
Electronic Notes in Theoretical Computer Science 89 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume89.html 22 pages

Transactions for Software Model Checking

Cormac Flanagan

Hewlett-Packard Labs
1501 Page Mill Road, Palo Alto, CA 94304

Shaz Qadeer

Microsoft Research
One Microsoft Way, Redmond, WA 98052

Abstract

This paper presents a software model checking algorithm that combats state explo-
sion by decomposing each thread’s execution into a sequence of transactions that
execute atomically. Our algorithm infers transactions using the theory of reduction,
and supports both left and right movers, thus yielding larger transactions and fewer
context switches than previous methods. Our approach uses access predicates to
support a wide variety of synchronization mechanisms. In addition, we automati-
cally infer these predicates for programs that use lock-based synchronization.

Key words: Model checking, multithreaded software, reduction,
transactions

1 Introduction

The theory of reduction [Lip75] was introduced by Lipton to reduce the intel-
lectual complexity of proving deadlock-freedom for parallel programs. Since
then, many researchers [Doe77,LS89,CL98,Mis01] have developed the the-
ory to incorporate general safety and liveness properties. Recently, a few
practical applications of this theory have emerged in type and effect sys-
tems [FQ03c,FQ03b], verification-condition based static checking [FQ02], and
model checking [SC03]. This paper presents a powerful and fully automatic
algorithm that uses the theory of reduction to combat the state-explosion prob-
lem, the fundamental source of complexity in model checking multithreaded
software.

Reduction takes a transactional view of computations occurring in individ-
ual threads of a multithreaded program. If all threads follow a synchronization
discipline for accessing shared variables, the execution of a thread can be de-
composed into transactions that can be considered to execute atomically from

c©2003 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume89.html

Flanagan and Qadeer

the point of view of other threads even though the scheduler interleaves ac-
tions of other threads during the transaction. Each transaction is a sequence
of actions a1, . . . , am, x, b1, . . . , bn such that each ai is a right mover and each
bi is a left mover. A right mover is an action, such as a lock acquire, that
commutes to the right of every action by another thread; a left mover is an
action, such as a lock release, that commutes to the left of every action by
another thread. Accessing (reading or writing) a shared variable while hold-
ing its protecting lock is a both-mover, that is, it is both a right-mover and a
left-mover. This view of concurrent computations has been used in database
theory to prove the serializability of database transactions [Pap86].

The notion of transactions immediately suggests a method to reduce the
number of explored states during model checking. The recipe is simply stated:
deduce transactions in threads and avoid scheduling a thread in the middle of
another thread’s transaction. The idea of controlling the process scheduler to
combat state-space explosion is not new. For example, the class of techniques
known as partial-order reduction [Val90,Pel94,God96] use process scheduling
algorithms to effect state reduction. However, these algorithms do not use
the notion of transactions. Recently, Stoller and Cohen [SC03] have proposed
a model checking algorithm that leverages Lipton’s theory of reduction. A
careful examination of all these approaches reveals that they use only the
notion of left movers. In this paper, we present a model checking algorithm
that uses both left and right movers to automatically deduce transactions in
threads and reduce the state space explored during model checking. Since our
algorithm uses both right and left movers, it can infer larger transactions than
the algorithm of Stoller and Cohen.

The key to deducing transactions automatically is the notion of exclusive
access predicates for shared variables. Exclusive access predicates were first
introduced in the Calvin checker [FQ02] to semantically capture a multitude of
synchronization disciplines by a single specification mechanism. Each shared
variable is associated with an exclusive access predicate which states the con-
dition under which a thread has exclusive access to that variable. For example,
the exclusive predicate for a variable x protected by a mutex mx says that a
thread has exclusive access to x if it holds the lock mx. A second thread must
respect this exclusive predicate, and not access x whenever the first thread
holds the lock.

The presentation of our approach proceeds as follows. Section 2 presents an
example that illustrates the benefit our approach. Section 3 formalizes our no-
tion of multithreaded programs, and Section 4 presents our transaction-based
model checking algorithm for such programs. Section 5 specializes this ap-
proach to lock-based programs, and Section 6 describes how to infer exclusive
predicates during transaction-based model checking of lock-based programs.
Section 7 discusses related work, and we conclude with Section 8.

2

Flanagan and Qadeer

2 Overview

We illustrate our approach by a simple example. Below, we show an imple-
mentation of a multithreaded counter with three methods —incr, decr, and
read. The shared variable x keeps track of the number of increment opera-
tions performed on the counter and is protected by the mutex mx. Similarly,
the shared variable y keeps track of the number of decrement operations per-
formed on the counter and is protected by the mutex my. A mutex is modeled
an an integer variable. If the mutex is held by a thread, its value is the positive
integer identifying that thread; otherwise, its value is 0. The variable count

is an abstract variable introduced solely for the purpose of specifying the cor-
rectness of the counter implementation. The correctness property is stated as
an assertion in the method read. Since count is a specification variable, we
assume that the increment and decrement operations on count in incr and
decr respectively are atomic. Hence, there is no need to protect count with a
mutex. For the purpose of model checking, we restrict all integer variables to
the first k natural numbers and interpret addition and subtraction modulo k.

int x = 0, y = 0, mx = 0, my = 0, count = 0;

void incr() { void decr() { int read() {

acquire(mx); acquire(my); acquire(mx);

int tx = x; int ty = y; int tx = x;

count++; count--; acquire(my);

x = tx+1; y = ty+1; int ty = y;

release(mx); release(mx); assert count == tx-ty;

} } release(my);

release(mx);

return tx-ty;

}

Consider a multithreaded program consisting of two threads, each of which
repeatedly calls a nondeterministically chosen method—incr, decr, or read.
Each thread follows the synchronization discipline of accessing x and y only
when the correct mutexes are held. An action that acquires a lock, such
as acquire(mx), is a right mover. An action that releases a lock, such as
release(mx), is a left mover. An access to a thread-local variable, such as
tx, is both a right and left mover. An access to a shared variable x performed
while holding its lock mx is also both a right and left mover. An access to an
unprotected shared variable, such as count, is neither a right nor a left mover.
Thus, the body of each method is a transaction since all the actions preceding
the unique access to count are right movers and all succeeding actions are
left movers. We say that the transaction is in the pre-commit stage before the
access to count happens and in the post-commit stage afterwards. Our model
checking algorithm is able to automatically deduce these transactions, one per
procedure. On the other hand, the algorithm of Stoller and Cohen will deduce

3

Flanagan and Qadeer

two transactions in incr and decr and three transactions in read.

Our algorithm depends on the notion of exclusive predicates for shared
variables to infer these transactions automatically. The exclusive predicates
for the shared variables in this example are:

E(t, x)
def
= mx == t

E(t, y)
def
= my == t

E(t, mx)
def
= mx == t

E(t, my)
def
= my == t

E(t, count)
def
= false

For example, the exclusive predicate for x states that the thread t has exclusive
access to x whenever the value of mx is t, that is, the thread t holds lock
mx. Note that a mutex is just another shared variable for our algorithm;
consequently, the mutexes have exclusive access predicates associated with
them as well. No thread ever has exclusive access to count since its predicate
is false.

Our algorithm uses these exclusive predicates to infer whether an action
performed by a thread is a right or a left mover. An action is a right mover if
that thread has exclusive access to all shared variables accessed by the action
in the post-state. Similarly, an action is a left mover if the thread has exclusive
access to all accessed shared variables in the pre-state.

3 Multithreaded programs

This section formalizes a semantics of multithreaded programs that we use to
describe our transaction-based model checking algorithm.

Domains

x, y ∈ Var (variables)
v ∈ Val (values)

t, u ∈ Tid (thread identifiers)
l ∈ Loc = {Init ,Wrong , . . .} (program counter locations)
s ∈ Store = Var → Val (global stores)
ls ∈ Locs = Tid → Loc (local stores)

(s, ls) ∈ State = Store × Locs (states)

A state of the multithreaded program P consists of a global store mapping
variables to values and a local store mapping thread identifiers to program
counters. The set Loc of program counters contains the program counter Init ,
which is the initial program counter of each thread. Thus, the initial state of
P is (s0, ls0), where s0 is the initial value of the store and ls0(t) = Init for all
threads t.

Each thread has a set of actions, one for each location in Loc. The action

4

Flanagan and Qadeer

in thread t at location l is Act(t, l) ⊆ Store × (Store × Loc). The transition
relation →t

P of thread t and the transition relation →P of the multithreaded
program P are defined as follows:

→t
P ⊆ State × State

(s, ls) →t
P (s′, ls ′)

def
= ∃l, l′ ∈ Loc.∧ l = ls(t)

∧ ls ′ = ls [t := l′]

∧ (s, s′, l′) ∈ Act(t, l)

→P ⊆ State × State

→P
def
= ∃t. →t

P

The set Loc also contains a special location Wrong . When a thread fails an
assertion, it moves its program counter to Wrong , and does not perform any
subsequent transitions. Thus, for all threads t, we have Act(t,Wrong) = ∅.
The program P goes wrong if it reaches a state (s, ls) where ls(t) = Wrong
for some thread t.

For clarity, we use bullet-style notation for ∧ and ∨ in large formulas,
following Lamport [Lam94]. In addition, we sometimes interpret sets as pred-
icates, and vice-versa.

4 Inferring transactions

In this section, we show how to infer transactions in the threads of a multi-
threaded program.

4.1 Exclusive access predicates

We assume that for each variable x ∈ Var and thread t ∈ Tid, there is an
exclusive predicate E(t, x) ⊆ Store. The predicate E(t, x) gives the condition
under which thread t is guaranteed to have exclusive access to x. We assume
that the exclusive predicates for any variable x satisfies the following two
properties:

(i) The predicates E(t, x) and E(u, x) cannot be true simultaneously for
different threads t and u.

∀t, u ∈ Tid . t = u ∨ E(t, x) ∩ E(u, x) = ∅
(ii) The exclusive access to x can neither be given to thread t nor taken away

from thread t by a different thread u.

∀t, u ∈ Tid . (t 6= u ∧ (s, ls) →u
P (s′, ls ′)) ⇒ (s ∈ E(t, x) ⇔ s′ ∈ E(t, x))

The action Act(t, l) does not access the variable x if it neither writes nor
reads x. Formally, the the action Act(t, l) does not access x if for all (s, s′, l′) ∈
Act(t, l) and values v, we have s(x) = s′(x) and (s[x := v], s′[x := v], l′) ∈
Act(t, l). Let α(t, l) denote the set of all variables that are accessed by the
action Act(t, l).

5

Flanagan and Qadeer

The predicate E (t, l) is the conjunction of the exclusive predicates of all
accessed variables of Act(t, l):

E (t, l)
def
= ∀x ∈ α(t, l). E(t, x)

Our definition of exclusive access predicates does not require that E (t, x)
hold when x is accessed by thread t. This property, while desirable, is not
enforced statically by the definition. It is checked dynamically through model
checking by instrumenting the program with assertions. The scheme for pro-
gram instrumentation is described in detail below.

4.2 Program instrumentation

We now present a method for automatically instrumenting a multithreaded
program P to get another multithreaded program P#, for which it is easier
to infer transaction boundaries during model checking.

Let enabled(t, l) ⊆ Store denote the set of those stores from which the ac-
tion Act(t, l) is enabled, that is, enabled(t, l) = {s | ∃s′, l′. (s, s′, l′) ∈ Act(t, l)}.
The action Act(t, l) is safe for a variable x if it blocks until no other thread
has exclusive access to x. Formally, the action Act(t, l) is safe w.r.t. x iff
enabled(t, l) ∩ E(u, x) = ∅ for all u 6= t. If Act(t, l) is not safe for a variable
x ∈ α(t, l), that action could violate the exclusive predicate for x if it is per-
formed in an incorrect state, where another thread has exclusive access to x.
To ensure this violation does not happen, we require that if Act(t, l) is not
safe for x ∈ α(t, l), then whenever this action is performed, the thread must
have exclusive access to x. The set δ(t, l) ⊆ Store for Act(t, l) describes states
that satisfy this restriction.

δ(t, l)
def
=

∧
x∈α(t,l)

δ(t, l, x)

δ(t, l, x)
def
=

{
true, if Act(t, l) is safe w .r .t . x,

E(t, x), otherwise.

To assist in identifying transactions, the instrumentation process extends
the local store of each thread with a boolean phase variable which indicates
whether that thread is currently executing in the pre- or post-commit phase
of a transaction.

p ∈ boolean (phase variables)

` ∈ Loc# = Loc × boolean (program counter and phase variable)

s̀ ∈ Locs# = Tid → Loc# (new local stores)

Thus, a state of P# is a tuple (s, s̀). If s̀(t) = 〈l, true〉, then thread t is in the
pre-phase of some transaction. If s̀(t) = 〈l, false〉, then thread t is either in
the post-phase of some transaction or at the beginning or end of a transaction.
The initial store of P# is (s0, s̀0), where s̀0(t) = 〈Init , false〉 for all t ∈ Tid .
A consequence of our instrumentation code is that in any reachable state, only
one of the phase variables will be true, and hence these phase variables only

6

Flanagan and Qadeer

extend the reachable state space by a factor of |Tid |, rather than 2|Tid | as
might be expected.

We instrument the action Act(t, l) to transform it into Act#(t, 〈l, p〉) ⊆
Store× (Store×Loc#) as follows. The instrumentation adds an assertion that
the restriction δ(t, l) described above holds. If the assertion δ(t, l) fails, then
thread t goes wrong.

(s, s′, 〈l′, p′〉) ∈ Act#(t, 〈l, p〉) def
= ∨ ∧ s 6∈ δ(t, l)

∧ s′ = s

∧ l′ = Wrong

∧ p′ = p

∨ ∧ s ∈ δ(t, l)

∧ (s, s′, l′) ∈ Act(t, l)

∧ p′ =

(
∧ s′ ∈ E (t, l)

∧ (p ∨ l = Init ∨ s 6∈ E (t, l))

)
In addition, the instrumentation code updates the phase variable of thread

t as thread t moves from one phase of a transaction to another. The intuition
behind the phase variable update is as follows. Suppose thread t is in the
pre-commit phase before Act(t, `) happens. If thread t has exclusive access to
all accessed variables in the post-state of the action, then this action is a right
mover and the transaction remains in the pre-commit phase. Otherwise, the
transaction moves into the post-commit phase.

Conversely, suppose thread t is in the post-commit phase before Act(t, `)
happens. If thread t has exclusive access to all accessed variables in the
pre-state of the action, then this action is a left mover and therefore the
transaction continues to remain in the post-commit phase. Otherwise, the
current transaction has ended and this action begins a new transaction. If
thread t has exclusive access to all accessed variables in the post-state of the
action, then this action is a right mover and the new transaction is in the pre-
commit phase. Otherwise, the new transaction moves into the post-commit
phase.

Finally, we define the transition relation →t
P# as follows.

(s, s̀) →t
P# (s′, s̀′)

def
= ∃` ∈ Loc#.∧ ` = s̀(t)

∧ s̀′ = s̀[t := `′]

∧ (s, s′, `′) ∈ Act#(t, `)

The program P# goes wrong if there is a state (s, s̀) and a thread t such that
(s0, s̀0) →∗

P# (s, s̀) and s̀(t) = 〈Wrong , p〉 for some p.

The program P# has two properties. First, it goes wrong at least as often
as the program P . Second, it has been designed so a transaction-based model
checking algorithm can be easily formulated.

Our algorithm is parameterized by a set of partitions (R(t), L(t), N(t)) of
State, one for each thread t ∈ Tid . Informally, N(t) means that thread t is

7

Flanagan and Qadeer

not in a transaction, and R(t) and L(t) mean that thread t is in the right-
mover (or pre-commit) and left-mover (or post-commit) parts of a transaction,
respectively. Each partition must satisfy the following three properties:

A. R(t) = {(s, s̀) | ∃l. s̀(t) = 〈l, true〉 ∧ l 6∈ {Init ,Wrong}}.
B. L(t) ⊆ {(s, s̀) | ∃l. s̀(t) = 〈l, false〉 ∧ l 6∈ {Init ,Wrong} ∧ s ∈ E (t, l)}.
C. For all (s, s̀) ∈ L(t), there is a state (s′, s̀′) ∈ N(t) such that (s, s̀) →t

P#

· · · →t
P# (s′, s̀′).

Property A says that a thread is in the right-mover part of a transaction
if its phase variable is true and the program counter is not Init or Wrong .
Property B says that a thread is in the left-mover part of a transaction if its
phase variable is false, the program counter is not Init or Wrong , and the
thread has exclusive access to all variables accessed by the next action, that
is, the next action of the thread is a left-mover. Property C ensures that the
left-mover part of each transaction terminates. Given these partitions, the
model checking algorithm simply computes the least fixpoint of the following
set of rules.

Model checking reduced multithreaded programs

(init) S(s0, s̀0)

(step)
S(s, s̀) ∀u 6= t. (s, s̀) ∈ N(u) (s, s̀) →t

P# (s′, s̀′)
S(s′, s̀′)

The following theorem states the soundness of our approach.

Theorem 4.1 Let P be a multithreaded program and let P# be the instru-
mented version of program. For each t ∈ Tid, let (R(t), L(t), N(t)) be a parti-
tion of State satisfying conditions A, B and C. Then, the following statements
hold.

(i) If P goes wrong, then P# goes wrong.

(ii) If P# goes wrong, then there is a state (s, s̀) and a thread t such that
S(s, s̀) and s̀(t) = 〈Wrong , p〉 for some p.

Proof Follows from Theorem A.1 and Lemmas B.1 and B.5 in the appendix.

Our transaction-based model checking algorithm uses the set N(t) for each
thread t ∈ Tid . The larger the set N(t) the smaller the transactions inferred
by our algorithm. In the limit, when the set N(t) = State, our algorithm
reduces to the standard model checking algorithm. Therefore, subject to the
conditions A, B, and C, we would like to pick the set N(t) as small as pos-
sible, and consequently the sets R(t) and L(t) as large as possible. The set
R(t) is completely defined by condition A. The sets L(t) and N(t) must be

8

Flanagan and Qadeer

chosen subject to conditions B and C. We can select these sets in an optimal
manner by modifying Tarjan’s depth-first search based algorithm for comput-
ing strongly-connected components of a graph [Tar72]. Of course, there are
cheaper heuristics for performing this selection, e.g., ensuring that every cycle
of states in L(t) is broken by at least one state in N(t).

4.3 Example

We now illustrate the program instrumentation defined in the last subsection
by instrumenting the method read from Section 2. We show the code for read
below, where we have made the program counter explicit. The local boolean
variable p keeps track of the phase.

int read() {

1: acquire(mx); p := true;

2: assert mx == tid; int tx = x; p := (p && mx == tid);

3: acquire(my); p := true;

4: assert my == tid; int ty = y; p := (p && my == tid);

5: assert count == tx-ty; p := false;

6: release(my); p := false;

7: release(mx); p := false;

8: return tx-ty; p := p;

9: }

We can make several simplifications in the instrumentation because the
program uses only mutexes for synchronization. First, we need to add asser-
tions only for the data access operations; the acquire and release operations
on mutexes are safe by definition. Second, the phase update can be simpli-
fied. For lock acquire operations, the phase must be updated to true. For lock
release operations, the phase must be updated to false. For data access opera-
tions, the locks held in the pre and post state are the same. The new phase is
the conjunction of the old phase and the boolean value determining whether
the mutex on the data accessed is held. The instrumentation for the action
on line 5 is particularly interesting. Among the variables accessed on line 5,
only count is global and its exclusive access predicate is false. Therefore, any
action is safe w.r.t. count and consequently we do not introduce any assertion
before the action. However, the phase variable p is updated to false since
the exclusive access predicate false does not hold in the post-state.

Thus, the instrumentation in our method is simple and intuitive for mutex-
based programs. At the same time, the flexibility afforded by the generality of
exclusive access predicates makes our technique applicable to other programs
with more complicated synchronization.

5 Application to lock-based programs

The transaction-based model checking algorithm of the previous section can
accommodate a wide variety of synchronization mechanisms. To reduce the

9

Flanagan and Qadeer

complexity of this analysis, we next specialize our approach to lock-based
synchronization, which is the dominant synchronization mechanism in multi-
threaded programs.

We classify variables as either data variables z ∈ DataVar or lock variables
m ∈ MutexVar . Lock variables are manipulated only by acquire and release
operations. If the lock m is not held by any thread, then m = 0; if the
lock is held by thread t, then m = t. The acquire operation blocks until m
is 0 (unheld), and then updates m with the identifier of the current thread.
Conversely, the release operation blocks until m is equal to the identifier of
the current thread, and then sets m to 0. The acquire and release operations
do not access other variables. A data operation only accesses data variables;
it does not access any lock variables. We assume that each program operation
Act(t, l) is either a data operation, an acquire operation, or a release operation.

A thread has exclusive access to a lock variable only when it holds that
lock:

E(t,m)
def
= (m = t)

Clearly, the properties (1) and (2) on exclusive predicates hold for lock vari-
ables. In addition, all actions are safe for lock variables. Therefore, whenever
Act(t, l) is an acquire or a release operation on the lock m, we have:

δ(t, l, m) = true

We assume that each data variable z has an associated set of protecting
locks Mz ⊆ MutexVar . We say z is unprotected if Mz = ∅. A thread has
exclusive access to z only when z is protected and the thread holds all the
protecting locks:

E(t, z)
def
= (Mz 6= ∅ ∧ ∀m ∈ Mz. m = t)

The properties (1) and (2) on exclusive predicates also hold for data variables.
Suppose Act(t, l) is a data operation and z is a variable accessed by Act(t, l).
If z is an unprotected variable, then

δ(t, l, z) = true

since all actions are safe for unprotected data variables. Otherwise, we have

δ(t, l, z) = (∀m ∈ Mz. m = t)

Based on these exclusive access predicates, we make the following obser-
vations about the various operations. We later define the action relation for
the instrumented program based on these observations.

(i) If Act(t, l) is a data operation and (s, s′, l′) ∈ Act(t, l), then s ∈ E (t, l)
iff s′ ∈ E (t, l) iff ∀z ∈ α(t, l). (Mz 6= ∅ ∧ ∀m ∈ Mz. s(m) = t).

(ii) If Act(t, l) is an acquire operation and (s, s′, l′) ∈ Act(t, l), then s 6∈
E (t, l) and s′ ∈ E (t, l).

(iii) If Act(t, l) is a release operation and (s, s′, l′) ∈ Act(t, l), then s′ 6∈ E (t, l).

The action relation for the instrumented program is as follows.

10

Flanagan and Qadeer

(s, s′, 〈l′, p′〉) ∈ Act#(t, 〈l, p〉) def
= ∨ ∧ Act(t, l) is a data operation

∧ ∀z ∈ α(t, l). ∀m ∈ Mz. s(m) = t

∧ (s, s′, l′) ∈ Act(t, l)

∧ p′ =

(
∧ (p ∨ l = Init)

∧ ∀z ∈ α(t, l). Mz 6= ∅

)
∨ ∧ Act(t, l) is a data operation

∧ ∃z ∈ α(t, l). ∃m ∈ Mz. s(m) 6= t

∧ s′ = s

∧ l′ = Wrong

∧ p′ = p

∨ ∧ Act(t, l) is an acquire operation

∧ (s, s′, l′) ∈ Act(t, l)

∧ p′ = true

∨ ∧ Act(t, l) is a release operation

∧ (s, s′, l′) ∈ Act(t, l)

∧ p′ = false

Using these definitions, we can leverage the transaction-based algorithm
of Section 4.2 to model check programs with lock-based synchronization.

5.1 Thread-local variables

We can extend this approach to handle thread-local variables as well as lock-
protected variables in a straightforward manner. For example, we could in-
troduce, for each thread t, a corresponding lock variable mt ∈ MutexVar , and
have thread t initially acquire the lock mt. Each data variable z that is only
used by thread t can then be given the protecting lock set Mz = {mt}, yielding

the exclusive predicate E(u, z)
def
= (mt = u), which only holds if u = t. Thus,

in this approach, thread t always has exclusive access to z.

To avoid the overhead of introducing the additional lock variables mt, we
could alternatively define, for each data variable z, a synchronization discipline

Mz ∈ 2MutexVar ∪ Tid

If Mz ∈ Tid , then z is local to thread with identifier Mz; otherwise Mz denotes
a set of protecting locks for z as before. The corresponding exclusive predicate
for z is:

E(t, z)
def
=

{
t = Mz, if Mz ∈ Tid ,

Mz 6= ∅ ∧ ∀m ∈ Mz. m = t, otherwise.

5.2 Re-entrant locks

To handle re-entrant locks, for each lock variable m, we introduce a corre-
sponding variable cm that records the number of outstanding acquires on the

11

Flanagan and Qadeer

lock m. The exclusive access predicate for cm is:

E(t, cm)
def
= m = t

The variable cm is initialized to 0. The operation acquire(m) blocks until
m ∈ {0, tid} (where tid denotes the identifier of the current thread), and then
atomically sets m to tid and increments cm. The acquire operation is a right
mover. The operation release(m) blocks until m = tid . When m = tid , this
operation decrements cm, and if cm becomes 0, it also sets m to 0. The release
operation is a left mover.

5.3 Wait and notify

Our approach can also handle wait and notify operations. For each lock
variable m, we introduce a corresponding variable wm that records the wait
set for m. This wait set is initialized to the empty set. The exclusive predicate
for wm is:

E(t, wm)
def
= m = t

The operation wait(m) consists of a sequence of two atomic operations:
the first blocks until m = tid , and then atomically sets m to 0 and adds tid to
the wait set wm; the second atomic operation blocks until m = 0 and tid 6∈ wm,
and atomically sets m to tid . Thus, wait(m) consists of a left mover followed
by a right mover.

The operation notify(m) blocks until m = tid . Then, if wm is nonempty,
it removes some thread identifier from wm; if wm is empty, it does nothing.
The operation notifyAll(m) blocks until m = tid , and then removes all thread
identifiers from wm. Each of these notify operations is both a right mover and
a left mover.

6 Inferring protecting locks

The previous section relies on the programmer to specify an appropriate set
of protecting locks Mz for each data variable z ∈ DataVar . In this section, we
extend our algorithm to infer these sets of protecting locks automatically.

Our algorithm maintains the set of reachable states in the variable Q.
It starts with the assumption that Mz = MutexVar for each data variable
z ∈ DataVar , and reduces Mz to contain only locks that are consistently
held on every access to z. During transaction-based model checking, when an
access to a data variable z is encountered, any lock not held by the current
thread is removed from Mz. If the resulting set Mz is non-empty, then that
access is considered protected and hence both a right and a left mover, and the
current transaction continues in the same phase. If the set Mz is empty, then
the access is an unprotected action that is neither a right nor a left mover,
and the transaction either transitions to its post-commit phase, or terminates,
if it was already in its post-commit phase.

12

Flanagan and Qadeer

Model checking with lock inference

Initially Q = ∅ and Mz = MutexVar for all data variables z

(init) Q(s0, s̀0)

(step)

Q(s, s̀)
∀u 6= t. (s, s̀) ∈ N(u)

s̀(t) = 〈l, p〉
Act(t, l) is a data operation

(s, s′, l′) ∈ Act(t, l)
∀z ∈ α(t, l). ∀m ∈ Mz. s(m) = t

p′ = ((p ∨ l = Init) ∧ ∀z ∈ α(t, l). Mz 6= ∅)
Q(s′, s̀[t := 〈l′, p′〉])

(access)

Q(s, s̀)
∀u 6= t. (s, s̀) ∈ N(u)

s̀(t) = 〈l, p〉
Act(t, l) is a data operation

(s, s′, l′) ∈ Act(t, l)
z ∈ α(t, l)
m ∈ Mz

s(m) 6= t

remove m from Mz

(acquire)

Q(s, s̀)
∀u 6= t. (s, s̀) ∈ N(u)

s̀(t) = 〈l, p〉
Act(t, l) is an acquire operation

(s, s′, l′) ∈ Act(t, l)
Q(s′, s̀[t := 〈l′, true〉])

(release)

Q(s, s̀)
∀u 6= t. (s, s̀) ∈ N(u)

s̀(t) = 〈l, p〉
Act(t, l) is a release operation

(s, s′, l′) ∈ Act(t, l)
Q(s′, s̀[t := 〈l′, false〉])

Since all variables are initially protected, the model checking algorithm

13

Flanagan and Qadeer

initially explores program executions using overly large transactions. As the
protecting sets Mz are reduced, more data variables become unprotected and
the derived predicate N(t) becomes larger, with the result that the algorithm
eventually considers transactions of suitably small granularity and explores
enough context switches to ensure soundness.

Since Q is increasing and the the protecting sets Mz are decreasing, this
algorithm always terminates. In addition, the algorithm for simultaneously
inferring protecting locks and performing reduction-based model-checking is
sound.

Theorem 6.1 If P goes wrong, then ∃s, s̀, t, p. Q(s, s̀)∧ s̀(t) = 〈Wrong , p〉.

Proof sketch: Suppose

(i) the application of this algorithm to P yields reachable (reduced) state
space Q and computed protecting sets Mz;

(ii) these protecting sets yield corresponding exclusive access predicates;

(iii) given P and these exclusive access predicates, the instrumentation algo-
rithm of Section 4.2 yields the derived program P#; and

(iv) the transaction-based model checking algorithm of Section 4.2 yields
reachable (reduced) state space S for P#.

Then S ⊆ Q. Thus, if P goes wrong, then by Theorem 4.1, P# goes wrong,
and hence ∃s, s̀, t, p. Q(s, s̀) ∧ s̀(t) = 〈Wrong , p〉.

7 Related work

The transaction-based model checking algorithm presented in this paper is
based on the theory of reduction [Lip75], which was introduced by Lipton to
reduce the intellectual complexity of reasoning about parallel programs. Re-
duction is based on commutativity between actions of different processes and
distinguishes between right-commuting and left-commuting actions. Many re-
searchers [Doe77,LS89,CL98,Mis01] have developed the theory of reduction to
incorporate general safety and liveness properties.

Recently, Stoller and Cohen [SC03] have developed a model checking al-
gorithm for multithreaded programs based on the theory of reduction. Their
algorithm uses only left movers whereas our algorithm uses both right and left
movers. At the same time, some of the hypotheses of our reduction theorem are
stronger than the hypotheses of their reduction theorem. Thus, although our
reduction theorem is less general, it applies to most common multithreaded
programs to achieve larger transactions. One cost of using both right and
left movers is that our algorithm does not directly catch deadlocks. However,
typical multithreaded programs follow a locking discipline where locks are ac-
quired in a partial order. A violation of such a partial order can be encoded
as an assertion and our system can be used to check these assertions.

14

Flanagan and Qadeer

Stoller and Cohen [SC03] also run the lockset algorithm in parallel with
the model checker to infer lock sets for shared variables. However, they restart
the model checker every time the lockset is refined. In contrast, our algorithm
is fully incremental. It starts with large locksets and transactions and both
are gradually refined until a fixpoint is reached.

The class of techniques called partial-order reduction [Val90,Pel94,God96]
also leverages commutativity between actions of different processes to reduce
the explored state space during enumerative model checking. These techniques
typically do not distinguish between right-commuting and left-commuting ac-
tions. Moreover, the commuting actions are inferred by a static analysis per-
formed prior to model checking. These methods have mostly been applied to
message-passing systems where static analysis is able to yield a large number
of commuting action pairs. The algorithm in this paper distinguishes between
right and left movers, infers them dynamically during model checking, and
works on multithreaded programs, a domain in which static commutativity
analysis is typically not precise enough. Recently, Dwyer et al. [DHRR03]
have used static and dynamic object escape analysis and information about
locks to perform a more precise commutativity analysis that improves the
performance of partial-order techniques on shared-memory programs.

The notion of transactions is related to the correctness conditions of se-
rializability [Pap86] for databases and linearizability [HW90] for concurrent
software objects. The novelty of our work is in the automatic inference of
transactions and their use to combat state-space explosion in model checking.

Static race-detection tools [FF00,BR01,BLR02,Gro03] check that accesses
to data are protected by appropriate locks typically specified as program an-
notations. Using the scheme in Section 5, these annotations can be checked
by our algorithm as well. In fact, our scheme is more general because it can
check exclusive access predicates which are a generalization of locks.

Our scheme for inferring the locks protecting shared variables during model
checking is inspired by the lockset algorithm implemented in the dynamic race-
detection tool Eraser [SBN+97]. Eraser requires the programmer to provide
test sequences, whereas in our scheme the model checker provides all possible
test sequences.

8 Conclusions and future work

This paper presents a model checking algorithm for multithreaded software
systems. This algorithm incorporates reduction, a promising technique that
combats the state explosion problem of such systems by identifying trans-
actions and avoiding needlessly scheduling one thread during a transaction
of another thread. Our notion of reduction incorporates both left and right
movers, and thus yields larger transactions and fewer contexts switches than
previous techniques that only support left movers [SC03]. Our basic approach
relies on the programmer to specify access restrictions or access predicates for

15

Flanagan and Qadeer

program variables. This paper also presents a technique to avoid this program-
mer overhead by automatically inferring these access predicates for lock-based
programs. This inference is an integral part of our transaction-based model
checking algorithm.

Since this paper models each thread as a finite transition relation, several
additional issues remain to be considered when model checking software. For
example, program variables often range over essentially infinite domains such
as integers, and threads normally rely on the presence of an unbounded stack.
An important area for future work is to extend the model checking algorithm
of this paper to tackle these issues, for example, via techniques such as pred-
icate abstraction, counterexample-based predicate inference, and exploiting
the regularity of stack frames. Another possible extension is to combine the
techniques of this paper with thread-modular model checking [FQ03a].

Acknowledgments

We thank Scott Stoller and Yichen Xie for their careful reading of this paper.
Their suggestions were very helpful in improving the presentation of our work.

References

[BLR02] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In OOPSLA 02:
Object-Oriented Programming, Systems, Languages, and Applications,
pages 211–230. ACM Press, 2002.

[BR01] C. Boyapati and M. Rinard. A parameterized type system for race-free
Java programs. In OOPSLA 01: Object-Oriented Programming, Systems,
Languages, and Applications, pages 56–69. ACM Press, 2001.

[CL98] E. Cohen and L. Lamport. Reduction in TLA. In CONCUR 98:
Concurrency Theory, volume 1466 of Lecture Notes in Computer Science,
pages 317–331. Springer-Verlag, 1998.

[DHRR03] M. B. Dwyer, J. Hatcliff, V. P. Ranganath, and Robby. Exploiting
object escape and locking information in partial order reductions
for concurrent object-oriented programs. Technical Report SAnToS-
TR2003-1, Department of Computing and Information Sciences, Kansas
State University, 2003.

[Doe77] T. W. Doeppner, Jr. Parallel program correctness through refinement.
In POPL 77: Principles of Programming Languages, pages 155–169.
ACM Press, 1977.

[FF00] C. Flanagan and S. N. Freund. Type-based race detection for Java.
In PLDI 00: Programming Language Design and Implementation, pages
219–232. ACM Press, 2000.

16

Flanagan and Qadeer

[FQ02] S. N. Freund and S. Qadeer. Checking concise specifications for
multithreaded software. Technical Note 01-2002, Williams College,
December 2002.

[FQ03a] C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN
03: Workshop on Model Checking Software, volume 2648 of Lecture Notes
in Computer Science, pages 213–225. Springer-Verlag, 2003.

[FQ03b] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
PLDI 03: Programming Language Design and Implementation, 2003. to
appear.

[FQ03c] C. Flanagan and S. Qadeer. Types for atomicity. In TLDI 03: Types in
Language Design and Implementation, pages 1–12. ACM Press, 2003.

[God96] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Lecture Notes in
Computer Science 1032. Springer-Verlag, 1996.

[Gro03] D. Grossman. Type-safe multithreading in Cyclone. In TLDI 03: Types
in Language Design and Implementation, pages 13–25. ACM Press, 2003.

[HW90] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, 1990.

[Lam94] L. Lamport. How to write a long formula. Technical Report 119, DEC
Systems Research Center, 1994.

[Lip75] R. J. Lipton. Reduction: A method of proving properties of parallel
programs. In Communications of the ACM, volume 18:12, pages 717–
721, 1975.

[LS89] L. Lamport and F. B. Schneider. Pretending atomicity. Research
Report 44, DEC Systems Research Center, May 1989.

[Mis01] J. Misra. A Discipline of Multiprogramming: Programming Theory for
Distributed Applications. Springer-Verlag, 2001.

[Pap86] C. Papadimitriou. The theory of database concurrency control.
Computer Science Press, 1986.

[Pel94] D. Peled. Combining partial order reductions with on-the-fly model
checking. In D. Dill, editor, CAV 94: Computer Aided Verification,
Lecture Notes in Computer Science 818, pages 377–390. Springer-Verlag,
1994.

[SBN+97] S. Savage, M. Burrows, C. G. Nelson, P. Sobalvarro, and T. A. Anderson.
Eraser: A dynamic data race detector for multithreaded programs. ACM
Transactions on Computer Systems, 15(4):391–411, 1997.

17

Flanagan and Qadeer

[SC03] S. D. Stoller and E. Cohen. Optimistic synchronization-based state-space
reduction. In TACAS 03: Tools and Algorithms for the Construction and
Analysis of Systems, volume 2619 of Lecture Notes in Computer Science,
pages 489–504. Springer-Verlag, 2003.

[Tar72] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM
Journal of Computing, 1(2):146–160, 1972.

[Val90] A. Valmari. A stubborn attack on state explosion. In R.P. Kurshan and
E.M. Clarke, editors, CAV 90: Computer Aided Verification, Lecture
Notes in Computer Science 531, pages 25–42. Springer-Verlag, 1990.

A Reduction theorem

In this section of the appendix, we present our reduction theorem. In the next
section, we use the reduction theorem to prove that our transaction-based
model checking algorithm is correct. We state the reduction theorem in terms
of the following abstract domains.

Domains

σ ∈ State = Store × Locs
ρ ∈ Predicate ⊆ State

a, b ∈ Action ⊆ State × State

The action a right-commutes with the action b if for all σ1, σ2, σ3, whenever
(σ1, σ2) ∈ a and (σ2, σ3) ∈ b, then there exists σ′

2 such that (σ1, σ
′
2) ∈ b and

(σ′
2, σ3) ∈ a. The action a left-commutes with the action b if b right-commutes

with a. We define the left restriction ρ · a and the right restriction a · ρ of an
action a with respect to a set of states ρ.

ρ · a def
= {(σ, σ′) ∈ a | σ ∈ ρ}

a · ρ def
= {(σ, σ′) ∈ a | σ′ ∈ ρ}

Theorem A.1 Let σ0 be a state. For all t ∈ Tid, let T (t) be an action, let
W(t) be a set of states, and let (R(t),L(t),N (t)) be a partition of the set of
states. Suppose the following conditions hold.

A1. σ0 ∈ N (t) and W(t) ⊆ N (t).

A2. (L(t) · T (t) · R(t)) is empty.

A3. For all u 6= t, (T (t) · R(t)) right-commutes with T (u).

A4. For all u 6= t, (L(t) · T (t)) left-commutes with T (u).

A5. For all u 6= t, if (σ, σ′) ∈ T (t), then σ ∈ R(u) ⇔ σ′ ∈ R(u), σ ∈ L(u) ⇔
σ′ ∈ L(u), and σ ∈ W(u) ⇔ σ′ ∈ W(u).

A6. For all σ ∈ L(t), we have (σ, σ′) ∈ T (t)∗ for some σ′ ∈ N (t).

Let ↪→= ∃t. T (t) and ↪→c= ∃t. (∀u 6= t. N (u)) · T (t). If σ0 ↪→∗ σ and σ ∈
W(t) for some t ∈ Tid, then there is σ′ such that σ0 ↪→∗

c σ′ and σ′ ∈ W(t).

18

Flanagan and Qadeer

Proof The proof is similar to the proof of the reduction theorem in our
earlier paper [FQ03c].

B Transactions

This section refers to definitions and concepts introduced in Sections 3 and 4.
We prove two main results. First, we show that if the program P goes wrong,
then so does the instrumented program P#. Second, we define the set of
erroneous stores W (t) of thread t ∈ Tid to be the set {(s, s̀) | ∃p. s̀(t) =
〈Wrong , p〉}. We show that the conditions A1-A6 of Theorem A.1 are sat-
isfied if we substitute the state (s0, s̀0) for σ0, the relation →t

P# for T (t),
the partition (R(t), L(t), N(t)) for (R(t),L(t),N (t)), and the set W (t) for
W(t). The statement of Theorem A.1 immediately allows us to conclude the
soundness of the transaction-based model checking algorithm applied to the
instrumented program P#. Thus, combining the first and the second result,
we get a sound model checking algorithm for P . We use the following defini-
tions in the remainder of this section.

((s, ls), (s′, ls ′)) ∈ Γ(t, l)
def
= ∧ ls(t) = l

∧ ls ′ = ls [t := ls ′(t)]

∧ (s, s′, ls ′(t)) ∈ Act(t, l)

((s, s̀), (s′, s̀′)) ∈ Γ#(t, `)
def
= ∧ s̀(t) = `

∧ s̀′ = ls [t := s̀′(t)]

∧ (s, s′, s̀′(t)) ∈ Act#(t, l)

Lemma B.1 If P goes wrong, then P# goes wrong.

Proof We do the proof by induction on the following inductive hypothesis.

Inductive hypothesis:
Let n ≥ 0 and (s0, ls0) →P (s1, ls1) →P . . . →P (sn, lsn) be an execution of P .
Then, there is m ≥ 0 and an execution (s0, s̀0) →P# (s1, s̀1) →P# . . . →P#

(sm, s̀m) of P# such that either (1) n = m and for each i ∈ 0..n, there is pi

such that s̀i(t) = 〈ls i(t), pi〉, or (2) ∃t, p. s̀m(t) = 〈Wrong , p〉.

Proof of inductive hypothesis:
Suppose (s0, ls0) →∗

P (sn, lsn) →P (sn+1, lsn+1). Then, there is m ≥ 0 and
an execution (s0, s̀0) →P# (s1, s̀1) →P# . . . →P# (sm, s̀m) of P# such that
either (1) n = m and for each i ∈ 0..n and t ∈ Tid , there is p such that
s̀i(t) = 〈ls i(t), p〉, or (2) ∃t, p. s̀m(t) = 〈Wrong , p〉. In the second case, we are
done immediately. In the first case, suppose (sn, lsn), (sn+1, lsn+1)) ∈ Γ(t, l)
for some thread t and location l ∈ Loc. There are two cases:

Suppose (sn 6∈ δ(t, l)). There is p such that ((sn, s̀n), (sn, s̀n[t := 〈Wrong , p〉])) ∈
Γ#(t, l).

Suppose (sn ∈ δ(t, l)). There is s̀n+1 such that for each t ∈ Tid , there is pt

such that s̀n+1(t) = 〈lsn+1(t), pt〉 and ((sn, s̀n), (sn+1, s̀n+1)) ∈ Γ#(t, l).

19

Flanagan and Qadeer

Lemma B.2 For all t ∈ Tid, l ∈ Loc, and x ∈ α(t, l), if (s, s′, l′) ∈ Act(t, l)
and s ∈ δ(t, l), then s 6∈ E(u, x) for all u 6= t.

Proof Pick u 6= t. We show that if (s, s′, l′) ∈ Act(t, l) and s ∈ δ(t, l), then
s 6∈ E(u, x). If s ∈ δ(t, l), then s ∈ δ(t, l, x) for all x ∈ α(t, l). Therefore,
for each x ∈ α(t, l), either enabled(t, l) ∩ E(u, x) = ∅ or s ∈ E(t, x). In the
first case, since s ∈ enabled(t, l) we get s 6∈ E(u, x). In the second case, since
E(t, x) ∩ E(u, x) = ∅ we get s 6∈ E(u, x).

Lemma B.3 Let t, u ∈ Tid be two different thread identifiers and l,m ∈ Loc
be two locations. If ((s1, s̀1), (s2, s̀2)) ∈ (Γ#(t, l)·R(t)) and ((s2, s̀2), (s3, s̀3)) ∈
Γ#(u, m), then there is (s4, s̀4) such that ((s1, s̀1), (s4, s̀4)) ∈ Γ#(u, m) and
((s4, s̀4), (s3, s̀3)) ∈ (Γ#(t, l) ·R(t)).

Proof Let s̀1(t) = 〈l, p〉 and s̀2(t) = s̀3(t) = 〈l′, p′〉. Let s̀1(u) = s̀2(u) =
〈m, q〉 and s̀3(u) = 〈m′, q′〉. Then, we have (s1, s2, 〈l′, p′〉) ∈ Act#(t, 〈l, p〉) and
(s2, s3, 〈m′, q′〉) ∈ Act#(u, 〈m, q〉). From the definition of R(t) and Act#(t, 〈l, p〉)
and the fact that (s2, s̀2) ∈ R(t), we conclude that s1 ∈ δ(t, l) and s2 ∈ E (t, l).
We do a case analysis on the condition s2 ∈ δ(u, m).

[s2 6∈ δ(u, m)]. In this case, we have s3 = s2, s̀3 = s̀2[u := 〈Wrong , p〉].
Since s2 6∈ δ(u, m), we get that s2 6∈ E(u, x) for some x ∈ α(u, m). Since
s1 ∈ E(u, x) iff s2 ∈ E(u, x), we get s1 6∈ E(u, x). Thus, we get that s1 6∈
δ(u, m). Therefore, we have ((s1, s̀1), (s1, s̀1[u := 〈Wrong , p〉])) ∈ Γ#(u, m)
and ((s1, s̀1[u := 〈Wrong , p〉]), (s2, s̀2[u := 〈Wrong , p〉])) ∈ Γ#(t, l) ·R(t). Let
s4 = s1 and s̀4 = s̀1[u := 〈Wrong , p〉]. Since (s2, s̀2[u := 〈Wrong , p〉]) =
(s3, s̀3), we are done.

[s2 ∈ δ(u, m)]. From Lemma B.2, we have s2 6∈ E(t, x) for all x ∈ α(u, m). But
we know that s2 ∈ E(t, y) for all y ∈ α(t, l). Therefore α(t, l) ∩ α(u, m) = ∅.
Let s4 = s1[α(u, m) := s3(α(u, m))] and s̀4 = s̀1[u := s̀3(u)]. Then s4 can
also be written as s3[α(t, l) := s1(α(t, l))]. We show that the actions by thread
t and u commute in several steps. We first show that s1 ∈ δ(u, m). Since
s2 ∈ δ(u, m), we know that for all x ∈ α(u, m), either Act(u, m) is safe w.r.t.
x or s2 ∈ E(u, x). We know that s1 ∈ E(u, x) iff s2 ∈ E(u, x) for all x ∈ Var .
Therefore s1 ∈ δ(u, m). Therefore, we get that (s2, s3, m

′) ∈ Act(u, m). We
next show that ((s1, s̀1), (s4, s̀4)) ∈ Γ#(u, m). Since no variable in α(t, l) is
accessed by Act(u, m), we have

(s2, s3, m
′) ∈ Act(u, m) ⇔

(s2[α(t, l) := s1(α(t, l))], s3[α(t, l) := s1(α(t, l))], m′) ∈ Act(u, m) ⇔
(s1, s4, m

′) ∈ Act(u, m)

Thus, we get that s1 ∈ E(t, x) iff s4 ∈ E(t, x) for all x ∈ Var . Since no
variable in α(u, m) is accessed by Act(t, l), we have

(s1, s2, l
′) ∈ Act(t, l) ⇔

(s1[α(u, m) := s3(α(u, m))], s2[α(u, m) := s3(α(u, m))], l′) ∈ Act(t, l) ⇔
(s4, s3, l

′) ∈ Act(t, l)

20

Flanagan and Qadeer

Thus, we get that s4 ∈ E(u, x) iff s3 ∈ E(u, x) for all x ∈ Var . Since
s1, s2 ∈ δ(u, m), s1 ∈ E(u, x) iff s2 ∈ E(u, x) for all x ∈ Var , s4 ∈ E(u, x)
iff s3 ∈ E(u, x) for all x ∈ Var , and (s2, s3, m

′) ∈ Act(u, m) iff (s1, s4, m
′) ∈

Act(u, m), we get that (s2, s3, 〈m′, q′〉) ∈ Act(u, 〈m, q〉) iff (s1, s4, 〈m′, q′〉) ∈
Act(u, 〈m, q〉). Thus, we get ((s1, s̀1), (s4, s̀4)) ∈ Γ#(u, m). We now show
that s4 ∈ δ(t, l). Since s1 ∈ δ(t, l), we know that for all x ∈ α(t, l), either
Act(t, l) is safe w.r.t. x or s1 ∈ E(t, x). We know that s1 ∈ E(t, x) iff
s4 ∈ E(t, x) for all x ∈ Var . Therefore s4 ∈ δ(t, l). Since s1, s4 ∈ δ(t, l),
s1 ∈ E(t, x) iff s4 ∈ E(t, x) for all x ∈ Var , s2 ∈ E(t, x) iff s3 ∈ E(t, x) for
all x ∈ Var , and (s1, s2, l

′) ∈ Act(t, l) iff (s4, s3, l
′) ∈ Act(t, l), we get that

(s1, s2, 〈l′, p′〉) ∈ Act(t, 〈l, p〉) iff (s4, s3, 〈l′, p′〉) ∈ Act(t, 〈l, p〉). Thus, we get
((s4, s̀4), (s3, s̀3)) ∈ Γ#(t, l). Also, since s̀3(t) = s̀2(t), we get (s3, s̀3) ∈ R(t).

Lemma B.4 Let t, u ∈ Tid be two different thread identifiers and l,m ∈ Loc
be two locations. If ((s1, s̀1), (s2, s̀2)) ∈ Γ#(u, m) and ((s2, s̀2), (s3, s̀3)) ∈
(L(t) · Γ#(t, l)), then there is (s4, s̀4) such that ((s1, s̀1), (s4, s̀4)) ∈ (L(t) ·
Γ#(t, a)) and ((s4, s̀4), (s3, s̀3)) ∈ Γ#(u, b).

Proof Similar to the proof of Lemma B.3.

Lemma B.5 For each t ∈ Tid, let (R(t), L(t), N(t)) be a partition of the set
of states satisfying conditions A, B, and C, and let W (t) = {(s, s̀) | ∃p. s̀(t) =
〈Wrong , p〉}. Then the following conditions hold.

(i) (s0, s̀0) ∈ N(t) and W (t) ⊆ N(t).

(ii) (L(t) · →t
P# ·R(t)) is empty.

(iii) For all u 6= t, (→t
P# ·R(t)) right-commutes with →u

P#.

(iv) For all u 6= t, (L(t) · →t
P#) left-commutes with →u

P#.

(v) For all u 6= t, if ((s, s̀), (s′, s̀′)) ∈→t
P#, then (s, s̀) ∈ R(u) ⇔ (s′, s̀′) ∈

R(u), (s, s̀) ∈ L(u) ⇔ (s′, s̀′) ∈ L(u), and (s, s̀) ∈ W (u) ⇔ (s′, s̀′) ∈
W (u).

(vi) For all (s, s̀) ∈ L(t), we have ((s, s̀), (s′, s̀′)) ∈ (→t
P#)∗ for some (s′, s̀′) ∈

N(t).

Proof We prove each condition separately.

(i) Obvious from the definition of R(t), L(t), and N(t).

(ii) Suppose ((s, s̀), (s′, s̀′)) ∈ T#(t), (s, s̀) ∈ L(t), and (s′, s̀′) ∈ R(t).
Therefore there are l, l′ ∈ Loc such that ((s, s̀), (s′, s̀′)) ∈ Γ#(t, l), s̀(t) =
〈l, false〉, s̀′(t) = 〈l′, true〉, and l′ 6= Wrong . From the definition of
Act#(t, l), we get that s 6∈ E (t, l). At the same time, from the definition
of L(t) we get that s ∈ E (t, l). Thus, we arrive at a contradiction.

(iii) Suppose ((s1, s̀1), (s2, s̀2)) ∈ T#(t)·R(t) and ((s2, s̀2), (s3, s̀3)) ∈ T#(u).
Then we have ((s1, s̀1), (s2, s̀2)) ∈ Γ#(t, l) · R(t) for some l ∈ Loc and
((s2, s̀2), (s3, s̀3)) ∈ Γ#(u, m) for some m ∈ Loc. From Lemma B.3, we
get (s4, s̀4) such that ((s1, s̀1), (s4, s̀4)) ∈ Γ#(u, m) and ((s4, s̀4), (s3, s̀3)) ∈

21

Flanagan and Qadeer

Γ#(t, l) ·R(t).

(iv) Suppose ((s1, s̀1), (s2, s̀2)) ∈ T#(u) and ((s2, s̀2), (s3, s̀3)) ∈ L(t)·T#(t).
Then we have ((s2, s̀2), (s3, s̀3)) ∈ L(t) · Γ#(t, l) for some l ∈ Loc and
((s1, s̀1), (s2, s̀2)) ∈ Γ#(u, m) for some m ∈ Loc. From Lemma B.4,
we get a state (s4, s̀4) such that ((s1, s̀1), (s4, s̀4)) ∈ L(t) · Γ#(t, l) and
((s4, s̀4), (s3, s̀3)) ∈ Γ#(u, m).

(v) Suppose ((s, s̀), (s′, s̀′)) ∈ T#(u) and t 6= u. Then ((s, s̀), (s′, s̀′)) ∈
Γ#(u, m) for some m ∈ Loc. From the definition of Γ#(u, m), we get
s̀(t) = s̀′(t) and either s = s′ or ((s, s̀(u)), (s′, s̀′(u))) ∈ Act(u, m).
Since u 6= t, we have s ∈ E(t, x) iff s′ ∈ E(t, x) for all x ∈ Var . Thus, we
get that (s, s̀) ∈ R(t) iff (s′, s̀′) ∈ R(t), (s, s̀) ∈ W (t) iff (s′, s̀′) ∈ W (t),
and (s, s̀) ∈ L(t) iff (s′, s̀′) ∈ L(t).

(vi) Follows from condition C.

22

	Introduction
	Overview
	Multithreaded programs
	Inferring transactions
	Exclusive access predicates
	Program instrumentation
	Example

	Application to lock-based programs
	Thread-local variables
	Re-entrant locks
	Wait and notify

	Inferring protecting locks
	Related work
	Conclusions and future work
	References
	Reduction theorem
	Transactions

