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An invariant of finitary codes with finite
expected square root coding length
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Abstract

Let p and ¢ be probability vectors with the same entropy h. Denote
by B(p) the Bernoulli shift indexed by Z with marginal distribution p.
Suppose that ¢ is a measure preserving homomorphism from B(p) to
B(q). We prove that if the coding length of ¢ has a finite 1/2 moment,
then ag = 02, where 0’12, = 3. pi(—logp; — h)? is the informational
variance of p. In this result, the 1/2 moment cannot be replaced
by a lower moment. On the other hand, for any § < 1, we exhibit
probability vectors p and ¢ that are not permutations of each other,
such that there exists a finitary isomorphism ® from B(p) to B(q)
where the coding lengths of ® and of its inverse have a finite # moment.

We also present an extension to ergodic Markov chains.

1 Introduction

Let A = {ay,..., a1} be a finite alphabet and p = (po,...,Pa—1) a prob-
ability vector with entropy h(p) = 3.¢=) —p; log(p;). Consider the Bernoulli
shift B(p) = (X,A,P,T), where X = AZ is equipped with the prod-
uct o-algebra A, the product measure P = p? and the left shift 7. Let
B = {f,..., 01} be another finite alphabet, and ¢ = (qo, ..., q—1) & prob-
ability vector; denote by B(q) = (Y,B,Q,T) the corresponding Bernoulli
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shift. A homomorphism ¢ from B(p) to B(q) is a measurable map from
X to Y, defined P-a.e., such that Po~! = Q and ¢T = T'¢ P-a.e.. An iso-
morphism is an invertible homomorphism. A homomorphism ¢ from B(p)
to B(q) is finitary if there exists a set W C X with P(IW) = 1, that has the
following property: for all € W there exists n = n(z) such that if 7 € W
and 7; = w; for all —n <@ < n, then (p(x))o = (¢(7))o. We write N,(x)
for the minimal such n, and call N,(x) the coding length of ¢. A finitary
isomorphism is an invertible finitary homomorphism whose inverse is also
finitary.

By the Kolmogorov-Sinai Theorem (see, e.g., [I0]), if B(p) and B(q) are
isomorphic, then h(p) = h(q). The converse was established by Ornstein [6].
Keane and Smorodinsky [3] proved that if h(p) = h(q), then there exists a
finitary isomorphism from B(p) to B(q). Parry [8] and Schmidt [IT] showed
that if a finitary isomorphism from B(p) to B(q) has finite expected coding
length in both directions, then p and ¢ must be permutations of each other.

In this paper, we prove that the informational variance of p,

0, = ilpi(— log(pi) — h(p))2

is an invariant of isomorphisms ¢ that satisfy E(N;/ 2) < 00. More precisely:

Theorem 1 Let p and q be probability vectors that satisfy h(p) = h(q) and
012, + 02. Then there exists a constant c,, > 0 such that for any finitary
homomorphism ¢ from B(p) to B(q), we have

E(N,
lim inf % > Cpa
n—oo n

and consequently, E(Néﬁ) = 0.

(Here and throughout, E denotes expectation with respect to P = pZ.)
The exponent 1/2 in the theorem is sharp, since Meshalkin [B] (see §3)

constructed a finitary isomorphism ¢ from B(p) for p = %, é, é, é,% to
B(q) for ¢ = (i, i, i, i), where P[N, > k| equals the probability that a

simple random walk remains positive for k steps. Thus for Meshalkin’s code,



0 < lim, P[N, > k]v/k < oo, whence E(Ng) < oo for all 8 < 1/2. Clearly

o4 < 0, in this case, so Meshalkin’s code is essentially optimal.
The assumption that 012, #+ 03 in Theorem [l cannot be dropped, as shown
by our next result.

Theorem 2 For any 0 < 0 < 1, there are probability vectors p and q where
p is not a permutation of q, such that there exists a finitary isomorphism o
from B(p) to B(q) that satisfies E(N§) < 0o and Eq(NY_,) < co.

Theorem [0 is proved in the next section. In §3 we recall Meshalkin’s
isomorphism, and describe an adaptation of Meshalkin’s code which moti-
vates Theorem 2l In §4 we define a class of matchings useful for the proof of
Theorem B}, and in §5 we prove the theorem. In §6 we define informational
variance for ergodic Markov chains, and present an extension of Theorem [II
to this setting.

2 Proof of Theorem 1

With the notation of the introduction in force, we may assume that the
probability vectors p and ¢ satisfy p; > 0 for all 0 < i < a and ¢; > 0 for
all 0 < j < b. Let ¢ be a finitary homomorphism from B(p) to B(q). For
r = (zx)rez € X, write X;(x) = —log(p(x;)) — h(p), where p(a;) = p; for
any j. Similarly, if o(z) =y = (yr)rez € Y, let Yi(z) = —log(q(y:)) — h(q).
Since pP~! = Q, it follows that E(X;) = E(Y;) = 0. Let S,, =Y | X; and
R, =>"" Y, Write t* = max{t,0}.

Lemma 3 If o) # o2, then

lim inf —E R, — S, M
minf —=E(R, = 5,)" > 7

PROOF. By a version of the central limit theorem (see [12], Cor. 2.1.9),

lim E

n—oo

te” 2 dt =

ﬁ_\/ﬁo - Ver

<R+ 0Oy & t2 o

and similarly
Ip

JL”&M%) = o
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Since (R, — S,)t > R — S;[, we infer that

lim inf — Sn+>gq_0p 1

iminf ——B(R, - 5,)* > % 1)
and similarly

hrrlri)golf\/, (Sp— R,)T > T % 27?0(1 (2)

If o, > 0,, then () proves the lemma. In the remaining case, o, > o,
the assertion of the lemma follows from (@) by taking expectations in the
identity

(R, — Sp,)" = (Ry—S,) + (S, — R,)™.

O

Lemma 4 Let ¢ be a finitary homomorphism from B(p) to B(q). Denote
Ay = max{—1log(g;) : 0 <j <b—1}. Then for alln,

E(R, — S,)* < 2\,E(N, An).
PrROOF. Let
I, = In(z) = {z €{1,...,n}: N,(T'z) > min{i,n + 1 — z}}

and denote J, = {1,...,n} \ I,. Observe that

E|I,| = iP(z’ €l,) < QiP(N@ > i) < 2E(N, An). (3)

i=1 i=1

Fix z € X and let y = p(z). Since

{Fex @ .7 = oo {Fey:g=yvieh},
it follows that

P{EeX:(fl,...,fn): (xl,...,:cn)} < Q{geyzgjzij eJn}.

Taking logarithms, this implies that

> logp(w) <D logglye) — D> logq(y:) < Y logqyn) + Agl In] -
k=1 k=1

i€ln k=1
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Since h(p) = h(q), we deduce from the last equation and the definitions
of R, and S, that R, — S, < \;|I,|, whence by @),

E(R, — S,)" < NE|L| <2M\E(N,An).

PrOOF OF THEOREM [Il. Lemmas Bl and Bl imply that

lim inf E(N, An) > 74 — |

>
n—00 Voo T 20/ 27

so it only remains to verify the final assertion of the theorem.
Observe that N, An < /Nyn and (N, An)/y/n— 0 P-ae.

If we had E(N /N@) < 00, then we could deduce by dominated convergence
that E(N, An)/y/n — 0, which contradicts #). Thus E(«/]\QD) =oc0. O

0, (4)

A similar idea was used in a different context by Liggett [4].

3 DMotivating examples and heuristics

Meshalkin’s coding
First, we briefly recall the Meshalkin isomorphism [5]. Let B(r) be the
Bernoulli shift on the alphabet A; = {ay,...,a5} for r = (%, é, %, é, %)
and let B(s) be the Bernoulli shift on the alphabet By = {3i,..., 04} for
s = (l 1 i, i) We represent the symbols of A as
ap =0, ag—(l), ag—(l], a4—%, a5—%,
0 1 0 1

The symbols of B; are represented as:
=0, Bo=0, B3=1, B1=1,
b1 0 B2 0 s 4 P !

The Meshalkin finitary isomorphism ¢ from B(r) to B(s) can be described
in two equivalent ways. Given a sequence x = (x;);cz € A%, denote by ¢;
the length of the binary representation of z; € A;. The random walk



description of ¢ is obtained by defining, for each ¢ with ¢; = 1,

m(i) = min{m > zm:(& —2) = 0} : (5)

j=i

Observe that m(-) is an injective map from {i € Z : {; = 1} onto {j € Z :
¢; = 3}. For each i € Z with ¢; = 1, remove the bottom bit from z,,; and
append it at the bottom of x;. This produces two symbols from B; that are
denoted y,,(;y and y;, respectively. Set p(x) =y = (y;);ez-

Alternatively, we have an equivalent inductive construction of ¢:
Step 1: For each ¢ € Z such that /; = 1 and ¢;;;1 = 3, send the bottom
bit of x;11 below z;, output the resulting B; symbols and remove from
consideration both 7 and 7 + 1.

For each n > 2, perform:

Step n: For all ¢« € Z such that ¢; = 1,¢;,,, = 3 and 7,7 + n have not been
removed from consideration, send the bottom bit of x;., below x;, output
the corresponding B; symbols and remove from consideration both ¢ and
14+ n.

An adaptation of Meshalkin’s coding
Next we describe informally a variant of the coding above, which we will
generalize in §5 to prove Theorem Bl Consider the random walk where each
increment X; has P(X; = 1) = P(X; = 3) = . The moment generating
function is
3
(z) = B(z%) = 252
2
Consider also the walk where each increment Y; equals 2 with probability 1.
This has moment generating function

A(2) = BE(2Y) = 22

These walks count the accumulated information for the Bernoulli shifts B(r)

and B(s), where r = (%, %, %, é, %) and s = (i, i, i, i) as in Meshalkin’s cod-
ing. The entropy equality h(r) = h(s) corresponds to the identity I"(1) =
A’(1) while the inequality of informational variance corresponds to the in-

equality I"(1) # A”(1). The identity

I(2) — A%(z) = %(F(zz) — A<z2>>
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underlies the construction below. We add markers ag and 3, respectively, to
the alphabets A; and B; described above. Let B(p) be the Bernoulli shift on
the alphabet A = {ay, ..., a5} = {ap}UA;, with associated probability vec-
tor p = (%, i, %, %, %, %) Let B(q) be the Bernoulli shift on the alphabet
B = {f,..., s} with associated probability vector ¢ = (%, é, é, é, é)
Next we construct @, a finitary isomorphism from B(p) to B(q):

Step 0: If z; = a, let (P(x)); = Po; that is, send markers to markers.

Step 1: Match the non-marker locations in pairs. Suppose that ¢ is paired
with j. If ¢; # (;, we can assume that ¢; = 1 and ¢; = 3 (otherwise reverse
the roles). Remove the bottom bit of z; and append it below z;, output the
resulting B symbols, and remove from consideration both ¢ and j. If

¢; = {;, then do not remove 7 and j from consideration.

For each n > 2, perform:

Step n: The locations which we have not removed from consideration are
grouped in 2771 tuples. Each such 2" !-tuple is either of type 3 (which we
define to mean that for every location ¢ within the tuple ¢; = 3), or of type
1. Using the markers, match the 2" !-tuples which have not been removed
from consideration in pairs to form 2"-tuples. If a 2" !-tuple &3 of type 3 is
matched with a 2" !-tuple & of type 1, remove the bottom bit from each z;
in &3, and append it to the corresponding symbol in &;. Finally, output the
symbols of B thus generated, and remove these locations from consideration.

The coding length for the isomorphism described above has essentially
the same tails as Meshalkin’s. To explain this, observe that the probability
I}, that a symbol at the origin is not coded during the first k pairing stages
is approximately 2% (the approximation is due to parity problems caused by
markers.) After the &' pairing stage, only about 1/2* of the symbols remain
uncoded, and these symbols are grouped into 2*-tuples. Thus heuristically,
the event F}, corresponds to an expected coding distance of order 4*. This
suggests that P(Ng > t) &~ ¢t~2. Indeed, for this example, Theorem [ implies
that E(quﬁ) = oo and the proof of Theorem B will show that E(N§) < oo
for all < 1/2.

An example with 3/4 — ¢ moments: heuristics. Consider different
probability vectors p and ¢, chosen so that the random walks counting the
accumulated information of non-marker symbols have moment generating



functions

and

respectively. Then

I?(2) — A%(z) = %<F<z2> — A<z2)>.
This example is the case n = 2 of the sequence of examples analyzed in §5;
see () and (I4).

Define a finitary coding ® from B(p) to B(q) by adapting the recipe above
(see §4 and §5 for details). To estimate the tails of Ng, start by observing
that the probability that a symbol is not coded during the first k pairing
stages is about 87%. At that stage, symbols are grouped into 2*-tuples, and
only 1/8% of them remain uncoded, so heuristically, this event corresponds
to an expected coding distance of order 16*. This suggests that

W

P(Nq;. >t) ~t 4.

Indeed, for this example we will show in §5 that E(NS) < oo for all § < 3/4.
This is consistent with Theorem [l since the identities IV(1) = A’(1) and
(1) = A”(1) indicate that p and ¢ have the same entropy and the same
informational variance.

4 Ordered measure preserving matchings

In this section, we define a type of matching which we will employ in our
constructions in §5, and derive some useful properties of these matchings.
Let C = {v,...,7} and D = {01,...,d4} be finite alphabets, and let r =
(r(v),...,7(7.)) and s = (s(d1),...,5(dq)) be probability vectors. Let

[t =T(k,C,r) =X clr(n)  rlv) =275}

and

Aj = A(k,D,s) = Sp{s(6)) : s(6,) = 274},
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Define an order relation < on C such that v < --- < 7. and an order
relation < on D such that 6; < --- < 4. Endow C x C with the lexicographic
ordering, i.e., define v;7; < YmYn if v < v or if 3 = v, and y; < Y.
Similarly, endow D x D with the lexicographic ordering <.

Let (v;v;) = r(7:)r(7;) and s(0,0,) = s(6;)s(d;). We define the maximal
ordered measure preserving matching (mompm) ¢ = {(cp,s) from
C x C to D x D given (r,s) as follows:

For all t € R, write the ordered set {x € C x C : r(z) = t} in increasing
order as {z4(7) : 1 <i < ¢}, and similarly, write the ordered set {y € DxD :
s(y) =t} in increasing order as {y;(i) : 1 <1i < m,}, assuming these sets are
non-empty. Define 1(z4(i)) = y(i) for 1 < i < min{l;, m;}.

Let E = E(C,D,r,s) be the set in C x C where 1 is defined. Let
F = F(C,D,r,s) = ¢(E). Let G = G(C,D,r,s) = Cx C— E. Let
H=H(C,D,r,s)=DxD-—F.

Let 7 = Tcpys = (T(x):x € G), where 7(z) = % and 5 =
TE

S(cors) = (5(y) 1y € H), where 5(y) = % be the probability vec-

tors induced by (r,s) on G and H.
Let

Yp =Tk Cr) =3 coxclr(@) i r(z) =27},

Q= Q(k,D,s) = 3 cpepisy) : sly) = 27"},

Af = A C.D, ) = 3o lr(a) - ) = 2%,
and let

E;=Z2(k,C,D,1,5) = 3 cpisy) i sly) = 27"}

We say that ¢ reduces mass by a factor of ¢ if Y ;- A =t¢.
Let

[(z) =T(C,D,r,s,2) = » Tpz*. (8)
k=0

Define A(z), T(2), Q(2), A(z), and Z(z) analogously. Then Y(z) = I'*(z)
and Q(z) = A?%(z2). Also, A(z) — Z(z) = T(2) — Q(2).
Lemma 5 Suppose I'%(z) — A%(z) = tT'(2%) — tA(2?). Then:
(i) A(z) =tT'(2?) and Z(z) = tA(2?)

9



(i1) 1 reduces mass by a factor of t.

PROOF.

(1) A(2) — E(2) = T(2) — Q(2) = %(2) — A%(z) = tI'(2?) — tA(2%),

hence

and

Z(z) = tA(2). (10)

(i) By @,
iA; = ti T =t
k=0 k=0

O

Let C; = C, let Dy = D, let 1y = r, and let s; = s. Inductively,
let Ci+1 = G(CZ, DZ’,’T’Z', 82‘), let Di—l—l = H(CZ, Di, Ti, 82‘), let Tiv1 = ?(Ci,Di,TuSi)?
and let s;41 = S(cy, D150 Let ¥ = (Ci, Dy, 15, 5;). Note that 1; matches 2'-
tuples to 2-tuples. We call {¢;};> the sequence of mompm’s associated
to (C,D,r,s). Let I'i(z) = I'(Cy, Dy, 14, 84, 2). In particular, I'1(z) = I'(2)
as defined in equation (). Define A;(z), Ti(z), Q(2), Ai(2), and Z(2)
analogously.

Inductive application of Lemma [ gives:

Corollary 6 Suppose ['*(z) — A?(2) = tT'1(2?) — tA(2?).

(i) If i € Z, then T?(z) — A2(2) = t1;i(2%) — tA;(2?)
(i1) If i € Z, then v; reduces mass by a factor of t.
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5 A class of codes with finite moments

Finally, we construct a class of examples to prove Theorem Bl
Fixn € Z,.

Let po = qo = % Construct p = (%,pl, ..., Pa—1) such that for each

integer m € [0, n], exactly 22 (>") of the p; take the value 272"~2". Thus if

for i > 1, we denote r(a;) = 2p;, then

* —(2m—+-2n— 1 2n
Domton—1 —Z{T () (o) =2 (2 1)}: 22n—1< ) ()

2m

for all m € Z such that 0 < m < n. Define I'} = 0 for all other k.
Similarly, for j > 1, denote s(3;) = 2¢; and construct ¢ = (%, Gy qo-1)
such that

1 2
2m+2n Z{S ﬁ] : /GJ =27 (2m+2n)} - 22n—1 < | ) (12)

2m+1

for all m € Z such that 0 <m <n — 1, and define A} = 0 for other k.

Let B(p) be the Bernoulli shift with probability vector p on the alphabet
A ={ag,...,as-1}. Let B(q) be the Bernoulli shift with probability vector
q on the alphabet B = {fy, ..., 51}

Let C ={aq,..., 04 1} and let D = {fy,..., B,_1}. Consider the proba-
bility vectors r = (r(a;) : 1 <i<a—1)andlet s = (s(3;): 1 <j<b-—1).
Relative to these, define all other terms as in §4.

Lemma 7 Ifi € Z,, then ; reduces mass by a factor of 22”%1

PrROOF.  Recall that T'(z) = Y ;2 [12F and A(z) = >°p2,Arz". By the
binomial theorem and equations ([l) and (I2Z), we find that

[%(z) = A%(z) = (I(2) — A(2)(T(2) + A(2))

1 — 2n 1 2n

- () () e
1 1 —22\2n 42

- 22n—12< 2 ) :

_ 1 r 2 A 2

! =)~ & )

so the desired result holds by Corollary 6. O
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Example
When n = 2, we may let A = {ag,...,aqu}; B = {Bo,...,00}; p =

(Po,--.,pa1) such that pg = 271 p; = 274 py = --+ = pyy = 279, and
pe = =pn =2"% and ¢ = (qo, ..., quo) such that go =27, ¢1 = -+ =
gg=2" and gg=---=qg=2"".

2
Theorem [ does not apply. These vectors correspond to the generating func-

tions in (@) and (). We find that
v s ek 131
<F37F57F7> = (gv 17 g) (13)

(s59) = (1) i

Taking logarithms to base 2, h(p) = h(q) = % and 0? = 02 = 27, hence

o 1 319 3 1
<T67T87T107T127T14> = (@71_6’3_271_6’6_4) (15>
. . 111
(Q&leQm) = (1’5’ Z) (16)
(%38008%) = (57 33 50) 17

1 1
E5Ch) == =) 1
( 8 12) (16’16) (18)
Definition of &

For x = (23)rez € X = AZ, define a j-marker as a run of at least
2nj consecutive «q symbols. Define a j-gap as the location of the non-qy
symbols between neighboring j-markers.

Let G0 = {9(4,0,1),...,90,0,4;0)} be the ordered elements (from left
to right) of the j-gap containing min{i > 0 : z; # ag}. More generally, let
Gii=1{90,i,1),...,9(4,4,¢;:)} be the ordered elements of the i’ j-gap to
the right of G, (to the left if i < 0).

Step 0: If z; = ayp, let (P(2)); = fo.

Step 1: Within each 1-gap, match the elements in pairs, starting from
the left (g(1,4,1) with g(1,4,2), g(1,4,3) with g(1,4,4), etc.). All the elements
will be paired except possibly g(1,1,¢1 ;).

If 1 (2g(1,0,2641)Tg(1,i,26+2)) 18 defined, then let

12



(q)(ﬂf))g(l,i,zkﬂ)((I)(l'))g(l,i,2k+2) =1 (Ig(l,i,2k+1)l'g(l,z',2k+2)),

and remove from consideration ¢(1,4,2k + 1) and g(1,1, 2k + 2).
Starting from the left, match the pairs which have not been removed from
consideration into quartets. If ¢y of the symbols at the position of a quartet
is defined, output the result in the position of the quartet and remove the
elements of the quartet from consideration.
Iterate, matching 2*~'-tuples which have not been removed from consid-
eration into 2*-tuples and applying ¥, until 2% > ¢, ;.

For each 7 > 2, do the following:

Step j: Within each j-gap, starting from the left, match into pairs any
elements in G ; which were not paired in any of the previous steps, and apply
11 as in Step 1.

Match into quartets any previously unmatched pairs (including the pairs
just created) which have not been removed from consideration, and apply
1y, etc., iterating until 28 > ¢, .

When n = 1, this is the code described in §3. The next two lemmas are
needed as preparation for bounding the tails of Ng.

Lemma 8 If f(z) = gj_,él[wo#ao}f then B(f) = 2-2—1,

PROOF. The sum fozl f(T™zx) differs from the number of j-gaps in
[1, M] by at most 2. Counting j-gaps in [1, M] is equivalent to counting
runs of 2nj marker symbols followed by a non-marker symbol; such strings
have asymptotic frequency 272%~!, Taking the limit of ﬁ Z%:l f(T™z) as
M — oo, the ergodic theorem yields the assertion. ([

A

Lemma 9 Forj > 1 Let L;; = 2nj+g(j,%,%¢;;) —g(j, i, 1) denote the “span’
of the i*" j-gap. If 0 < 1, then

E((Lj,(] — Lj_L(])e ‘ Zo §£ Oéo) S 2(2+2nj)0 .

PROOF. The expected distance between the beginnings of successive j-gaps
is 217277 by Kac’s Theorem (see [T0], p. 46), whence

E(Ljp - Lj_170 | Zo 7é Oéo) S 22+2nj .

The assertion of the lemma follows by Jensen’s inequality. U
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Lemma 10 If§ <1 — L, then E(Ng(z))? < oo.

PRrROOF. Recall L;; from the previous lemma and define Ly; = 0. If Step j
determines (®(z))o, then Ng(x) < L;o. Let A; be the event that Steps 1 to
J do not determine (®(z))o.

Let B; be the event that the 0" coordinate is matched at least j times
by the end of Step j, but (®(x))o has not yet been determined. Let C; be
the event that at the end of Step j, the 0 coordinate has been matched at
most j — 1 times (so it is not part of a 2/-tuple). Clearly, for each j > 1,

P(4;) <P(B)) + P(C;). (19)

Every time an undetermined coordinate is matched, the probability that
it remains undetermined is 22,1%1, whence

P(B) < (smr) - (20)

Since, for all k and j, at most one 2*-tuple in G, is unmatched at the
end of Step j, it follows that

P(Cj)SE<%|IO%%> §2j(2%>j:( 1 )j

by Lemma B Thus

Therefore

E(No(z))’ < > PA;_)E (L~ L | Ajy)
=1

IA

[oe} 1 7
> 2 (W) E ((Ljo — Lj-10)" | Aj-1)
j=1

Conditional on the event that zy # «y, the random variable (L, o—L;_10)
is independent of the event A;_;, hence by Lemma [

E(Nq,(x))e < i2<2zi_l>jE((Lj,o - Lj—l,O)e | T # ao)

=1

14



2n6

(o )ﬂ'(l—w) < 0.

22n—1

Jj=1 Jj=1

A similar argument gives:

Lemma 11 If§ <1 — -, then Eg(Ng-1(z))? < cc.

ProoOF OoF THEOREM Pl By Lemmas [[ and [, it only remains to verify
that ® is an isomorphism. Since ® is finitary, it gives an a.e. defined map
from B(p) to B(q). As our definition of (®(z)); depends only on the position
of ¢ within its j-blocks, ® is translation invariant. Since each v is a one-
to-one measure preserving matching from previously uncoded sequences to
previously uncoded sequences, it follows that ® is measure preserving and
invertible. More precisely, for P-a.e. x € X and any n > 1, all the symbols
in the string (r_,,...,x,) get coded within a finite distance. This means

that the cylinder set {ff EX (T p,. ,Tp) = (T_p, ... ,zn)} is partitioned
into countably many cylinder sets C; (and a set of measure zero); each C; is
mapped, using one of our matchings 1), to a cylinder set ®(C;) in Y with
Q(®(C;j)) = P(C;). This completes the proof.

O

6 Extension to ergodic Markov chains

Let A = {ap,...,a,-1} be a finite alphabet and let p = (p(, @;))o<ij<a—1
be an irreducible stochastic matrix. The associated Markov chain M ((p)
is ergodic and has a (strictly positive) unique stationary distribution p =
(p(ew), - .., Pleg—1)). Similarly, let B = {f,...,B-1} be a finite alphabet
and let ¢ = (¢(8i, 5)))o<ij<p—1 be a stochastic matrix such that M(q) is
ergodic with unique stationary distribution ¢ = (q(5o),-..,q(6p-1)). The
Markov chain M(p) has entropy

h(p) = Y —pla)p(as, a;) log plai, ay)

0<i,j<a—1
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We will assume that h(p) = h(q). Let ¢ be a finitary homomorphism from
M(p) to M(q). For x = (x})rez € AZ, let X;(z) = —log(p(zi_1, x;)) — h(p).

Similarly, if p(z) = y = (yr)rez € B, let Yi(z) = —log(q(yi—1,4:)) — h(q).
Let Spn = Y i1 Xi and let Rmn = > Y;. Since ¢ is measure

i=m+1

preserving, it follows that E(X;) = E(Y;) = 0. Let

Ap = mmax {—log(p(as, a;)) : pla, ;) # 0},
and let v, = maxo<;<,—1{—log(p(a;))}.
The following central limit theorem can be found, e.g., in [I], p. 422 under
an additional aperiodicity assumption, and in [2] in much greater generality.
For the reader’s convenience, we include a brief proof.

Lemma 12 If M(p) is an ergodic Markov chain on a finite alphabet then
there exists a constant o, > 0 depending only on p such that > \/— = X0p N
law, where x denotes a standard normal variable.

We define 012) to be the asymptotic informational variance of p.
PROOF. For any z € AZ, let Ty = min{t > 0 : 7, = ag}. Inductively, for
i >0, let T;y 1 = min{t > T} : ¥y = ap}. The increments T; — T;_; are i.i.d.
and have exponential tails. The partial sums {Sz,_, 1, };>1 are also i.i.d. Let
d, = E(Ty — T) > 0. By an application of the ergodic theorem and the law
of large numbers, E(Sp, ;) = 0. Since |X;| < A, it follows that S7, ;, <
(T — )2)\2 whence E(S7, 1) = ¢ < co. Let N, = min{m > 0:Tp, > n}.
Since ~ /3,, — 1 in probability, the random index central limit theorem (see
[M, p. 116) states that

\/_ \F
Define 02 = 2—’2’. Since E(Ty, —n) < maxo<i<a—1 E(Ty | o = «;) for all
n ey, 1t follows that
E(|Son = Sm.,7v, 1) < ApE(To) + Ay max B(Ty [ 20 = ).
In conjunction with (1), this gives \F = XOp- O

Let J, = {i € {1,...,n} : ny,(T"z) > min{i,n + 1 — i} or n,(T" 'z) >
min{i — 1,n+2—i}}. Let I, ={1,...,n} — J,.
As in §2, we deduce from the CLT and uniform integrability:
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2 2 T 1 log =0
Lemma 13 If o) # o7, then liminf, WE(Ro,n — Som)T > Ve
The proofs of Lemma H and Theorem [l adapt to prove the following.

Lemma 14 Suppose M(p) and M(q) are ergodic Markov chains and ¢ is a
finitary homomorphism from M (p) to M(q), Then for all n,

E(Ron — Son)™ < p + 4X(E(N, An) +1)

Theorem 15 Let M(p) and M(q) be ergodic Markov chains such that h(p) =
h(q) and Ui =+ 03. If v is a finitary homomorphism from M (p) to M (q), then

E ( Nw(sc)> = 00. More precisely, liminf,_, %E(Nw(x) An)>c,q > 0.

7 Higher moments: a problem

Theorem [0 and our constructions in §5 suggest the following:
Question. Let p and ¢ be probability vectors with h(p) = h(g). Fix an
integer k£ > 2. Suppose that ¢ is a finitary homomorphism from B(p) to

B(q), that satisfies E(N;_l/k> < 00. Does it follow that

> pillogp)t = g;(logg;)* ?
i J
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