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INTRODUCTION 
Automatically measuring the location of a person or device 
for ubiquitous computing always involves the conversion of 
a raw measurement into a location measurement. While this 
process is a prepackaged part of some sensors (e.g. GPS 
and cell phones), researchers are often faced with making 
this conversion on their own as part of their efforts to 
deploy novel sensing technologies. This paper describes and 
discusses various general techniques that researchers have 
adopted for processing sensor readings into location 
measurements, emphasizing probabilistic approaches. 
Reasoning probabilistically is attractive because it naturally 
accounts for the uncertainty and ambiguity of sensor data, 
and a probabilistic representation is a good way to 
communicate uncertainty to higher level modules that 
exploit location. The paper concludes by advocating 
recursive filtering as the best general technique to use, with 
particle filtering having a slight advantage over the next best 
recursive technique, the hidden Markov model. 

DETERMINISTIC FUNCTION INVERSION 
Sometimes there is no probability involved. Suppose that at 
time t  a sensor (or sensors) produces a vector of l  
measurements tz . This 1×l measurement vector could be l  
signal strength measurements from l  wireless access points, 
or l  ultrasound delays from l  ultrasound detectors, or any 
l  measures from one or more sensors. The location at time 
t  is represented by the vector tx , which is what we want to 
estimate. tx  is an 1×m  state vector whose elements might 
represent a position in space, orientation, velocity, or any 
combination of state variables that need to be inferred. 

It is sometimes possible to model the output of the sensor as 
a deterministic function of the input, i.e.  

( )tt h xz =  ( 1 ) 

If ( )xh can be inverted, then ( )tt h zx 1ˆ −= , where tx̂  is the 
estimate of the state vector. If ( )xh  cannot be inverted, then 
a common technique is to find the state vector that 
minimizes ( ) 2

tt h xz −  using an iterative least squares 
algorithm like Levenberg-Marquardt[1]. 

As a special case, if the measurement and state vectors are 
related linearly as tt Hxz = by the ml ×  matrix H , then 
the least squares solution has the closed form 

( ) t
TT

t HHH zx
1

ˆ
−=  ( 2 ) 

For most problems of interest, however, the relationship 
between the state vector and measurement vector is not 
deterministic, so probabilistic methods must be used. 

MAXIMUM LIKELIHOOD ESTIMATE 
Often the relationship between sensor readings and state 
variables is characterized by a state-conditional probability 

( )ttp xz . This is merely a probabilistic sensor model giving 
the distribution of measurement vectors for a given state 
variable. It can be determined by simulating the sensor or 
by taking enough actual measurements to make a histogram 
of the frequency of measurement values as a function of 
known inputs. 

Given a measurement tz , the maximum likelihood estimate 
of the state is the state that maximizes the state-conditional 
probability: 

( )ttt p
t

xzx
x
maxargˆ =  ( 3 ) 

One special case is a generalization of the deterministic 
linear relationship in the previous section. Here 

vxz += tt H . v  is a 1×l  normally distributed noise vector 
with zero mean and ll ×  covariance matrix R , i.e. 

),(~ RN 0v . The maximum likelihood estimate is similar to 
Equation ( 2 ), but accounts for the covariance of the 
noise[2]: 

( ) t
TT

t RHHRH zx 111ˆ −−−=  ( 4 ) 

Another special case commonly occurs when the state space 
is discretized into a finite number of classes, 

{ }ncccC ,,, 21 K= . For instance, the classes might represent 
different rooms of a building or different discrete points on 
the floor. The state-conditional probability is then 
conditioned on discrete states -- ( )it cp z  -- and the 
maximum likelihood estimate is simply the state with the 
largest state-conditional probability evaluated at tz .The 
discrete states mean that this is actually a pattern 
classification problem[3]. 

Maximum likelihood is a widely accepted method for 
making probabilistic inferences in the absence of prior 
assumptions, dynamic models on the tracked subject, and 
past data. Dealing with prior assumptions is discussed in the 
next section on maximum a posteriori estimates, and 
dynamic models and past measurements are discussed in the 
section on recursive filtering. 
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MAXIMUM A POSTERIORI (MAP) ESTIMATE 
MAP estimates depend on prior probabilities about the 
actor’s state, denoted as ( )tp x  for the continuous state case 
and ( )icp  for the discrete state case. As an example, the 
priors might encode the fact that people generally don’t 
spend much time in the hallway and are much more likely to 
be found in their offices. 

For the continuous state case, the a posteriori probability 
distribution of state given a measurement is given by Bayes’ 
rule: 

( ) ( ) ( ) ( )tttttt pppp zxxzzx =  ( 5 ) 

The maximum of ( )ttp zx  over tx  is the MAP estimate 

tx̂ . ( )tp z  is unaffected by tx , so it is sufficient to 
maximize the numerator, which is just the product of the 
state-conditional probability and the a priori probability. 
Thus the only difference between the maximum likelihood 
estimate and MAP estimate is the inclusion of a priori 
assumptions for MAP. It is usually easy to make reasonable 
prior assumptions about peoples’ location for tracking, so 
MAP is an easy way to improve accuracy. 

RECURSIVE ESTIMATES 
The techniques discussed so far lack the ability to exploit 
dynamic models of the tracked subject, such as expectations 
of possible speeds and feasible paths. They also ignore past 
measurements. Recursive filtering techniques maintain a 
probabilistic distribution of state that implicitly includes the 
effect of all past measurements and dynamic assumptions, 
and they give a technique for updating this distribution with 
new measurements. By looking back in time, a recursive 
filter looks at the path of a tracked user instead of just 
instantaneous position like the memoryless techniques 
above. Examining a sequence of measurements in time, 
along with a dynamic model, is an effective way to deal 
with ambiguious measurements that could have come from 
more than one location. With these abilities, recursive 
filtering is generally considered the best way to process 
sensor data for location. The following sections discuss 
three recursive filtering techniques: Kalman filter, hidden 
Markov model, and particle filter. 

Kalman Filter 
The discrete time Kalman filter is based on simplifying 
assumptions about both the measurement process and 
system dynamics. The Kalman filter assumes that the 
relationship between the measurement vector tz  and state 
vector tx  is linear with zero-mean, additive, Gaussian 
noise. It also assumes that the relationship between the 
previous state 1−tx  and current state tx  is linear with zero-
mean, additive, Gaussian noise. Mathematically, these 
assumptions are 

111 −−− +Φ= kttt wxx  ( 6 ) 

ktt H vxz += −1  ( 7 ) 

Where 1−Φ t  is an mm ×  matrix, H  is an ml ×  matrix, and 

1−kw  and kv  are zero-mean, Gaussian noise vectors. 

The Kalman update equations[2] give a simple means of 
updating the previous state vector with new measurements 
using closed-form matrix math, resulting in a Gaussian 
distribution describing the mean and variance of the state 
estimate. 

Some limitations of the Kalman filter for tracking are: 

•  System dynamics must be linear. This means that sharp 
turns can be hard to model, and it gives no means of 
constraining a path from passing through a wall or 
other barriers. 

•  Measurements must be linear in state. Most sensor 
models must be greatly simplified to conform to this 
assumption. 

•  Gaussian representation of state. There can be no 
multimodal estimates of a person’s location, and the 
estimate must always be Gaussian-shaped. This is often 
much too simplistic for many tracking scenarios. 

•  Measurement association is fixed. The Kalman filter 
does not allow any ambiguity in which sensor 
measurement is associated with which tracked 
individual. Representing this ambiguity is important for 
certain “anonymous” sensors like motion detectors and 
pressure sensors. 

Nonlinearities have been addressed with the Extended 
Kalman Filter (EKF). There are modifications to deal with 
multimodal distributions. The radar tracking community has 
developed techniques for reasoning about data association 
in the context of Kalman filtering[4]. In its natural state, 
however, the Kalman filter has been surpassed by hidden 
Markov models and particle filters. 

Hidden Markov Model 
A hidden Markov model (HMM) represents the state space 
as a set of n  possible discrete states { })()2()1( ,,, nxxx K . For 
instance, location on the floor of a building could be 
represented by a grid of n  ( )yx,  points. These states can 
only be observed through the measurement vector z , which 
is related to the states through the state-conditional 
probabilistic sensor model ( ))(i

tp xz . The states are said to 
be hidden by ( ))(i

tp xz , thus the “hidden” in HMM. ( ))(i
tp xz  can be any distribution, not just a Gaussian as in 

the Kalman filter. 

The state dynamics of an HMM are governed by a first 
order Markov assumption that says the current state depends 
on only the immediately previous state in time. Since the 
states are discrete, the dynamics is represented by a matrix 
of transition probabilities ( ))()(

1
i

t
j

tij p xxxx === +α . 
These transition probabilities can be used to suppress 
impossible jumps between distant points and between points 
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separated by barriers, and they can be adjusted to reflect 
assumptions on possible speeds. 

For each new measurement tz , the Viterbi algorithm (see 
[5]) efficiently computes the maximum likelihood path 
through the states { }ttt xxxxx ˆ,ˆ,,ˆ,ˆˆ 110:0 −= K  that best 
accounts for the sequence of measurements 

{ }ttt zzzzz ,,,, 110:0 −= K . 

The main difficulty with using an HMM for tracking 
location is that all possible states must be explicitly 
represented. Adding new dimensions to the state 
representation causes an exponential increase in the number 
of states, each of which needs its own ( ))(i

tp xz  and 
transition probabilities to all the other states. This can be 
mitigated by exploiting independence among subsets of the 
state variables and using separate HMMs for each subset. 
For instance, in tracking people, one HMM could be 
assigned to ( )yx,  and another could be assigned to speed 
with, perhaps, the results of the speed inference used to 
update the transition probabilities for ( )yx, . 

Particle Filter 
The particle filter represents a probability distribution of the 
current state as a set of N  state samples and associated 
scalar weights: ( ) ( ) ( ){ })()()2()2()1()1( ,,,,,, NN

ttt www xxx KK . 
The weights sum to one, and larger weights indicate more 
likely states. Each of these “particles” is continuous and 
evolves as new measurements are processed. This is in 
contrast to the HMM where the states are discrete and 
predefined. Upon receipt of a new measurement tz , a new 
set of particles is computed in three steps: 

1. Create { })(
1

)2(
1

)1(
1 ,,, N

ttt −−− ′′′ xxx KK  by sampling with 
replacement from 
( ) ( ) ( ){ })()(

1
)2()2(

1
)1()1(

1 ,,,,,, NN
ttt www −−− xxx KK , where 

samples are drawn randomly in proportion to the scalar 
weights. 

2. Propagate these samples to the current time by 
randomly generating a new sample )(i

tx  from each )(
1
i

t−′x  
via the transition probability ( )1−ttp xx . This models 
the state dynamics. This is the same Markov 
assumption as the HMM, only for continuous states. 

3. Assign a new weight to each )(i
tx  according to the state-

conditional probability ( )ttp xz . Normalize these 
weights so they sum to one. This gives 
( ) ( ) ( ){ })()()2()2()1()1( ,,,,,, NN

ttt www xxx KK . 

These weighted samples give a versatile way of 
approximating any a posteriori state probability 
distribution. Each iteration through the three steps requires 
knowledge of only the probabilistic transition probabilities 

( )1−ttp xx  and the state-conditional probabilities ( )ttp xz . 
These two probability functions can be arbitrarily complex, 
allowing for the modeling of realistic dynamics and sensors. 

The main problem with particle filters is that the required 
number of particles N  is hard to predict in advance without 

experimentation, and the number may be unreasonably large 
depending on the dimensionality of the state space. As with 
the HMM, there are techniques to exploit the independence 
of the state variables, such as Partitioned Sampling[6]. In 
fact the general topic of sequential importance sampling is 
still an active area of research, and the algorithm presented 
above is only one of many possible depending on what prior 
assumptions can be made about the probabilistic processes 
involved. One example of the use of a particle filter for 
tracking inside buildings is explained in [7]. 

CONCLUSIONS 
Deterministic methods of sensor interpretation are burdened 
by the difficultly of modeling all aspects of a location 
sensing system. Lumping the unmodeled effects under the 
label “random” leads to probabilistic models which have the 
benefit of explicitly representing the inherent uncertainty 
and, depending on the model used, the multimodal 
ambiguity. Recursive filtering can efficiently take into 
account dynamic models and past measurements to compute 
location, which makes them preferred over the memoryless 
methods of simple maximum likelihood and MAP 
estimation. Of the recursive techniques, the Kalman filter is 
limited to Gaussian distributions and linear dynamics, while 
the HMM and particle filter offer much more flexibility at 
the expense of more memory-intensive representations. The 
continuous state representation of the particle filter has a 
slight advantage over the inherently discrete-state HMM 
provided the required number of particles is not too large. 
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