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Abstract

TemplO is a method to classify a device as either being inside or outside based
on its ambient temperature. It takes advantage of the fact that inside
temperatures are normally controlled to within a range comfortable for people,
while outside temperatures fluctuate with the weather. Inside/outside
classification could be used to automatically turn off a GPS receiver when
inside, for automatically adding metadata to digital photos, and for higher-level
context inference. TemplO works by measuring the ambient temperature and
looking up the current outside temperature via a network. We derive a Bayes-
based classification rule based on probability distributions of inside, outside,
and measured temperatures. Based on test data from five U.S. cities, TemplO
classifies correctly 81% of the time when using a web service for outside
temperatures and almost 91% of the time when using an ousider thermometer.

1. Introduction

As computing moves off the desktop into the hands of mobile users, it is becoming more important for mobile
devices to be aware of the user’s context. Important pieces of context include the user’s location, activities,
nearby people and devices, and mode of transportation. This knowledge can in turn be used by mobile devices to
display reminders, to configure themselves for use with other devices, and to behave in a way that is appropriate

for the surrounding environment.

One important piece of context concerns whether or not the user is outside. This can be used to help infer the
user’s location (e.g. in a building) and her mode of transportation (e.g. in a bus or car). Inside/outside can also be
used to turn off a GPS receive when inside, because GPS does not generally work inside. It is also a useful piece
of metadata for digital photos, potentially serving as a way to filter photos in a search.

One way to make an inside/outside determination
would be to use a digital map of building footprints
along with knowledge of the user’s location.
However, for most buildings such a map does not
exist. Also, location data is not necessarily available,
especially inside where GPS fails. Another
inside/outside feature is light intensity, but this fails at
night.

We have developed TemplO, a working technique
for inside/outside classification that exploits the fact
that inside environments are normally temperature-
controlled. If the mobile device can measure the
ambient temperature, and if it knows the current
outside temperature, it can infer whether or not it is
outside. The outside temperature comes from a
database of worldwide, outside temperatures that we

Figure 1: We use this RS-232 thermometer to
measure ambient temperature.




maintain based on hourly updates from the American National Oceanic and Atmospheric Administration’s
(NOAA’s) National Weather Service (NWS). If the device’s ambient temperature is within the range of normal
inside temperatures, and if the outside temperature is significantly different, then there is a high probability that
the device is inside. If, on the other hand, the device’s ambient temperature is closer to the local outside
temperature, then the device is more likely outside.

One attractive characteristic of this technique is the simplicity of the required sensing. We measure
temperature with a small, off-the-shelf, RS-232 thermometer that draws its power from the mobile device, as
shown in Figure 1.

Looking up the outside temperature requires that the device have a rough idea of its own location. But, since
temperatures vary only slowly with location, the location estimate needn’t be accurate. For instance, our system
can work with locations given in terms of postal codes.

Clearly our technique will be only guessing if the inside and outside temperatures are very close to each
other. By reasoning mathematically about the temperature distributions, our technique gives a probability of
being inside, which reflects the uncertainty caused by similar inside and outside temperatures. Also, despite this
potential ambiguity, we found that our technique is correct about 81% of the time based on tests with weather
data from five U.S. cities.

The certainty of our inside/outside inferences are strongly related to the certainty of three different
temperature distributions:

1. Measured ambient temperature from the device
2. Expected inside temperature
3. Outside temperature interpolated from weather stations

The next section explains how we derived these three different temperature distributions. After that, we show
how we combined these distributions mathematically to create a probability estimate of being inside or outside.
We then describe our accuracy tests.

2. Temperature Distributions

TemplO’s inside/outside inference is a function of three different temperatures: the measured ambient
temperature, the outside temperature, and the inside temperature. All three are described by probability
distributions that are used to compute the probability of being inside. This section describes how we derived the
three probability distributions. The probabilistic inference described here takes a closed form if these three
probability distributions are Gaussian, so we endeavor to model the distributions as such as long at it appears
reasonable.

2.1. Measured Temperature Distribution

For measuring temperature, we us a TempTrax™ RS232 thermometer. It has an advertised accuracy of +0.28 °C
over a range of -28.9 °C to 48.9 °C (-20 °F to 120 °F).

Because the manufacturer could not clarify the meaning
of this accuracy figure, we reasoned that this uniform
distribution over +0.28 °C is actually a Gaussian with

the same variance, as shown in Figure 2. The variance o= 2
of a uniform distribution over [a,b] is vaf
o? = ['x* I(b~a) dx = (b-a)* /12 (1)
a

From our thermometer’s accuracy specification,
(a,b) =(-0.28 °C, 0.28 °C), giving o,, =0.162. Thus

the distribution of actual temperatures t, is J \K
t, ~ N{tm, bope } where t, is the temperature measured ‘

0
-al2 0 al2

with the mobile device, and N{,u, o-z} represents a

normal distribution. Figure 2: A uniform and Gaussian distribution

with the same mean and variance.




2.2. Expected Inside Temperature

The inside temperature of a building of interest
could easily be measured with an inside
thermometer connected to a network and used as
part of our system. This requires extra
infrastructure, however, so we chose to depend
instead on the fact that building temperatures
normally vary over only a small range.

Buildings are usually temperature-controlled
for the comfort of their occupants, with obvious
exceptions for saunas, wine cellars, etc. In lieu of
temperature data from a large sample of buildings,
we use ISO standard 7730 that limits temperatures
of commercial buildings to 20 - 24 °C in winter and
23 - 26 °C in summer. We have a temperature

range (a,b)=(20 °C, 26 °C) that we model as a
normal distribution with a variance from Equation
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Figure 3: Black dots indicate the locations of 6510
weather stations that we use to compute outside
temperature at a given location.

(1) and a mean that splits the range. This gives
U =23 and o, =1.732, with inside temperature t;, distributed as t,, ~ N{uin, o-fn}.

2.3. Outside Temperature

One way to get the local outside temperature would be to equip areas of interest with networked-connected
thermometers. For instance, if a nursing home wanted to monitor if any of its residents left the building, it could
use a thermometer installed immediately outside. For this project, however, we instead chose to exploit
thermometers which are already in place, meaning that we do not depend on any new infrastructure.

Our outside temperatures come from 6510 weather stations located around the world, shown in Figure 3.
Hourly updates from these stations is gathered by the American NOAA’s National Weather Service and made
available as METAR reports[1]. Our server maintains the latest data from each of these stations by hourly
downloading the latest METAR summary file.

As part of the inside/outside inference, the user must specify his/her location in order to compute the outside
temperature. As temperature varies only slowly as a function of location, the measured location does not need to
be very accurate. It is sufficient to give the last known (latitude, longitude) from a GPS receiver or, in the U.S,,
the postal code which we convert to a (latitude, longitude) via our web service that accesses a database of postal
codes and their (latitude,longitude)’s.

Given a (latitude, longitude), we use interpolation to compute the local temperature. This problem has been
studied previously, and we base our choice of interpolation scheme on the work of Collins and Bolstad[2], who
compared interpolation methods. They found that “optimal inverse distance weighting” to perform well. This
technique interpolates temperature at a point of interest as a weighted average of all the known temperatures. The
weights are the reciprocals of the distances between the known points and the point of interest, raised to some

power that is computed by experiment. Mathematically, the outside temperature t, is computed as
Lt /df

* i=1 !

Where t; is the temperature reported from the i" weather station, d; is the distance between the point of

out

(2)

interest and the i" weather station, n is the number of weather stations, and r is the experimentally determined
optimal exponent. We can compute d; because the METAR reports give the (latitude, longitude) of each

weather station.

We computed the best r based on 24 consecutive hours of temperature data from all the weather stations,
excluding the inevitable missing reports from some stations. For each hour time slice, we used a leave-one-out
procedure to estimate the interpolation error. Leaving out one weather station, we used all the others to estimate
its temperature using Equation ( 2 ). Taking each station and each hour in turn, we computed an rms interpolation
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Figure 4: RMS temperature error as a function Figure 5: Error distribution for estimating
of weighting exponent gives an optimal exponent outside temperature.

of 2.65.

error. By exhaustively searching through different values of r, we found the minimum rms exponent was
r =2.65, as shown in Figure 4.

To estimate the error distribution of outside temperature, we employed the same leave-one-out procedure as
above and created a histogram of errors shown in Figure 5. Before computing error statistics, we eliminated
errors above 10 °C and below -10 °C, which amounted to about 3% of the data. This gave a better-fitting
Gaussian, also shown in Figure 5. Since this error distribution has a mean of approximately zero (actually -0.4

°C), and a standard deviation of &, =2.545, we will model the distribution of interpolated outside temperatures
as

o ~ N {tgut' O-ozut} (3)
where t,, is the interpolated temperature for the given location.

We have created two web services to facilitate access to our interpolated outside temperatures. The first,
mentioned above, converts U.S. postal codes into (latitude, longitude). The second takes a (latitude, longitude)
and returns the outside temperature based on the interpolation in Equation ( 2).

3. Probabilistic Inference

Based on the three temperature distributions above, our aim is to derive an equation giving the probability of
being inside based on the measured ambient temperature and interpolated outside temperature. Starting with

Bayes’ rule, we have the probability of being inside given the measured ambient temperature t,, :
ool

m p(tm|in)p(in)+ p(tm|out)p(out)

For lack of any prior assumptions, we will assume the prior probabilities p(in)= p(out)=0.5.

(4)

pGnt

3.1. Measured Temperature Conditioned On Inside
The first state conditional probability in Equation ( 4 ) is p(tm|in), which is the probability of the measured
temperature t,, given that the device is inside. This is a function of the actual ambient temperature, t,, which

we do not know. We can introduce the joint conditional probability distribution p(tm ,ta|in) and integrate out the
actual temperature to compute the probability we need:



o, ||n I (m, a||n)dt

- (5)
= J‘p(ta|in)p(tm ta,in)dta
The distribution p(ta|in), reduces to the normal distribution governing inside temperatures:
plt.fin)= p(t,) 6)
= N{ta;:uin' O-izn}
where N {x;y, 02} is the Gaussian density function:
1( x—u :
L
N, 0% j=——e 2\ ° (7)
T
The distribution p(tm t., in) represents the accuracy of our thermometer, and reduces as follows:
p(tm a,in): p(tm ta)
(8)

=Nttty 02}

Continuing from Equation ( 5 ) using the resultant normals from Equations ( 6 ) and ( 8 ), we have the closed
form

p(tmlin){p(tm,talin)dta
]j ||n (m a,|n)dt

. (9)
:]‘ON{ta;ﬂin'aiﬁ {ta;tmlag’l}jta

= N{ﬂin;tmvaiﬁ +O—r$1}
The last step comes from the identity[3]

[N, 02 o, o3

(10)

;15,07 + 07
Equation ( 9 ) is intuitively satisfying in that the maximum of p(tm|in) occurs at the mean inside temperature

4, - The function broadens and falls with increases in the uncertainty of the inside temperature (o2) and the

uncertainty of the measured temperature (o).

3.2. Measured Temperature Conditioned On Outside

The other conditional probability from Equation ( 4 ) is p(tm|out), which is the probability of the measured
temperature given that the device is outside. Proceeding as above, we derive a closed form:



p(t, Jout) = j plt,,.t, Jout)t,
(t |out)p(tm
{taY Dut ! O-Ozut }\‘ {ta ;tm ' O-l'?] bta
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(11)

3.3. Inside/Outside Probability vs. Measured Temperature

Substituting Equations ( 9 ) and ( 11 ) into ( 4 ) gives a closed form for the probability of being inside given a
measured temperature and an interpolated outside temperature:

ol )= N3t 0% + 0} (12)
N{lllrl’ m'o-in+o-z}+NJltout’ m’O-out+o- }

And p( tm):l— p(in|tm). This is a closed form solution for computing the probability of being inside or
outside based on these parameters, all in °C:
t Temperature measured on mobile
" device
Standard  deviation of measured
oy =0.162 temperature
M =23 Mean of expected inside temperature
Standard deviation of expected inside
Oy =1.732 temperature
¢ Outside temperature interpolated from
out weather stations
Standard  deviation of  outside
Oou = 2545 temperature

To demonstrate Equation ( 12 ), we simulate two different people are using the technique, one inside and one
outside. The ambient inside temperature is t;, = &;,, = 23, and the person inside measures it as exactly this value.
We look at the behavior of the equation as the outside temperature varies from -20 °C (-4 °F) to 40 °C (104 °F),
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Figure 6: The solid line shows the computed
probability of an outside person being outside as
a function of outside temperature. The dotted
line shows the computed probability of an inside
person being inside.

temperatures are the same, probability favors
the category whose temperature measurement
has the lowest uncertainty.




which the person outside measures exactly. Figure 6 shows the results. The solid line shows the computed
probability of the outside person being outside as the outside temperature changes. The probability remains high
as long as the outside temperature is different enough from the inside temperature. As we would expect, the
probability of being outside drops when the inside and outside temperatures are similar. The dotted line shows
the computed probability of the inside person being inside. This probability also drops when the inside and
outside temperatures are similar.

The simulation above confirms our intuition that the probabilities rise and fall as we expect. The amount that
they rise and fall is a function of the temperature uncertainties. The probability of the inside person being inside
never drops below 0.5, even when the inside and outside temperatures are equal. This is because the uncertainty
of the outside temperature ( o, =2.545) is larger than the uncertainty of the inside temperature (o, =1.732).
Qualitatively, when the measured temperature is close to the expected inside temperature, the probability
computation attributes more weight to the inside hypothesis, because the actual outside temperature can deviate
more from the measured temperature than the inside temperature can. This is illustrated in Figure 7, which

simulates an outside and inside temperature both equal to the mean inside temperature z;, = 23. When the ratio
0., /0o 18 low, confidence in the inside temperature is higher, which biases the probability toward being inside.

At o,, =0, the probability of being inside is 0.5. When &, /c,, grows beyond 1.0, the probability of being
inside drops below 0.5.

4. Demonstration Implementation L™ in/Out Inference A=

While our technique is more likely to be useful as a Current Location Inside/Outside
background process in a larger context inference Latitude: | 4352 e
system, we have also implemented a version to run it Longitude: | 9673 _rromZip | Infer
as a standalone program for demonstration purposes.
. prog . purpos 5-digit US. Zipcode: | 57105 [T o
Figure _8 shows our technique exposed in a o094 [ oo
demonstration program. In the upper left the user City. State Sioux_Falls, SD
gives his or her current location in the form of Outside Temperature
(latitude, longitude). Optionally, the user can input a _
U.S. zipcode which is converted to a (latitude, _ Cet | celsivs ,ﬂ
longitude) via one of our web services. Fahrenheit: | 641
In the middle left box, the user clicks to call our Ambient Temperature
?uts[dedtemperatuge serlvlc?1 blased ?nf tge (|E:1tltude, Get |cCelsivs: [ 2344
ongitude) given above. In the lower left box, the user w[ 74z
g ) g Fahrenheit: 742 e

clicks to get an ambient temperature measurement
from a connected temperature sensor such as the one

we use shown in Figure 1. Figure 8: Our infout inference technique is
On the right, clicking “Infer” invokes the | demonstrated with this program. The resulting

computation of Equation ( 12 ) and the drawing of | probabilities are shown as blue bars.

the bars indicating the probabilities of inside and

outside.

5. Accuracy Tests

We tested our technique on temperature data downloaded from the American “National Virtual Data System”
operated by NOAA[4]. This source gives temperature data recorded from over 700 U.S. weather stations. We
used all the hourly data from the year 2003 for weather stations based in five U.S. cities.

Clearly our technique will be more accurate at distinguishing inside from outside when there is a larger
temperature difference between the two states. In order to select cities conducive to a range of expected
performance, we looked at candidate cities’ yearly “heating degree days” (HDD) and “cooling degree days”
(CDD) to assess how extreme their temperatures are. These quantities are based on the difference between a
day’s average temperature and a comfortable base temperature, which was 65°F for the data from [4]. If the
average temperature is below the base temperature, the absolute difference is added to HDD, implying that a
certain amount of inside heating would be required. These are summed for a year to give HDD, likewise for
CDD when the average temperature is above the base temperature. Thus, a city with a high HDD is generally



colder, and a high CDD is generally warmer. Of the U.S. cities in the data, we picked for testing Barrow, Alaska
(highest HDD), Key West, Florida (highest CDD), San Diego, California (minimum sum of HDD and CDD),
and Atlantic City, New Jersey (HDD and CDD were both close to the medians of all the cities). We also chose
Seattle for testing, as this is our home city. We would expect our technique to work best where HDD or CDD are
high, and not as well where HDD and CDD are both low, because our algorithm depends on the temperature
inside buildings to be artificially controlled.

We used the hourly temperature data as the basis for computing the outside temperature in our evaluations. In
our system, the outside temperature comes from our weather service, which has a Gaussian distribution shown in
Figure 5 and up to an hour lag because our weather station download runs once per hour. We simulated both
these effects in our evaluation, lagging all the outside temperatures by one hour and adding Gaussian noise with

our measured o, = 2.545. Both the lag and the added noise tend to reduce the reported accuracy of our method,

out
but we included them to make the test a more realistic representation of the inaccuracies inherent in accessing
worldwide outside temperatures.

In evaluating the inference accuracy outside, we set the measured ambient temperature equal to the current

(non-lagged) outside temperature and added Gaussian noise with o,, =0.162 representing the uncertainty of our

thermometer.
In evaluating the inference accuracy inside, we assumed the building’s heating and cooling policy was to let
the inside temperature match the outside temperature when the outside temperature was within the ISO

recommended range of [20°C, 26°C] ([68°F, 78.8° F]), assuming that no heating or cooling would be used in

this range. If the outside temperature exceeded this range, we clamped the inside temperature to whichever end
of the ISO range was nearest the outside temperature. To this inside temperature we added Gaussian noise with

o,, =0.162 to get the measured temperature from the thermometer.

The numerical results are summarized in Table 1. On average, each city had about 8715 temperature test
points. The best performing city was Barrow, AK, which is unsurprising given its cold climate. Here the overall
inference accuracy was 100%. Atlantic City, NJ, representing a typical American city, resulted in a correct
inference 82.4% of the time for both inside and outside. Key West, FL, with the maximum CDD, gave the
poorest inference performance with only 63.4% correct. We expected better, given the necessity of that city’s
inside cooling. However, despite the high CDD, this city has a mean temperature of 25.66 °C, which is within the
ISO range. Barrow, which performed perfectly, has a mean temperature of -10.43 °C. The overall classification
accuracy for the five cities tested was 81.0%. These results are shown graphically in Figure 9.

For our first study, our outside temperature measurements were simulated as coming from our temperature
web service. This is inherently inaccurate due to interpolation and temporal lag. If instead outside temperature
came from a nearby, networked thermometer, then performance improves significantly. We simulated this by
reducing the outside temperature lag to zero and by reducing the outside temperature uncertainty to be the same

as our measured uncertainty, i.e. o,, =0, =0.162. As shown in the right half of Table 1, the overall

out
classification accuracy improves to 90.6% from 81.0% for the previous case.
One advantage of our probabilistic formulation is that the technique accurately reports its own confidence in

the classification. Table 1 shows the mean of the computed p(in|tm) and p(out|tm) for each test city, and these
fractions closely match the actual fractions of correct classifications. For instance, the inside test for Atlantic
City, NJ worked correctly 79.3% of the time, and the mean value of p(in tm) was 0.782. The shaded boxes in the

table show that the average correct classification rate using the temperature web service was 81.0%, while the
average classification probability was 0.816. For the outside thermometer case, the numbers are 90.6% and

0.905, respectively. Figure 10 shows a plot of the mean computed probabilities for p(in|tm) and p(out|tm) as a

function of the actual correct classification fractions for each city. The points fall near a diagonal from (0,0) to
(1,1), meaning that they are approximately equal. This realistic self-assessment of confidence is important for
other reasoning modules that might depend on ours.
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6. Conclusions

TemplO is an effective method for detecting if a device is inside or outside based on temperature. It requires only
a digital thermometer, a network connection, and a rough estimate of the device’s (latitude, longitude). Using a
web service to find the outside temperature, TemplO is about 81% accurate in classification based on weather
data from five U.S. cities. Using a nearby outside thermometer, the classification accuracy grows to about 91%.
By using Bayes rule, TemplQO’s classification probabilities closely match its actual accuracy, meaning that it
faithfully assesses its own confidence in its results.

We envision TemplO to be useful for turning off a GPS receiver when inside, for adding metadata to digital
photos, and as a component of higher-level context inference for ubiquitous computing.

Fraction Correct |Computed Probability] Fraction Correct |Computed Probability|

City HDD [ CDD | In Out | Mean| p(in) | p(out)] Mean| In Out | Mean| p(in) | p(out)| Mean
Atlantic City, NJ| 5113| 935] 0.793] 0.855| 0.824| 0.782| 0.870| 0.826] 0.791| 0.994| 0.893| 0.814| 0.970| 0.892
Barrow, AK 119873 0f 0.999] 1.000| 1.000| 0.998]| 1.000{ 0.999]| 1.000f 1.000] 1.000| 1.000| 1.000| 1.000
Key West, FL 62| 4830] 0.467| 0.800] 0.634| 0.515] 0.793]| 0.654| 0.662] 0.992| 0.827] 0.694| 0.955| 0.825
San Diego, CA| 1063| 866| 0.557| 0.851| 0.704| 0.588] 0.842| 0.715| 0.728] 0.992{ 0.860] 0.754| 0.965| 0.860
Seattle, WA | 4797| 173] 0.834| 0.940| 0.887| 0.830| 0.944| 0.887] 0.905| 0.998] 0.952| 0.912| 0.987| 0.950
All 0.730] 0.889] 0.810] 0.743]| 0.890] 0.816] 0.817| 0.995] 0.906| 0.835] 0.975| 0.905
Table 1: Performance of inside/outside classification in five test cities. HDD and CDD are annual “heating degree
days” and “cooling degree days”, respectively, averaged over 1971-2000. The columns under “With Outside
Weather Service” use interpolated temperatures from our web service for the outside temperature. The columns
under “With Outside Thermometer” assume outside temperature came from a nearby thermometer. The “In”
and “Out” columns show the fraction of correct classifications, and the “p(in)” and “p(out)” columns show the
mean computed probabilities from (12 ). The overall classification accuracy using the weather service is 0.810,
while using the outside thermometer gives a classification accuracy of 0.906.
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