

Figure 1: Computing the stress tensor on a triangle.

Stress Tensor Computation

The stress tensor on a primal triangle (projected to 2D) is computed as

$$
\begin{equation*}
\sigma=\left[-\mathbf{e}_{2}^{* \perp}+\mathbf{e}_{3}^{* \perp}, \mathbf{e}_{1}^{* \perp}-\mathbf{e}_{3}^{* \perp}\right]\left[\mathbf{e}_{1}^{\perp}, \mathbf{e}_{2}^{\perp}\right]^{-1}, \tag{1}
\end{equation*}
$$

where \mathbf{e}_{i} and $\mathbf{e}_{i}^{*}(i=1,2,3)$ are the directed primal and dual edge vectors shown in Fig. 1, and ${ }^{\perp}$ denotes rotating a vector 90° counter-clockwise.

In the continuous setting, suppose the height field of a self-supporting surface is $s(x, y)$ and the Airy stress function has Hessian $\widehat{M}=\left(\begin{array}{cc}m_{22} & -m_{12} \\ -m_{12} & m_{11}\end{array}\right)$. Then the stress tensor is given by [1]

$$
\begin{equation*}
\sigma=-\frac{M g}{\operatorname{det} g}, \tag{2}
\end{equation*}
$$

where $M=\left(\begin{array}{cc}m_{11} & m_{12} \\ m_{12} & m_{22}\end{array}\right)$ and $g=\left(\begin{array}{cc}1+s_{x}^{2} & s_{x} s_{y} \\ s_{x} s_{y} & 1+s_{y}^{2}\end{array}\right)$ is the induced metric on $s(x, y)$.

References

[1] E. Vouga, M. Höbinger, J. Wallner, and H. Pottmann. Design of self-supporting surfaces. ACM Trans. Graph. (SIGGRAPH), 31(4):87:1-87:11, 2012.

