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Abstract 
TempIO is a method to classify a device as either being inside or outside based 
on its ambient temperature. It takes advantage of the fact that inside 
temperatures are normally controlled to within a range comfortable for people, 
while outside temperatures fluctuate with the weather. Inside/outside 
classification could be used to automatically turn off a GPS receiver when 
inside, for automatically adding metadata to digital photos, and for higher-level 
context inference. TempIO works by measuring the ambient temperature and 
looking up the current outside temperature via a network. We derive a Bayes-
based classification rule based on probability distributions of inside, outside, 
and measured temperatures. Based on test data from five U.S. cities, TempIO 
classifies correctly 81% of the time when using a web service for outside 
temperatures and almost 91% of the time when using an ousider thermometer. 

1. Introduction 
As computing moves off the desktop into the hands of mobile users, it is becoming more important for mobile 
devices to be aware of the user’s context. Important pieces of context include the user’s location, activities, 
nearby people and devices, and mode of transportation. This knowledge can in turn be used by mobile devices to 
display reminders, to configure themselves for use with other devices, and to behave in a way that is appropriate 
for the surrounding environment. 

One important piece of context concerns whether or not the user is outside. This can be used to help infer the 
user’s location (e.g. in a building) and her mode of transportation (e.g. in a bus or car). Inside/outside can also be 
used to turn off a GPS receive when inside, because GPS does not generally work inside. It is also a useful piece 
of metadata for digital photos, potentially serving as a way to filter photos in a search. 

One way to make an inside/outside determination 
would be to use a digital map of building footprints 
along with knowledge of the user’s location. 
However, for most buildings such a map does not 
exist. Also, location data is not necessarily available, 
especially inside where GPS fails. Another 
inside/outside feature is light intensity, but this fails at 
night. 

We have developed TempIO, a working technique 
for inside/outside classification that exploits the fact 
that inside environments are normally temperature-
controlled. If the mobile device can measure the 
ambient temperature, and if it knows the current 
outside temperature, it can infer whether or not it is 
outside. The outside temperature comes from a 
database of worldwide, outside temperatures that we 

 
Figure 1: We use this RS-232 thermometer to 
measure ambient temperature. 
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maintain based on hourly updates from the American National Oceanic and Atmospheric Administration’s 
(NOAA’s) National Weather Service (NWS). If the device’s ambient temperature is within the range of normal 
inside temperatures, and if the outside temperature is significantly different, then there is a high probability that 
the device is inside. If, on the other hand, the device’s ambient temperature is closer to the local outside 
temperature, then the device is more likely outside. 

One attractive characteristic of this technique is the simplicity of the required sensing. We measure 
temperature with a small, off-the-shelf, RS-232 thermometer that draws its power from the mobile device, as 
shown in Figure 1. 

Looking up the outside temperature requires that the device have a rough idea of its own location. But, since 
temperatures vary only slowly with location, the location estimate needn’t be accurate. For instance, our system 
can work with locations given in terms of postal codes. 

Clearly our technique will be only guessing if the inside and outside temperatures are very close to each 
other. By reasoning mathematically about the temperature distributions, our technique gives a probability of 
being inside, which reflects the uncertainty caused by similar inside and outside temperatures. Also, despite this 
potential ambiguity, we found that our technique is correct about 81% of the time based on tests with weather 
data from five U.S. cities. 

The certainty of our inside/outside inferences are strongly related to the certainty of three different 
temperature distributions: 

 
1. Measured ambient temperature from the device 
2. Expected inside temperature 
3. Outside temperature interpolated from weather stations 

 
The next section explains how we derived these three different temperature distributions. After that, we show 

how we combined these distributions mathematically to create a probability estimate of being inside or outside. 
We then describe our accuracy tests. 

2. Temperature Distributions 
TempIO’s inside/outside inference is a function of three different temperatures: the measured ambient 
temperature, the outside temperature, and the inside temperature. All three are described by probability 
distributions that are used to compute the probability of being inside. This section describes how we derived the 
three probability distributions. The probabilistic inference described here takes a closed form if these three 
probability distributions are Gaussian, so we endeavor to model the distributions as such as long at it appears 
reasonable. 

2.1. Measured Temperature Distribution 
For measuring temperature, we us a TempTrax™ RS232 thermometer. It has an advertised accuracy of ±0.28 oC 
over a range of -28.9 oC to 48.9 oC (-20 oF to 120 oF). 
Because the manufacturer could not clarify the meaning 
of this accuracy figure, we reasoned that this uniform 
distribution over ±0.28 oC is actually a Gaussian with 
the same variance, as shown in Figure 2. The variance 
of a uniform distribution over [ ]ba,  is 
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b

a
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From our thermometer’s accuracy specification, 
)28.0,28.0(),( CCba oo−= , giving 162.0=mσ . Thus 

the distribution of actual temperatures at  is 

{ }2,~ mma tNt σ , where mt  is the temperature measured 

with the mobile device, and { }2, σµN  represents a 
normal distribution. 
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Figure 2: A uniform and Gaussian distribution 
with the same mean and variance. 



2.2. Expected Inside Temperature 
The inside temperature of a building of interest 
could easily be measured with an inside 
thermometer connected to a network and used as 
part of our system. This requires extra 
infrastructure, however, so we chose to depend 
instead on the fact that building temperatures 
normally vary over only a small range. 

Buildings are usually temperature-controlled 
for the comfort of their occupants, with obvious 
exceptions for saunas, wine cellars, etc. In lieu of 
temperature data from a large sample of buildings, 
we use ISO standard 7730 that limits temperatures 
of commercial buildings to 20 - 24 oC in winter and 
23 - 26 oC in summer. We have a temperature 
range )26,20(),( CCba oo=  that we model as a 
normal distribution with a variance from Equation 
(1) and a mean that splits the range. This gives 

23=inµ  and 732.1=inσ , with inside temperature int  distributed as { }2,~ ininin Nt σµ . 

2.3. Outside Temperature 
One way to get the local outside temperature would be to equip areas of interest with networked-connected 
thermometers. For instance, if a nursing home wanted to monitor if any of its residents left the building, it could 
use a thermometer installed immediately outside. For this project, however, we instead chose to exploit 
thermometers which are already in place, meaning that we do not depend on any new infrastructure. 

Our outside temperatures come from 6510 weather stations located around the world, shown in Figure 3. 
Hourly updates from these stations is gathered by the American NOAA’s National Weather Service and made 
available as METAR reports[1]. Our server maintains the latest data from each of these stations by hourly 
downloading the latest METAR summary file. 

As part of the inside/outside inference, the user must specify his/her location in order to compute the outside 
temperature. As temperature varies only slowly as a function of location, the measured location does not need to 
be very accurate. It is sufficient to give the last known (latitude, longitude) from a GPS receiver or, in the U.S., 
the postal code which we convert to a (latitude, longitude) via our web service that accesses a database of postal 
codes and their (latitude,longitude)’s. 

Given a (latitude, longitude), we use interpolation to compute the local temperature. This problem has been 
studied previously, and we base our choice of interpolation scheme on the work of Collins and Bolstad[2], who 
compared interpolation methods. They found that “optimal inverse distance weighting” to perform well. This 
technique interpolates temperature at a point of interest as a weighted average of all the known temperatures. The 
weights are the reciprocals of the distances between the known points and the point of interest, raised to some 
power that is computed by experiment. Mathematically, the outside temperature *

outt  is computed as 
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Where it  is the temperature reported from the hti  weather station, id  is the distance between the point of 

interest and the hti  weather station, n  is the number of weather stations, and r  is the experimentally determined 
optimal exponent. We can compute id  because the METAR reports give the (latitude, longitude) of each 
weather station. 

We computed the best r  based on 24 consecutive hours of temperature data from all the weather stations, 
excluding the inevitable missing reports from some stations. For each hour time slice, we used a leave-one-out 
procedure to estimate the interpolation error. Leaving out one weather station, we used all the others to estimate 
its temperature using Equation ( 2 ). Taking each station and each hour in turn, we computed an rms interpolation 

 
Figure 3: Black dots indicate the locations of 6510 
weather stations that we use to compute outside 
temperature at a given location. 



error. By exhaustively searching through different values of r , we found the minimum rms exponent was 
65.2=r , as shown in Figure 4. 

To estimate the error distribution of outside temperature, we employed the same leave-one-out procedure as 
above and created a histogram of errors shown in Figure 5. Before computing error statistics, we eliminated 
errors above 10 oC and below -10 oC, which amounted to about 3% of the data. This gave a better-fitting 
Gaussian, also shown in Figure 5. Since this error distribution has a mean of approximately zero (actually -0.4 
oC), and a standard deviation of 545.2=outσ , we will model the distribution of interpolated outside temperatures 
as 

{ }2* ,~ outoutout tNt σ  ( 3 ) 

where *
outt  is the interpolated temperature for the given location. 

We have created two web services to facilitate access to our interpolated outside temperatures. The first, 
mentioned above, converts U.S. postal codes into (latitude, longitude). The second takes a (latitude, longitude) 
and returns the outside temperature based on the interpolation in Equation ( 2 ). 

3. Probabilistic Inference 
Based on the three temperature distributions above, our aim is to derive an equation giving the probability of 
being inside based on the measured ambient temperature and interpolated outside temperature. Starting with 
Bayes’ rule, we have the probability of being inside given the measured ambient temperature mt : 
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For lack of any prior assumptions, we will assume the prior probabilities ( ) ( ) 5.0outin == pp . 

3.1. Measured Temperature Conditioned On Inside 
The first state conditional probability in Equation ( 4 ) is ( )inmtp , which is the probability of the measured 

temperature mt  given that the device is inside. This is a function of the actual ambient temperature, at , which 

we do not know. We can introduce the joint conditional probability distribution ( )in, am ttp  and integrate out the 
actual temperature to compute the probability we need: 
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Figure 5: Error distribution for estimating 
outside temperature. 
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Figure 4: RMS temperature error as a function 
of weighting exponent gives an optimal exponent 
of 2.65. 
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The distribution ( )inatp , reduces to the normal distribution governing inside temperatures: 
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where { }2,; σµxN  is the Gaussian density function: 
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The distribution ( )in,am ttp  represents the accuracy of our thermometer, and reduces as follows: 
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 Continuing from Equation ( 5 ) using the resultant normals from Equations ( 6 ) and ( 8 ), we have the closed 
form 
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The last step comes from the identity[3] 
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Equation ( 9 ) is intuitively satisfying in that the maximum of ( )inmtp  occurs at the mean inside temperature 

inµ . The function broadens and falls with increases in the uncertainty of the inside temperature ( 2
inσ ) and the 

uncertainty of the measured temperature ( 2
mσ ). 

3.2. Measured Temperature Conditioned On Outside 
The other conditional probability from Equation ( 4 ) is ( )outmtp , which is the probability of the measured 
temperature given that the device is outside. Proceeding as above, we derive a closed form: 
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3.3. Inside/Outside Probability vs. Measured Temperature 
Substituting Equations ( 9 ) and ( 11 ) into ( 4 ) gives a closed form for the probability of being inside given a 
measured temperature and an interpolated outside temperature: 
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And ( ) ( )mm tptp in1out −= . This is a closed form solution for computing the probability of being inside or 

outside based on these parameters, all in oC: 

mt  Temperature measured on mobile 
device 

162.0=mσ  Standard deviation of measured 
temperature 

23=inµ  Mean of expected inside temperature 

732.1=inσ  Standard deviation of expected inside 
temperature 

*
outt  Outside temperature interpolated from 

weather stations 

545.2=outσ  Standard deviation of outside 
temperature 

To demonstrate Equation ( 12 ), we simulate two different people are using the technique, one inside and one 
outside. The ambient inside temperature is 23== inint µ , and the person inside measures it as exactly this value. 
We look at the behavior of the equation as the outside temperature varies from -20 oC (-4 oF) to 40 oC (104 oF), 
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Figure 6: The solid line shows the computed 
probability of an outside person being outside as 
a function of outside temperature. The dotted 
line shows the computed probability of an inside 
person being inside. 
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Figure 7: When the inside and outside 
temperatures are the same, probability favors 
the category whose temperature measurement 
has the lowest uncertainty. 



which the person outside measures exactly. Figure 6 shows the results. The solid line shows the computed 
probability of the outside person being outside as the outside temperature changes. The probability remains high 
as long as the outside temperature is different enough from the inside temperature. As we would expect, the 
probability of being outside drops when the inside and outside temperatures are similar. The dotted line shows 
the computed probability of the inside person being inside. This probability also drops when the inside and 
outside temperatures are similar. 

The simulation above confirms our intuition that the probabilities rise and fall as we expect. The amount that 
they rise and fall is a function of the temperature uncertainties. The probability of the inside person being inside 
never drops below 0.5, even when the inside and outside temperatures are equal. This is because the uncertainty 
of the outside temperature ( 545.2=outσ ) is larger  than the uncertainty of the inside temperature ( 732.1=inσ ). 
Qualitatively, when the measured temperature is close to the expected inside temperature, the probability 
computation attributes more weight to the inside hypothesis, because the actual outside temperature can deviate 
more from the measured temperature than the inside temperature can. This is illustrated in Figure 7, which 
simulates an outside and inside temperature both equal to the mean inside temperature 23=inµ . When the ratio 

outin σσ  is low, confidence in the inside temperature is higher, which biases the probability toward being inside. 

At outin σσ = , the probability of being inside is 0.5. When outin σσ  grows beyond 1.0, the probability of being 
inside drops below 0.5. 

4. Demonstration Implementation 
While our technique is more likely to be useful as a 
background process in a larger context inference 
system, we have also implemented a version to run it 
as a standalone program for demonstration purposes. 

Figure 8 shows our technique exposed in a 
demonstration program. In the upper left the user 
gives his or her current location in the form of 
(latitude, longitude). Optionally, the user can input a 
U.S. zipcode which is converted to a (latitude, 
longitude) via one of our web services. 

In the middle left box, the user clicks to call our 
outside temperature service based on the (latitude, 
longitude) given above. In the lower left box, the user 
clicks to get an ambient temperature measurement 
from a connected temperature sensor such as the one 
we use shown in Figure 1. 

On the right, clicking “Infer” invokes the 
computation of Equation ( 12 ) and the drawing of 
the bars indicating the probabilities of inside and 
outside. 

5. Accuracy Tests 
We tested our technique on temperature data downloaded from the American “National Virtual Data System” 
operated by NOAA[4].  This source gives temperature data recorded from over 700 U.S. weather stations. We 
used all the hourly data from the year 2003 for weather stations based in five U.S. cities. 

Clearly our technique will be more accurate at distinguishing inside from outside when there is a larger 
temperature difference between the two states. In order to select cities conducive to a range of expected 
performance, we looked at candidate cities’ yearly “heating degree days” (HDD) and “cooling degree days” 
(CDD) to assess how extreme their temperatures are. These quantities are based on the difference between a 
day’s average temperature and a comfortable base temperature, which was 65oF for the data from [4]. If the 
average temperature is below the base temperature, the absolute difference is added to HDD, implying that a 
certain amount of inside heating would be required. These are summed for a year to give HDD, likewise for 
CDD when the average temperature is above the base temperature. Thus, a city with a high HDD is generally 

 
 

Figure 8: Our in/out inference technique is 
demonstrated with this program. The resulting 
probabilities are shown as blue bars. 



colder, and a high CDD is generally warmer. Of the U.S. cities in the data, we picked for testing Barrow, Alaska 
(highest HDD), Key West, Florida (highest CDD), San Diego, California (minimum sum of HDD and CDD), 
and Atlantic City, New Jersey (HDD and CDD were both close to the medians of all the cities). We also chose 
Seattle for testing, as this is our home city. We would expect our technique to work best where HDD or CDD are 
high, and not as well where HDD and CDD are both low, because our algorithm depends on the temperature 
inside buildings to be artificially controlled. 

We used the hourly temperature data as the basis for computing the outside temperature in our evaluations. In 
our system, the outside temperature comes from our weather service, which has a Gaussian distribution shown in 
Figure 5 and up to an hour lag because our weather station download runs once per hour. We simulated both 
these effects in our evaluation, lagging all the outside temperatures by one hour and adding Gaussian noise with 
our measured 545.2=outσ . Both the lag and the added noise tend to reduce the reported accuracy of our method, 
but we included them to make the test a more realistic representation of the inaccuracies inherent in accessing 
worldwide outside temperatures. 

In evaluating the inference accuracy outside, we set the measured ambient temperature equal to the current 
(non-lagged) outside temperature and added Gaussian noise with 162.0=mσ  representing the uncertainty of our 
thermometer. 

In evaluating the inference accuracy inside, we assumed the building’s heating and cooling policy was to let 
the inside temperature match the outside temperature when the outside temperature was within the ISO 
recommended range of ]26,20[ CC oo  ( ]8.78,68[ FF oo ), assuming that no heating or cooling would be used in 
this range. If the outside temperature exceeded this range, we clamped the inside temperature to whichever end 
of the ISO range was nearest the outside temperature. To this inside temperature we added Gaussian noise with 

162.0=mσ  to get the measured temperature from the thermometer. 
The numerical results are summarized in Table 1. On average, each city had about 8715 temperature test 

points. The best performing city was Barrow, AK, which is unsurprising given its cold climate. Here the overall 
inference accuracy was 100%. Atlantic City, NJ, representing a typical American city, resulted in a correct 
inference 82.4% of the time for both inside and outside. Key West, FL, with the maximum CDD, gave the 
poorest inference performance with only 63.4% correct. We expected better, given the necessity of that city’s 
inside cooling. However, despite the high CDD, this city has a mean temperature of 25.66 oC, which is within the 
ISO range. Barrow, which performed perfectly, has a mean temperature of -10.43 oC. The overall classification 
accuracy for the five cities tested was 81.0%. These results are shown graphically in Figure 9. 

For our first study, our outside temperature measurements were simulated as coming from our temperature 
web service. This is inherently inaccurate due to interpolation and temporal lag. If instead outside temperature 
came from a nearby, networked thermometer, then performance improves significantly. We simulated this by 
reducing the outside temperature lag to zero and by reducing the outside temperature uncertainty to be the same 
as our measured uncertainty, i.e. 162.0== mout σσ . As shown in the right half of Table 1, the overall 
classification accuracy improves to  90.6% from 81.0% for the previous case. 

One advantage of our probabilistic formulation is that the technique accurately reports its own confidence in 
the classification. Table 1 shows the mean of the computed ( )mtp in  and ( )mtp out  for each test city, and these 

fractions closely match the actual fractions of correct classifications. For instance, the inside test for Atlantic 
City, NJ worked correctly 79.3% of the time, and the mean value of ( )mtp in  was 0.782. The shaded boxes in the 

table show that the average correct classification rate using the temperature web service was 81.0%, while the 
average classification probability was 0.816. For the outside thermometer case, the numbers are 90.6% and 
0.905, respectively. Figure 10 shows a plot of the mean computed probabilities for ( )mtp in  and ( )mtp out  as a 

function of the actual correct classification fractions for each city. The points fall near a diagonal from (0,0) to 
(1,1), meaning that they are approximately equal. This realistic self-assessment of confidence is important for 
other reasoning modules that might depend on ours. 



6. Conclusions 
TempIO is an effective method for detecting if a device is inside or outside based on temperature. It requires only 
a digital thermometer, a network connection, and a rough estimate of the device’s (latitude, longitude). Using a 
web service to find the outside temperature, TempIO is about 81% accurate in classification based on weather 
data from five U.S. cities. Using a nearby outside thermometer, the classification accuracy grows to about 91%. 
By using Bayes rule, TempIO’s classification probabilities closely match its actual accuracy, meaning that it 
faithfully assesses its own confidence in its results. 

We envision TempIO to be useful for turning off a GPS receiver when inside, for adding metadata to digital 
photos, and as a component of higher-level context inference for ubiquitous computing. 

 

City HDD CDD In Out Mean p(in) p(out) Mean In Out Mean p(in) p(out) Mean
Atlantic City, NJ 5113 935 0.793 0.855 0.824 0.782 0.870 0.826 0.791 0.994 0.893 0.814 0.970 0.892

Barrow, AK 19873 0 0.999 1.000 1.000 0.998 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
Key West, FL 62 4830 0.467 0.800 0.634 0.515 0.793 0.654 0.662 0.992 0.827 0.694 0.955 0.825

San Diego, CA 1063 866 0.557 0.851 0.704 0.588 0.842 0.715 0.728 0.992 0.860 0.754 0.965 0.860
Seattle, WA 4797 173 0.834 0.940 0.887 0.830 0.944 0.887 0.905 0.998 0.952 0.912 0.987 0.950

All 0.730 0.889 0.810 0.743 0.890 0.816 0.817 0.995 0.906 0.835 0.975 0.905

With Outside Weather Service
Computed Probability

With Outside Thermometer
Fraction Correct Fraction CorrectComputed Probability

Table 1: Performance of inside/outside classification in five test cities. HDD and CDD are annual “heating degree 
days” and “cooling degree days”, respectively, averaged over 1971-2000. The columns under “With Outside 
Weather Service” use interpolated temperatures from our web service for the outside temperature. The columns 
under “With Outside Thermometer” assume outside temperature came from a nearby thermometer. The “In” 
and “Out” columns show the fraction of correct classifications, and the “p(in)” and “p(out)” columns show the 
mean computed probabilities from ( 12 ).  The overall classification accuracy using the weather service is 0.810, 
while using the outside thermometer gives a classification accuracy of 0.906. 
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Figure 9: Classification accuracy varies from 
city to city. Pie chart on map shows fraction of 
correct classifications. 
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Figure 10: TempIO's fraction of correct 
classifications are accurately predicted by its 
own computed probabilities. 
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