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INTRODUCTION

Automatically measuring the location of a person or device
for ubiquitous computing always involves the conversion of
a raw measurement into a location measurement. While this
process is a prepackaged part of some sensors (e.g. GPS
and cell phones), researchers are often faced with making
this conversion on their own as part of their efforts to
deploy novel sensing technologies. This paper describes and
discusses various general techniques that researchers have
adopted for processing sensor readings into location
measurements, emphasizing probabilistic approaches.
Reasoning probabilisticaly is attractive because it naturally
accounts for the uncertainty and ambiguity of sensor data,
and a probabilistic representation is a good way to
communicate uncertainty to higher level modules that
exploit location. The paper concludes by advocating
recursive filtering as the best general technigue to use, with
particle filtering having a slight advantage over the next best
recursive technique, the hidden Markov model.

DETERMINISTIC FUNCTION INVERSION

Sometimes there is no probability involved. Suppose that at
time t a sensor (or sensors) produces a vector of |

measurements z,. This | x 1 measurement vector could be |

signal strength measurements from | wireless access points,
or | ultrasound delays from | ultrasound detectors, or any
| measures from one or more sensors. The location at time
t isrepresented by the vector X, , which iswhat we want to
estimate. x, isan mx1 state vector whose elements might
represent a position in space, orientation, velocity, or any
combination of state variables that need to be inferred.

It is sometimes possible to model the output of the sensor as
a deterministic function of theinput, i.e.
Z = h(Xt) (1)
If h(x)can be inverted, then X, =h™(z,), where %, isthe
estimate of the state vector. If h(x) cannot be inverted, then
a common technique2 is to find the state vector that
minimizes |z, —h(x,)]° using an iterative least squares
algorithm like Levenberg-Marquardt[1].
As a special case, if the measurement and state vectors are

related linearly as z, = Hx, by the | xm matrix H , then
the least squares solution has the closed form

f(t:(HTH)_lHth (2)

For most problems of interest, however, the relationship
between the state vector and measurement vector is not
deterministic, so probabilistic methods must be used.

MAXIMUM LIKELIHOOD ESTIMATE

Often the relationship between sensor readings and state
variables is characterized by a state-conditional probability
p(zt |xt ) Thisis merely a probabilistic sensor model giving
the distribution of measurement vectors for a given state
variable. It can be determined by simulating the sensor or
by taking enough actual measurements to make a histogram
of the frequency of measurement values as a function of
known inputs.

Given a measurement z,, the maximum likelihood estimate
of the state is the state that maximizes the state-conditional
probability:

%, = arg max plzfx.) (3)

One special case is a generalization of the deterministic
linear relationship in the previous section. Here
z, =Hx, +v. v isal x1 normally distributed noise vector
with zero mean and | x| covariance matrix R, i.e
v ~ N(0,R) . The maximum likelihood estimate is similar to
Equation ( 2 ), but accounts for the covariance of the

noise[2]:

s Tpiy|lyTpt

%, =(HTR™H)"HTR, (4)
Another special case commonly occurs when the state space
is discretized into a finite number of classes,
C ={c,.c,,...,c,} . For instance, the classes might represent
different rooms of a building or different discrete points on
the floor. The state-conditional probability is then
conditioned on discrete states -- p(zt|ci -- and the
maximum likelihood estimate is ssimply the state with the
largest state-conditional probability evaluated at z,.The

discrete states mean that this is actualy a pattern
classification problem[3].

Maximum likelihood is a widely accepted method for
making probabilistic inferences in the absence of prior
assumptions, dynamic models on the tracked subject, and
past data. Dealing with prior assumptions is discussed in the
next section on maximum a posteriori estimates, and
dynamic models and past measurements are discussed in the
section on recursive filtering.
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MAXIMUM A POSTERIORI (MAP) ESTIMATE

MAP estimates depend on prior probabilities about the
actor's state, denoted as p(x, ) for the continuous state case
and p(ci) for the discrete state case. As an example, the
priors might encode the fact that people generally don't
spend much time in the hallway and are much more likely to
be found in their offices.

For the continuous state case, the a posteriori probability
distribution of state given a measurement is given by Bayes
rule:

p(Xt|Zt): p(zt|xt)p(xt)/ p(zt) (5)

The maximum of p(xt|zt) over X, isthe MAP estimate
%.. plz,) is unaffected by x,, so it is sufficient to
maximize the numerator, which is just the product of the
state-conditional probability and the a priori probability.
Thus the only difference between the maximum likelihood
estimate and MAP estimate is the inclusion of a priori
assumptions for MAP. It is usualy easy to make reasonable
prior assumptions about peoples’ location for tracking, so
MAP is an easy way to improve accuracy.

RECURSIVE ESTIMATES

The techniques discussed so far lack the ability to exploit
dynamic models of the tracked subject, such as expectations
of possible speeds and feasible paths. They also ignore past
measurements. Recursive filtering techniques maintain a
probabilistic distribution of state that implicitly includes the
effect of all past measurements and dynamic assumptions,
and they give atechnique for updating this distribution with
new measurements. By looking back in time, a recursive
filter looks at the path of a tracked user instead of just
instantaneous position like the memoryless techniques
above. Examining a sequence of measurements in time,
along with a dynamic model, is an effective way to dea
with ambiguious measurements that could have come from
more than one location. With these abilities, recursive
filtering is generaly considered the best way to process
sensor data for location. The following sections discuss
three recursive filtering techniques: Kalman filter, hidden
Markov model, and particle filter.

Kalman Filter

The discrete time Kalman filter is based on simplifying
assumptions about both the measurement process and
system dynamics. The Kaman filter assumes that the
relationship between the measurement vector z, and state
vector X, is linear with zero-mean, additive, Gaussian
noise. It also assumes that the relationship between the
previous state x,_, and current state x, is linear with zero-
mean, additive, Gaussian noise. Mathematically, these
assumptions are

Xg =P Xy Wiy (6)

z, = HX; Vv (7)

Where @, isan mxm matrix, H isan | xm matrix, and
w,_, and v, are zero-mean, Gaussian noise Vectors.

The Kalman update equations[2] give a simple means of
updating the previous state vector with new measurements
using closed-form matrix math, resulting in a Gaussian
distribution describing the mean and variance of the state
estimate.

Some limitations of the Kalman filter for tracking are:

e System dynamics must be linear. This means that sharp
turns can be hard to model, and it gives no means of
congtraining a path from passing through a wall or
other barriers.

*  Measurements must be linear in state. Most sensor
models must be greatly simplified to conform to this
assumption.

e Gaussian representation of state. There can be no
multimodal estimates of a person’s location, and the
estimate must always be Gaussian-shaped. Thisis often
much too simplistic for many tracking scenarios.

*  Measurement association is fixed. The Kaman filter
does not allow any ambiguity in which sensor
measurement is associated with which tracked
individual. Representing this ambiguity is important for
certain “anonymous’ sensors like motion detectors and
pressure Sensors.

Nonlinearities have been addressed with the Extended
Kalman Filter (EKF). There are modifications to deal with
multimodal distributions. The radar tracking community has
developed techniques for reasoning about data association
in the context of Kalman filtering[4]. In its natural state,
however, the Kalman filter has been surpassed by hidden
Markov models and particle filters.

Hidden Markov Model

A hidden Markov model (HMM) represents the state, space
asaset of n possible discrete states x®,x@,...,x"} . For
instance, location on the floor of a building could be
represented by a grid of n (x,y) points. These states can
only be observed through the measurement vector z, which
is related to the states through the state-conditional
probabilistic sensof mod przt x® |. The states are said to
be, hidden by p{sz“’j‘, thus the “hidden” in HMM.
plz,[x" ] can be any distribution, not just a Gaussian as in
the Kalman filter.

The state dynamics of an HMM are governed by a first
order Markov assumption that says the current state depends
on only the immediately previous state in time. Since the
states are discrete, the dynamics is represented by a matrix
of transition probabilities a; :T)F(xt+l :x‘”|xt :x("l)
These transition probabilities can be used to suppress
impossible jumps between distant points and between points
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separated by barriers, and they can be adjusted to reflect
assumptions on possible speeds.

For each new measurement z,, the Viterbi algorithm (see
[5]) efficiently computes the maximum likelihood path
through the states Ko, ={%y.%,,....%,,,X} that best
accounts for the sequence of  measurements
Zoy :{ZO'Zl""'Zt—l'Zt} :

The main difficulty with using an HMM for tracking
location is that al possible states must be explicitly
represented. Adding new dimensions to the state
representation causes an exponential increase in the number
of states, each of which needs its own plzztx“))J and
transition probabilities to al the other states. This can be
mitigated by exploiting independence among subsets of the
state variables and using separate HMMs for each subset.
For instance, in tracking people, one HMM could be
assigned to (x, y) and another could be assigned to speed
with, perhaps, the results of the speed inference used to
update the transition probabilities for (x, y).

Particle Filter

The particle filter represents a probability distribution of the
current state as a of N state samples ang associat
sclar  weights: TES”,W‘” ),?)IQZ),W(Z)S), ...... ,&EN’,W‘N)T
The weights sum to one, and larger weights indicate more
likely states. Each of these “particles’ is continuous and
evolves as new measurements are processed. This is in
contrast to the HMM where the states are discrete and
predefined. Upon receipt of a new measurement z,, a new
set of particlesis computed in three steps:

1. Create {x(‘_ll’,x(‘_i’, ...... ,x;‘_T)} by sampling with
replacement from
{?S@l,w(l’ ,(xf},w(z’ ) ...... ,(xf_Nl),W(N’}, where
samples are drawn randomly in proportion to the scalar
weights.

2. Propagate these samples to the current time by
randomly generating a new sample x from each ;)
via the transition probability p(xt|xt_1). This models
the state dynamics. This is the same Markov
assumption as the HMM, only for continuous states.

3. Assignanew weight to each x" according to the state-
conditional probability p(zt |xt). Normalize these

eights they, sum to one This gives
?{xt(l’,w(l) ),S&fz’ w2 ) ...... , (fo) ,W(N’P} .

These weighted samples give a versatile way of
approximeting any a posteriori state probability
distribution. Each iteration through the three steps requires
knowledge of only the probabilistic transition probabilities
p(xt|xt_1 and the state-conditional probabilities p(zt|xt).
These two probability functions can be arbitrarily complex,
allowing for the modeling of realistic dynamics and sensors.

The main problem with particle filters is that the required
number of particles N is hard to predict in advance without

experimentation, and the number may be unreasonably large
depending on the dimensionality of the state space. As with
the HMM, there are techniques to exploit the independence
of the state variables, such as Partitioned Sampling[6]. In
fact the general topic of sequential importance sampling is
gtill an active area of research, and the algorithm presented
above is only one of many possible depending on what prior
assumptions can be made about the probabilistic processes
involved. One example of the use of a particle filter for
tracking inside buildingsis explained in [7].

CONCLUSIONS

Deterministic methods of sensor interpretation are burdened
by the difficultly of modeling all aspects of a location
sensing system. Lumping the unmodeled effects under the
label “random” leads to probabilistic models which have the
benefit of explicitly representing the inherent uncertainty
and, depending on the model used, the multimodal
ambiguity. Recursive filtering can efficiently take into
account dynamic models and past measurements to compute
location, which makes them preferred over the memoryless
methods of simple maximum likelihood and MAP
estimation. Of the recursive techniques, the Kalman filter is
limited to Gaussian distributions and linear dynamics, while
the HMM and particle filter offer much more flexibility at
the expense of more memory-intensive representations. The
continuous state representation of the particle filter has a
dight advantage over the inherently discrete-state HMM
provided the required number of particlesis not too large.
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