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3 An invariant of finitary codes with finite

expected square root coding length

Nate Harvey∗ Yuval Peres†

July 7, 2003

Abstract

Let p and q be probability vectors with the same entropy h. Denote
by B(p) the Bernoulli shift indexed by Z with marginal distribution p.
Suppose that ϕ is a measure preserving homomorphism from B(p) to
B(q). We prove that if the coding length of ϕ has a finite 1/2 moment,
then σ2

p = σ2
q , where σ2

p =
∑

i pi(− log pi − h)2 is the informational

variance of p. In this result, the 1/2 moment cannot be replaced
by a lower moment. On the other hand, for any θ < 1, we exhibit
probability vectors p and q that are not permutations of each other,
such that there exists a finitary isomorphism Φ from B(p) to B(q)
where the coding lengths of Φ and of its inverse have a finite θ moment.
We also present an extension to ergodic Markov chains.

1 Introduction

Let A = {α0, . . . , αa−1} be a finite alphabet and p = (p0, . . . , pa−1) a prob-
ability vector with entropy h(p) =

∑a−1
i=0 −pi log(pi). Consider the Bernoulli

shift B(p) = (X,A,P, T ), where X = AZ is equipped with the prod-
uct σ-algebra A, the product measure P = pZ and the left shift T . Let
B = {β0, . . . , βb−1} be another finite alphabet, and q = (q0, . . . , qb−1) a prob-
ability vector; denote by B(q) = (Y,B,Q, T ) the corresponding Bernoulli
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shift. A homomorphism ϕ from B(p) to B(q) is a measurable map from
X to Y , defined P-a.e., such that Pϕ−1 = Q and ϕT = Tϕ P-a.e.. An iso-

morphism is an invertible homomorphism. A homomorphism ϕ from B(p)
to B(q) is finitary if there exists a set W ⊆ X with P(W ) = 1, that has the
following property: for all x ∈ W there exists n = n(x) such that if x̃ ∈ W
and x̃i = xi for all −n ≤ i ≤ n, then (ϕ(x))0 = (ϕ(x̃))0. We write Nϕ(x)
for the minimal such n, and call Nϕ(x) the coding length of ϕ. A finitary

isomorphism is an invertible finitary homomorphism whose inverse is also
finitary.

By the Kolmogorov-Sinai Theorem (see, e.g., [10]), if B(p) and B(q) are
isomorphic, then h(p) = h(q). The converse was established by Ornstein [6].
Keane and Smorodinsky [3] proved that if h(p) = h(q), then there exists a
finitary isomorphism from B(p) to B(q). Parry [8] and Schmidt [11] showed
that if a finitary isomorphism from B(p) to B(q) has finite expected coding
length in both directions, then p and q must be permutations of each other.

In this paper, we prove that the informational variance of p,

σ2
p =

a−1∑

i=0

pi

(
− log(pi) − h(p)

)2

is an invariant of isomorphisms ϕ that satisfy E
(
N

1/2
ϕ

)
<∞. More precisely:

Theorem 1 Let p and q be probability vectors that satisfy h(p) = h(q) and
σ2

p 6= σ2
q . Then there exists a constant cp,q > 0 such that for any finitary

homomorphism ϕ from B(p) to B(q), we have

lim inf
n→∞

E(Nϕ ∧ n)√
n

≥ cp,q

and consequently, E
(
N

1/2
ϕ

)
= ∞.

(Here and throughout, E denotes expectation with respect to P = pZ.)
The exponent 1/2 in the theorem is sharp, since Meshalkin [5] (see §3)

constructed a finitary isomorphism ϕ from B(p) for p =
(

1
2
, 1

8
, 1

8
, 1

8
, 1

8

)
to

B(q) for q =
(

1
4
, 1

4
, 1

4
, 1

4

)
, where P[Nϕ > k] equals the probability that a

simple random walk remains positive for k steps. Thus for Meshalkin’s code,
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0 < limk P[Nϕ > k]
√
k < ∞, whence E

(
N θ

ϕ

)
< ∞ for all θ < 1/2. Clearly

σq < σp in this case, so Meshalkin’s code is essentially optimal.
The assumption that σ2

p 6= σ2
q in Theorem 1 cannot be dropped, as shown

by our next result.

Theorem 2 For any 0 < θ < 1, there are probability vectors p and q where
p is not a permutation of q, such that there exists a finitary isomorphism Φ
from B(p) to B(q) that satisfies E(N θ

Φ) <∞ and EQ(N θ
Φ−1) <∞.

Theorem 1 is proved in the next section. In §3 we recall Meshalkin’s
isomorphism, and describe an adaptation of Meshalkin’s code which moti-
vates Theorem 2. In §4 we define a class of matchings useful for the proof of
Theorem 2, and in §5 we prove the theorem. In §6 we define informational
variance for ergodic Markov chains, and present an extension of Theorem 1
to this setting.

2 Proof of Theorem 1

With the notation of the introduction in force, we may assume that the
probability vectors p and q satisfy pi > 0 for all 0 ≤ i < a and qj > 0 for
all 0 ≤ j < b. Let ϕ be a finitary homomorphism from B(p) to B(q). For
x = (xk)k∈Z ∈ X, write Xi(x) = − log(p(xi)) − h(p), where p(αj) = pj for
any j. Similarly, if ϕ(x) = y = (yk)k∈Z ∈ Y , let Yi(x) = − log(q(yi)) − h(q).
Since ϕP−1 = Q, it follows that E(Xi) = E(Yi) = 0. Let Sn =

∑n
i=1Xi and

Rn =
∑n

i=1 Yi. Write t+ = max{t, 0}.

Lemma 3 If σ2
p 6= σ2

q , then

lim inf
n→∞

1√
n
E(Rn − Sn)+ ≥ |σq − σp|√

2π
.

Proof. By a version of the central limit theorem (see [12], Cor. 2.1.9),

lim
n→∞

E
(R+

n√
n

)
=

σq√
2π

∫ ∞

0

te−
t2

2 dt =
σq√
2π

,

and similarly

lim
n→∞

E
( S+

n√
n

)
=

σp√
2π

.
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Since (Rn − Sn)+ ≥ R+
n − S+

n , we infer that

lim inf
n→∞

1√
n
E(Rn − Sn)+ ≥ σq − σp√

2π
(1)

and similarly

lim inf
n→∞

1√
n
E(Sn − Rn)+ ≥ σp − σq√

2π
. (2)

If σq > σp, then (1) proves the lemma. In the remaining case, σp > σq,
the assertion of the lemma follows from (2) by taking expectations in the
identity

(Rn − Sn)+ = (Rn − Sn) + (Sn − Rn)+ .

�

Lemma 4 Let ϕ be a finitary homomorphism from B(p) to B(q). Denote
λq = max{− log(qj) : 0 ≤ j ≤ b− 1}. Then for all n,

E(Rn − Sn)+ ≤ 2λqE(Nϕ ∧ n) .

Proof. Let

In = In(x) =
{
i ∈ {1, . . . , n} : Nϕ(T ix) > min{i, n+ 1 − i}

}

and denote Jn = {1, . . . , n} \ In. Observe that

E|In| =
n∑

i=1

P(i ∈ In) ≤ 2
n∑

i=1

P(Nϕ ≥ i) ≤ 2E(Nϕ ∧ n) . (3)

Fix x ∈ X and let y = ϕ(x). Since
{
x̃ ∈ X : (x̃1, . . . , x̃n) = (x1, . . . , xn)

}
⊂ ϕ−1

{
ỹ ∈ Y : ỹj = yj ∀j ∈ Jn

}
,

it follows that

P
{
x̃ ∈ X : (x̃1, . . . , x̃n) = (x1, . . . , xn)

}
≤ Q

{
ỹ ∈ Y : ỹj = yj ∀j ∈ Jn

}
.

Taking logarithms, this implies that

n∑

k=1

log p(xk) ≤
n∑

k=1

log q(yk) −
∑

i∈In

log q(yi) ≤
n∑

k=1

log q(yk) + λq|In| .
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Since h(p) = h(q), we deduce from the last equation and the definitions
of Rn and Sn that Rn − Sn ≤ λq|In|, whence by (3),

E(Rn − Sn)+ ≤ λqE|In| ≤ 2λqE(Nϕ ∧ n) .

�

Proof of Theorem 1. Lemmas 3 and 4 imply that

lim inf
n→∞

E(Nϕ ∧ n)√
n

≥ |σq − σp|
2λq

√
2π

> 0 , (4)

so it only remains to verify the final assertion of the theorem.
Observe that Nϕ ∧ n ≤

√
Nϕn and (Nϕ ∧ n)/

√
n→ 0 P-a.e.

If we had E
(√

Nϕ

)
<∞, then we could deduce by dominated convergence

that E(Nϕ ∧ n)/
√
n→ 0, which contradicts (4). Thus E

(√
Nϕ

)
= ∞. �

A similar idea was used in a different context by Liggett [4].

3 Motivating examples and heuristics

Meshalkin’s coding

First, we briefly recall the Meshalkin isomorphism [5]. Let B(r) be the
Bernoulli shift on the alphabet A1 = {α1, . . . , α5} for r =

(
1
2
, 1

8
, 1

8
, 1

8
, 1

8

)

and let B(s) be the Bernoulli shift on the alphabet B1 = {β1, . . . , β4} for
s =

(
1
4
, 1

4
, 1

4
, 1

4

)
. We represent the symbols of A1 as

α1 = 0 , α2 = 1
0
0

, α3 = 1
0
1

, α4 = 1
1
0

, α5 = 1
1
1

,

The symbols of B1 are represented as:

β1 = 0
0

, β2 = 0
1

, β3 = 1
0

, β4 = 1
1

,

The Meshalkin finitary isomorphism ϕ fromB(r) toB(s) can be described
in two equivalent ways. Given a sequence x = (xj)j∈Z ∈ AZ

1 , denote by ℓi
the length of the binary representation of xi ∈ A1. The random walk

5



description of ϕ is obtained by defining, for each i with ℓi = 1,

m(i) = min
{
m ≥ i :

m∑

j=i

(ℓi − 2) = 0
}
. (5)

Observe that m(·) is an injective map from {i ∈ Z : ℓi = 1} onto {j ∈ Z :
ℓj = 3}. For each i ∈ Z with ℓi = 1, remove the bottom bit from xm(i) and
append it at the bottom of xi. This produces two symbols from B1 that are
denoted ym(i) and yi, respectively. Set ϕ(x) = y = (yj)j∈Z.

Alternatively, we have an equivalent inductive construction of ϕ:
Step 1: For each i ∈ Z such that ℓi = 1 and ℓi+1 = 3, send the bottom
bit of xi+1 below xi, output the resulting B1 symbols and remove from

consideration both i and i+ 1.

For each n ≥ 2, perform:
Step n: For all i ∈ Z such that ℓi = 1, ℓi+n = 3 and i, i + n have not been
removed from consideration, send the bottom bit of xi+n below xi, output
the corresponding B1 symbols and remove from consideration both i and
i+ n.

An adaptation of Meshalkin’s coding

Next we describe informally a variant of the coding above, which we will
generalize in §5 to prove Theorem 2. Consider the random walk where each
increment Xi has P(Xi = 1) = P(Xi = 3) = 1

2
. The moment generating

function is

Γ(z) = E(zXi) =
z + z3

2
.

Consider also the walk where each increment Yi equals 2 with probability 1.
This has moment generating function

∆(z) = E(zYi) = z2.

These walks count the accumulated information for the Bernoulli shifts B(r)
and B(s), where r =

(
1
2
, 1

8
, 1

8
, 1

8
, 1

8

)
and s =

(
1
4
, 1

4
, 1

4
, 1

4

)
as in Meshalkin’s cod-

ing. The entropy equality h(r) = h(s) corresponds to the identity Γ′(1) =
∆′(1) while the inequality of informational variance corresponds to the in-
equality Γ′′(1) 6= ∆′′(1). The identity

Γ2(z) − ∆2(z) =
1

2

(
Γ
(
z2
)
− ∆

(
z2
))
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underlies the construction below. We add markers α0 and β0, respectively, to
the alphabets A1 and B1 described above. Let B(p) be the Bernoulli shift on
the alphabet A = {α0, . . . , α5} = {α0}∪A1, with associated probability vec-
tor p =

(
1
2
, 1

4
, 1

16
, 1

16
, 1

16
, 1

16

)
. Let B(q) be the Bernoulli shift on the alphabet

B = {β0, . . . , β4} with associated probability vector q =
(

1
2
, 1

8
, 1

8
, 1

8
, 1

8

)
.

Next we construct Φ, a finitary isomorphism from B(p) to B(q):
Step 0: If xi = α0, let (Φ(x))i = β0; that is, send markers to markers.
Step 1: Match the non-marker locations in pairs. Suppose that i is paired
with j. If ℓi 6= ℓj , we can assume that ℓi = 1 and ℓj = 3 (otherwise reverse
the roles). Remove the bottom bit of xj and append it below xi, output the
resulting B symbols, and remove from consideration both i and j. If
ℓi = ℓj , then do not remove i and j from consideration.

For each n ≥ 2, perform:
Step n: The locations which we have not removed from consideration are
grouped in 2n−1- tuples. Each such 2n−1-tuple is either of type 3 (which we
define to mean that for every location i within the tuple ℓi = 3), or of type
1. Using the markers, match the 2n−1-tuples which have not been removed
from consideration in pairs to form 2n-tuples. If a 2n−1-tuple ξ3 of type 3 is
matched with a 2n−1-tuple ξ1 of type 1, remove the bottom bit from each xi

in ξ3, and append it to the corresponding symbol in ξ1. Finally, output the
symbols of B thus generated, and remove these locations from consideration.

The coding length for the isomorphism described above has essentially
the same tails as Meshalkin’s. To explain this, observe that the probability
Fk that a symbol at the origin is not coded during the first k pairing stages
is approximately 2−k (the approximation is due to parity problems caused by
markers.) After the kth pairing stage, only about 1/2k of the symbols remain
uncoded, and these symbols are grouped into 2k-tuples. Thus heuristically,
the event Fk corresponds to an expected coding distance of order 4k. This
suggests that P(NΦ > t) ≈ t−

1

2 . Indeed, for this example, Theorem 1 implies

that E(N
1/2
Φ ) = ∞ and the proof of Theorem 2 will show that E(N θ

Φ) < ∞
for all θ < 1/2.
An example with 3/4 − ǫ moments: heuristics. Consider different
probability vectors p and q, chosen so that the random walks counting the
accumulated information of non-marker symbols have moment generating

7



functions

Γ(z) =

((
1 + z

2

)4

+

(
1 − z

2

)4
)
z3 (6)

and

∆(z) =

((
1 + z

2

)4

−
(

1 − z

2

)4
)
z3 , (7)

respectively. Then

Γ2(z) − ∆2(z) =
1

8

(
Γ
(
z2
)
− ∆

(
z2
))
.

This example is the case n = 2 of the sequence of examples analyzed in §5;
see (13) and (14).

Define a finitary coding Φ from B(p) to B(q) by adapting the recipe above
(see §4 and §5 for details). To estimate the tails of NΦ, start by observing
that the probability that a symbol is not coded during the first k pairing
stages is about 8−k. At that stage, symbols are grouped into 2k-tuples, and
only 1/8k of them remain uncoded, so heuristically, this event corresponds
to an expected coding distance of order 16k. This suggests that

P(NΦ > t) ≈ t−
3

4 .

Indeed, for this example we will show in §5 that E(N θ
Φ) <∞ for all θ < 3/4.

This is consistent with Theorem 1, since the identities Γ′(1) = ∆′(1) and
Γ′′(1) = ∆′′(1) indicate that p and q have the same entropy and the same
informational variance.

4 Ordered measure preserving matchings

In this section, we define a type of matching which we will employ in our
constructions in §5, and derive some useful properties of these matchings.
Let C = {γ1, . . . , γc} and D = {δ1, . . . , δd} be finite alphabets, and let r =
(r(γ1), . . . , r(γc)) and s = (s(δ1), . . . , s(δd)) be probability vectors. Let

Γ∗
k = Γ(k,C, r) =

∑
C{r(γi) : r(γi) = 2−k}

and

∆∗
k = ∆(k,D, s) =

∑
D{s(δj) : s(δj) = 2−k}.

8



Define an order relation ≺ on C such that γ1 ≺ · · · ≺ γc and an order
relation ≺ on D such that δ1 ≺ · · · ≺ δd. Endow C×C with the lexicographic
ordering, i.e., define γiγj ≺ γmγn if γi ≺ γm or if γi = γm and γj ≺ γn.
Similarly, endow D × D with the lexicographic ordering ≺.

Let r(γiγj) = r(γi)r(γj) and s(δiδj) = s(δi)s(δj). We define the maximal

ordered measure preserving matching (mompm) ψ = ψ(C,D,r,s) from
C ×C to D × D given (r, s) as follows:

For all t ∈ R, write the ordered set {x ∈ C × C : r(x) = t} in increasing
order as {xt(i) : 1 ≤ i ≤ ℓt}, and similarly, write the ordered set {y ∈ D×D :
s(y) = t} in increasing order as {yt(i) : 1 ≤ i ≤ mt}, assuming these sets are
non-empty. Define ψ(xt(i)) = yt(i) for 1 ≤ i ≤ min{ℓt, mt}.

Let E = E(C,D, r, s) be the set in C × C where ψ is defined. Let
F = F (C,D, r, s) = ψ(E). Let G = G(C,D, r, s) = C × C − E. Let
H = H(C,D, r, s) = D × D − F .

Let r̃ = r̃(C,D,r,s) = (r̃(x) : x ∈ G), where r̃(x) = r(x)∑
x̃∈G r(x̃)

and s̃ =

s̃(C,D,r,s) = (s̃(y) : y ∈ H), where s̃(y) = s(y)∑
ỹ∈H s(ỹ)

be the probability vec-

tors induced by (r, s) on G and H .
Let

Υ∗
k = Υ(k,C, r) =

∑
x∈C×C{r(x) : r(x) = 2−k},

Ω∗
k = Ω(k,D, s) =

∑
y∈D×D{s(y) : s(y) = 2−k},

Λ∗
k = Λ(k,C,D, r, s) =

∑
x∈G{r(x) : r(x) = 2−k},

and let

Ξ∗
k = Ξ(k,C,D, r, s) =

∑
y∈H{s(y) : s(y) = 2−k}.

We say that ψ reduces mass by a factor of t if
∑∞

k=0 Λ∗
k = t.

Let

Γ(z) = Γ(C,D, r, s, z) =

∞∑

k=0

Γ∗
kz

k. (8)

Define ∆(z), Υ(z), Ω(z), Λ(z), and Ξ(z) analogously. Then Υ(z) = Γ2(z)
and Ω(z) = ∆2(z). Also, Λ(z) − Ξ(z) = Υ(z) − Ω(z).

Lemma 5 Suppose Γ2(z) − ∆2(z) = tΓ(z2) − t∆(z2). Then:

(i) Λ(z) = tΓ(z2) and Ξ(z) = t∆(z2)

9



(ii) ψ reduces mass by a factor of t.

Proof.

(i) Λ(z) − Ξ(z) = Υ(z) − Ω(z) = Γ2(z) − ∆2(z) = tΓ(z2) − t∆(z2),

hence

Λ(z) = tΓ(z2) (9)

and

Ξ(z) = t∆(z2). (10)

(ii) By (9),

∞∑

k=0

Λ∗
k = t

∞∑

k=0

Γ∗
k = t.

�

Let C1 = C, let D1 = D, let r1 = r, and let s1 = s. Inductively,
let Ci+1 = G(Ci, Di, ri, si), let Di+1 = H(Ci, Di, ri, si), let ri+1 = r̃(Ci,Di,ri,si),
and let si+1 = s̃(Ci,Di,ri,si). Let ψi = ψ(Ci, Di, ri, si). Note that ψi matches 2i-
tuples to 2i-tuples. We call {ψi}i≥1 the sequence of mompm’s associated

to (C,D, r, s). Let Γi(z) = Γ(Ci, Di, ri, si, z). In particular, Γ1(z) = Γ(z)
as defined in equation (8). Define ∆i(z), Υi(z), Ωi(z), Λi(z), and Ξi(z)
analogously.

Inductive application of Lemma 5 gives:

Corollary 6 Suppose Γ2(z) − ∆2(z) = tΓ1(z
2) − t∆1(z

2).

(i) If i ∈ Z+, then Γ2
i (z) − ∆2

i (z) = tΓi(z
2) − t∆i(z

2)

(ii) If i ∈ Z+, then ψi reduces mass by a factor of t.

10



5 A class of codes with finite moments

Finally, we construct a class of examples to prove Theorem 2.
Fix n ∈ Z+.
Let p0 = q0 = 1

2
. Construct p = (1

2
, p1, . . . , pa−1) such that for each

integer m ∈ [0, n], exactly 22m
(

2n
2m

)
of the pi take the value 2−2m−2n. Thus if

for i ≥ 1, we denote r(αi) = 2pi, then

Γ∗
2m+2n−1 =

∑

i

{r(αi) : r(αi) = 2−(2m+2n−1)} =
1

22n−1

(
2n

2m

)
(11)

for all m ∈ Z such that 0 ≤ m ≤ n. Define Γ∗
k = 0 for all other k.

Similarly, for j ≥ 1, denote s(βj) = 2qj and construct q = (1
2
, q1, . . . , qb−1)

such that

∆∗
2m+2n =

∑

j

{s(βj) : s(βj) = 2−(2m+2n)} =
1

22n−1

(
2n

2m+ 1

)
(12)

for all m ∈ Z such that 0 ≤ m ≤ n− 1, and define ∆∗
k = 0 for other k.

Let B(p) be the Bernoulli shift with probability vector p on the alphabet
A = {α0, . . . , αa−1}. Let B(q) be the Bernoulli shift with probability vector
q on the alphabet B = {β0, . . . , βb−1}.

Let C = {α1, . . . , αa−1} and let D = {β1, . . . , βb−1}. Consider the proba-
bility vectors r = (r(αi) : 1 ≤ i ≤ a− 1) and let s = (s(βj) : 1 ≤ j ≤ b− 1).
Relative to these, define all other terms as in §4.

Lemma 7 If i ∈ Z+, then ψi reduces mass by a factor of 1
22n−1 .

Proof. Recall that Γ(z) =
∑∞

k=0 Γ∗
kz

k and ∆(z) =
∑∞

k=0 ∆∗
kz

k. By the
binomial theorem and equations (11) and (12), we find that

Γ2(z) − ∆2(z) = (Γ(z) − ∆(z))(Γ(z) + ∆(z))

= 2
(1 − z

2

)2n

z2n−12
(1 + z

2

)2n

z2n−1

=
1

22n−1
2
(1 − z2

2

)2n

z4n−2

=
1

22n−1

(
Γ
(
z2
)
− ∆

(
z2
))
,

so the desired result holds by Corollary 6. �
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Example

When n = 2, we may let A = {α0, . . . , α41}; B = {β0, . . . , β40}; p =
(p0, . . . , p41) such that p0 = 2−1, p1 = 2−4, p2 = · · · = p25 = 2−6, and
p26 = · · · = p41 = 2−8; and q = (q0, . . . , q40) such that q0 = 2−1, q1 = · · · =
q8 = 2−5, and q9 = · · · = q40 = 2−7.

Taking logarithms to base 2, h(p) = h(q) = 7
2

and σ2
p = σ2

q = 27
4
, hence

Theorem 1 does not apply. These vectors correspond to the generating func-
tions in (6) and (7). We find that

(
Γ∗

3,Γ
∗
5,Γ

∗
7

)
=
(1

8
,
3

4
,
1

8

)
(13)

(
∆∗

4,∆
∗
6

)
=
(1

2
,
1

2

)
(14)

(
Υ∗

6,Υ
∗
8,Υ

∗
10,Υ

∗
12,Υ

∗
14

)
=
( 1

64
,

3

16
,
19

32
,

3

16
,

1

64

)
(15)

(
Ω∗

8,Ω
∗
10,Ω

∗
12

)
=
(1

4
,
1

2
,
1

4

)
(16)

(
Λ∗

6,Λ
∗
10,Λ

∗
12

)
=
( 1

64
,

3

32
,

1

64

)
(17)

(
Ξ∗

8,Ξ
∗
12

)
=
( 1

16
,

1

16

)
. (18)

Definition of Φ
For x = (xk)k∈Z ∈ X = AZ, define a j-marker as a run of at least

2nj consecutive α0 symbols. Define a j-gap as the location of the non-α0

symbols between neighboring j-markers.
Let Gj,0 = {g(j, 0, 1), . . . , g(j, 0, ℓj,0)} be the ordered elements (from left

to right) of the j-gap containing min{i ≥ 0 : xi 6= α0}. More generally, let
Gj,i = {g(j, i, 1), . . . , g(j, i, ℓj,i)} be the ordered elements of the ith j-gap to
the right of Gj,0 (to the left if i < 0).

Step 0: If xi = α0, let (Φ(x))i = β0.
Step 1: Within each 1-gap, match the elements in pairs, starting from

the left (g(1, i, 1) with g(1, i, 2), g(1, i, 3) with g(1, i, 4), etc.). All the elements
will be paired except possibly g(1, i, ℓ1,i).

If ψ1(xg(1,i,2k+1)xg(1,i,2k+2)) is defined, then let
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(Φ(x))g(1,i,2k+1)(Φ(x))g(1,i,2k+2) = ψ1(xg(1,i,2k+1)xg(1,i,2k+2)),

and remove from consideration g(1, i, 2k + 1) and g(1, i, 2k + 2).
Starting from the left, match the pairs which have not been removed from

consideration into quartets. If ψ2 of the symbols at the position of a quartet
is defined, output the result in the position of the quartet and remove the
elements of the quartet from consideration.

Iterate, matching 2k−1-tuples which have not been removed from consid-
eration into 2k-tuples and applying ψk, until 2k > ℓ1,i.

For each j ≥ 2, do the following:

Step j: Within each j-gap, starting from the left, match into pairs any
elements in Gj,i which were not paired in any of the previous steps, and apply
ψ1 as in Step 1.

Match into quartets any previously unmatched pairs (including the pairs
just created) which have not been removed from consideration, and apply
ψ2, etc., iterating until 2k > ℓj,i.

When n = 1, this is the code described in §3. The next two lemmas are
needed as preparation for bounding the tails of NΦ.

Lemma 8 If f(x) = ℓ−1
j,01[x0 6=α0], then E(f) = 2−2nj−1.

Proof. The sum
∑M

m=1 f(Tmx) differs from the number of j-gaps in
[1,M ] by at most 2. Counting j-gaps in [1,M ] is equivalent to counting
runs of 2nj marker symbols followed by a non-marker symbol; such strings
have asymptotic frequency 2−2nj−1. Taking the limit of 1

M

∑M
m=1 f(Tmx) as

M → ∞, the ergodic theorem yields the assertion. �

Lemma 9 For j ≥ 1 Let Lj,i = 2nj+g(j, i, ℓj,i)−g(j, i, 1) denote the “span”
of the ith j-gap. If θ < 1, then

E
(
(Lj,0 − Lj−1,0)

θ | x0 6= α0

)
≤ 2(2+2nj)θ .

Proof. The expected distance between the beginnings of successive j-gaps
is 21+2nj by Kac’s Theorem (see [10], p. 46), whence

E
(
Lj,0 − Lj−1,0 | x0 6= α0

)
≤ 22+2nj .

The assertion of the lemma follows by Jensen’s inequality. �

13



Lemma 10 If θ < 1 − 1
2n

, then E(NΦ(x))θ <∞.

Proof. Recall Lj,i from the previous lemma and define L0,i = 0. If Step j
determines (Φ(x))0, then NΦ(x) ≤ Lj,0. Let Aj be the event that Steps 1 to
j do not determine (Φ(x))0.

Let Bj be the event that the 0th coordinate is matched at least j times
by the end of Step j, but (Φ(x))0 has not yet been determined. Let Cj be
the event that at the end of Step j, the 0th coordinate has been matched at
most j − 1 times (so it is not part of a 2j-tuple). Clearly, for each j ≥ 1,

P(Aj) ≤ P(Bj) + P(Cj) . (19)

Every time an undetermined coordinate is matched, the probability that
it remains undetermined is 1

22n−1 , whence

P(Bj) ≤
( 1

22n−1

)j

. (20)

Since, for all k and j, at most one 2k-tuple in Gj,0 is unmatched at the
end of Step j, it follows that

P(Cj) ≤ E
(∑j−1

k=0 2k

ℓj,0
| x0 6= α0

)
≤ 2j

( 1

22n

)j

=
( 1

22n−1

)j

by Lemma 8. Thus

P(Aj) ≤ 2
( 1

22n−1

)j

.

Therefore

E(NΦ(x))θ ≤
∞∑

j=1

P(Aj−1)E
(
Lθ

j,0 − Lθ
j−1,0 | Aj−1

)

≤
∞∑

j=1

2

(
1

22n−1

)j

E
(
(Lj,0 − Lj−1,0)

θ | Aj−1

)

Conditional on the event that x0 6= α0, the random variable (Lj,0−Lj−1,0)
is independent of the event Aj−1, hence by Lemma 9,

E(NΦ(x))θ ≤
∞∑

j=1

2
( 1

22n−1

)j

E
(
(Lj,0 − Lj−1,0)

θ | x0 6= α0

)
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≤
∞∑

j=1

2
( 1

22n−1

)j

4(22n)jθ = 8
∞∑

j=1

( 1

22n−1

)j

(
1− 2nθ

2n−1

)

<∞.

�

A similar argument gives:

Lemma 11 If θ < 1 − 1
2n

, then EQ(NΦ−1(x))θ <∞.

Proof of Theorem 2. By Lemmas 10 and 11, it only remains to verify
that Φ is an isomorphism. Since Φ is finitary, it gives an a.e. defined map
from B(p) to B(q). As our definition of (Φ(x))i depends only on the position
of i within its j-blocks, Φ is translation invariant. Since each ψk is a one-
to-one measure preserving matching from previously uncoded sequences to
previously uncoded sequences, it follows that Φ is measure preserving and
invertible. More precisely, for P-a.e. x ∈ X and any n ≥ 1, all the symbols
in the string (x−n, . . . , xn) get coded within a finite distance. This means

that the cylinder set
{
x̃ ∈ X : (x̃−n, . . . , x̃n) = (x−n, . . . , xn)

}
is partitioned

into countably many cylinder sets Cj (and a set of measure zero); each Cj is
mapped, using one of our matchings ψk(j), to a cylinder set Φ(Cj) in Y with
Q(Φ(Cj)) = P(Cj). This completes the proof.

�

6 Extension to ergodic Markov chains

Let A = {α0, . . . , αa−1} be a finite alphabet and let p = (p(αi, αj))0≤i,j≤a−1

be an irreducible stochastic matrix. The associated Markov chain M(p)
is ergodic and has a (strictly positive) unique stationary distribution p̃ =
(p̃(α0), . . . , p̃(αa−1)). Similarly, let B = {β0, . . . , βb−1} be a finite alphabet
and let q = (q(βi, βj))0≤i,j≤b−1 be a stochastic matrix such that M(q) is
ergodic with unique stationary distribution q̃ = (q̃(β0), . . . , q̃(βb−1)). The
Markov chain M(p) has entropy

h(p) =
∑

0≤i,j≤a−1

−p̃(αi)p(αi, αj) log p(αi, αj) .

15



We will assume that h(p) = h(q). Let ϕ be a finitary homomorphism from
M(p) to M(q). For x = (xk)k∈Z ∈ AZ, let Xi(x) = − log(p(xi−1, xi)) − h(p).
Similarly, if ϕ(x) = y = (yk)k∈Z ∈ BZ, let Yi(x) = − log(q(yi−1, yi)) − h(q).
Let Sm,n =

∑n
i=m+1Xi and let Rm,n =

∑n
i=m+1 Yi. Since ϕ is measure

preserving, it follows that E(Xi) = E(Yi) = 0. Let

λp = max
0≤i,j≤a−1

{− log(p(αi, αj)) : p(αi, αj) 6= 0} ,

and let γp = max0≤i≤a−1{− log(p̃(αi))}.
The following central limit theorem can be found, e.g., in [1], p. 422 under

an additional aperiodicity assumption, and in [2] in much greater generality.
For the reader’s convenience, we include a brief proof.

Lemma 12 If M(p) is an ergodic Markov chain on a finite alphabet, then
there exists a constant σp ≥ 0 depending only on p such that

S0,n√
n

⇒ χσp in
law, where χ denotes a standard normal variable.

We define σ2
p to be the asymptotic informational variance of p.

Proof. For any x ∈ AZ, let T0 = min{t > 0 : xt = α0}. Inductively, for
i ≥ 0, let Ti+1 = min{t > Ti : xt = α0}. The increments Ti − Ti−1 are i.i.d.
and have exponential tails. The partial sums {STi−1,Ti

}i≥1 are also i.i.d. Let
dp = E(T1 − T0) > 0. By an application of the ergodic theorem and the law
of large numbers, E(ST0,T1

) = 0. Since |Xi| ≤ λp, it follows that S2
T0,T1

≤
(T1 − T0)

2λ2
p, whence E(S2

T0,T1
) = c2p < ∞. Let Nn = min{m > 0 : Tm ≥ n}.

Since Nn

n/dp
→ 1 in probability, the random index central limit theorem (see

[1], p. 116) states that
ST0,TNn√

n
⇒ cpχ√

dp

. (21)

Define σ2
p =

c2p
dp

. Since E(TNn
− n) ≤ max0≤i≤a−1 E(T0 | x0 = αi) for all

n ∈ Z+, it follows that

E(|S0,n − ST0,TNn
|) ≤ λpE(T0) + λp max

0≤i≤a−1
E(T0 | x0 = αi).

In conjunction with (21), this gives S0,n√
n
⇒ χσp. �

Let Jn = {i ∈ {1, . . . , n} : nϕ(T ix) > min{i, n + 1 − i} or nϕ(T i−1x) >
min{i− 1, n+ 2 − i}}. Let In = {1, . . . , n} − Jn.

As in §2, we deduce from the CLT and uniform integrability:
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Lemma 13 If σ2
p 6= σ2

q , then lim infn→∞
1√
n
E(R0,n − S0,n)+ ≥ |σq−σp|√

2π
.

The proofs of Lemma 4 and Theorem 1 adapt to prove the following.

Lemma 14 Suppose M(p) and M(q) are ergodic Markov chains and ϕ is a
finitary homomorphism from M(p) to M(q), Then for all n,

E(R0,n − S0,n)+ ≤ γp + 4λq(E(Nϕ ∧ n) + 1)

Theorem 15 Let M(p) and M(q) be ergodic Markov chains such that h(p) =
h(q) and σ2

p 6= σ2
q . If ϕ is a finitary homomorphism from M(p) to M(q), then

E
(√

Nϕ(x)
)

= ∞. More precisely, lim infn→∞
1√
n
E(Nϕ(x) ∧ n) ≥ cp,q > 0.

7 Higher moments: a problem

Theorem 1 and our constructions in §5 suggest the following:
Question. Let p and q be probability vectors with h(p) = h(q). Fix an
integer k > 2. Suppose that ϕ is a finitary homomorphism from B(p) to

B(q), that satisfies E
(
N

1−1/k
ϕ

)
<∞. Does it follow that

∑

i

pi(log pi)
k =

∑

j

qj(log qj)
k ?
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