Sequential optimization in the absence of global reset

Vigyan Singhal
Tempus-Fugit

and

Carl Pixley

Synopsys

and

Adnan Aziz

University of Texas at Austin
and

Shaz Qadeer

Microsoft

and

Robert Brayton

University of California at Berkeley

We study the problem of optimizing synchronous sequential circuits. There have been previous
efforts to optimize such circuits. However, all previous attempts make implicit or explicit assump-
tions about the design or the environment of the design. For example, it is widespread practice
to assume the existence of a hardware reset line and consequently a fixed power-up state; in the
absence of the same, a common premise is that the design’s environment will apply an initializing
sequence. We review the concept of safe replaceability which does away with these assumptions
and the delay-safe replaceability notion, which is applicable when the design’s output is not used
for a certain number of cycles after power-up. We then develop procedures for optimizing the
combinational next-state and output logic, as well as routines for re-encoding the state space
and removing state bits under these replaceability criteria. Experimental results demonstrate the
effectiveness of our algorithms.

Categories and Subject Descriptors: B.6.3 [Logic Design|: Design aids—Automatic synthesis
General Terms: Algorithms, Design

Additional Key Words and Phrases: sequential logic synthesis, safe replaceability, no-reset latches

The support of the NSF under grant CCR-9702919 and The State of Texas Higher Education
Coordinating Body under grant ARP 003658-0235-1997 is gratefully acknowledged.

Address: Vigyan Singhal, Tempus-Fugit, Albany, CA; Carl Pixley, Synopsys, Hillsborough, OR,;
Adnan Aziz, Univ. of Texas, Austin, TX; Shaz Qadeer, Microsoft, Redmond, WA; Robert Bray-
ton, Univ. of California, Berkeley, CA

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, to redistribute to lists, or to use any component of this work in other works,
requires prior specific permission and/or a fee.

Sequential optimization in the absence of global reset . 2

o

y

[T TTTTTTTTITTT
Fig. 1. Design replacement.

1. INTRODUCTION

Logic synthesis is the process of transforming an architectural- or behavioral-level
description of a design into an optimized gate-level implementation. There are many
components of logic synthesis — transforming a register-transfer level (RTL) design
into a gate-level design, restructuring a gate-level design to achieve an optimum
combination of timing, area, power and testability, mapping a gate-level design to
a library of technology-dependent components, etc.

Large designs are built in a hierarchical manner, i.e., by designing individual
pieces first, and then composing them. In this paper, we are concerned with devel-
oping sequential synthesis procedures relative to an appropriate notion of replace-
ability, namely a criterion for telling us when a design D1 can be used in place of
another design DO, as illustrated in Figure 1. It should be clear that a criterion
for design replacement is an integral part of developing synthesis algorithms. Two
desirable features of any criterion for replacement are soundness and completeness.

Soundness of a replacement criterion entails that if a design D1 satisfies the
criterion for replacing DO, then in any design where D0 occurs as a subdesign
should perform exactly as it did previously when DO is replaced with D1. In this
work we will make no assumptions about the behavior of the logic that D0 will
be composed with, which we refer to as D0’s environment. Specifically, we do not
wish to take for granted that the environment may produce a specific initializing
sequence. Even though soundness may seem to be an obvious characteristic of any
replaceability criterion, we have shown that much previous work fails to meet the
requirements stated above [33, Section III].

Completeness of a replacement criterion entails that if a design D1 has the prop-
erty that any design where D0 occurs as a subdesign performs exactly as it did
previously when DO is substituted by D1, then D1 should be a replacement for D0
under the criterion. Informally, this means that the criterion should be as “weak”
as possible. Completeness is desirable, since when performing synthesis under the
replacement criterion, it allows the maximum amount of flexibility for optimization.

The motivation for our work can be seen from the fact that even though there
has been much research in sequential synthesis, there has been little transfer of the
technology to industry. For example, when a gate-level netlist is passed on to a
synthesis tool for optimization, such a netlist is almost always combinational, i.e.,

Sequential optimization in the absence of global reset : 3

without any memory elements; the design is often cut at latch boundaries before
passing to a synthesis tool. (Retiming is probably the only exception to this.)

One major problem with sequential synthesis methods in the literature is the
assumption of a designated initial state for a design; often it is not possible to live
with such an assumption for the optimization of an arbitrary sequential netlist in
an industrial setting. For arbitrary sequential netlists without a designated initial
state, one notion that can used for replacement is the concept of FSM equivalence
([10, page 23], also Definition 2 in this paper). However, this is often too strict,
and we will see that it is possible to use weaker notions and still preserve sound-
ness. A number of other papers deal with sequential designs that lack a designated
initial state. For example, Pixley [16; 17] defined the notion of sequential hardware
equivalence (SHE) which does away with the DIS assumption — roughly, it re-
quires equivalence relative to an initializing sequence. However, in [33, Section III]
we showed that SHE is not sound. (Additional criticisms of basing a synthesis
technique around initializing sequences is the complexity that they add, and the
possibility that the environment may not be able to generate the desired sequence.)
Other papers that do away with the DIS assumption and perform sequential re-
dundancy identification and removal include those by Cheng et al. [6; 9] and by
Pomeranz et al. [19; 20].

In [33, Section III] we provide a detailed account of these, and demonstrate that
the replacements generated by the proposed techniques are not sound. By this
we mean that there exists the possibility that an implementation synthesized by
these techniques may not perform exactly as the specification. We stress this is a
possibility and not a certainty — existing procedures can still be used, as long as
the implementation is verified against the specification.

The rest of this paper is structured as follows: Basic issues and definitions related
to synthesis are presented in Section 2. We review the notion of safe replaceability,
and its generalization, delay safe replaceability, in Section 3. We then present our
specific contributions:

(1) In Section 4 we present an algorithm for optimization of next-state and output
combinational logic which exploits the flexibility given by our replaceability
criteria.

(2) In Section 5 we present an algorithm which performs re-encoding of the state
space, resulting in further optimization. Experimental results, specifically those
in Table VI, page 27, demonstrate the effectiveness of our algorithms.

Finally, in the last section we discuss where our work extends for the future and
the lessons we learned in this research.

We stress that the focus of this paper is to develop algorithms for for optimizing
sequential designs under a sound and complete notion of design replacement. As
such, the theoretical development of the replacement criteria is limited; we present
a detailed exposition of the theory of safe and delay safe replaceability in [33]. This
paper unites and extends results reported by the authors at several conferences [31;
21; 32; 18] and in Singhal’s PhD dissertation [29].

Sequential optimization in the absence of global reset . 4

2. PRELIMINARIES
2.1 Memory elements

We are dealing with synchronous, sequential gate-level circuits. The sequential
nature of such circuits is implemented by memory elements, either latches or flip-
flops. We will assume that the memory elements are edge-triggered (most of our
results generalize to level-sensitive latches; the details are tedious). We will use the
term “latch” to denote such an element.

Latches come in two flavors — latches with a hardware reset line (we will call
them “reset latches”) and latches without a hardware reset line (“no-reset latches”).
We will assume that all latches in the designs are no-reset latches (in [30], we show
how to model a reset latch with a no-reset latch and some combinational logic).
When a design consisting of ¢ no-reset latches is switched on, it nondeterministically
starts up in one of the 2! power-up states.

Many sequential synthesis and verification studies, e.g., [8; 7; 14; 1], rely on the
supposition that all latches are reset latches by assuming that every design has a
designated initial state. Assuming a designated initial state greatly simplifies the
analysis of many problems. However, while this assumption is applicable to some
designs, we will later argue that it does not apply to all designs. This paper does not
assume a designated initial state, and for this reason, it differs from many previous
studies.

We will now argue why it is so important to analyze designs without assuming a
designated initial state. In our experience, many industrial designs do have no-reset
latches. There are several reasons for this — no-reset latches occupy less area and
contribute less delay to the circuit. The use of no-reset latches avoids the problem
of routing a global reset line. Another reason for not assuming a designated initial
state, even if all latches are reset latches, is that we cannot assume that whenever
the circuit operates, the global reset line has been pulled. Indeed, we have observed
real designs where it was not the case that the global reset was activated from the
first clock cycle; in some modes of operation, the design was being used even before
activating the reset line. In such situations it would have been very dangerous for
a synthesis tool to make the assumption that the design was used only after pulling
the reset line, and the behavior of the designs in the states unreachable from the
designated initial state does not matter. Another problem with the designated
initial state model is caused by circuits which have more than one class of latches,
each class is wired to a different reset line. It is not clear what the designated initial
state is in this situation. Also, we have observed some designs where some reset
lines are outputs of combinational logic and it is not clear if there is a meaningful
initial state at all.

2.2 Terminology

The theory of sequential replacement that we present in this paper is applicable
at many levels of abstraction. However, we will restrict ourselves to two different
levels of abstraction for representing digital designs: behavioral-level (finite state
machines) and gate-level (represented by netlists).

Formally, a Finite State Machine (FSM) is a quintuple, (@, I, O, A, d), where
Q is the set of states, I is the set of input values, O is the set of output values, A

Sequential optimization in the absence of global reset : 5

is the output function, and ¢ is the next state function. The output function A is
a completely-specified function with domain @ x I and range O. The next state
function is a completely-specified function with domain @ x I and range Q.

We will find it convenient to represent an FSM by a state transition graphs
(STG). This is a directed graph where the vertices represent the states and the
edges are transitions between states. An edge is labeled with the input value which
causes that transition and the resulting output value.

A netlist D consists of a set of interconnected latches and gates. A design with
a input wires, b output wires and c¢ latches is naturally associated with an FSM D.
The input space Ip = {0,1}¢, the output space Op = {0,1}®, and the state space
Qp = {0,1}¢. The next state function is 0p : @p X Ip — D and output function
Ap : Qp X Ip — Op are defined by the corresponding logic. An example of this
association is shown in Figure 2.

We will often abuse notation and use D to also denote the set of states of the
associated FSM; it will be clear from the context if D refers to the design or to
the set of states. We are not assuming explicit set or reset pins to any latch; thus
when the design powers up it can non-deterministically power up in any one of the
2¢ states.

We also use Ap and dp to denote the output and next state functions on sequences
of inputs: for any state s € Qp we have dp(s,€) = s and Ap(s,€) = €, where €
represents the length-0 sequence; otherwise, if 7 = a1 -az - az---aq € I} is a
sequence of ¢ inputs, then Ap(s,m) = Ap(s,a1) - Ap(dp(s,a1),7’) and dp(s,7) =
dp(dp(s,ar), '), where 7’ = as - az - - - ay.

All notions of design replacement described in this paper are meaningful only if
the two designs have the same number of input and output wires.

DEFINITION 1. Given two states sg € Qp, and s1 € Qp,, state s is equivalent
to state s1 (denoted by sog ~ s1) if for any sequence of inputs m € I*, it is the case
that >\D0(3077T) = >\D1 (81,7'().

The notion of state equivalence generalizes to FSM equivalence [10, page 23]:

DEFINITION 2. Two FSMs My and My are equivalent (M = Ms) if for each
state s in My there is a state t in My such that s ~ t, and for each state t in Mo
there is a state s in My such that s ~ t.

DEFINITION 3. A set of states S C Qp is a strongly connected component
(SCC) if it is a maximal set of states such that for any two states sg,s1 € S, there
exist input sequences o and w1 so that dp(so,m9) = s1 and dp(s1,m) = So.

DEFINITION 4. A set of states S C Qp is a terminal strongly connected
component (tSCC) if S is an SCC and if for any state s € S and any input a:
dp(s,a) € S.

2.3 Design composition

Because we are interested in the problem of replacing designs without affecting
the interaction with the environment, the issue of composing designs is crucial to
this paper. Therefore, it is important to define precisely what we mean by “design
composition” and the subtleties involved in the composition of designs.

Sequential optimization in the absence of global reset : 6

01

.
L
S

v

(a) Example netlist C. (b) The STG for netlist C.

Fig. 2. A netlist and its corresponding STG.

D1 D2

w2

BES

e]
T%DMHHH Toqtzﬂtl 0

Fig. 3. Netlist composition.

Composition of two netlists simply comprises of placing the two netlists next to
each other and connecting the pairs of input-output signals which are required by
the composition. Composition of two designs entails “hiding” of some signals —
each signal that is hidden is an output of one design and an input of the other.
The inputs of the composed design are the inputs of the component designs that
have not been connected to an output. Some subset of the components’ outputs
is designated as being the outputs of the composed design. We will denote a
composition of netlists D1 and D2 by D1 ® D2.

As an example, consider the design in Figure 3. Design D1 has input x1 and
output L2; design D2 has inputs ul and w2 and output vl. The composition
involves connecting L2 with u2 and vl with z1; thus, ul is the only input of the
composed design. The signals v1 and L2 are designated to be outputs.

However, such a composition may sometimes create combinational cycles. If a
netlist has a combinational cycle, it may be impossible to associate an STG with
it because the next state and output functions may not be determined from such
a circuit. The hardware realization in silicon of such a circuit may oscillate for an
indeterminate time. Issues regarding behavior of circuits with combinational loops
have been dealt elsewhere [27]. In this paper, we talk about design composition
only when it does not result in combinational loops.

Sequential optimization in the absence of global reset . 7

3. SAFE- AND DELAY SAFE- REPLACEABILITY

In this section we will review the notions of safe replaceability and delay safe re-
placeability for sequential circuits. Detailed proofs and illustrations of the proper-
ties of safe and delay safe replaceability are given in [33]; here we simply state the
properties, and give the intuition behind them.

Because modern digital designs are so large and complex, we would like to take
an arbitrary block of sequential logic and replace it with an optimized component
so that it is not possible to detect the replacement, regardless of the surrounding
logic. For the reasons given in Section 2.1, we wish to make no assumptions about
the behavior of the surrounding logic. Specifically, we do not assume the existence
of an initializing sequence that the environment may apply after power-up.

For combinational circuits, there is a widely used notion of replacement which
is used in logic synthesis tools: a circuit C is a valid replacement for circuit D, if
for any input the output vector produced by D is identical to that produced by C.
This is an acceptable criterion because it implies that for any environment F, the
composition of E with C' behaves identically to the composition of F with D.

3.1 Notion of safe replaceability

DEFINITION 5. Design Dy is a safe replacement for design Dy (written as
Dy <X Dy) if given any state s; € Qp, and any finite input sequence w € I*, there
exists some state so € Qp, such that the output behavior Ap, (s1,m) = Ap, (S0, 7).

We show in [33] that the condition for safe replacement is complete and sound,
i.e., provides maximum flexibility while guaranteeing that the replacement cannot
be detected by the environment. Intuitively, this is for the following reason: First,
if we make the above condition any weaker, then there exists an input sequence
and a state s in the new design D so that if D; powers up in s and 7 is applied to
Dy, the resulting output sequence could not have been seen from any state in Dy.
Hence some environment could detect the replacement. Conversely, if Dy < Dy,
then for every input sequence any power-up state of D, behaves like some power-up
state of Dy, implying that any behavior from any state of D; is acceptable.

3.2 Properties

Now, we present some interesting properties of the safe replacement condition.
Nlustrations and proofs of these properties may be found in [33].

The following proposition guarantees that safe replacements are preserved under
arbitrary composition.

ProrosiTiON 3.1. If D < C, then for any composed design R, we have RQ D =<
R®C.

Even though there is some flexibility for the implementation of the replacement
design, it cannot have arbitrarily few states: each tSCC (cf. Definition 4) in the
replacement design must be equivalent (in the sense of Definition 2) to some tSCC
in the original design.

THEOREM 3.2. If D1 = Dy, and My is a tSCC in design D1, then there must
be a tSCC My in design Dq such that Mo = Mj.

Sequential optimization in the absence of global reset : 8

Fig. 4. Example of a safe replacement (D1 =< Do)

3.3 Notion of delay safe replacement

It is often the case that in practice after a design is powered up, some clock cycles
will be allowed to run through the design before the design is used by its environ-
ment. We can use this flexibility to justify a notion of replacement which is weaker
than “safe replacement” because the environment of the design agrees to let the
replacement design stabilize for a few extra clock cycles after power-up. In this
section, we investigate this notion of “delay replacement.”

It is already the case that several effective optimization techniques, such as re-
timing, do not always result in safe replacements, but cause delay replacements. To
understand why, consider the state transition graph again. In every design, there
is a subset of states into which the design must eventually fall no matter what se-
quence of inputs is given to the design. For example, suppose there is a state s; to
which no state (including itself) transitions under any input. This state represents
an ephemeral state of the machine which cannot be visited beyond one clock cycle.
Any such 1-cycle ephemeral state is irrelevant to the steady state operation of the
design and so, by letting the design just “coast” for one cycle, it can be eliminated.
To get to the “core” behavior of a design, delete all such 1-cycle ephemeral states.
However, notice that a new ephemeral state may appear, that is a state, say so, to
which only a 1-cycle ephemeral states can transition.

DEFINITION 6. Given a design D, the n-cycle delayed design (denoted by
D™) is the restriction of D to the set of states {s|3m € I",s' € D : dp(s’,7) = s},
i.e., a state s belongs to D™ iff there exist a power-up state s’ in D and an input
sequence of length n which drives s’ to s.

DEFINITION 7. Given a design D, denote by D™ to be the set of states {s|Vn :
dreI™ s € D:dép(s,n) = s}, i.e., a state s belongs to D> iff for each natural

Sequential optimization in the absence of global reset : 9

Fig. 5. Example design R

number n there exist a power-up state s’ in D and an input sequence of length n
which drives s’ to s.

The set D" is the set of states into which any state must fall when clocked n
times with any sequence of inputs. It is easy to see that if m > n, the set of
states in D™ is a subset of the states in D™. The design D*° can be obtained by a
fixed-point operation starting from D, because D*° = D™, where n is the smallest
number such that D"~1 = Dn.

We refer to states in D> as the stable states of D, and the states in D\ D>
as the transient states of D. After powering up a design, if a sufficiently long
sequence of arbitrary inputs is applied to the design, it will enter the stable set.

For example, consider the design shown in Figure 4. For this design R, the
various n-delayed designs are: R = {111,100, 001,110,010,000, 101,011}, R' =
{111, 110,010,000, 101,011}, R? = {010,000,101,011}, R® = R* = ... = R® =
{000, 101,011}.

We now present our condition for delay replacement.

DEFINITION 8. Given a design D, a new design C is an n-delay replacement
for D, if C™" X D.

As an example of delay replacement, consider designs Dy and R in Figures 4 and
5. It can be seen that R' < Dg: however, R 2 Dq (the state 100 € R produces
the output sequence 0 -0 -0 on input sequence 0 - 1 - 0; this input-output behavior
cannot be seen from any state in D).

The notion of n-delay replaceability is analogous to the ordering on the natural
numbers. For example, a 2-delay replacement followed by a 3-delay replacement on
the same design results in a n-delay replacement for any n > 5. More generally, we
prove the following series of results in [33].

ProrosiTiON 3.3. If C™ X D, and m > n, then C™ <X D. If C™ < D and
B™ < C, then B™t" < D.

Properties of delay replacements

For the optimization of any design, we can select arbitrary sub-pieces of the design
and perform delay replacements on these. We now state results on the effect of
making a delay replacement on the larger design.

Sequential optimization in the absence of global reset : 10

PROPOSITION 3.4. If Q™ = R and C™ =< D, then (Q ® C)? = (R® D), where
p=max(m,n). If Q™ < R and C™ <X D, then (QRC® P)? = (R® D® P), where
p = max(m,n).

This means that delay replacements can be made in different parts of the design,
and the resulting overall design is as safe as the weakest individual replacement
(the replacement with the greatest slack).

However, if consecutive delay replacements are made on overlapping sub-pieces
on a large design, the delays add up. This can be seen as a consequence of Propo-
sitions 3.3 and 3.4.

PropPOSITION 3.5. Let design D = P ® Q). Let R™ =< P, and let design C' =
R ® Q also be equal to S @ T (another decomposition of the same design C), and
let U™ < S. Then, if B=U®T, it is true that B™™" < D.

Note that, as a special case of this, if the two sub-pieces are identical, we already
know from Proposition 3.3 that the entire design in 2n-delay safe. In summary,
making n-delay replacements on non-overlapping sub-pieces of a design will produce
an entire design which is n-delay safe; on the other hand, if two consecutive n-delay
optimizations are made on sub-pieces which are overlapping, we get an entire design
which is 2n-delay safe.

3.4 Implications for synthesis

The notion of delay safe replaceability relies on the assumption that any realis-
tic design will be used only after some cycles have elapsed after power-up. This
initialization slack is known in advance — it is part of the design specification. Se-
quential optimization can use this initialization slack, say n cycles, in the following
two ways. First, the design can be partitioned into non-overlapping, tractably sized
components. Then each component can be optimized using the n initialization slack
cycles. Proposition 3.4 formalizes the fact that this strategy will produce an entire
design that is n-cycle delay-safe replacement. Second, designs can be optimized
using components that do overlap. Proposition 3.5 will show that in the worst
case, the delay needed accumulates for overlapping pieces. So the designer must
take care not to exceed the total allotment of n cycles. Of course hybrids of the
two approaches can be used. It is important to note that for any of the approaches,
only the transient behavior of the design is modified.

In Sections 4 and 5 we present our synthesis strategy for making delay replace-
ment, and show that significant sequential logic optimizations can be obtained.

4. COMBINATIONAL RESYNTHESIS FOR DELAY SAFE REPLACEMENT

In this section we will use the flexibility due to the delay replacements to perform
optimization on the combinational part of the circuit. In the next section we will
show how to perform latch minimization using this flexibility.

Let the original design D have (k + 1) distinct delayed designs, D°, D!, ... D¥;
for any j > k : DI = D*¥ = D>, Clearly, any state reachable from itself under some
input sequence belongs to each D? and to D>. We will not alter the behavior of
any such state (a “stable” state). All the flexibility for resynthesis comes from the
set of “transient” states, i.e., D\ D>.

Sequential optimization in the absence of global reset . 11

Recall that an n-delay replacement criterion allows the new design to have some
flexibility over the first n clock cycles after the power-up; after these clock cycles
its input-output behavior is indistinguishable from the original design. We use this
slack n for resynthesis — the higher n is, the greater the flexibility allowed for resyn-
thesis. (Of course, the environment of the design cannot rely on the input/output
behavior of the design for the first n cycles.)

For an n-delay replacement, we will express the flexibility to obtain a new design
C such that C™ is exactly the same as D". Note that this is a conservative strategy
since only C™ < D is needed.

The primary inputs and primary outputs to the design will be denoted by i and
0, respectively, and the next-state and present-state variables will be denoted by
y and & respectively. To perform resynthesis for delay replaceability, we obtain a
Boolean relation V(Z, Z, 0, %) which describes the flexibility for replacement. We will
then use this relation to do multi-level resynthesis on our design.

First, we informally describe the flexibility which will be specified later using a
Boolean relation V. We note that techniques for using a Boolean relation to do
multi-level synthesis [23] require the relation to be such that the starting design
satisfies the relation. We will construct V so that the behavior of the states in D™
is preserved. For 0 < i < n, on any input, the relation allows a state in (D=1 \ D?)
to transition to any state in D?. Clearly, the original design satisfies this flexibility
relation. It is also the case that for any design C that satisfies the relation we have
C" = D", i.e., after the first n clock cycles every state that C could possibly be
in is equivalent to a state in D™. Also note that since we do not care about the
outputs during the first n clock cycles, the outputs of the states in D\ D™ can be
chosen arbitrarily.

Formally, the Boolean relation V(f, Z,0,7) which characterizes this flexibility is:

|
—

n

) =) [(@e DI \DFHA(Fe D]+

-

V(i, 7,0,

<y

o

J
(7 € D") A (7= 6p(#,1)) A (5= Ap(#,)] (1)

The intuition for the above relation V is that, given n, we choose to preserve
the behavior of all states in the set D", i.e., states in this set are forced to have
the same output and next-state functions as in the original design D. For states
outside of D™, if the state lies in D7\ D’T!, we allow the next state of such a state
to be any state in D7t!; we do not care about the output from this state. This
ensures that n cycles after power-up, the new design is in a state in D™, and thus
is an n-delay replacement for the original design.

Note that for any integer m > k, the delayed design D™ is the same as D,
i.e., the set of stable states. Thus, the flexibility described by the relation V' for
m-~delay replacement is the same as that for k-delay replacement. If we compute
the number k for a design in advance, we know that we will not get any additional
flexibility by allowing a slack greater than k.

4.1 Combinational resynthesis algorithms

The area of the hardware implementation of a design is strongly correlated to the
total number of literals in the factored form [4] representation of the functions at

Sequential optimization in the absence of global reset . 12

the internal nodes of the corresponding logic network. Thus minimizing the logic
network with respect to the total literal count constitutes a powerful synthesis
technique.

At any intermediate node of a logic network there is a local function f; : B" — B,
where 7 is the number of fanins of the node. Node simplification is the process
of optimizing a Boolean network by using don’t cares in conjunction with a two
level minimizer [3] to optimize the functions at the nodes. These don’t cares arise
in several ways:

(1) Because of the structure of the network, only a certain subset of B" may be
generated by assignments to the inputs. This gives rise to satisfiability don’t
care (SDC) points for f; [4].

(2) For certain input assignments, the values taken by the primary outputs of A/
may be independent of the function computed by a node; these are observ-
ability don’t care points (ODC) for that node [24].

(3) For certain input assignments the functionality of the node can be changed
without destroying safe replaceability; this flexibility, as we have described in
the preceding sections, leads to the replaceability don’t cares points (RDC).

Let R(Z, Z,0,7) be a Boolean relation expressing all the flexibility in the choice
of combinational logic for a sequential circuit. Cerny and Marin [5] demonstrate
a close relationship between optimizing a Boolean network with respect to a given
Boolean relation, and computing observability don’t care sets. The starting network
N must satisfy the relation R. The relation can be viewed as a single node with
inputs 7, &, 3, 7 this node is referred to as the observability node. Cerny et al. [5]
and Savoj et al. [23] show that composing this node with the network yields an
observability network N’. They prove that all the don’t cares that can be used
to optimize the nodes in A/ using the relation R are equal to the ODC of the same
node in the network N”.

In our context, the Boolean relation V(f7 Z,0,7), defined by Equation 1, plays the
role of R(Z, Z,0,Y) in the previous paragraph. We use BDDs to represent the next-
state functions, and relations on the state space. There is a variable associated with
each primary input and each primary output; for each latch there is a present state
variable and a next state variable. Let u be a node in the design for which the ODC
is to computed. We add a new BDD variable «,, corresponding to the output of u,
and generate BDDs for the next state and output functions in terms of the primary
inputs, latch outputs, and «,. These are composed with the flexibility relation
to obtain the BDD for the function computed by the observability network. Let
f (;, Z, ay,) be the output of the observability network; then it can be shown that the
ODC for node u is given by fu., (i, , o) fo, (b Ty)+ fa, (0 Ty) fo, (0, T,) [24].
This is in terms of primary inputs; we then use the techniques of [24] project this set
into the space comprised of the fan-ins of the node. These are used in conjunction
with a subset of the satisfiability don’t care set to optimize the function at u.

In our experiments, we found that the BDD for V grew large. So, instead we
build a relation which is easier to build, but correctly expresses the flexibility for

Sequential optimization in the absence of global reset : 13

the states outside D™:
n—1
U = [(Fe DI\ D) A(fe D) +((# € D)
=0

Note that the relation U(Z,y) specifies the flexibility of the states inside D™ in-
correctly (actually, it says that the states inside D™ can choose their next-state
and outputs totally arbitrarily). We will resolve this by restricting the don’t cares
to states outside D™ when we compute the don’t cares for internal nodes in the
network.

The final procedure for optimization is given in Figure 6. The image projection
step in the algorithm in the figure can be done using a variety of algorithms; we
use the algorithm presented in [34].

Experiments

We implemented the procedure in Figure 6 in the SIS synthesis system [25], and
performed experiments on the ISCAS89 benchmarks. We used BDDs to manipulate
relations and sets. We focus on the area reduction for n-delay replacements, and
report results for various values of n.

In order to compare the optimizations due to safe replaceability with the known
techniques for combinational synthesis, we report the optimizations (in reduction
in number of literals) due to satisfiability don’t cares (SDC), observability don’t
cares (ODC), and delay safe replaceability don’t cares separately. (We could have
reported the amount of savings only due to the replaceability don’t cares, but this
would not have been fair since SDC and ODC are existing techniques and they take
less CPU time also.)

The experimental results are shown in Table I. The starting circuits are ISCAS89
benchmark circuits which have been optimized with the SIS commands (sweep;
eliminate -1) [25]. These eliminate single-input and constant nodes and collapse
nodes which do not fan out to more than one node.

We show the optimizations obtained by the SDC and the ODC. Then, we show
the results of the method presented in this section for n-delay replacements for
n = 1,2,5,00. For the n = oo column, the value of n was less than 668 for
all the examples. The table shows that for many examples, significant additional
optimizations are obtained by allowing power-up delay. Even for n = 1, we see
good results for some examples, e.g., s386, 51488, s1494. Also, in most cases
the CPU times for n-delay replacements are within an order of magnitude of the
CPU time for combinational resynthesis.

We performed an experiment on one of the benchmark circuits (s526) to explore
the tradeoffs between flexibility and the power-up delay allowed. The results are in
Table II. By allowing more delay n we do get additional flexibility. Also, the CPU
times increase with higher values of n, partly because the time taken to compute
the Boolean relation U goes up with higher n.

In the experiments corresponding to Table I, the initial nodes of the circuits were
relatively small. Since we are minimizing the network one node at a time, very small
nodes are unlikely to yield much optimizations. We hypothesized that we might
get better use of the delay safe replaceability don’t cares by using larger node sizes

Sequential optimization in the absence of global reset . 14

—

procedure delay-replacement (input: network in terms of (;, Z, d,Y), parameter n) {
for (each node p in the network)
Compute a BDD S, (i, Z) representing node p in terms of (7, Z)
C(@) «—1
U,) — 0
loop n times {
C(y) — 323 [¢(@) - [T, (v = Sy, @.2))]
C(Z) « C(¥) (g—a)
U, y) — U, 4) + C(@) - C(Y)

}
U, y) — U, 4) + C(Z)
for (each node p in the network) {
Add BDD variable p to the BDD variable list
for (each node r in the network) {
if (r is not in the transitive fanout of p)
Sp (0, %,p) « Sr(0,)
else
recompute S (7, Z, p) representing node r in terms of (i, &, p)
}
F@,&p) =36,7: U@ - [T;_, i =Sy, @.8) - T, (o = S0, (0.7,p))]
G(i, %) = F(i, %, p)p=0 - F (i, &, P)p=1 + F (5, 7, 0)p=0 - F (i, 7 p)p=1
D(i, &) = (i, %) - C(&)
Image project D(;, Z) to the space of local inputs of p

Use the flexibility to simplify the local functionality of p
Remove BDD variable p from the BDD variable list
if (functionality of node p changed)

for (each fanout node r of node p)

recompute Sr(f, Z) representing node r in terms of (;, z) .

Fig. 6. Procedure to optimize a multi-level network for n-delay replacement. Here ¢ is the number
of latches, and s is the number of outputs.

Sequential optimization in the absence of global reset 15
Ckt. | Initial || Combinational n-delay replacements
size re-synthesis n=1 n=2 n=>5 n = 00
SDC | OoDC final | time final | time final | time || final | time

s27 12 12 0.05 12 0.04

s298 150 130 12 130 0.95 123 1.01 113 1.00 107 1.56
s344 156 152 130 153 1.90 147 3.21 147 5.83 144 10.31
s349 160 155 152 154 1.97 148 3.38 148 5.95 145 10.63
s382 176 164 154 162 5.87 162 19.85 162 | 28.41 156 80.62
s386 204 197 187 127 1.19

s400 184 166 162 160 6.13 160 21.17 160 | 29.75 154 83.53
s444 184 167 163 161 6.42 161 23.05 161 | 36.21 156 | 101.80
sb10 280 279 279 279 2.94 279 2.95 279 2.96

$526 283 242 240 240 3.68 238 5.78 237 5.98 188 35.89
s641 199 timeout 194 10.64

s713 204 timeout 195 10.99

$820 504 379 361 359 6.16

s832 521 389 364 353 7.43

s953 489 485 484 484 24.03
s1196 618 608 600 600 95.95 600 | 103.82
51238 690 668 625 625 | 115.57 625 | 120.16
s1488 813 759 755 697 12.33
s1494 819 760 742 697 12.35

Table I. Experimental results for delay replacements. The initial size of the circuits and the final

size are in the number of literals. Since we know that for any integers m > k, we would get the
same results for both m-delay replacement and k-delay replacement, the redundant experiments
(denoted by blanks in the above table) were not performed.

Table II.

n
reduction
CPU time

1
43
3.68

100
54
11.52

200
58
14.55

300
70
17.33

400
69
20.38

500 600 667
69 72 95
22.51 2437 36.27

Power-up delay/flexibility tradeoff for s526. The initial size is 283 literals, reduction is
in number of literals

Sequential optimization in the absence of global reset : 16

Ckt. Initial n-delay replacements
size n=1 n=2 n=>5 n = oo

final | time final | time final | time [[final | time
s27 12 12 0.03
$298 156 137 0.93 127 0.96 116 0.96 109 1.54
s344 168 155 1.83 150 3.10 150 5.61 148 9.92
s349 173 156 1.97 151 3.14 151 5.83 149 | 10.02
s382 204 164 5.59 164 17.55 164 | 26.53 160 | 80.32
s386 205 99 0.97
s400 229 166 5.96 166 19.04 166 | 27.19 157 | 83.48
s444 236 169 5.99 169 19.99 169 | 31.96 166 | 91.49
s510 307 253 1.52 254 1.50 251 1.54
$526 323 233 4.73 233 5.56 232 6.20 208 | 27.13
s641 234 207 14.11
s713 285 202 14.97
s820 468 331 3.84
s832 470 334 3.94
s953 700 590 21.50
s1196 788 626 | 109.14 626 | 112.92
s1238 882 636 | 170.87 636 | 178.53
s1488 886 541 19.20
s1494 896 524 20.08

Table ITI. Experimental results with collapsed nodes in the starting netlist.

in the circuits. We executed the SIS command sweep followed by eliminate 10 to
partially collapse the network. We ran our algorithm for delay replacement on the
resulting networks. Results are reported in Table ITI. Overall, we see our hypothesis
validated.

5. LATCH REMOVAL UNDER DELAY SAFE REPLACEMENT

In Section 4 we described methods which optimize the output and next-state logic
of sequential circuits under the safe replaceability and delay replaceability criteria.
We now present an approach which removes latches while ensuring that the new
circuit is a delay replacement of the original circuit.

The method for optimization presented in this section is inspired by sequential
optimization techniques for circuits with a designated initial state [2; 12; 1]. Since
the circuit is always assumed to start in this designated initial state (we refer
to this as the DIS assumption), we can arbitrarily change the behavior of the
set of states which cannot be reached from this initial state without affecting the
functionality of the circuit. In particular, it may be possible to express the value of
a latch as a combinational function of other latch values. Since latches are relatively
large and have the overhead of a clock signal, in such situations, heuristically, it is
advantageous to replace the latch and its next-state logic by combinational logic.

Of course, as discussed in Section 2, we do not make the DIS assumption in
this paper. Nevertheless, we shall see how the synthesis technique with the DIS
assumption will inspire our solution. So we will briefly review this technique in
Section 5.1.

Sequential optimization in the absence of global reset . 17

The replacement criteria (Definitions 5 and 8) do not require the original design
and the replaced design to have identical number of states. In fact, if we select
tSCC of the original design, and re-implement it with a minimum length encoding,
we can minimize the number of latches while preserving safe replaceability.

We decided not to use such an approach for the following reason. There is an anal-
ogous strategy for removing latches for circuits under the DIS assumption. There
we compute the set of reachable states from the initial state, then re-encode just this
set of states with the minimum number of latches and produce a replacement design
(discarding the structure of the original netlist in this process). Unfortunately, this
strategy has been empirically observed [35] to produce much larger circuits than the
original circuit reinforcing the belief that the starting multi-level netlists are a very
good starting point, and if our synthesis procedure throws them away it becomes
very hard to reconstruct as good a netlist just from the input-output functionality
of a design. Thus, for our synthesis methods we decided to start with the original
multi-level netlist and make iterative modifications on it rather than extracting the
functionality of the netlist and throwing away the original multi-level structure.
This leads us back to the strategy of replacing a subset of the original latches with
some combinational logic.

5.1 Removing redundant latches under the DIS assumption

We briefly review the techniques in [2; 12; 1] for reducing the latches for circuits
assuming DIS.

Given the initial state s, we extract the set of states reachable from s (using for
example, the method [14]). Let C(Z) be the characteristic function of the set of
reachable states, where & = {1, 22,...,z;} represent the ¢ latches in the design.
Since the states outside of C(Z) are not reachable we do not care about their behav-
ior. This allows some latches to be replaced with combinational logic. For example,
suppose among all the states in C(Z), the value of the state bit z; is a function of
(x1,...,%j-1,%j41,...,2¢), Then we can replace latch x; by that combinational
function. This replacement is guaranteed not to affect the behavior of the states
in C(Z). Replacing a latch by combinational logic removes a latch as well as some
combinational logic which was only used to drive this latch (see Figure 7).

The following two conditions must be satisfied to allow latches {@s41,..., 2}
to be replaced by Boolean functions fy11,..., f¢, defined over the latch variables
{x17"'axt’}

(1) Latch redundancy condition:

Vie{t'+1,...,t} : Vo, 3w 13540 - Tz 2 [C(T) = 0] (2)
This ensures that for any ¢ € {¢/ +1,...,t}, for every state in C(Z), the value
of latch x; is uniquely determined by the value of latches {x1,...,z¢ }:

(2) Function-set selection condition:

if (a1,...,a¢) €C(Z) then Vi e {t' +1,...,t}: fi(ar,...,apv) =a; (3)

This ensures that the function-set F' is chosen so that for each state in C(Z),
the values of the replaced latches are correctly represented:

Sequential optimization in the absence of global reset : 18

iRy

COMBINATIONAL LOGIC

111

i

llatch removal

ENENEnEEE

COMBINATIONAL LOGIC

 — N — —

J
|

Fig. 7. Replacing a latch with function f.

As an example, consider a design D whose STG is identical to that of Dg as
the one shown in Figure 4 (on page 8). Design D is implemented by three latches
{z1, z2, 3} whose encodings are shown in the figure; D also has a designated state
000 (we emphasize that D is a different design than Dy because it has an extra
input line, the reset line, which, when asserted, sends the design to state 000). The
set of reachable states from 000 is C(Z) = {000,011, 101}. Using conditions 2 and 3
above, we can replace latch x3 with the function f3 = x1 + 2, and we get design C'
whose STG is identical to that of design A shown in Figure 8; the new designated
initial state of design C' is 00. States 00, 01 and 10 are respectively equivalent to
states 000, 011 and 101 in D. State 11 is not equivalent to any state in Dy but its
behavior is immaterial because the new design always starts in state 00, and can
never reach state 11.

5.2 Removing redundant latches without the DIS assumption

We now look at the naive extension of the algorithm in the previous section, and
see why it does not work if the design can power up in any state.

We will find it convenient to refer to a set of states that is closed under application
of all inputs as a core of the design.

Without the DIS assumption, the set of states in any core represents the desirable
steady-state behavior of a design. So a naive strategy for removing redundant
latches will be to make any core set of states of a design play the role of C(¥) in

Sequential optimization in the absence of global reset : 19

II 0/0
o Q L
OO
\ o1

[

Cun

Fig. 8. Design A. The value of f3 = x1 + x2 is shown in the dotted box.

the previous section and then use exactly the same strategy, with Conditions 2 and
3, for redundant latch identification and removal. Thus, we may obtain design A
(shown in Figure 8) as a safe replacement (a 0-delay replacement) for design Dy
in Figure 4. However, A is not an n-delay replacement of Dy for any n. This is
because A™ = A and A £ Dy. Also observe that Dy can be reset from any state
to state 000 under input sequence 0 -0, but the same input sequence does not reset
A even if we wait for arbitrary number of clock cycles after power-up (because A
can remain in state 11 arbitrary many cycles). Thus the behavior of the states
outside the core must be controlled to make sure that the new design is an n-delay
replacement.

Let C(Z) be a core that we are going to use for delay replacement on the original
design D. There are two factors which determine the behavior of the new design
A. First, the selection of latches to be replaced, & = (z¢41,...,x¢) partitions
the 2! states in design D into 2! equivalence classes, each with 20" states. Two
states @ = (a1, ...,a;) and b = (by,...,b;) lie in the same equivalence class if and
only if for all ¢ € {1,...,t'}: a; = b;. We denote the equivalence class of @ by
Q(d). Each state of A represents an equivalence class in the original design, i.e.,
a = (ay,...,ay) represents (a@). Second, the selection of the function-set F =
(fer+1,- .-, ft) determines the representative state (of D) in each equivalence class,
and the representative state determines the behavior of this class in the new design.
Thus, if fy11(a) = c1, fr42(@) = co, ft(a) = ct—y, then (aq,...,ap,¢1,...ce—y) 18
the representative state of the class @ (or ©(@)). Let ¢(a) denote the representative

—

state of the class a. Now, for input i, the next state of a in A is da(a,i) =
Q(0p(4(a),)) and the output is Aa(a,i) = Ap(4(a),).

Note that the set of replaced latches (x4 41,...,x¢) must satisfy the latch re-
dundancy condition in Equation 2, where C(Z) is the core. Also the selection of
the function-set F' must satisfy the function-set selection condition in Equation 3.
Based on the derivation of the behavior of the new design, discussed above, it can
be seen that if we replace latch x5 in design Dg of Figure 4 with the function-set
F = (f1) such that f; = x1 + 2 we get the new design shown in Figure 8 (for ex-
ample, state 11 goes to state 11 on input 0 because §4(11,0) = Q(dp,(¢(11),0)) =
0(0p,(111,0)) = Q(110) = 11). For this example, the representative elements
can be read off by using the number in the dotted box in Figure 8; for example,

$((100)) = ¢(Q(101)) = $(10) = 101.

Sequential optimization in the absence of global reset : 20

However, as previously discussed, the function replacement F' = (x1 + x2) is
not an n-delay replacement for Dy. Thus we also need to regulate the behavior of
equivalence classes which do not contain any state in the core of the original design.
Note that each state in the core is the representative element of its class, and the
behavior of this class in the new design is equivalent to that of the core state in the
original design.

As in Section 4 we will satisfy the requirement for n-delay replacement by en-
suring, if we wait for n clock cycles with arbitrary input vectors, we reach a state
inside the core. The procedure we describe next will guarantee this and thus we
will obtain an n-delayed replacement.

Choices for the function-set F'

DEFINITION 9. Given a set of states S in {0,1}' (i.e., a set of states of the
original design), a function-set F = (fy41,..., fi) is compatible with S if for any
vector a = (a1,...,ay), (ai,...,ap, fys1(a),..., fi(a)) € S.

First assume that we have chosen the core set of states and a set of latches
(¢r41,-..,2n) to be replaced (so that the condition in Equation 2 is satisfied).
Thus we already have a partition of equivalence classes for states in {0,1}*. Now
we will select a set of states S in {0,1}¢, and derive a function-set F' compatible
with S. We use the procedure in Figure 9 to obtain S (which is denoted by its
characteristic function S(Z)). States in set S are candidates for representative
elements of their respective equivalence classes. Each equivalence class has at least
one state in S; each equivalence class whose state is in the core has exactly one
state in S.

THEOREM 5.1. If the procedure “compatible-set” returns a set S(¥), then there
exists at least one function-set F = (fuq1,..., ft) : {0,1} — {0,1}~%" compatible
with 8. Furthermore, if we replace latches (441, ...,x¢) by F, then the new design
is an n-delay replacement of the original design.

ProOOF. First notice that the set P(Z) is the set of all equivalence classes which
have at least one member in S(Z). Since the procedure returns a set S(Z) only when
P(Z) = 1 we know that there exists at least one function-set which is compatible
with S.

Now, observe that if a state from an equivalence class is added to S(Z) in iteration
j = p, then for any iteration ¢ > p, no state from this equivalence class is added
to S(&). If one or more states from some equivalence classes are added in iteration
j = p, we say that this equivalence class is covered in the p-th iteration. Suppose
we obtain a new design by choosing a function-set which is compatible with S(Z).
Now consider any state in the new design. This state a represents an equivalence
class in the old design and derives its behavior from the representative state a of
that equivalence class. Let this equivalence class be covered in the g-th iteration;
thus @ was added to S(Z) in iteration j = ¢. Thus @ € R(Z) in iteration j = ¢, and
for any input, the next state of @ lies in an equivalence class which was covered in
r-th iteration, for some r < g. Thus in the new design, for any input vector, state
a goes to some state which represents an equivalence class which was covered in an
earlier iteration. Since we have at most j = n iterations, it is clear that for any
state a in the new design, if we apply any arbitrary input vectors for n steps, we

Sequential optimization in the absence of global reset . 21

procedure compatible-set (input: C(Z), {zy41,..., 2}, T (&, i), n) {
7«0
S(&) — C(2)
P(Z) «— Fwy 13wy 4o Tz 2 [S(T)]
while ((< n) and (P(Z) #1)) {
Je—j+1
P@) — (P(&))(g—z)
R(&) — Vi3g : [T(Z,7,§) A P(@)]
if (R(Z) - P(Z) = 0) goto end;
S(#) — S(¥) + R(¥) - P()
P(Z) = Ty 1Ty g T 1 [S(D))]
}
end: if (P(Z) = 1)returnS ()
else return FAIL

Fig. 9. Procedure to optimize S(Z) (input C(Z) is the core set of states, 7 (Z, 7, J) is the transition
relation of the design and n is the delay parameter for n-delay replacement)

will reach a state b representing an equivalence class which was covered in iteration
j = 0. Since iteration j = 0 only covers the the equivalence classes for the core
states, b is equivalent to a state in the core of the old design. Thus, the new design
is an n-delay replacement of the old one. [

As an example, start with design Dy in Figure 4 and choose the set {000,011,101}
as the core and latch x3 to be replaced. The procedure compatible-set returns the
set (&) = {000,011, 101,110}. F = (f3) where f3 = x1 ® 2 is the only function-
set compatible with this. The resulting design B (shown in Figure 10) is a 1-delay
replacement of design Dy.

Selecting an optimal function-set F'. If the procedure compatible-set returns a set
S, any function-set F' compatible with S is allowed. However, our overall goal is to
optimize the area of the original circuit, so we would like to choose an F' which has
the smallest area. In fact, if we cannot find F' within a certain bound, the savings
gained by removing the redundant latches may actually be lost (refer once again to
Figure 7 for the tradeoff in area saving).

Selecting the function-set F' is equivalent to determining a multi-level network
with ¢’ inputs and (¢t — t') outputs so that the network is compatible with S(Z, %)
where & = {z1,...,zp} and & = {xpy1,...,2¢}. Note, that this is the problem of
obtaining a multi-level network compatible with a Boolean relation in terms of its
inputs and outputs. This can be solved in two steps. First, we obtain any arbitrary
multi-level network representing some F' compatible with S. Then, one approach

Sequential optimization in the absence of global reset . 22

1

Fig. 10. Design B. The value of f3 = x1 @ x2 is shown in the dotted box.

procedure greedy-function-set (input: S(Z,2), {z1,...,zp },{zy11,...,2¢}) {
for j =t totdo {
O(%) « 3y 13wy oAz [S(,2) - (T = 1)]
/* O(&) is the on set for f; */
D(&) «— Va;3wpy 13Ty 4o i1 4130540 ... 2 2 [S(T, £)]
/* D(&) is the dont-care set for f; */
f;(&) < bdd-minimize(O(Z), D(Z))
8(z,2) — 8(&,2) - (z; = f5(%))
}
F— (forg1,---5 ft)

return F'

Fig. 11. Procedure to obtain a function-set

would be to use the techniques in [23] (as we used in Section 4) to optimize this
network, while maintaining compatibility with S.

However, our experiments (presented later in this section) show that the size
of I is relatively small compared to the given circuit sizes and that the approach
described by procedure greedy-function-set in Figure 11 worked well. We order the
latches arbitrarily. For each latch to be replaced, we find the on-set and don’t care
set for the replacement function. Then we use a heuristic to find a function which is
compatible with this on-set and don’t care set. Since all the Boolean quantities are
represented as BDDs, we use a BDD minimization procedure, which heuristically
finds an implementation which has the smallest support (we use a simpler version of
the algorithm in [13]); alternately, we could have used bdd-generalized-cofactor [8]
or any of many other BDD minimization algorithms with respect to a don’t care
set [26].

Sequential optimization in the absence of global reset : 23

Fig. 12. Design Dg.

Since we are dealing with very small functions, in our application, the choice
of the heuristic does not matter. The minimized BDD is converted to a similar
looking network whose nodes are multiplexers controlled by the variable of the
corresponding BDD node. Once we find a function replacement for a latch we
restrict the compatible set S by this function.

Choosing the core. Before selecting the function-set F', we need to choose a core
to identify a set of latches that satisfy the condition in Equation 2 so that we
can remove these latches. Obviously, if a set of latches satisfies the condition in
Equation 2 for a choice of core, it also satisfies the condition for any subset of the
core. As argued earlier most real designs have a single tSCC, and for such designs
each choice of the core must be a superset of the tSCC. Thus, the tSCC is the
obvious choice since it allows us most flexibility in choosing the set of redundant
latches. However, this choice may not be the right one for the following reason.

Consider design Dg in Figure 12. Suppose we choose the tSCC {000,010, 100} as
the core and the third latch x5 as redundant. The procedure compatible-set identifies
candidates to be representatives for their equivalence classes (000, 010 and 100 are
already representatives for their respective equivalence classes 00, 01 and 10; we
need to find candidates to represent the equivalence class 11). We observe that for
all inputs, neither of the states 110 or 111 goes to equivalence class 00, 10 or 01
(the value of P(Z) at iteration j = 0). This means that (R(Z) - P(Z) = 0) and
the procedure returns FAIL. Thus, we are unable to replace latch 3. On the other
hand if we chose Dg° {000,010, 100, 111} latch 5 could be replaced by the function
f3 = @1 - x2 since the procedure compatible-set returns S(&) = {000,010, 100, 111}.
In fact, we can prove that if we choose the set D™ of a design D as the core the

procedure compatible-set never returns FAIL for any n > m, where m is such that
D> = D™,

THEOREM 5.2. If we set C(F) to be the set of states in D*, the k-cycle delayed
design, and set n to be equal to k, then the procedure “compatible-set” does not
return FAIL.

PRrROOF. We will prove the above by showing that after the while loop terminates,
P(Z) = 1. We show that by proving the following claim. In the following, we say
that state @ lies in the [-th onion ring if and only if @ € Qpr—1 \ Qpr-1+1 for
1 e{1,2,...,k}; if @ € Qpr, we say that d lies in the 0-th onion ring. It should
be obvious that for any [such that 0 < [< k, for any arbitrary input vector, any

Sequential optimization in the absence of global reset . 24

state in the [-th onion ring goes to a state which lies in the p-th onion ring for some
p <l

Claim: If state d@(aq,...,a:) belongs to the I-th onion ring, then after iteration
j =1, P(Z) contains a = (ay,...,ay).

We prove this claim by induction.

Base case. (I = 0): Since @ belongs to D*, it belongs to C(Z) and hence @ belongs
to P(Z) when it is initialized at j = 0.

Induction step. Assume that the claim is true for any state which lies in the
p-th onion-ring for some p < I. We will show prove the induction step for a state
d which belongs to the I-th onion ring. Consider iteration j = [. Either, P (&)
already contains a before this iteration, in which case we are done. Or else, P(Z)
does not contain @ before this iteration. However, we know that for any arbitrary
input vector, @ transitions to a state b which lies in the p-th onion ring for some
p < l. By our induction hypothesis, b belongs to P(Z) from the previous iteration.
Thus, @ must belong to the set R(Z) computed at 7 = I. Hence, a belongs to P(Z)
after iteration j =1. [

This theorem shows that if the core is chosen as the set D> and there is a
non-empty set of candidate redundant latches, then those latches can be removed.
On the other hand, it is relatively straightforward to construct examples in which
choosing the tSCC as the core lets us replace a latch, whereas no latch can be
removed if the set D> is chosen.

In our experiments, we first chose the tSCC as the core (we use a procedure
described in [29] to obtain the tSCC). If we are not able to replace any latches,
we then choose the set D> as the core. In fact, as we will see in the experimental
results, for all except two examples, we were able to successfully use the tSCC as
the core. For s344 and s349 (see Table IV), compatible-set returned FAIL in case
we used the tSCC as the core; however, when we used D as the core, we were
still unable to remove any latches, i.e., no set of latches satisfied the condition in
Equation 2.

Selecting the set of redundant latches. Given a set C(Z), Lin [12] presented a
heuristic for selecting a latch ordering to test if a latch is redundant to obtain
the set of redundant latches to select the set of latches & = {zy41,...,2¢} which
satisfy the latch redundancy condition (Equation 2). The heuristic, maximizes the
number of latches chosen as redundant by ordering latches by decreasing unateness.
The unateness of a variable x; is the absolute value of the difference between the
number of minterms in C(Z),,—o and C(Z),,—1. The intuition is that the more unate
a variable is, the less it contributes to distinguishing the states in C(Z). We use this
heuristic and then select the set of redundant latches by going through this order
and adding a variable to the set if the current set still satisfies Equation 2.

5.3 Experiments

Our entire algorithm for replacing latches with combinational logic is shown in
Figure 13.

We used oo as the value of n to pass to compatible-set because in all examples,
the while loop terminated in less than 1000 iterations. Thus we obtain n-delay
replacements, where n < 1000. It is usually safe to assume that more than 1000

Sequential optimization in the absence of global reset : 25

procedure latch-replacement (input: network in terms of (;, Z,0,9)) {
/* let y; denote the BDD for the j-th next state variable */
/* let og denote the BDD for the k-th output variable */
for (each node p in the network)
Compute a BDD Sp(z, Z) representing node p in terms of (?, z)
T@%,9) — ([1,_, w5 = Su; G@)) - ([T, (or = S0, (7,)))
C(Z) — tSCC(T (7, T, 7))
T — 0; B(Z) — C(Z)
foreach (latch z) do
if (Vz : [B(Z)] =0) {
z— zU{z}
B(Z) « 3z : [B(Z)]
}
T—Z\&
A(Z) — compatible-set(C(Z), 2, T (7, %, §), 0)
Let n < j, if the loop in compatible-set() terminates in the j-th iteration
F «— greedy-function-set(A(Z), Z, &)
Replace latches & by an implementation of F’
Recursively sweep away dead logic which fans out to nowhere

return (optimized network, n)

Fig. 13. Procedure to replace latches with logic

cycles are allowed before circuit operation starts (for example, for a 1 GHz design,
1000 clock cycles amounts to 0.001ms).

We implemented this algorithm in SIS and experimented with the same ISCAS89
circuits that we used in Section 4. We preprocessed the circuits with the same
commands as before: sweep; eliminate -1. We choose the subset of circuits
from our previous experiments where the number of states in the tSCC were at
most half the total number of states. The results appear in Table IV. We see from
Table IV that for most the circuits we tried, we are able to remove some latches.
Also, the size of the function-set F' is usually very small (the exception being s953).
As a result, the total final size of the combinational part of the circuit is smaller
than the original size because the addition of F' was more than offset by the removal
of the fan-in logic of the latches (Figure 7).

So far we have removed latches and replaced them by a combinational function of
other latches. It seems very conceivable that such an operation would increase the
delay of the paths between the latches. This intuition is based on the observation
that a sequential path between two latches in the original design may become a
purely combinational path due to the replacement of the latch on the path; thus,
there might be combinational paths in the new designs which are longer than all

Sequential optimization in the absence of global reset : 26

Orig. Final circuit
Ckt. size Latches | Delay | Size | Total | Time
removed n of F size
5298 150 2 7 4 130 1.26
s344 156 0 - - 156 5.20
s349 160 0 - - 160 5.33
$382 176 3 101 6 160 | 35.08
s386 204 0 - - 204 0.21
s400 184 3 101 6 166 | 33.32
s444 184 3 101 6 166 | 33.09
s526 283 2 667 4 263 | 44.63
s641 199 5 2 9 172 3.81
s713 204 5 2 9 175 4.33
s953 489 9 1 96 522 | 12.77
s1196 618 0 - - 618 | 11.80
s1238 690 0 - - 690 9.14

Table IV. Experimental results for latch replacement. For s344 and s349, compatible-set returned
FAIL when passed the tSCC.

With latch replacement No latch replacement Ratios
Ckt. Mapped | Delay CPU Mapped | Delay CPU Area | Delay

area time area time
5298 278 17.6 8.49 312 19.1 8.83 0.891 0.921
$382 428 21.6 55.62 472 21.6 | 168.30 || 0.907 | 1.000
s400 419 27.0 53.76 460 26.9 | 162.71 0.911 1.004
s444 419 27.0 57.10 458 27.0 | 178.67 || 0.915 | 1.000
$526 456 22.4 | 108.22 460 18.0 73.24 || 0.991 1.245
s641 378 28.1 30.29 460 36.5 34.91 0.822 | 0.770
s713 377 27.9 31.10 460 36.5 42.04 || 0.820 | 0.764
s953 940 22.8 70.68 1012 20.8 75.85 || 0.929 | 1.096

Table V. Latch replacement results after technology mapping.

combinational paths in the original design. To test this hypothesis that our latch re-
placement algorithm achieves area optimization only at the expense of performance,
we performed the following experiment. We ran the SIS script script.rugged® to
do technology independent optimization, followed by a technology mapping step
using the MCNCO91 library. The results appear in Table V.

We see that, for this subset of circuits, we get an average of 10.4% (and a maxi-
mum of 18.0%) improvement in mapped area and even an average of 3.7% (and a
maximum of 23.6%) improvement in the length of the topologically longest path,
which goes against the intuition that latch replacement will increase the delay of
the circuit. Note that for s953 the reduction in latch count more than makes up
for the fact that the replacement combinational logic was larger than that of the
original circuit (cf. Table IV).

The only circuit where latch replacement significantly increases delay is s526.
Note that the CPU time with latch replacement includes the time taken to remove
redundant latches. It is worth noting that the total CPU time with latch removal

Hn the last step of script.rugged, we used the sequential optimization procedure described in
Section 4 instead of full_simplify because we wanted to exploit the sequential flexibility in
addition to the combinational flexibility.

Sequential optimization in the absence of global reset . 27

With delay replacement Pure combinational optimization Ratios
Ckt. Mapped | Delay | CPU Mapped | Delay CPU Area | Delay
area time area time

s27 48 10.9 1.3 48 10.9 1.1 1.000 1.000
$298 278 17.6 8.5 344 8.2 18.8 || 0.808 | 0.936
s344 355 28.8 31.2 373 33.4 9.2 0.952 0.862
$349 357 28.8 31.6 377 33.4 9.4 || 0.947 | 0.862
s382 428 21.6 55.9 472 20.8 10.9 || 0.907 | 1.038
$386 262 27.2 9.5 283 27.5 8.1 0.926 | 0.989
s400 419 27.0 53.8 461 26.9 10.4 || 0.909 | 1.004
s444 419 27.0 57.1 462 28.5 10.5 || 0.907 | 0.947
s510 513 28.5 42.1 493 30.7 23.2 1.041 | 0.928
$526 456 22.4 | 108.2 514 18.6 15.0 0.887 1.204
s641 378 28.1 30.3 460 36.5 12.9 || 0.822 | 0.770
s713 377 27.9 31.1 460 36.5 13.3 || 0.820 | 0.764
s820 581 19.9 79.7 573 20.8 38.5 1.014 | 0.957
s832 535 21.7 80.0 544 21.4 32.7 || 0.983 | 1.014
s953 940 22.8 70.7 1030 22.0 43.7 || 0.913 | 1.036
s1196 1152 29.3 | 403.7 1172 29.4 195.0 || 0.982 | 0.997
51238 1131 29.4 | 342.6 1140 32.6 102.3 0.992 0.902
$1488 1173 18.9 | 299.1 1208 19.0 94.2 || 0.971 | 0.995
s1494 1139 20.1 | 209.4 1216 19.5 112.8 || 0.937 | 1.031

Table VI. Comparing sequential optimization under delay replaceability with purely combina-
tional optimization — results after technology mapping.

is actually lower than the total CPU time without this option! This is probably
because logic optimization becomes simpler once we have fewer latches (and thus
fewer state variables). In particular, reachability computations become much faster.

Overall, for this set of circuits, we have demonstrated that replacing redundant
latches reduces the number of latches, the size of mapped circuits and even the
delay for these circuits.

5.4 Final results

Here, we analyze the combined effect of the algorithms in the previous two sections.
We wish to compare technology mapped circuits after using our optimizations versus
mapped circuits obtained using existing combinational optimization techniques.
For the experiment we first remove redundant latches by using the algorithm in
Section 5. Then we run the SIS script script.rugged on this circuit followed by
sequential optimization described in Section 4. At this point we map the circuit
to the MCNC91 library of gates and latches. We compared this mapped circuit
against the circuit we would get by just running script.rugged followed by the
technology mapping. The results appear in Table VI.

These experiments show that we get an average of 7.0% (and a maximum of
19.2%) area optimization over all circuits. More surprisingly, we also see an an
average improvement of 4.5% (and a maximum of 23.6%) in the delay of the the
circuits (as reported by the print_delay command in SIS), even though this was
not our targeted objective. The CPU times are reasonable compared to those for
the existing combinational optimization routines in SIS, and we can expect that
the times can be reduced further with a careful tuning of the code.

Sequential optimization in the absence of global reset : 28

6. CONCLUSIONS

We discussed design replacement for an arbitrary design in the absence of any
knowledge of its environment, and reviewed our notion of safe and delay safe re-
placeability. We showed how to perform optimization on the next-state and output
logic, as well as on the latches, while guaranteeing delay safe replaceability. Our
experimental results (Table VI, page 27) indicate that we can exploit the flexibility
afforded to us by the replaceability criteria to achieve significant optimization.

It should be stressed that our entire approach is based on the notions of safe
and delay-safe replacement. Our reasons for doing so were spelled out in Section 1.
However, it may be possible to perform more optimizations if additional information
about the environment was known, e.g., an initializing sequence.

Our optimization algorithms operate on the state transition graphs (even though
they do so implicitly, using BDDs). This limits the size of circuits we can han-
dle; in our experiments, we limited ourselves to designs with less than 30 latches.
Certainly, we would not recommend even an optimized implementation of our al-
gorithm on designs with more than several hundred latches. However, the power of
our approach is in the condition of safe replacement. Since we make replacement
without assuming anything about the environment, we envision a more produc-
tive use of our optimization algorithm in scenarios where reasonably sizes designs
are cut out of larger designs and safe replacements are made on this. This would
work with manual as well as automatic partitioning. Our algorithms combined
with powerful automatic partitioning methods and applied to a set of larger de-
signs is a problem worth investigating. It would also be very useful to come up
with other optimization algorithms for safe replacement, especially those which are
more “structural” in nature and do not need state transition graph. Starting points
include ATPG [11; 15] and SAT [28].

One more area which needs investigation is state encoding and implementation of
designs which are specified at the behavioral level (i.e., as STGs). The traditional
method of obtaining such an implementation relies on the fact that the design has
a designated initial state and thus the behavior of encoded states which are un-
reachable from the designated initial state is not important. However, without the
designated initial state assumption, all 2¢ encodings of an implementation (which
has t latches) must satisfy the safe replacement condition with respect to the given
behavioral-level specification. This will add additional constraints to the tradi-
tional problem of state encoding and implementation (see [22] for the traditional
formulation).

References

(1] G. Berry and H. J. Touati. Optimized Controller Synthesis Using Esterel. In Workshop Notes
of Intl. Workshop on Logic Synthesis, Tahoe City, CA, May 1993.

[2] C. Berthet, O. Coudert, and J. C. Madre. New Ideas on Symbolic Manipulation of Finite
State Machines. In Proc. Intl. Conf. on Computer Design, pages 224—227, Cambridge,
MA, October 1990.

[3] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli. Logic
Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984.

[4] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel Logic Synthesis.
Proceedings of the IEEE, 78(2):264-300, February 1990.

[5]
[6]

7]

(8]

[9)

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]
(19]

20]

(21]

(22]

23]

[24]

(25]

Sequential optimization in the absence of global reset : 29

E. Cerny and M. A. Marin. An Approach to Unified Methodology of Combinational Switching
Circuits. IEEE Transactions on Computers, 27(8), 1977.

K.-T. Cheng. Redundancy Removal for Sequential Circuits Without Reset States. IEEE
Transactions on Computer-Aided Design of Integrated Clircuits, 12(1):13-24, January
1993.

H. Cho, G. D. Hachtel, S.-W. Jeong, B. Plessier, E. Schwarz, and F. Somenzi. ATPG Aspects
of FSM Verification. In Proc. Intl. Conf. on Computer-Aided Design, pages 134-137,
Santa Clara, CA, November 1990.

O. Coudert and J. C. Madre. A Unified Framework for the Formal Verification of Sequential
Circuits. In Proc. Intl. Conf. on Computer-Aided Design, pages 126-129, Santa Clara,
CA, November 1990.

L. Entrena and K.-T. Cheng. Sequential Logic Optimization by Redundancy Addition and
Removal. In Proc. Intl. Conf. on Computer-Aided Design, pages 310-315, Santa Clara,
CA, November 1993.

J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines. Intl.
Series in Applied Mathematics. Prentice-Hall, Englewood Cliffs, N.J., 1966.

W. Kunz and D. Pradhan. Recursive learning: A precise implication procedure and its appli-
cation to test verification and and optimization. IEEE Transactions on Computer-Aided
Design of Integrated Clircuits and Systems, September 1994.

B. Lin. Synthesis of VLSI Design with Symbolic Techniques. PhD thesis, Electronics Research
Laboratory, University of California, Berkeley, CA 94720, November 1991. Memorandum
No. UCB/ERL M91/105.

B. Lin. Efficient Symbolic Support Manipulation. In Proc. Intl. Conf. on Computer Design,
pages 513-516, Cambridge, MA, October 1993.

B. Lin, H. J. Touati, and A. R. Newton. Don’t Care Minimization of Multi-level Sequential
Logic Networks. In Proc. Intl. Conf. on Computer-Aided Design, pages 414-417, Santa
Clara, CA, November 1990.

A. Mehrotra, S. Qadeer, V. Singhal, A. Aziz, R. Brayton, and A. Sangiovanni-Vincentelli.
Sequential Optimisation without State Space Exploration. In International Conference
on Computer-Aided Design, pages 208-215, November 1997.

C. Pixley. A Computational Theory and Implementation of Sequential Hardware Equivalence.
In E. M. Clarke and R. P. Kurshan, editors, Proc. of the Workshop on Computer-Aided
Verification, volume 3 of DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 293-320. American Mathematical Society, June 1990.

C. Pixley. A Theory and Implementation of Sequential Hardware Equivalence. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits, 11(12):1469-1494, December
1992.

C. Pixley, V. Singhal, A. Aziz, and R. Brayton. Multi-level Synthesis for Safe Replaceability.
In International Conference on Computer-Aided Design, pages 442—449, November 1994.

I. Pomeranz and S. M. Reddy. Classification of Faults in Synchronous Sequential Circuits.
IEEE Transactions on Computers, 42(9):1066—1077, September 1993.

I. Pomeranz and S. M. Reddy. On Removing Redundancies from Synchronous Sequential
Circuits with Synchronizing Sequences. IEEE Transactions on Computers, 45(1):20-32,
1996.

S. Qadeer, V. Singhal, C. Pixley, and R. K. Brayton. Latch Redundancy Removal without
Global Reset. In International Conference on Computer Design, October 1996.

A. Saldanha, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Satisfaction of Input
and Output Encoding Constraints. IEEE Transactions on Computer-Aided Design of
Integrated Circuits, 13(5):589-602, May 1994.

H. Savoj and R. K. Brayton. Observability Relations and Observability Don’t Cares. In Proc.
Intl. Conf. on Computer-Aided Design, pages 518521, Santa Clara, CA, November 1991.

H. Savoj, R. K. Brayton, and H. Touati. Extracting Local Don’t Cares for Network Opti-
mization. In Proc. Intl. Conf. on Computer-Aided Design, pages 514517, Santa Clara,
CA, November 1991.

E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Sequential Circuit Design Using Synthesis and Optimization. In Proc. Intl.
Conf. on Computer Design, pages 328-333, Cambridge, MA, October 1992.

[26]

27]

(28]

29]

(30]
(31]

(32]

(33]

(34]

(35]

Sequential optimization in the absence of global reset : 30

T. R. Shiple, R. Hojati, A. L. Sangiovanni-Vincentelli, and R. K. Brayton. Heuristic Mini-
mization of BDDs Using Don’t Cares. In Proc. Intl. Conf. on Computer-Aided Design,
pages 225-231, San Diego, CA, June 1994.

T. R. Shiple, V. Singhal, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Analysis of
Combinational Cycles in Sequential Circuits. In Proc. Intl. Symposium on Circuits and
Systems, Atlanta, GA, May 1996.

J. Silva and K. Sakallah. GRASP—A New Search Algorithm For Satisfiability. In International
Conference on Computer-Aided Design, Santa Clara, CA, November 1996.

V. Singhal. Design Replacements for Sequential Circuits. PhD thesis, The University of Cal-
ifornia at Berkeley, Electronics Research Laboratory, College of Engineering, University
of California, Berkeley, CA 94720, 1996.

V. Singhal, S. Malik, and R. K. Brayton. The Case for Retiming with Explicit Reset Circuitry.
In International Conference on Computer-Aided Design, San Jose, CA, November 1996.

V. Singhal and C. Pixley. The Verification Problem for Replaceability. In Computer Aided
Verification, July 1994.

V. Singhal, C. Pixley, A. Aziz, and R. Brayton. Exploiting Power-up Delay for Sequen-
tial Optimization. In Furopean Design Automation Conference, pages 54—59, September
1995.

V. Singhal, C. Pixley, A. Aziz, and R. Brayton. A Theory of Safe Replacements for Sequen-
tial Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 20(2), February 2001.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. Implicit State
Enumeration of Finite State Machines using BDD’s. In Proc. Intl. Conf. on Computer-
Aided Design, pages 130-133, Santa Clara, CA, November 1990.

T. Villa. University of California, Berkeley, CA. Personal communication.

