerson. Measuring empirical computational complexity. In *ESEC/SIGSOFT FSE*, pages 395–404, 2007.
- 10. D. Gopan and T. W. Reps. Lookahead widening. In CAV, 2006.
- B. S. Gulavani and S. Gulavani. A numerical abstract domain based on expression abstraction and max operator with application in timing analysis. In CAV, pages 370–384, 2008.
- S. Gulwani. Speed: Symbolic complexity bound analysis. In CAV, pages 51–62, 2009.
- S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress invariants for bound analysis. In *PLDI*, pages 375–385, 2009.
- S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: precise and efficient static estimation of program computational complexity. In *POPL*, pages 127–139, 2009.
- S. Gulwani and F. Zuleger. The reachability-bound problem. In *PLDI*, pages 292–304, 2010.
- M. Heizmann, N. D. Jones, and A. Podelski. Size-change termination and transition invariants. In SAS, pages 22–50, 2010.
- 17. A. Krauss. Certified size-change termination. In CADE, pages 460-475, 2007.
- D. Kroening, N. Sharygina, A. Tsitovich, and C. M. Wintersteiger. Termination analysis with compositional transition invariants. In CAV, pages 89–103, 2010.
- C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program analysis & transformation. In CGO '04: Proceedings of the international symposium on Code generation and optimization, page 75, Washington, DC, USA, 2004. IEEE Computer Society.
- C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program termination. In *POPL*, pages 81–92, 2001.
- P. Manolios and D. Vroon. Termination analysis with calling context graphs. In CAV, pages 401–414, 2006.
- D. Monniaux. Automatic modular abstractions for linear constraints. In *POPL*, pages 140–151, 2009.
- A. Podelski and A. Rybalchenko. Transition invariants. In *LICS*, pages 32–41, 2004.
- A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair termination. In *POPL*, pages 132–144, 2005.
- C. Popeea and W.-N. Chin. Inferring disjunctive postconditions. In ASIAN, pages 331–345, 2006.
- A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening. Loop summarization and termination analysis. In *TACAS*, pages 81–95, 2011.