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IS THE CRITICAL PERCOLATION PROBABILITY LOCAL?
ITAI BENJAMINI, ASAF NACHMIAS AND YUVAL PERES

ABSTRACT. We show that the critical probability for percolation on a d-regular non-
amenable graph of large girth is close to the critical probability for percolation on
an infinite d-regular tree. This is a special case of a conjecture due to O. Schramm
on the locality of p.. We also prove a finite analogue of the conjecture for expander

graphs.

1. INTRODUCTION

Denote by p.(G) the critical probability for Bernoulli bond percolation on an infinite
graph G, that is,

Pe(G) = inf {p € [0,1] : P, (3 an infinite component) > 0} .

Is the value of p. determined by the local geometry of the graph or by global properties
(such as volume growth and expansion)? In this note we show that the former is the
correct answer for non-amenable graphs with tree-like local geometry, and discuss a
conjecture of Schramm that p,. is locally determined in greater generality.

Recall that the girth g of a graph G is the minimum length of a cycle in G. Let P be
the transition matrix of the simple random walk (SRW) on G and let I be the identity
matrix. The bottom of the spectrum of I — P is defined to be the largest constant A\q
with the property that for all f € £2(G) we have

(fL,(I=P)f) = M(f, [)- (1.1)

Kesten ([9], [10]) proved that G is a non-amenable Cayley graph if and only if A; > 0.
This was extended by Dodziuk [7] to general infinite bounded degree graphs (for more
background on non-amenability see [I1] and [14]).

Theorem 1.1. There exists an absolute constant C > 0 such that if G is a non-
amenable reqular graph with degree d and girth g such that the bottom of spectrum of
I —Pis )X >0, then
1
1 C'log (1 + F)
G) < L.
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Recall that p.(Ty) = ﬁ where T} is an infinite d-regular tree and that for any d-
regular graph G we have p.(G) > ﬁ. Thus, Theorem [[I] asserts that non-amenable
graphs with large girth and degree d have p. close to the lowest possible value, p.(Ty).

It is easy to construct non-amenable graphs with arbitrary girth, for example, take
the Cayley graph of (a,b,c | ¢ = 1). Olshanskii and Sapir [13] constructed for any
k > 2 a group 'y, with the following property. For any ¢ > 0 there is a set .S, consisting
of k generators for 'y, such that the Cayley graph G(I'x, Sy) has girth at least ¢ and
infy A\ (G(T'x, S¢)) > 0 (as remarked in [I3], for & > 4 such groups were also constructed
by Akhmedov [2]).

Let G be a graph and v a vertex in G. Denote by Bg(v, R) the ball of radius R in
G centered at v, in the graph metric, with its induced graph structure. We say that a
sequence of transitive graphs G,, converges to G if for any integer R > 0 there exists
N such that Bg, (vn, R) and Bg(v, R) are isomorphic as rooted graphs, for all n > N
(note that the choices of v, and v are irrelevant due to transitivity). Oded Schramm

(personal communication) suggested the following conjecture.

Conjecture 1.2. Let G, be sequence of vertez transitive infinite graphs with sup,, p.(Gr) <

1 such that G,, converges to a graph G. Then p.(G,) — p.(G).

This conjecture is open for infinite graphs even if we assume that they are uniformly
nonamenable. We can prove the following analogue of the conjecture for finite expander
graphs, by extending the analysis of [I], Proposition 3.1. For each n > 1, let G,, be
a finite graph and let U, be a uniformly chosen random vertex in G,. We say that
the sequence of finite graphs {G,} converges weakly to an infinite rooted graph (G, p)
(where p is a fixed vertex of G) if for each R > 0 we have

P(Ba,(Un, B) # Bolp, B) =0 asn— oo,

where the event above means that the balls are not isomorphic as rooted graphs. This
is a special case of the graph limits defined in [5]. For two sets of vertices A and B,
write E(A, B) for the set of edges with one endpoint in A and the other in B. Recall
that the Cheeger constant h(G) of a finite graph G = (V, E) is defined by

h(G) Z%I&{W L 0< Al < \vy/z}.

Theorem 1.3. Let (G,p) be an infinite bounded degree rooted graph and let G, be a
sequence of finite graphs with uniform Cheeger constant h > 0 and a uniform degree
bound d, such that Gy, — G weakly. Let p € [0, 1] and write G, (p) for the graph of open
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edges obtained from G,, by performing bond percolation with parameter p. If p < p.(G),

then for any constant o > 0 we have
P<Gn(p) contains a component of size at least a]G,J) —0 asn— o0,
and if p > p.(QG), then there exists some a > 0 such that

P(Gn(p) contains a component of size at least oz|Gn|> —1 asn— oo.
For the reader’s convenience, we present the proof of Theorem [[.3]in Section [4l

1.1. Further discussion. Conjecture suggests that the critical percolation prob-
ability is locally determined. This contrasts with critical exponents which are believed
to be universal and depend only on global properties of the graph. For instance, the
value of p. on the the two dimensional square lattice is %, but on the two dimensional
triangular lattice it is 2sin(7/18); however, the critical exponents are believed to be
the same.

It is worth noting another example of the locality of p. where the limit graph is the
lattice Z¢. For d > 1 and n > 1, write ZZ for the d-dimensional torus with side n. The
following theorem is an immediate corollary of a theorem of Grimmett and Marstrand
[8] combined with the fact that the critical probability of a quotient graph is always
at least the critical probability of the original graph (see [4], [6] or [11]).

Theorem 1.4 (Grimmett, Marstrand [8]). For any d > 1 and k satisfying 2 < k < d

we have

pe(ZF x ZE7F) — p(Z)  asn — oco.

Observe that this is theorem is a special case of Conjecture For background

and further conjectures regarding percolation on infinite graphs see [4} 11].

2. UNIFORM ESCAPE PROBABILITY

In this section we prove a useful lemma.

Lemma 2.1. Consider a reversible irreducible Markov chain {X:} on a countable
state space V', with infinite stationary measure w and transition matriz P, such that
the bottom of the spectrum of I — P is Ay > 0 (that is, (I.1) holds for any f € ¢*(r)).
Let A C V be a nonempty set of states with w(A) < oo and let ma(-) = 7(-)/7(A) be

the normalized restriction of m to A. Then

P, (Xt never returns to A) > A\
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Proof. Let B C V be disjoint from A such that V' \ (AU B) is finite. Define
7=min{t >0: X; € AU B} and 7t =min{t >0: X; € AUB}.

The irreducibility assumption and the finiteness of the complement of A U B imply

that 77 < oo a.s. for any starting state. We will show that for all sets B as above,
Pr,(X,+ € B) > \. (2.1)

The assertion of the lemma then follows by enumerating V' \ A as vy, vo, vs, .. ., taking
B = By, = {v; : j > k} and intersecting the events in (ZI) over all these sets B = By,
for kK > 1. Let

f(z) = Po(X, € A).

Observe that f =1 on A and f =0on B. For all z € G,
(Pf)(z) =Py (X,+ € A).

In particular, f is harmonic (satisfies Pf = f) on G\ (AU B). Thus (I — P)f)(z) =
P,(X,+ € B) forz € Aand (I — P)f)(z) =0 for z € G\ (AU B). Therefore

(f,U-P)f) => 7(z)Py(X,+ € B) =1(A)Pr,(X,+ € B).
€A

On the other hand, clearly,

(fof) 2 Y ml) fa) =n(A).

€A

The claim (21]) follows by inserting the last two formulas in (I.TI). O

3. PrROOF oF THEOREM [I.1]

We return to the setting of Theorem [Tl Let G be regular graph of degree d and
girth g and write g := [¢g/2] — 1. Given a set of vertices A in G and « € (0,1), we say
that an edge (x,u) is (o, A)-good if z € A and at least an « fraction of the (d — 1)9
non-backtracking paths of length g emanating from w, for which the first step is not

x, avoid A (in particular, u ¢ A.) The following lemma is a corollary of Lemma 211

Corollary 3.1. Let G be a regular graph with degree d and girth g. If G is nona-
menable, i.e., it satisfies A1 > 0, then for any finite set A C V(Q), there exist at least
%|A| edges (x,u) which are (\1/2, A)-good.
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Proof. For an edge (v,u) with z € A, let B, ) = Py(X1 =uvand Vt > 0 X; € A),
where {X;} is a SRW in G, started at x. Let 7 := min{¢ : dist(u, X;) = g}. Since
the ball Bg(u,g) is a spherically symmetric tree, the loop erasure of (X;)]_, yields a

uniform random non-backtracking path of length g from u. Thus if B, ,) > «, then
the edge (z,u) is (o, A)-good. By Lemma [2.T]

1
— > A
d‘A’ Z B(x,u) Z Al
(zyu):z€A
and we conclude that at least ¥|A| edges (v,u) with x € A must satisfy 3, ,) >
A1/2. O

Proof of Theorem [I.1l Let € > 0 be a small number and set p = ﬁ + €. For each
edge e we draw two independent Bernoulli random variables X.(p) and Yc(e) with
means p and € respectively. We say that an edge is open if one of these variables takes
the value 1 and closed otherwise. We also say that the edge e is p-open if X.(p) =1
and e-open if Ye(e) = 1. For a vertex v we write C(v) for the open cluster of v.
The probability that an edge is closed is (1 — p)(1 — €), hence |C(v)| is dominated by
the cluster size in (p + €)-bond percolation. Our goal is to show that with positive
probability |C(v)| = oo.

We perform the following exploration process, which will produce an increasing
sequence {A;} of connected vertex sets in which A; C C(v) for all t. At each step,
some of the edges touching A; will be e-closed and some will be e-unchecked. We begin
by setting Ag to be the p-cluster of v (that is, all the vertices connected to v by p-open
paths) and all the edges touching Aj are e-unchecked. We assume that Ay is finite
(otherwise we are finished). At step ¢ > 1 let &_1 be the set of e-unchecked edges
(z,u) such that (z,u) is (A1/2, A¢—1)-good. If &_1 is empty, the process ends. If not,
we choose (x,u) € &_1 according to some prescribed ordering of the edges and check
whether the edge is e-open. If it is e-closed we put A; = A;_1 and continue to the next

step of the process. Otherwise, we let
A=A 10UV,

where V is the set of vertices v of distance at most ¢ from « such that the unique path
of length at most g between u and v avoids A;_1 and is p-open.
This finishes the description of the exploration process. To analyze this process we

introduce the following random variable

Zy = He : e is an e-closed and e-checked edge touching At}‘ .
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Let 7 be the stopping time

T:min{t: |As] < %}

At each step we check the e-status precisely one edge, hence Z; <t for all t. Thus, by
Corollary 31 if |As] > % there must exist at least one e-unchecked edge (z,u) which
is (A\1/2, Ay)-good. Write F; for the o-algebra generated by the € and p status of the
edges we examined in the exploration process up to time ¢ and let & = |Ay11] — |A¢].

By the discussion above we have that

M[(1+e(d—1))9 —1]

E[Et | ft_l,T > t] > & Z(l + E(d - 1))j 2 2(d _ 1)

(3.1)

To see the first inequality in (B]), recall that (z,u) is e-open with probability €. Also,
for any j < g the expected number of vertices of distance j from u such that the path
between them and u avoids A; and is p-open is at least %(p(d 1)) = w.

We now assume that

N log (1 + %)
>
9= log(1+€(d—1))’

(3.2)

so that E[& | Fy_1,7 > t] > 4d~ "\ by @) Since |&] < (d—1)9, Azuma-Hoeffding’s
inequality (see Chapter 7 of [3]) gives that for any ¢ > 1

t
P(r=t+1| A0)§P<Z§i§d2—)i)§e_d, (3.3)
=1

where ¢ = 2A\[2d"2(d — 1)729 > 0. Since |4;| is a non-decreasing sequence we have
that 7 > 21440l
of having |Ag| > K and we infer from (3.3]) that

. For any K > 0 there is some positive probability (depending on K)

P(r = o0)

v

P(|4y| > K) [1— 3 e_Ct] >0,

A dK
2

v

>

as long as we choose K = K(g,\1,d) to be large enough. The event 7 = oo implies
that |C(v)| = oo, and hence, by [2) when e > C(dg) ' log (1 + /\—1%) there is positive
probability of an infinite component in (ﬁ + 2€)-bond percolation (for e < (d—1)~!
one can take C' = 128 using the inequalities log(1+ 8z) < 8log(1+z) and log(1+x) >
x/2 valid for x € (0,1)). This concludes the proof of the theorem. O
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4. PROOF OF THEOREM [[.3]

Without loss of generality assume that |G,,| = n. We first take p < p.(G) and fix
a > 0. Since p < p.(G), for any € > 0 there exists R = R(e) large enough such that in
G

P,(p < 0B(p,R)) <e.

Thus for large enough n we have in G,
L x Pp<Un o 8B(Un,R)) <e,

where L is the law of U,. Since G has bounded degree, we deduce that for any ¢ > 0

there exists n large enough such that
L Pp<|C(Un)| > dR+1) <e.

Write Cy(n) for the largest component of G, (p) and note that as long as d*+! < an

we have that
£xPy(IC(U)] = a7+ > aPy(Ci(n)] > an)
and we get that
P, (|Ci(n)| > an) < ea

which proves the first assertion of the theorem.

To prove the second assertion of the theorem we use a sprinkling argument, as in [1].
Assume p > p.(G) and for some € > 0 let p; = p.(G)+e€ such that 1 —p = (1—p1)(1—e).
We first consider Gy, (p1). Since p; > p.(G), there exists some § > 0 such that for all
R > 0 we have

Py, (p = 0B(p,R)) = 6.

For v € G, write By, (v, R) for the set of vertices in G, (p1) which are connected to v
in a pi-open path of length at most R. We get that for any R > 0 there exists ng such

that for n > ng we have in G
£ xP(1By, (Un, B)| = R) = 6/2.
Let X denote the random variable

)

Xp = ({v € Gn: |By, (v, R)| > R}
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so that EXpr > 6n/2. On the other hand, note that changing the status of a single
edge can change Xp by at most d¥, where d is the degree bound of G,,. The method
of bounded differences (see Theorem 3.1 of [I12] or Chapter 7 of [3]) gives that
2
P(XRS{T”)geXp(—;d—ZE). (4.1)
Assume now that Xp > én/4 and consider the connected components of G,,(p1) of
size at least R. Their number m is at most n/R. We now consider the union of G, (p;)
with G, (€) and claim that many of these components join together by edges of G, (¢)
and create a component of linear size. Indeed, consider a partitition of the m large
components of G, (p1) into two sets, A and B, each spanning at least dn/12 vertices. If
for any such partition there is an open path in G, (€¢) connecting A and B, then there
exists a component of size at least dn/12 in G,,(p1) U G,(€). Since G, has Cheeger
constant at least h > 0 we get by Menger’s Theorem that for any such A and B there
are at least hon/12 edge disjoint paths connecting A to B. Since there are most dn /2
edges in GG, we have that at least a half of these paths must be of length at most %l.
The probability that all these paths are closed in Gy, (€) is at most

12d hén
2240 24
[1 — €hd } .

There are at most 2™ different possibilities for choosing A and B. Hence, the proba-
bility that there exists such A and B is at most

hén
2m [1—6%] “ <exp <n/R—e%h5n/24>,

which goes to 0 as long as R is chosen such that R~ < 73 ho. This together with
(@) shows that
0
P (Gn(p) contains a component of size at least 1—2) — 1 as n — 00.
O

Acknowledgements: We are indebted to Mark Sapir and Oded Schramm for useful
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