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ABSTRACT

A fast rate-distortion (R-D) optimized wavelet packet (WP) transform is proposed for image compression in
this research. By analyzing the R-D performance of the quantizer and the entropy coder, we show that the coding
distortion D can be modeled as an exponentially decaying function as the coding rate R increases. With this
exponential R-D model, it is proved that the constant R-D slope criterion for optimum bit allocation is equivalent to
the constant distortion criterion, which can be easily implemented via thresholding. Based on this analytical result,
we develop a fast wavelet packet decomposition scheme which is optimized in the R-D sense by comparing simple
parameters associated with each wavelet packet band such as the 1st or 2nd absolute moments. We have performed
extensive experiments to demonstrate the performance of an image coder using the proposed R-D optimized wavelet
packet transform, and shown that our scheme is highly competitive with all well known state-of-the-art image coders.
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1 INTRODUCTION

To achieve image compression, it is typical to transform image data from the space domain to the transform
domain for energy compaction, and then quantize and encode transform coe�cients. Since di�erent images have
di�erent characteristics, an adaptive transform �netuned to image characteristics is more e�ective than a �xed
transform. It is of great interest to determine the best transform which meets a certain optimality criterion while
keeping the computational complexity under a certain level. In this work, we focus on image compression methods
based on wavelet and wavelet packet transforms, which are viewed as �xed and adaptive transforms, respectively.
Commonly used criteria for selecting a wavelet packet decomposition scheme include maximum energy compaction,
minimum entropy, etc.

For compression, the performance of a transform should be evaluated by the �nal result of the entire coding. In
other words, the best transform should match the quantizer and the entropy coder so that the best rate-distortion (R-
D) tradeo� can be achieved. Thus, the R-D performance of the quantizer and the entropy coder plays an important
role in the design of the optimal wavelet packet transform. Previous work has been performed to optimize the R-D
performance of image and video coders. Strobach [15] developed an adaptive quadtree scene coder for video coding,
where motion vectors were estimated with a criterion which minimizes the joint coding rate for motion vectors and
quadtree residuals. In wavelet packet (WP) based image coding, Ramchandran et al. [12], [18] estimated the coding



distortion and the bit rate with respect to each WP decomposition to search for the best choice.

The major problem with these methods is the high computational complexity required. In [15], coding rates and
their associated distortions are obtained by performing the actual quadtree coding on the residuals. In [12] and [18],
the coding distortion is evaluated by computing the mean square error (MSE) after quantization, and the coding
rate is estimated by calculating the �rst order entropy of quantized WP coe�cients. To minimize the cost function,
one still has to compute unknown operating parameters such as the Lagrangian factor � [12], [18]. The practical use
of these methods is greatly hindered by the high computational cost.

In this research, we examine a new image compression scheme which applies the R-D optimized wavelet packet
(WP) transform and adopts the highly e�cient layered zero coding (LZC) scheme [16] for the quantization and
entropy coding of WP coe�cients. Our major contribution in this work is the proposal of a new WP decomposition
scheme which e�ciently determines the best WP transform in the R-D sense. The key idea is the use of an empirical
R-D model to characterize the performance of the successive quantizer and the entropy encoder of LZC. This model
enables us to determine the R-D optimized WP transform accurately with a very low computational cost. Extensive
experimental results will be presented to demonstrate the performance of the new compression scheme and the
comparison with that of several state-of-the-art image coders. Generally speaking, our scheme provides a substantial
coding gain at the expense of a slightly increased computational cost. For example, it outperforms the embedded
zero wavelet coding (EZW) [14] scheme from 1 to 2 dB for di�erent images at various bit rates with an increase of
complexity of 60-70% (see Section 6 for more details).

This paper is organized as follows. We brie
y review the wavelet packet transform and the layer zero coding
scheme in Section 2. Then, an empirical R-D model is presented in Section 3, and a fast R-D optimized wavelet
packet decomposition scheme is described in Section 4. The complete compression algorithm, i.e. the layered zero
coder with the R-D optimized WP transform, is summarized in Section 5. Experimental results for image and video
compression are given in Section 6. Concluding remarks are provided in Section 7.

2 BACKGROUNDS

In this section, we �rst provide a brief review of the wavelet packet transform and layered zero coding scheme.
Then, an overview of our approach is given.

2.1 Wavelet packet transform

Discrete wavelet transform of a sequence is achieved by passing the sequence through a quadrature mirror �lter
(QMF) consisting of a certain low- and high-pass �lter pair followed by a 2-to-1 downsampling operation. Extensive
experiments [17] have shown that the biorthogonal 9-7 tap spline �lter [1] gives the best result so that it is used
throughout this work. The 2-D wavelet transform is constructed by forming the tensor product of two 1-D wavelet
transforms along the horizontal and vertical directions. When we extend the above wavelet transform to the multiscale
case, there exist many approaches. One approach is to apply the wavelet decomposition recursively only in the lowest
frequency bands, which results in the well known pyramid wavelet transform. The pyramid decomposition handles
smooth and edge regions well, since it can e�ectively represent low frequency components and localize high frequency
components. However, it is not suitable for texture representation. Textures can be conveniently analyzed by the
wavelet packet (WP) transform [2], where the wavelet decomposition is applied adaptively in subbands. Due to its
adaptivity, the WP transform is suitable for nonstationary signal analysis and representation. One critical problem
in the WP transform is the choice of a good decomposition among all possible wavelet packets with respect to a
given signal. In early WP literatures, criteria were chosen based on the measurement of entropy [3] and energy [2].
They are however not directly related to a better compression performance.

More recently, the optimalWP decomposition to achieve the best rate-distortion (R-D) tradeo� has been examined
by researchers [6], [11], [12], [18]. Under this framework, the selection of the best WP in the R-D sense can be



formulated as the solution of the following cost function:

J = min
�

min
F2F

min
Q2Q

X
i

Di + �Ri; (1)

where F denotes the set of all possible WP transforms,Q denotes the set of all allowed spatial-frequency quantization
(SFQ) schemes described in [12], the Lagrangian factor � corresponds to the optimal operating slope, and Di and
Ri are the total coding distortion and coding rate for band i with respect to a speci�c WP decomposition F. In
their work, Di is estimated by using the mean square error (MSE) between the original and quantized wavelet packet
coe�cients and Ri is estimated by the �rst order entropy of quantized coe�cients. To determine the best choice, one
has to perform the estimation on Di and Ri for every quantization scheme in Q and for every WP decomposition in
F , which is computationally expensive. Furthermore, to calculate the cost function J , the optimal wavelet packet
decomposition F, the corresponding optimal quantization Q and the Lagrangian factor � have to be determined
jointly. In [6], [11], [12], this procedure is carried out by three embedded loops. In the most inner loop, both �
and F are �xed for the search of the optimal quantizer Q. In the second loop, � is �xed for the search of the best
combination of F and Q. Finally, the optimal combination of �, F and Q is determined in the outer loop. Although
speed-up techniques such as the gradient-based method can be used to reduce the computational complexity during
the search process, the overall computational cost is still very high.

2.2 Layer zero coding (LZC)

Although wavelet-based image coding has been studied for years [1], [9], it is the work of Shapiro [14], known as the
embedded zerotree wavelet (EZW) coding, that demonstrates the clear advantage of the wavelet transform approach.
In addition to providing a very good rate-distortion performance, EZW has a desirable embedding property where bits
are generated in the order of signi�cance so that the scheme is suitable for progressive transmission. Key ingredients
in EZW include: successive quantization of wavelet coe�cients, classi�cation of wavelet coe�cient representation
into signi�cant and insigni�cant coding, and zerotree grouping of insigni�cant bits.

There has been follow-up work which further improves the R-D performance of EZW, for example, the joint
space-frequency quantization (SFQ) proposed by Xiong and Ramchandran [18], and the scheme of set partitioning in
hierarchical trees (SPIHT) proposed by Said and Pearlman [13]. Another interesting work known as the layered zero
coding (LZC), which exploits interscale prediction among bit layers to improve the R-D performance, was proposed
by Taubman and Zakhor [16]. LZC replaces the coding of zerotrees of insigni�cant bits with a context adaptive
arithmetic coder which enables the entropy coding of correlated insigni�cant bits in both tree and non-tree forms.
The context adaptive arithmetic coder is �rst adopted in the JBIG binary image coding standard [5]. Its properties
are highlighted as follows. First, it is a highly e�cient entropy coder with its average coding rate close to the entropy
of the source. Second, it is computationally inexpensive, since its coding process only involves addition and shifting
operations. Third, it is parameter free in the sense that the source probability distribution p0 and p1 are estimated
on the 
y with no training. Finally, it is easy to construct parallel coders for a compound source by assigning an
individual coder to a speci�c source.

LZC treats the bit layer representation of wavelet coe�cients as a compound source, where each bit is conditioned
by the values of its surrounding bits in the space and subband domains. A context rule is adopted to classify such
a compound source into di�erent categories. For example, an n-bit context classi�es the source into 2n categories,
which include the zerotree correlation as one special case. With the help of the context adaptive arithmetic coding,
LZC achieves a better compression than EZW. For more details of the above discussion, we refer to [16].

2.3 Overview of this work

Our work follows the basic framework of LZC, i.e. the quantizer and the entropy coder of the proposed scheme
are the same as those in LZC. However, the pyramid wavelet transform in LZC is modi�ed to be the R-D optimized
WP decomposition in this research. Our scheme evaluates the R-D e�ciency of each WP decomposition based on
an empirical R-D codec model. It is �rst demonstrated that the coding distortion D decays exponentially with the
increase of the coding rate R by applying LZC to wavelet coe�cients in any given subband. Then, we show that
the constant R-D slope criterion for optimum bit allocation is equivalent to the constant distortion criterion under



the exponentially decaying R-D characteristics, and that the constant distortion criterion can be easily implemented
by applying a single signi�cant threshold to all WP bands. Thus, the codec operating point is controlled by a
quantity Dth called the threshold distortion. The R-D performance of any WP band can be estimated by using
Dth and simple statistics such as the 1st or 2nd absolute moments associated with each WP band. This enables
us to develop a fast algorithm for performing the R-D optimized WP decomposition. The new child-parent band
relationship and the scanning order with respect to a given WP decomposition can also be de�ned. By combining all
individual components, we can present a complete compression algorithm consisting of the WP transform, successive
quantization and arithmetic entropy coding.

3 Rate-distortion model for wavelet packet decomposition

3.1 Exponential R-D model

Consider the decomposition of an image into N subband Bi, i = 1; 2; � � � ; N; with the wavelet or wavelet packet
transform. It is assumed that wavelet coe�cients are decorrelated in each subband, and the distribution can be
modeled by a random variable Xi with the generalized Gaussian probability density function (pdf):

PXi
(x) = aie

�[bijxj]

i
; (2)

ai =
bi � 
i

2�i(1=
i)
; bi = ��1

i

�
�i(3=
i)

�i(1=
i)

�1=2
;

where 
i is a shape parameter and parameters ai and bi are functions of 
i and variance �2i . Note that a generalized
Gaussian pdf is completely speci�ed by the shape parameter 
 and variance �2. Also, the Gaussian and Laplacian
pdfs are special cases of the generalized Gaussian pdf with 
 = 2 and 1, respectively. The R-D performance of coding
such a source will be discussed in this section. We will focus on the theoretical performance bound and then the
performance of a practical wavelet coder.

The theoretical Shannon lower bound (SLB) of a statistical source X is of the form [4]

R = h(X) � 1

2
log2(2�eD) or D =

22h(X)

2�e
2�2R; (3)

where h(X) is the entropy of random variable X. It is proved in [4] that SLB is achievable theoretically for the
Gaussian source. Even though SLB may not be achievable for other sources, it still provides a good performance
bound for practical coders. Equation (3) shows that coding distortion D decays exponentially with the increase of
coding rate R. This important property is called the exponential R-D property. It is expected that a reasonably
good coder should follow SLB closely and, therefore, satisfy the exponential R-D property.

Next, the R-D performance of a practical wavelet coder is examined. In particular, we apply the layered zero
coding (LZC) scheme [16] to a generalized Gaussian distributed source with di�erent shape parameters. The exper-
imental R-D operating points for 
 = 0:7, 1:0 (Laplacian) and 2:0 (Gaussian) are shown with `+' in Figs. 1 (a)-(c),
respectively. These R-D operating points can be well approximated by the exponential model

Assumption A: D = Dmax2
��R; (4)

where the parameter � characterizes the exponentially decaying rate and can be calculated via least-square �tting,
andDmax is the maximumcoding distortion at coding rate R = 0, which equal to the variance of the source. Equation
(4) is adopted as the �rst assumption in our model.

It is worthwhile to point out that, for the coding of the generalized Gaussian source with LZC, � is only related to
the shape parameter 
i and independent of the variance �2i . This can be explained below. Suppose that the variance of

the source is increased by a factor of k2, i.e. �
02
i = k2�2i . The maximumcoding distortion also increases proportionally

D
0

max = k2Dmax. By adopting a new quantization threshold Q
0

i = kQi, we can encode the new generalized Gaussian

source at the same coding rate R
0

i = Ri and the new distortion becomes D
0

i = k2Di. Consequently, we have

D
0

i = D
0

max2
��R

0

i ;
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Figure 1: Rate-distortion performance of coding of the generalized Gaussian pdf with shape parameter (a) 
 = 0:7,
(b) 
 = 1 (Laplacian), (c) 
 = 2 (Gaussian), where the dotted line is the Shannon Lower Bound (SLB) of the source,
the `+' symbols denote experimental points, and the solid line indicates the approximating rate-distortion function
with � = 2:0160; 1:9248;1:8694, respectively.

and conclude that � is independent of the variance of the source.

For the generalized Gaussian source with shape parameter 
 = 0:7, 1:0, 2:0, we have � = 2:0160, 1:9248 (Lapla-
cian) and 1:8694 (Gaussian), respectively. The �tted curves with these � values are plotted with solid lines in Figs. 1
(a)-(c). SLB is also plotted in the same �gures with dotted lines for comparison. One can clearly see that LZC gives
a performance very close to SLB. With shape parameter 
 changes from 2.0 to 0.7, �i only changes from 1.8694 to
2.0160, which is less than 10%. Since �i is also insensitive to the change of the generalized Gaussian shape parameter

i, we adopt the following approximation as the second assumption in our model:

Assumption B: �i � �; (5)

for band Bi, 1 � i � N .

3.2 Model with constant exponentially decaying rate

For band Bi, 1 � i � N , we denote the number of wavelet coe�cients, the average distortion (per coe�cient),
the average bit rate (per coe�cient) and the maximum coding distortion by Si, Di, Ri and Dmax;i, respectively. It

is clear that the total number of coe�cients for the entire image is S =
PN

i Si. For a total bit budget R, we want
to optimally allocate the average bit rates R1; R2; � � � ; RN so that( PN

i SiRi = R; (constrained bit budget)

min
PN

i SiDi; (minimized distortion)
(6)

This problem can be solved with the Lagrangian method by requiring

@Di

@Ri
= �� (constant); 1 � i � N; (7)

where � is known as the Lagrangian multiplier. By assuming that the coder satis�es (4), we have

@Di

@Ri
= Dmax;i2

��iRi � (��i ln 2) = �Di�i ln 2: (8)

Under assumptions (4) and (5) and by comparing (7) and (8), it is easy to see that the constant R-D slope
criterion for optimum bit allocation can be converted to the constant distortion criterion:

Di = Dth (another constant); 1 � i � N; (9)

which is much easier to implement in comparison with the constant slope criterion (7).



3.3 Nonnegative bit rate constraint

By rearranging (4), we have

Ri =
1

�
log2

Dmax;i

Di
=

1

�
log2

�2i
Di

; (10)

where the fact that the maximumcoding distortion Dmax;i is equal to the variance �2i of WP band Bi is used. Taking
the nonnegative bit rate constraint Ri � 0 into consideration, the solution to (6) has to be modi�ed from (9) to:

Di =

�
Dth (constant); Dth < �2i ;
�2i ; Dth � �2i ;

(11)

We call Dth the threshold distortion (or known as the water-�lled distortion in [4]). Parameter Dth controls the
operating point of the coder. Equation (11) implies that, to optimally encode a WP decomposed image at a certain
bit rate, we have to select Dth so that the band is not encoded at all if its variance is smaller than Dth and with
distortion equal to Dth after coding if its variance is greater than Dth.

For the layered zero coder (LZC), Dth can be controlled by adjusting the value of the �nest quantization step size
TS (see also discussion in Section 5). We analyzes the coding distortion (MSE) versus the �nest quantization step
size TS for several generalized Gaussian sources with variance �2 = 1. The behavior of LZC changes dramatically at
the point Tth =

p
12�2.

D =

�
T 2
S=12; T 2

S=12 < �2

�2; T 2
S=12 � �2

(12)

For TS > Tth, the coding distortion can be well approximated by �2 and is independent of the value of TS . On the
other hand, for TS < Tth, the coding distortion can be approximated by T 2

S=12. By comparing (11) and (12), we
have the association:

Dth =
T 2
S

12
:

A smaller value of TS implies a smaller value of Dth and a coded image of a better quality. The mean squared
error Dmse is very close to Dth when Dth is small. Thus, we can use the threshold distortion Dth to control the
coded image quality as well as to represent the mean squared error. Applying (11) to (10) and using Dth as the
coding control parameter, we have the average bit rate for band Bi as:

Ri =
1

�
log2max

�
1;

�2i
Dth

�
=

1

�
log2

�2i
Dth

; with �2i = max(Dth; �
2
i ) (13)

denotes the bounded variance for WP band i. By substituting (13) in (6), we can write the total bit budget for the
entire image as:

R =
1

�

NX
i=1

Si log2
�2i
Dth

; (14)

Thus, (14) can be viewed as the rate-distortion function of the WP decomposition. The optimal bit allocation scheme
only depends on the threshold distortion Dth and the variance �2i of WP band Bi.

4 FAST R-D OPTIMIZED WAVELET PACKET DECOMPOSITION

Based on the R-D model presented in the previous section, we will derive a fast wavelet packet decomposition
scheme in this section.

4.1 Algorithm

Consider two WP decompositions F1 and F2, where F1 decomposes the image into N1 bands with sizes
S1;1; � � � ; S1;N1

and variances �21;1; � � � ; �21;N1
and F2 decomposes the image into N2 bands with sizes S2;1; � � � ; S2;N2



and variances �22;1; � � � ; �22;N2
. With the same Dth, the di�erence in the coding budget for decompositions F1 and

F2 is:

R1 � R2 =
1

�

"
N1X
i=1

S1;i log2 �
2
1;i �

N2X
i=1

S2;i log2 �
2
2;i

#
: (15)

Note that (15) still depends on Dth since �2j;i = max(Dth; �
2
j;i). However, it is not sensitive to a small variation of

Dth. This is especially true for a very large or small value of Dth.

The proposed WP decomposition algorithm is a merge-based method. Since the WP subtree of an R-D optimized
WP decomposition is optimized in the R-D sense itself, the merge-based algorithm gives the R-D optimized wavelet
packet decomposition. We �rst transform an image with a fully-decomposed wavelet transform to the maximum
depth dm. This corresponds to a fully-decomposed quadtree with 4dm leaf nodes, each of which consists of the
same number of coe�cients. The merge step starts from the bottom of the quadtree. Consider the WP subtree
Fdm�1;i;j at scale dm � 1. The variance of the undecomposed WP subtree Fdm�1;i;j is denoted by �2dm�1;i;j and its
size by Sdm�1. It can either remain the same or be further decomposed into four WP bands Fdm;2i;2j, Fdm;2i+1;2j,
Fdm;2i;2j+1, Fdm;2i+1;2j+1 at scale dm with size Sdm = Sdm�1=4. With (15), we can calculate the bit saving due to
further decomposition as:

Rs =
Sdm�1

�

"
log2

�2dm�1;i;j

[�2dm;2i;2j � �2dm;2i+1;2j � �2dm;2i;2j+1 � �2dm;2i+1;2j+1]
1=4

#
: (16)

When the saving is greater than the decomposition overhead R0, the WP decomposition is accepted. Otherwise, it is
rejected. Since each WP subtree needs 1 bit to indicate whether it is further decomposed, the number R0 of overhead
bits is equal to 4. For practical implementation, we actually enlarge the threshold to be around 10 to avoid many
small WP bands. After the decision, the equivalent bounded variance is calculated for future use:

�
02
dm�1;i;j =

8<
:

�2dm�1;i;j; decomp. rejectedh
�2dm;2i;2j � �2dm;2i+1;2j � �2dm;2i;2j+1 � �2dm;2i+1;2j+1

i1=4
2

�R0

Sdm�1 ; decomp. accepted
(17)

Note that the e�ect of decomposition overhead bits R0 is included in (17), if the WP decomposition is accepted. The
same procedure iterates from the bottom to the top of the fully-decomposed quadtree.

4.2 Choice of two parameters

In the R-D optimized WP decomposition, we use the threshold distortion Dth to control the desired WP decom-
position. Dth can be well approximated by the coding MSE Dmse. Thus, for a target PSNR value, we can compute
Dth as

Dth = 255210�
PSNR

10 :

The resulting wavelet packet transform is insensitive to a small variation ofDth. Generally speaking, ifDth;1 > Dth;2,
the WP decompositionF1 associated withDth;1 can be derived by merging some of WP subtrees in F2. In particular,
if Dth is smaller or greater than all variances of WP bands, the resulting WP decomposition is independent of Dth.
Therefore, even if we do not choose the exact threshold distortion Dth for a speci�c coding rate, the resulting WP
decomposition di�ers from the optimal one in only a few nodes which should be either merged or decomposed.

Another parameter to be estimated is the variance �2i of each WP band, which is equal to the maximum coding
distortionDmax;i de�ned in (4). Since WP coe�cients have a zero mean in each subband (except the lowest frequency
band), one straightforward way to estimate the variance is to compute the mean squared error (MSE) of the WP
coe�cients in each band before coding, i.e.

�̂2mse;i =
1

Si

SiX
j=1

x2i;j: (18)
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Figure 2: Layered zero coding of wavelet packet, (a) Depth-�rst scan order for wavelet packet, (b) Context for
arithmetic coding. Among the context, `A' to `F' are intraband context, `G' is interband context. The parent-
childhood relationship of the wavelet packet bands is shown with arrows.

where xi;j denote the jth wavelet coe�cient in band Bi.

Estimation formula (18) is based on the estimation of sample variance. The accuracy of variance estimation can
be improved by considering a more accurate pdf model of WP coe�cients. We know from experiments that the pdf
of WP coe�cients can be well approximated by the Laplacian density. It is not di�cult to prove that an unbiased
su�cient statistics for the variance of the Laplacian pdf is

�̂2mae;i =
1

Si

SiX
j=1

j xi;j j; (19)

which is the mean absolute error (MAE) of WP coe�cients before coding. The performance comparison between
the above two variance estimation formulas will be given in Section 6.1.

5 LAYERED ZERO CODING WITH WAVELET PACKET TRANSFORM

The layered zero coding (LZC) scheme [16] can be easily generalized from the pyramidal wavelet transform to
the wavelet packet (WP) transform. The complete coding algorithm is presented in this section.

Step 1: WP Decomposition

We perform the WP decomposition as described in the previous section.

Step 2: Successive Quantization

The maximum absolute value of the whole WP decomposed image is searched and denoted by

T0 = max
i;j

j xi;j j;

where xi;j denotes the jth coe�cient of band Bi. The quantization step size (or called the signi�cance threshold) of
layer s = 1; 2; � � � ; S is set to

Ts = T0 � 2�s:
Note that the signi�cance threshold value is reduced by one half for each further re�nement so that successive
quantization can be conveniently performed. TS corresponds to the �nest quantization step.

Step 3: Layered Arithmetic Coding

The whole WP image is scanned using a depth-�rst order as shown in Fig. 5(a). We start with the �rst layer
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Figure 3: Performance comparison of Barbara image for (a) R-D optimized wavelet packet (WP) coder with �̂2mae

(solid line), (b) R-D optimized WP coder with �̂2mse (dashed line), (c) LZC (dash dotted line), (d) JPEG (dotted
line), (e) EZW (`o'), (f) single tree SFQ (`x'), and (g) double tree SFQ (`+').

of the wavelet coe�cients. The scanning order is determined by the band order LL, LH, HL and HH within the
same scale and by the raster line order within each WP band. It should be pointed out that the scanning order is
completely speci�ed by the WP decomposition so that no additional information has to be transmitted besides the
WP decomposition structure. The most signi�cant bit of each scanned wavelet coe�cient

si =

�
0; j xi j� T1;
1; j xi j> T1

is encoded with a context adaptive arithmetic coder. Generally speaking, the context consists of 7 bits as denoted
by `A' to `G' in Fig. 5(b). Among the 7 bits, `A'-`F' represent the intraband context. They are characterized by the
status of the neighboring wavelet coe�cients in the same WP band. Note also that `A' to `D' are scanned before the
current coding position `*' so that they are values from the current coding layer while `E' and `F' are scanned after
`*' so that their values are actually obtained from the previous coding layer. The context value `G' represents the
interband relationship. It contains the bit value of the wavelet coe�cient of the same layer at the same space location
but in the parent band of the current coding position. The parent band is de�ned to be the WP subband at the same
direction but at a coarse scale. One example of the parent-child relationship of the WP bands is depicted in Fig. 5(b).
The parent-child relationship is uniquely speci�ed by the WP decomposition so that no overhead information has to
be transmitted.

The 7-bit context arithmetic coder uses the 7 scale/space neighboring bit informations (i.e. `A'-`G') to classify
the current position `*' into 27 = 128 categories, and assign a separate adaptive arithmetic coder to each category.
The context adaptive arithmetic coder is much more e�cient than the coder using only the zerotree structure [14]
since the latter can be viewed as a special case of using only context `G'.

For bit layer s > 1, we further divide the coding of the bits into two phases: signi�cance and re�nement codings,
since they have very di�erent rate-distortion (RD) characteristics. We always put the signi�cance coding phase before
the re�nement coding phase in the same layer for better coding performances[8]. If the current position is encoded
with all zeros in the previous layers, we have to identify in the current layer whether the coe�cient becomes non-zero,
or signi�cant, and the coding is called the signi�cance coding. In the signi�cance coding phase, we encode the bit
in the current layer s in the same way as we do for layer 1. For coe�cient which becomes signi�cant (non-zero),
its sign (`+' or `-') is arithmetically encoded as well. For the position which is already identi�ed as signi�cant in a
certain previous layer, the coding of its current `0' or `1' gives the re�nement subinterval of coe�cient residuals and
is called the re�nement coding. It is also arithmetically encoded with a special context.

The above coding procedure repeats until the allocated coding bit rate is reached, or the desired coding layer is



(a) (b)

Figure 4: Experimental results for Barbara of (a) the coded image with LZC, and (b) the coded image with R-D
optimized wavelet packet transform.

Table 1: Coding performance comparison of the Babara image.

Rate(bpp) WP (MSE) WP (MAE) JPEG EZW LZC ST + SFQ DT + SFQ

0.125 26.29 26.43 23.59 - 24.97 - -
0.25 29.16 29.43 25.58 26.77 28.37 27.32 27.85
0.5 32.65 33.23 28.63 30.53 32.40 31.53 32.13

1.0 37.14 37.79 33.61 35.14 37.29 37.13 37.58

reached, or the MSE of the quantized wavelet coe�cient is smaller than a certain assigned threshold. The coding
bitstream of the proposed WP coder has the embedding property. That is, the bit stream can be truncated at any
point to result in a decoded image without truncation artifact.

6 EXPERIMENTAL RESULTS

Experimental results are given in this section to demonstrate the performance of the proposed R-D optimized
wavelet packet coder.

6.1 Still image compression

We compare the performance of the proposed WP coder with a number of state-of-the-art compression algorithms,
including JPEG [7], the embedded zero tree wavelet coding (EZW) [14], the layered zero coding (LZC) [16] and the
space-frequency quantization (SFQ) WP coding [12]. Both decomposition algorithms examined in [12], i.e. the single
tree (ST) and the double tree (DT) decompositions, are included in the comparison.

The �rst test image is \Barbara" of size 512�512. We compare the proposed WP image coder with the comparison
coders mentioned above. For WP decompositions, two R-D models D = Dmax2

��R with Dmax estimated by the
mean square error (MSE) �̂2mse and the mean absolute error (MAE) �̂2mae of wavelet coe�cients in a WP band
are compared. Experimental results are given in Table 1 and Fig. 3. We see from the �gure that the MAE estimate
always outperforms the MSE estimate, which implies that wavelet coe�cients can be well modeled by a Laplacian
density function. Therefore, in the following experiments, Dmax is chosen to be �̂2mae. It is not surprising to see



Table 2: Coding performance for test images: Lena, Baboon, Boat and Creek.

Rate(bpp) PSNR(dB) of our scheme for PSNR(dB) of LENA for
Lena Baboon Boat Creek EZW SFQ LZC

0.0625 28.34 19.75 26.54 22.12 - - -
0.125 31.17 20.65 29.11 23.33 30.23 - 30.96
0.25 34.23 22.19 32.15 24.99 33.17 34.24 34.12
0.5 37.28 24.14 36.07 27.09 36.28 37.31 37.25

Table 3: Comparison of video coding algorithms (PY: pyramid wavelet, WP: wavelet packet).

Video Average PSNR (dB) Average Bit Rate (bpp)
sequence MPEG1 PY WP

Flower 26.10 27.93 28.12 0.625
Mobile 25.59 27.61 28.23 0.797
Football 29.74 31.54 31.54 0.266

Table Tennis 28.87 29.85 29.86 0.219
Cheer 27.07 27.96 28.35 0.535
Bicycle 26.91 28.49 28.92 0.638

JPEG performs the worst among the methods in comparison. It basically serves as a reference point for the coding
performance improvement. The new R-D optimized WP coder outperforms EZW and LZC by 2.5-2.8 dB and 0.5-1.0
dB, respectively. Since the layered zero coder used in our WP coder is very similar to the one in LZC, the gain
of the new WP coder over LZC is mainly due to the R-D optimized WP decomposition. An enlarged portion of
the encoded Barbara image with LZC and our coder is compared in Fig. 4(a) and (b). The image encoded by the
R-D optimized WP coder provides a better visual quality at the texture dominant regions such as the trousers and
table clothes. The performance advantage of our algorithm over the SFQ WP coder is 0.2dB at 1.0bpp and 1.6dB
at 0.25bpp while the computational complexity of our coder is much less. Note also that the SFQ WP coder does
not have the embedding property.

The second set of test images consists of four images of \Lena", \Baboon", \Boat" and \Creek" of size 512�512.
Results are summarized in Table. 2. For image \Lena", our algorithm outperforms EZW by about 1.0dB, slightly
outperforms the LZC by 0.03-0.21dB, and but is inferior to SFQ by 0.01-0.03dB. Note that the WP decomposition
of \Lena" is close to the pyramidal structure. However, the R-D optimized WP decomposition still provides a gain
over LZC with the pyramidal wavelet decomposition.

6.2 Video compression

For video compression, we apply the overlapped block motion compensation (OBMC) technique [10] and use the
R-D optimized WP coder to encode the residue. Since the residue error after motion compensation has substantial
middle frequency components, it is expected that an adaptive WP decomposition would perform better than a �xed
pyramidal decomposition. Six test images sequences, i.e. \Flower", \Mobile", \Football", \Table Tennis", \Cheer"
and \Bicycle" of the CIF format (360� 240 pixels) were used in the experiment. The �rst frame of each sequence is
coded with the intra-coding mode (i.e. treated as the I frame) while the remaining frames are coded with forward
prediction (i.e. treated as the P frame). The performance comparison of MPEG1, the pyramid-structured wavelet
residual coder (PY) and the R-D optimized WP residual coder is summarized in Table 3. Since both wavelet coders
are embedded coders, we can adjust their bit rates to be the same as that of MPEG1. The table shows that the
WP coder signi�cantly outperforms MPEG1 with a gain of 1.0 to 2.7dB. The WP coder also outperforms the PY
coder by 0.2dB, 0.6dB, 0.4dB, 0.4dB for \Flower", \Mobile", \Cheer" and \Bicycle" sequences, respectively. For
\Football" and \Table Tennis", the performances of the WP and the PY coders are about the same. We conclude



that the performance of the WP coder is often better than that of the pyramid wavelet coder for motion compensated
residual coding.

7 CONCLUSIONS

A new rate-distortion (R-D) optimized wavelet packet (WP) decomposition has been studied in this work. We
analyzed the R-D performance of the wavelet coe�cient coding and showed that it satis�es an exponential R-D
relationship with a nearly constant decaying parameter �. Thus, the constant R-D slope criterion for optimum bit
allocation can be converted to the constant distortion criterion, which can be implemented more conveniently. The
layered zero coding technique is used to encode the coe�cients obtained from the R-D optimized WP decomposition.
The superior performance of the R-D optimized WP coder for still image and video coding is demonstrated by
extensive experimental results. It turns out to be competitive to any state-of-the-art coders.
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