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Abstract

We show that ifH is a group of polynomial growth whose growth rate is at leastdyatic then the
L, compression of the wreath prodattH equals ma*%, %} We also show that thie, compression of
ZZ equals ma*wril %} and thel, compression of4 Z), (the zero section &2 Z, equipped with the
metric induced fron¥ @ Z) equals ma ”szl %} The fact that the Hilbert compression exponerZoefz

equals% while the Hilbert compression exponent @f{Z)o equals?1 is used to show that there exists a
Lipschitz functionf : (ZZ)o — L, which cannot be extended to a Lipschitz function defined bafal
ZUZ.

1 Introduction

Let G be an infinite group which is generated by a finite symmetricSse G and letdg denote the left-
invariant word metric induced b8 (formally we should use the notatialy, but all of our statements below
will be independent of the generating set). Assume for thenamd that the metric spac&(dg) does not
admit a bi-Lipschitz embedding into Hilbert spceln such a setting the next natural step is to try to
measure the extent to which the geometry@fdg) is non-Hilbertian. While one can come up with several
useful ways to quantify non-embeddabililty, the presemtapads a contribution to the theory of compression
exponents: a popular and elegant way of measuring nongsiehitz embeddability of infinite groups that
was introduced by Guentner and Kaminkeriinl[31].

The Hilbert compression exponent &f denoteda”(G), is defined as the supremum of thase> 0 for
which there exists a Lipschitz functioh: G — L satisfying||f(X) — f(y)ll2 > cds (X, y)* for everyx,y € G
and some constat> 0 which is independent of,y. More generally, given a target metric spa&edy)
the compression exponent Gfin X, denotedy (G), is the supremum over > O for which there exists a
Lipschitz functionf : G — X satisfyingdx(f(x), f(y)) > cdz(x, y)*. WhenX = L, for somep > 1 we shall
use the notationr,(G) = a’(_p(G) (thusai(G) = a*(G)).

*Research supported in part by NSF grants DMS-0528387, @3B68¥8 and CCF-0832795, BSF grant 2006009, and the
Packard Foundation.

1This assumption is not very restrictive, and in fact it is jestured that if G, dg) does admit a bi-Lipschitz embedding into
Hilbert space the® must have an Abelian subgroup of finite index. We refef to f@2jnore information on this conjecture and
its proof in some interesting special cases.
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When (X, | - |x) is a Banach space one can analogously define the equivenisipression exponent &fin

X, denotedy’;(G), as the supremum over> 0 for which there exists G-equivariar@ mappingy : G — X
satisfying [l (X) — v (¥)lix = cds(x.y)*. We write as abover’(G) = afp(G) anda®(G) = o}(G). Recall
thatG is said to have the Haagerup property if there exists an agaiwt functiony : G — L, such that
inf{|ly(xX) — (Y2 : ds(xy) = t} tends to infinity witht. We refer to the book [17] for more information
on the Haagerup property and its applications. Thus themai equivariant compression exponent can be
viewed as a quantitative refinement of the Haagerup propemty/this is indeed the way that bounds on the
equivariant compression exponent are usually used.

The parametera(G) and aﬁ"((G) do not depend on the choice of symmetric generatingSseind are
therefore genuine algebraic invariants of the gr@ipin [31] it was shown that i*(G) > % thenG is
amenable. This result was generalizedLin [44], where it viaasva that forp > 1 if X is a Banach space
whose modulus of uniform smoothness has power tyfiee. for every two unit vectorg,y € X andr > 0
we havel|x + 7yllx + |[X — 7yllx < 2 + crP for somec > 0 which does not depend oqy, 7) anda‘f((G) > %)

thenG is amenable. It was also shown n[31] thatif(G) > % then the reduce@* algebra ofG is exact.

Despite their intrinsic interest and a considerable amod@i@Tort by researchers in recent years, the in-
variantSQ’;((G),af((G) have been computed in only a few cases. It was shown in [Bfdhanya € [0, 1]
there exists a finitely generated groGpwith o*(G) = . In light of this fact it is quite remarkable that,
apart from a few exceptions, in most of the known cases inhvbimnpression exponents have been com-
puted they turned out to be equal to 1 or 0. A classical thea&mssouad[[5] implies that groups of
polynomial growth have Hilbert compression exponent 1. l@ndther hand, Gromov’s random groups|[30]
have Hilbert compression exponent 0. Bourgain’s classitical characterization of superreflexivity [11]
implies that finitely generated free groups have Hilbert pmasion exponent 1 (this interpretation of Bour-
gain’s theorem was first noted in_[31]), and more generallyas shown in[[13] that hyperbolic groups
have Hilbert compression 1 and in [14] that so does any disgeup acting properly and co-compactly
on a finite dimensional CAT(0) cubical complex. [n [54] it watsown that co-compact lattices in connected
Lie groups, irreducible lattices in semi-simple Lie growdgank at least 2, polycyclic groups and certain
semidirect products witiZ (including wreath produatsof finite groups withZ and the Baumslag-Solitar
group) all have Hilbert compression exponent 1. The firstrgdda of a group with Hilbert compression
exponent in (01) was found in[[4], where it was proved that R. Thompson'augre satisfiesa*(F) = %
Another well-studied case is the wreath proddatZ: in [29] it was shown thatr*(Z  Z) > % and this
lower bound was improved in[4] and independentiyiinl [51§tdZ 2 Z) > % Moreover it was shown in [4]
thata*(ZZ) < % and a combination of the results of [6] and [44], which esshlgld sharp upper and lower
bounds onr*(Z @ Z), respectively, settles the case of the Hilbert compressigponent ofZ ¢ Z by showing
thata*(Z 1 Z) = :% (nevertheless, th% upper bound om*(Z 2 Z) from [4] has a special meaning which is
important for our current work—we will return to this topiatér in this introduction). More generally, it

2A mappingy : G — X s calledG-equivariant if there exists an actiarof G on X by affine isometries and a vectare X
such thaiy(x) = 7(X)v for all x € G. Equivalently there exists an actiaron X by linear isometries such thatis a 1-cocycle with
respect tor (we denote this by € ZX(G, n)), i.e., for everyx,y € G we havey(xy) = m(X)y(y) + (X). A key useful point here is
that in this cas¢ly/(X) — y(y)llx is an invariant semi-metric oB8.

3The (restricted) wreath product & with H, denotedG 2 H, is defined as as the group of all paifs ) wheref : H — G
has finite support (i.ef (2) = es, the identity element o, for all but finitely manyz € H) andx € H, equipped with the product
(f,%(a.y) = (z ~ f(29(x 12, xy). If G is generated by the s8tc G andH is generated by the s&c H thenG H is generated
by the sef(egn,t) : te T}U({(ds,64) : S€ S}, whereds is the function which takes the valsatey and the values onH \ {ey}.
Unless otherwise stated we will always assume @aH is equipped with the word metric associated with this cacalrset of
generators (although in most cases our assertions willdependent of the choice of generators).



was shown in[[44] that if we define recursively = Z andZ.1) = Zk) 1 Z thena*(Zy)) = ﬁ; In [44]

it was shown thatr* (Cz 2 Z?) = 3, whereC; denotes the cyclic group of order 2 (the lower bound efas
proved earlier in[[54]). Finally, it follows fromi [21,44] #ie*(Co t Fp) = o#(Cot Fp) = % whereF, is the
free group om > 2 generators (the upper bound%)bn a*(Cz tFy) is due to [[44] while the lower bound
ona®(Cy t Fy) is the key result of [21]). Many of the above results havedast partial) variants for thiep
compression of the groups in question—-we stated here balgdse of Hilbert compression for the sake of
simplicity, and we refer to the relevant papers for morernmfation.

The dificulty in evaluating compression exponents is the main redsoour interest in this topic, and
our purpose here is to devise new methods to compute them.oihg do we answer questions posed
in [64,44]. One feature of the known methods for computingnpression exponents is that they involve a
novel interplay between group theory and other mathematisaiplines such as metric geometry, Banach
space theory, analysis and probability. It isn't only theecghat the latter disciplines are applied to group
theory—it turns out that the investigation of compressixpaments improved our understanding of issues in
analysis and metric geometry as well (e.glin [44] compogsskponents were used to make progress on the
theory of non-linear type). In the present paper we applyngw compression exponent calculations to the
Lipschitz extension problem, and relate them to the Jonageling Salesman problem. These applications
will be described in detail presently.

In [54] it was shown that for all € N we havex* (Cz 0 Zd) > é A different embedding yielding this lower
bound was obtained in [44], together with the matching ufymemd wherd = 2. Thus, as stated above,
a* (Cz 0 Zz) = % In Sectior B we investigate the value @f(G ¢ H) whenG is a general group anid is

a group of polynomial growth. The key feature of our resuthet we obtain a lower bound ar},(G ¢ H)
which is independent of the growth rateldf In combination with the upper bounds obtainedLin| [44] our
lower bound implies that for eveny € [1, «0) and every groupd of polynomial growth whose growth is at
least quadratic we have:

ap(ZtH) = ap(C2H) = max{?l), %} @

As we explain in Remark 3.3 below, the embedding from [44]alihjielded the identityr; (C2 2 ZZ) =1

was based on the trivial fact, which is special to 2 dimersighat for everyA c Z? of diameterD, the
shortest path iZ? which coversA has length at mo@(Dz). It therefore turns out that the previous method

for boundingaj, (C2 2 2%) yields tight bounds only whep = d = 2 (this is made precise in Remdrk13.3).
Hence in order to provd 1) we devise a new embedding which the spirit of (but simpler than) the
multi-scale arguments used in the proof of the Jones Tray&ialesman Theorern [36] (see also [47] and
the survey[[50]).

To explain the connection between our proof and the Jonelimg Salesman Theorem take two elements
(f,X), (g,y) in the “planar lamplighter groupCT, 2 Z2, i.e., x,y € Z? and f,g : Z% — {0, 1} with finite
support. The distance betweef X) and @,y) in C, ¢ Z2 is, up to a factor of 2, the shortest path in the
integer gridz? which starts ak, visits all the sitesv € Z2 at which f(w) andg(w) differ, and terminates at

y. Jones[[36] associates to every set R? of diameter 1 a sequence of numbers, known as the (squares
of the) Jone® numbers, whose appropriately weighted sum is (up to uravdastors) the length of the
shortest Lipschitz curve covering, assuming such a curve exists. Focusing on our proof of ittettiat

a; (Cz 0 ZZ) = 1, in our setting we do something similar: we associate toye{fe x) € C» ¢ Z2 a sequence

of real numbers such that if we wish to estimate (up to logarit terms) the shortest traveling salesman

3



tour starting ak, ending aty, and covering the symmetricfirence of the supports dfandg, all we have

to do is to compute thé; norm of the diference of the sequences associated tg)(@and @, y). Since the
statementy; (Cz 2 Z?) = 1 does not necessarily imply th@b ¢ Z? admits a bi-Lipschitz embedding into
L1, our result falls short of obtaining a constant-factor agpmation of the length of this tour, which, if
possible, would be an interesting equivariant version eflbnes Traveling Salesman Theorem (note that
if one wishes to estimate the length of the shortest Lipgahitve covering the symmetricftirenceAaB

for someA, B C R? one cannot “read” this just from the Jon@sumbers ofA and B without recomputing
the Joneg numbers ofAAB). In view of such a potential strengthening of the Jones dlnag Salesman
Theorem, the question wheth@s : Z? admits a bi-Lipschitz embedding inta remains an interesting open
problem that arises from our work (which currently only gk “compression 1” version of this statement).

In Sectior 6 we compute tHg, compression of.2 Z, answering a question posed(in[44]. Namely we show
that forp € [1, o) we have:

a2 2Z) = max{Tp_l, %} )
The fact thalv,(Z 2 Z) is at least the right-hand side ¢fl (2) was proved_in [44] reokey issue i (2) is to
show that no embedding @ Z can have a compression exponent bigger than the right-hdadt(2).
We do so via a non-trivial enhancement of tarkov typemethod for bounding compression exponents
that was introduced in_[6]. In order to explain the new ideadum proving [[2) we first briefly recall the
basic bound fron [6].

A Markov chain{Z:}?, with transition probabilitiesj := P(Zi,1 = j | Z; = i) on the state spad4, ..., n} is
stationaryif = := P(Z; = i) does not depend drand it isreversibleif 7; aj = 7j aji for everyi, j € {1,...,n}.
Given a metric spaceX(dy) andp € [1, «), we say thaX hasMarkov type pf there exists a constaht > 0
such that for every stationary reversible Markov cHaif{®, on{1,...,n}, every mappind : {1,...,n} — X
and every timd € N,

E[dx(f(Zy). f(Z0))P] < KPLE[dx(f(Z1). f(20))"]- 3)

The least suclK is called the Markov type constant ofX, and is denoted,(X). This important concept
was introduced by Ball in_|8] and has since found a varietygyfli@ations in metric geometry, including
applications to the theory of compression exponents [6, W] refer to[[45] for examples of spaces which
have Markov typep. For our purposes it stices to mention that Banach spaces whose modulus of uniform
smoothness has power typehave Markov typep [45], and therefore the Markov type bf, p € [1, ), is
min{p, 2}.

In [44] a parameteg*(G) is defined to be the supremum over@lt 0 for which there exists a symmetric
set of generatorS of G andc > 0 such that for alt € N,

E[dg (W, €)] = ct’, (4)

where{W};, is the canonical simple random walk on the Cayley grap& determined by, starting at
the identity elemengs. The proof in[6] shows that ifX, dx) has Markov typeg andG is amenable then:
L
pB*(G)
In order to prove[(R) we establish in Sectidn 5 a crucial gfeening of [5). Given a symmetric probability
measure: onG let {g«},” ; be i.i.d. elements o& which are distributed according to Theu-random walk

ay(G) < (5)
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(W'}, is defined asVi) = eg andW,' = 910> - - - g; for t € N. Letp be a left-invariant metric o6 such that
Bo(es,r) = {x€ G : p(x,€) < r}isfinite for allr > 0. DefineB(G, p) to be the supremum over &> 0
such that there exists an increasing sequence of int¢géfs and a sequence of symmetric probability
measuresug},”, on G satisfying

vkeN fGP(X, &5)Pduk(x) <o and Jm (tyuc (G \ {eg))) = co. (6)

such that for alk € N, 5
B [0 (Wi €6)] = 1 (B [0 (W )

In Sectior b we show that & is amenablep is a left-invariant metric oG with respect to which all balls
are finite, and X, dx) has Markov typep, then:

ax(G.p) < (7)

1
P85(G, p)’
whereay (G, p) is the supremum over all > O for which there exists a-Lipschitz mapf : G — X which
satisfiesdy(f(X), f(y)) = co(x, y)* (we previously defined this parameter only whee dg). We refer to
the discussion in Sectidn 5 for more information on the patansy,(G, o). At this point it sufices to note
thatg;(G, dg) > 8*(G), and thereforel{7) is stronger than (5), since we now censidvariant of[(#) where
the walk can be induced by an arbitrary symmetric probghitieasure, and the measure itself is allowed
to depend on the time It turns out that[([7) is a crucidtrict improvement over(5), and we require the
full force of this strengthening: we shall use non-standartiom walks (i.e., not only the canonical walk
on the Cayley graph d&), as well as an adaptation of the walk to the tibie (4), in addition to invariant
metricsp other than the word metrids.

We establishi{2) by showing that for eveme [1, 2) we haves(Z2Z, dzz) = 2‘;—';1 > ;31 = B*(ZZ) (it follows

in particular that{(l7) is indeed strictly stronger thiah (Shte thatZ:Z is amenable antl, has Markov typep,

so we are allowed to usl(7)). This is achieved by consideriragndom walk induced diZ from a random
walk onZ whose increments are discrete versiong-sfable random variables for eveyy> p. We refer to
Sectior 6 for the details. We believe that there is a key ni@aglre of our proof which highlights the power
of random walk techniques in embedding problems: we adaptahdom walk orG to the target space
Lp. Previously[[41] B, 45,/6, 44] Markov type was used in emhegigiroblems by considering a Markov
chain on the space we wish to embed which arises intringjcatld “ignored” the intended target space:
such chains are typically taken to be the canonical randotk @rasome graph, but a fiierent example
appears in[9], where embeddings of arbitrary sub&atbthe Hamming cubeg((, 1", ||-||1) are investigated
via a construction of a special random walk Anvhich captures the “largeness” &f Nevertheless, in all
known cases the geometric object which was being embeddtateti the study of some natural random
walk, while in our computation af},(Z ¢ Z) the target spacky, influences the choice of the random walk.

Recall that we mentioned above that prior[td [6] the best knapper bound_ [4] om*(Z ¢ Z) was%. An
inspection of the proof of this bound ini[4] reveals that ihsw@ered only points in the normal subgroup of
Z 1 Z consisting of all configurations where the lamplighter if ate., thezero sectiorof Z Z:

(Z1Z)o={(f,X) €Z1Z: x=0}<Z2Z.

Thus [2] actually establishes the bouatl((Z 2 Z)o, dz,z) < %. More generally, an obvious variant of the

proof of this fact in[[4] (see Lemma 7.8 in [44]) shows that foe [1, 2] we haveay, ((Z  Z)o, dzz) < %1
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Here we show that

o (@1 Do) = max{ B 2. ®)
An alternative proof of the fact that the right-hand side [8f i greater thamvy, ((Z 2 Z)o, dzz), which
belongs to the framework of](7), is given in Sectidn 7, wheeeshiow that for everyp € [1, 2] we have
Bp((Z1Z)o, dzz) = ﬁ The heart of[(B) is the construction of an embedding lryf the zero section
(Z 2 Z)o which achieves the claimed compression exponent. This tomhto be quite delicate: a Fourier

analytic argument establishing this fact is presented oti@&4.

It is worthwhile to note at this point that in all of our new cprassion computations, namel (1)] (2)
and [6), we claim that for some gro@equipped with an invariant metricand for everyp € [2, ) we
havea (G, p) = a,(G,p). This is true since becaude is isometric to a subset df, we obviously have
ap(G,p) = a5(G,p). In the reverse direction, all of our upper boundslgncompression exponents are
based on((7), and since bdth andL, have Markov type 2 [45] the resulting upper bound lfgrcoincides
with the upper bound fok,. For this reason it will sfiice to prove all of our results wheme [1, 2].

In Sectior 8 we apply the fact that ((Z t Z)o, dzz) # a*(Z ¢ Z) to the Lipschitz extension problem. This
classical problem asks for geometric conditions on a painetiic spacesX, dx) and (Y, dy) which ensure
that for any subsef C X any Lipschitz mappingf : A — Y can be extended to all of. Among the
motivating themes for research on the Lipschitz extensioblpm is the belief that many classical exten-
sion theorems for linear operators between Banach spagesLifgschitz analogs. Two examples of this
phenomenon are the non-linear Hahn-Banach theorem (saxdaonple [56| 10]), which corresponds to
extension of real valued functions while preserving thepskthitz constant, and the non-linear version of
Maurey’s extension theorem|[8,145]. It turns out that ouestigation of the Hilbert compression exponent
of the zero section df @ Z implies the existence of a Lipschitz functidn: (Z : Z)o — L, which cannot be
extended to a Lipschitz function defined on allZfZ. For those who believe in the above analogy between
the Lipschitz extension problem and the extension problentirfear operators this fact might seem some-
what surprising: after alH = (Z t Z)o is a normal subgroup @& = ZZ with G/H = Z, so it resembles

a non-commutative version of a subspace of co-dimensionalBanach space, for which the Lipschitz
extension problem is trivial (again by the Hahn-Banach ither). Nevertheless, the analogy with Banach
spaces stops here, as our result shows that the normal sphgrsits inG in an “entangled” way which
makes it impossible to extend certain Lipschitz functiorslevpreserving the Lipschitz property.

To explain the connection with the Lipschitz extension jpeabtakey : (Z 1 Z)o — L, which is 1-Lipschitz
and|ly(X) — w(y)llz > cdzz(x, y)¥ for all X,y € (Z2Z)o, wherec > 0 is a universal constdhtWe claim that

Y cannot be extended to a Lipschitz functi¥mefined on all ofZ:Z, so assume for the sake of contradiction
that¥ extendsy and is Lipschitz. To arrive at a contradiction we need to mmuhe% lower bound on the
compression exponent gfwith the Markov type 2 proof of the fact thdt cannot have compression larger
than% from [6]. Let{W};°, be the canonical random walk @ Z starting at the identity element. Writing
W = (f;, ) € Z 1 Z one can see that with high probability| < v, while the distance betwean; and
the identity element ig t¥4. The fact that_, has Markov type 2 an¥ is Lipschitz says that we expect
IP(W) — ¥(Wo)ll2 to be . But, if we moveW, to its closest point in the zero sectidh {Z)o then the
image undek will (using the Lipschitz condition) movg +t. Using the compression inequality fgrwe

3/4 L -
deduce that for large enouglive havevt > [[¥(W) - Y(Wo)ll2 = (t3/4) /" _ t9/16 which is a contradiction.

“4It isn’t quite accurate that the fact that ((Zt Z)o, dzz) = % implies the existence of such a functign since all we are
assured is a compression exponent lower bourﬁjofs for all € > 0. This is immaterial for the sake of the argument here in the
introduction—a precise proof is given in Sectidn 8



This argument is, of course, flawed, since we are allowed écthes fact that., has Markov type 2 only
for Markov chains which are stationary and reversible, dnigl is not the case for the canonical random
walk starting at the identity element. Nevertheless, tihimpcan be salvaged using the same intuition: in
Section 8 we consider a certain finite subseZzafZ which lies within a narrow tubular neighborhood of
(Z ¥ Z)o. We then apply the same ideas to the random walk obtained &ysaig a point in this subset
uniformly at random and preforming a random walk on the subsgi appropriate boundary conditions.
We refer to Sectionl8 for the full details. Itis perhaps sommatamusing to note here that while the notion of
Markov type was introduced by Balll[8] in order to prove anemgion theorem (Ball's extension theorem),
here we use Markov type for the opposite purpose—to proveneertendability result.

Thus far we did not discuss the relation between the paramej¢G) andaf((G) for some Banach space
X. This is, in fact, a subtle issue: it is unclear whep(G) = oﬁf((G). Since for everyp € [1, o) the free
groupFn onn > 2 generators satisfies,(Fn) = 1 yetaﬁ(Fn) = max{%), %} (see [[31]_44]) it follows that
the compression exponent and equivariant compressiomerpoan be dierent from each other, while in
many cases we know that these two invariants coincide: famgkea,(C2Fn) = aﬁ(sz Fn) = max{%), %}
(see [[21]44]). A useful result of Aharoni, Maurey and Mitiradd] for Abelian groups, and Gromov
(see[[22]) for general amenable groups, says that for anyaihe groups we havea’(G) = a*z"(G). This
is an obviously useful fact (examples of applications cariob@d in [22,[7]): for example in[44] it was
shown that ifX is a Banach space whose modulus of uniform smoothness has pgwe p then for every

finitely generated grou@® we have:
1

o) ©
The bound([(B) implies the bound| (5) whéns amenable an is Hilbert space due to the above reduction
to equivariant mappings for amenable groups and Hilbethagets. At the time of writing of [44] it was
unclear whethei_{9) implie§](5) in general, since an AhaMaurey-MityagiriGromov type result was not
known in non-Hilbertian settings. In Sectibh 5 we furthepnove [9) by showing that iK is a Banach
space whose modulus of uniform smoothness has powerptjpen:

a?( (G) <

1
PBp(G)’

In Sectiori 9 we show that for evepye [1, o) if G is an amenable group andis a Banach space then there
exists a Banach spadewhich is finitely representaﬂﬁdn {p(X) and

a%(G) <

(10)

a%(G) = a}(G). (12)

Moreover, ifX = Lj then we can also také = L, in (1), and thus(G) = aﬁ(G) whenG is amenable.
Note also that iX has modulus of uniform smoothness of power typiaen so doeg(X), and hence so
doesY. Therefore by virtue of (11) the inequalitiés (9) ahdl(1® imdeed stronger than the inequalities (5)
and [7) in full generality.

We end this introduction by commenting on why so much of tkerdiure (and also the present paper)
focused on compression exponents of wreath products. THeuwsbanswer is that groups suchzasZ are
among the simplest examples of groups for which it was unknfaw a long time how to compute their
compression exponents. As it turns out, understanding guoelps required new ideas and new connections

5A Banach spac# is said to be finitely representable in a Banach spadkfor every ¢ > 0 and every finite dimensional
subspacé C U there is a linear operatdr : F — V such that for everyx € F we have|x||y < [[THlv < (1 + &)Xy



between geometric group theory and other mathematicaiptiises. But, there is also a deeper reason
for our interest in embeddings of wreath products. Kazslaxample[[38] (see alsb [23]) @F = S Ly(Z)
shows that there can be two groups, each of which has posgu@ariant compression exponent, yet their
semidirect product fails to have a positive equivariant pmeasion exponent, and even fails the Haagerup
property. It seems challenging to characterize which seeutdproducts preserve the property of having
positive compression exponents, and wreath products,aasmgs of semidirect products, are a good place
to start trying to understand this fundamental questiore [ithrature on compression exponents of wreath
products shows that in many cases this operation presemeegroperty of having positive compression
exponent, but we do not know if this is always true, even foeaable groups: the simplest such example
is the group<C, @ (C, @ Z) for which we do not know if it has positive Hilbert comprassiexponent, even
though bothC, andC, @ Z have Hilbert compression exponent 1.

2 Preiminaries

In what follows we fix two group& andH, which are generated by the symmetric finite sktsandSy,
respectively. The corresponding left invariant word nostivill be denotedls anddy, respectively. The
canonical generating set of the wreath prodsetH is

{(es,X) 1 X€SylU {(6y,eH) L ye SG},

wherees : H — G denotes the constaag function and fory € G the functiondy : H — G takes the value
y atey and the valuey elsewhere.

Given a functionf : H — G we denote its support supp(f) := {x e H : f(X) # eg}. For a finite subset
A C Handx,y € Hwe let TSPA; x,y) denote the length of the shortest pattHrwhich starts ak, covers
A, and terminates 3 i.e.,

k-1
TSPA; x,y) = inf{ZdH(Xj,Xj+1): keN, Xx=Xg,..., X% =YeH A AC{X0,..., X}
j=0

Thus
|A| + TSP(A’ X, y) = dCzZH ((ly‘lA’ y_lx) > (0’ O)) s

where0 : H — C, denotes the constant O function. Followingl[44] we t&t(H) denote the wreath
product ofG with H where the set of generators @fis taken to bés \ {es} (i.e. any two distinct elements
of G are at distance 1 from each other). In other words, tfterdince betweer¥(H) and the classical
lamplighter groupC, ¢ H is that we allow the “lamps” to hav@ types of diferent “lights”, where the cost
of switching from one type of light to another is 1. Thus, witis definition it is immediate that for every
(f,%),(9,y) € Z(Z) we have

dzs@((F, %), (8.Y)) = degr ((4y-1app(rg-2)- Y, (0,0)) = |supp(fg‘1)| + TSP(supp(fg™);xy). (12)

Moreover, distances in the wreath prodGeH, equipped with the canonical generating set, can be compute
as follows:

de((f, %), (9) = TSP(supp (fg™): % y) + > da(F(x), g(). (13)

xeH



The following lemma generalizes Lemma 3.1[in/[44], whichlde=ith the special casel = Z (in which
case the proof is easier).

Lemma 2.1. Assume that G contains at least two elements. Then for any we have

@(Le(H)) = @ (C2 U H).

Proof. Obviouslyap, (Z5(H)) < ap (C2t H), since£(H) contains an isometric copy @f; 2 H. To prove
the reverse direction we may assume thg(CztH) > 0. Fix 0 < a < a}(CztH) and a mapping
0 :CoZ — L satisfying

(f’ X)’ (g’ y) € C2 tH = dCZZH((f’ X)’ (g’ y))a/ < ”9(f’ X) - 9(9, Y)||p < dCzZH((f’ X)’ (g’ y)) (14)

Let {ez}zcc\(e5) D€ 1.1.d. {0, 1}-valued Bernoulli random variables, defined on some prdibabpace (2, P).
For everyf : H — G define a random mapping : H — C, by

_ ) €@ if f(Z) * €g,
£1(2 “{ 0 iff(2)=es

We now define an embeddirtgy: -ZG(H) — Lp(Q, Lp) by

F(f,X) = 0(et, X).
Given (f, X).(9.y) € G H denoteA := supp (fg?) = {ze H : f(2) # g(2)}. We also denote bj, C H the
random subsetpp(es — gg). By definition A, C A, so that TSP, X,y) < TSPA; X, y). Hence:

||F(fa X) - F(g’ y)”Ep(Q’Lp) =E ”9(8f’ X) - 9(89’ y)”g] GSZ) E [dCﬂH((‘gf’ X)’ (‘99’ y))p]
= E[TSPA:; X Y)P] < E[TSPA: x.)P] 2 do (. ). (@.Y))".

In the reverse direction, observe that

TSPA; x,y) < 2TSPA,; X, y) + TSPA\ A X Y), (15)

since given a path that starts ak, ends at, and cover#\., and a patlé that starts ak, ends ay, and covers
A\ A., we can consider the path that startyagetraces’s steps fromy back tox, and then continues as
from xtoy. Hence,

@)
d@)((f, %), (9. y)™ D rsp@a; x.y)™ ' TSPA % y)™ + TSPA\ A x, )P (16)

But by the symmetry of our construction the random subsgtandA \ A, are identically distributed. So,
taking expectation i _(16) we see that

A (. 9. @Y™ < E[TSPA % y)™] = E[deani(er. 9. (5. )™
L B[10(er. ) - 6eg D] = IF(E ) - F@IIP 0

ThusG H embeds intd_,(€2, L) with compressionr, as required. m]
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A combination of Lemm&2]1 and Theorem 3.3[inl[44] yields éofving corollary:
Corollary 2.2. Let G, H be nontrivial groups and p 1. Then

paj(G)ap(Cat H)
Pap(G) + pap(CatH) - 1°

min{a;(G),a;(szH)}z% = aj(GtH) >
and

min{ap(G), ap(C2 1 H)} < ?1) = (G tH) 2 min{ap(G), ap(C2 1 H)} .

We end this section with a simple multi-scale estimate ferléngth of traveling salesmen tours (see for
example[[52] for a similar estimate). For> 0 andx € H we letBy(x,r) = {ye H: du(xy) < r} be the
closed ball centered atwith radiusr. For a bounded s&& € H andr > 0 we letN(A, r) be the smallest
integern € N such that there existsy, ..., x, € H for which A € (J_; Bu(Xm, r). Finally, for¢ > 0 let
TSP.(A) denote the length of the shortest path starting feymcoming within a distance of at most2
from every point inA, and returning tey, i.e.

k-1 k
TSP,(A) = inf {Z du(xj, Xj+1) : KEN, eq=X,...,% =€y € H, AC U By (x,-,zf—l)}.
j=0 j=0

Thus TSPRQ) = TSPA; ey, enq) = TSR(A) = dcn((1a.en), (0, en)) is the length of the shortest path
starting fromey, coveringA, and returning teey. We shall use the following easy bound, which holds for
everyk, £ € NU {0}

k
AC By (en,2) = TSR(A) <3) 2IN(A 2. (17)
=t

The inequality [(1I7) is valid whefi > k + 1 since in that case T$@) = 0. Now (17) follows by induction
from the inequality TSP1(A) < TSP(A)+3-2"IN (A, 2"‘2). This inequality holds true since we can take a
setC C H of sizeN (A, 2"‘2) such that J,.c Bn (x, 26‘2) D A, and also take a palhc H of length TSR(A)

which starts fromey, comes within a distance of at most2from every point inA, and returns tey. If
we append td’ a shortest path from eacte C to its closest neighbor ifi (and back) we obtain a new path
of length at most TSRA) + 2(2[‘1 + 2[‘2) IC] < TSP(A) + 3- 2¢-1|C| which starts fromey, comes within

a distance of at most'? from every point inA, and returns tey, as required.

3 Wreath products of groupswith polynomial growth

The goal of this section is to prove the following theorem:

Theorem 3.1. Let G H be nontrivial finitely generated groups, and assume thaihl frolynomial growth.
Then for every [ [1, 2] we have

@i(GUH) > min{%,a;(e)}. (18)
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In particular, if the growth rate of H is at least quadraticeh for every e [1, 2] we have

@(Z U H) = a3(Ca 2 H) = % (19)

Proof. We shall first explain how to deduce the identity](19). ThedoWwoundap(Z t H) = ap(C2 2t H) > rl)

is a consequence df (118). Since foe [1, 2] the Banach spadg, has Markov typep (seell8)), the result of
Austin, Naor and Peres|[6] implies tha;g(Gz H) < pﬁ*(GzH) But, as we proved in[44], since the growth of
H is at least quadratic we hag&(G 1 H) =

To prove [(I8) note that by Corollary 2.2 it is enough to shoat th
ap(CatH) > —; (20)

Recall that forr > 0 andx € H we letBy(x,r) := {ye H: du(XYy) < r} be the closed ball centered xat
with radiusr. Assume thaH has polynomial growtld, i.e., that for every > 1 we have

ar? < |Bu(e r)| < brd (21)

for somea, b > 0 which do not depend on We shall show that for every ¢ p < 2 ande € (0, 1/p) there
is a functionF : C2 tH — L such that for all {, x), (9,y) € C2 t H we have

Ao (£, ). (@.9))7 ™ 5 IF(f. %)~ F@Yllp < doyn((F. ). (@.Y)). (22)

where here, and in the remainder of the proof of Theoremh B4.,implied constants depend only on
a,b, p,d,e. Moreover, we will show that we can take= 0 in (22) if (H, dq) admits a bi-Lipschitz em-
bedding intoL,. Note that[(2P) implies also the cagpe= 1 of Theoren{ 3]l sincé is isometric to a
subspace of 1 for all p € (1, 2] (see e.g.[56]).

Let Q be the disjoint union of the sets of functiofis A — C, whereA ranges over all finite subsets df

i.e.
Q= U CZA.

AcH
|A|<oo

We will work with the Banach spac&,(2), and denote its standard coordinate basis by
{vi: f:A>Co ACH, |Al < o).

Fix a 1-Lipschitz functiony : [0, o) — [0, 1] which equals 0 on [A] and equals 1 on [20). For every
(f,xX) € Co 2t H define a functionlo(f, X) € £,(Q) by

Wo(f,x) = ZZ—(d 1)k/pZ (dH(X Y)) T (23)

yeH

We shall first check tha¥ — Wo(0, ey) € Z1(H, 7) for an appropriately chosen actiarof C, 2 H on {p(€).
Recall that the product oBi, ¢ H is given by (, X)(g,y) = (f + Tx(g), xy), whereTy(g)(2) := g(x‘lz). Given
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(f,x) € Co 1 H and a finite subsek C H define a bijectior’r?f’x) : C5 — CAby T(Af’x)(h) := f + Tx(h). Note
that for all (f, X), (g, y) € C, ¢ H and every finiteA € H we have
A __YA __A
(10 = 719 ° Tay (24)

Hence if we define

7(f, x) Z Z anhVh | = Z Z a/hv‘f?f,x)(h)’

ACH hecA ACH hech
|Al<co 2 [Al<oo 2

thenr is a linear isometric action o€, : H on £,(Q) for all p € [1, ] (#(f, X) corresponds to a per-
mutation of the coordinates and hence is an isometry. Thetlatx((f, X)(g,y)) = =(f, X)x(f,y) is an
immediate consequence 6f (24)). The definition (23) enstinasfor every €, X), (g,y) € C> ¢ H we have
Po((f, X)(9,Y)) = 7(f, X)Po(g, y). Hence, if we definé(f, x) := Po(f, X) — Po(0, en) then¥ € Z1(H, n).

Note that¥(0,ey) = 0 and

o (d- dr(en, y)

_ (d-1)k/p H _ _

PY(Liey)- en) = Z 2 Z 90( oK (V5EH o2 ~ VOlsy (y.zk)) =0,
k=0 yeBh(en.2)

where we used the fact that) = O fort € [0, 1]. Moreover, for everys € Sy we have

N p
(0, 9Ip = Zz—(d—nkz¢(dH(ay))_¢(dH(eH,y))
k=0

A 2k 2k
s du(sy) dr(en.y)\|°
_ (d-1)k H N R RN LR 24
- )2 I

k=0 yeH
2X—1<dy (en,y)<2¢*1+1

< i o—(d-1k | 2—kp|{y ceH: %-1< du(en.y) < ok+l | 1}|
k=0
< i 2@k ke (2L 4 1)

k=0
< 4de 7K1 < 1.
k=0

Where we used the fact that > 1. SinceV is equivariant and the sélie,),en)} U {(0,S) : s € Sy}
generate€, ¢ H, we deduce that

¥llLip < 1. (25)

Suppose now that : H — C, and letm € N be the minimum integer such thaipp(f) € Bun(eq,2M).
Then

S du(en,y)\’
W(f el > > 270Dk N w(—H(zk y))
k=0 yeH
e 02970 gy .2k

> i 27 @Dk|lye H 1 du(en.y) = 2* A supp(f) N Br(y, 2 =0} (26)
k=0

12



Fix k < m- 3 and denot& = N (supp(f),zk‘l). Letxy,..., X, € H satisfy
n
supp(f) < ) Br (%, 2°Y). (27)
i=1

By the minimality of n we are ensured that the ba[IBH (xi,zk‘z)}in:l are disjoint and that there exists
yi € By (>q,2k—1) N supp(f). Write

| = {i e{l,...,n}: du(y,enq) = ok+1 vy € By (Xi,Zk‘z)}.

Note that ifi € | andy € By (xi, 2'(‘2) thendy(yi,y) < du(yi, X)) + dy(y, x;) < 21+ 252 < 2K Thus in this
casesupp(f) N By(y, 2¢) # 0, and therefore

|{ye H: du(en,y) = 2¢T A supp(f) N Bu(y, 2¢) # 0}| > ||||BH (eH,zk—2)| > 2k, (28)

We shall now bound | from below. By the minimality oim there existz € supp(f) such thatdy(ey, 2) >
2™1, By (27) there is somie {1,...n} for whichdy (z x) < 2L, If y € By (%, 22) then

A (Y, 1) > dr(en, 2) — dn(z %) — d(x;,y) > 2™ h = 21 - 262 > e,

since by assumptiok < m— 3. This shows thafi| > 1. Write J := {1,...,n} \ |. For each € J there
is somey € By (>q,2k‘2) for which d(en.y) < 2. HenceBy (X, 22) By (eH,2k+2). Since the balls

{BH (xi, 2"‘2)}?21 are disjoint it follows that

Jia2t-24 Dy B (en,272)| < [Br (en, 242) 2 patean,

Thusn - |I| = |J] < 1, which implies thatl| > n. Plugging this bound intd_(28) we see that for every
k < m- 3 we have

|{ye H: du(en,y) = 2% A supp(f) N Bu(y, 2¢) # @}| > 2N (supp(f), 2¢°Y).

In combination with[(26) we see that

m-3 m-3

I(f,en)llp 2 Y 2@k 2N (supp(f), 2°1) = > 2N (supp(f), 2°Y). (29)
k=0 k=0
We claim that
m-3
Isupp(f)] + D" 2N (supp(f), 27%) 2 dem((F, en), (0, ). (30)
k=0

Indeed, by combinind(17) (with = 0) and [18) we see that

Isupp(f)l + " 2N (supp(f), 27%) 2 den((F, &), (0, en)). (31)
k=0

13



To check that[(31) implied (B0) note that is is enough to ddth e casesupp(f) # 0, and that the
fact thatsupp(f) c By (eq,2™), combined with the doubling condition foH(dy), implies that fork e

{m-2,m-1,m} we haveN (supp(f), 2k‘1) < 1. Thus[(31) implies(30) by inspecting the cases 3 and
m > 3 separately.

Fix € € (0,1). By Assouad’s theorem[[5] (see also the exposition of tieorem in[[33]), sinced has
polynomial growth, and hence is a doubling metric spacegtisea functiorp : H — L, such that for all
X,y € H we have

dn (% Y) 7 < 16(%) = 6Y)llp < dr(x ¥)*° < du(x.y). (32)
By translation we may assume tlegey) = 0. We can now define our embedding

by F = Y& f @ 6 (here we identify a finitely supported functidn: H — C, as a member dt", and hence
a member of,(H)). Then||F|lLip := L < 1. Thus in order to prové (22), and hence to complete the mbof
Theoreni 3.1, it remains to show that for al ¥) € C» : H we have

dean((F. %), (0.€4) S < [IF(f, %) - F(0,en)llp = (I(F. 113 + Isupp(D) + 1000IE) " (33)

A combination of [Z2P) and (30) implies that there exigts 0 which depends only oa b, d, p, € such that

1/
ndc,m (. en). (0. e)™P < (I¥(F. @)lI§ + Isupp(F)I)* = IF(. en) = F(O. en)llp.
Hence

IF(f.x) — FO.elly > [IF(f, &) = FO, ellp = IF (. x) — F(f,en)llp
ndc,n((f, en), (0,en))"'P — Ldu(x, en)

n [max{0, de,er((f, X), (0, €n)) — deur((f, X, (f, eu))} P — Lo (x en)
i [max{0, de,r((f. X), (0, €n)) — dr(x, en)}]”P - Ldn(x, en)

%dczzH((f,X), (0, e4))Y/P

%dszH((f, x), (0, 1)) F-P,

vV IV IV

\%

provided that
(@) < min (1,9, 0.8, 3eean((F 0, 0. @) . (34)
But if (32) fails thendy (X, en) = de,ri((f, %), (0, en))™P, in which case we can use{32) to deduce that
1609 11p > dii(en. ) 2 depn((F. %), (0. e1)) P,
which implies [38) and concludes the proof [of1(22). m|

Remark 3.2. Since the only reason for the loss®oin (22) is the use of Assouad’'s embedding[inl (32) we
see that ifp > 1 and {, dy) admits a bi-Lipschitz embedding intg, and has at least quadratic growth then
ap(C22H) = —é is attained. <
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Remark 3.3. In [44] it was shown thatr;(C; 2 72) > % via an embedding which we now describe. We
are doing so for several reasons. First of all there are sgpustin the formulae given for the embedding
in [44] and we wish to take this opportunity to publish a cotneersion. Secondly the embedding was given
in [44] without a detailed proof of its compression bounds] aince it is based on aftirent and simpler
approach than our proof of Theorédm]3.1 it is worthwhile tolaxpit here. Most importantly, there are
several “coincidences” which allow this approach to yididrp bounds on(Cz 2% only whenp = 2 and

d = 2, and we wish to explain these subtleties here. We will foeedfirst describe the embedding scheme
in [44] for generalp € [1, 2] andd > 2 and then specialize to the cgse- d = 2.

Let {vy,r,g cyeZd reNU{0}, g:y+[-rr]9— {0, 1}} be a system of disjoint unit vectors lr,. Fix a

parametery > 0 which will be determined later and define for evefyX) € C,t Z% a vectorF(f,x) =
Fo(f,Xx) = Fo(0,0) € Lp, where

= max{1 - g, 0)
Fo(f, %) = Z Z 1 A U
ST T Xy

One checks as in the proof of Theoréml 3.1 thas equivariant with respect to an appropriate action of
C,1Z%0n Lp. Moreover, one checks thg (1o, 0)ll, < 1 and that forx € {(+1, 0), (0, £1)} we have

1+r @+rP
IFQ. I < ( : ) 3
)é:d rE[Osl+Z“;l“oc/2] (l + [lleo ) 7 rz—é k?o )||y||o<,=k (1 + k)( +7)P
p
- gl‘ ; a+ k)(2+y)p ~ Z rp+yp—d <o, (39)
where in [35) we need to assume that .
1 _

It follows that as long as (36) holds trireis Lipschitz.

For the lower bound fixf, x) € C»2Z% such thatf # 0and letR > 0 be the smallest integer for which there
existsz € supp(f) such that|z— X/l = R, i.e.,Ris the smallest integer such thaipp(f) € x + [-R R]¢.
Note that for ever)y € Z9 such thatly — Z|.. € [0, R] and everyr € [|ly — Zleo, (1 + R—|ly — 2l )/4] we have
ze y+[-r,r]9 and henceupp(f) N (y+ [-r, r]d) # 0, and|ly — Xl = R=|ly — 2|, Which implies that

2r 1
— <
Ty < 2+ 1hus:

1
IFCEIE2 > > Y T

k=0 yezd relk(1+R-K)/4]

lly-2zllo=k
1+R-5k 1
® (1+K77)- 2 R¥P(37)
2 3
kE[O,(%;R)/S] 4 (1 +(k+R))
Note the trivial bound:
TSPEUpp(f); x. ) < TSP(x+ [-R RI% x. x) < R". 8)
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Assuming also thay < d—gl we see that a combination @f {37) afdl(38) implies that:

IF (. X)llp 2 TSPEUpp(f); X x) " (39)

Hence if we defindl(x) = x& F(X) € f‘g ® Lp we get the lower bound

IE(E, X)llp 2 Xl + TSPEUPP(F); % X) 8 2 (dha(x, 0) + TSPEUpP(F); X, X)) &
d+1-yp

2 (deyize ((£,%,(0,0))) ™ . (40)

Lettingy tend from above t f;p in (@0) we get the lower bound

ap(Co2z%) > (41)

ol

While (@1) reproduces the result 6f [54], it yields the shiagpinda’ (Cz 2 Zd) = —é only whenp =d = 2,

in which case the above embedding coincides with the embgddied in[[44]. This is why we needed to
use a new argument in our proof of Theorlem 3.1. Note that ifattempts to use the above reasoning while
replacing the groug® by a general groupi of growth rated one realizes that it used the bound

IBr(en, " + 1) — [Bu(en, r)l = r4-L, (42)

Unfortunately the validity ofl(42) is open for general greitpof growth rated. To the best of our knowledge
the best known general upper bound on the growth rate of epliethe following fact: there exisgs> 0
(depending on the groug and the choice of generators) such that for evesyN we have

IBr(en, T + 1) — |Bu(en, 1)l s r4?. (43)

This is an immediate corollary of a well known (simple) résnlmetric geometry: sincBy (e r)| =< rd the

metric spaceH], dy) is doubling (moreover, the counting measurd-bis Ahlfors-Davidd-regular. See [33]
for a discussion of these notions). By Lemma 3.3.in [18] (dee Broposition 6.12 in [15]) ifX,d, u) is a

geodesic doubling metric measure space then foralk, r > 0 ands € (0, 1) we have

1 (Bx(%,1) \ Bx(X, (1= 6)r)) < (26)°u (Bx(x 1)), (44)

wheres > 0 depends only on the doubling constant of the meas(isee [18, 15] for a bound gh In [46]
it is shown that the bound of from [18,[15] is asymptotically sharp as the doubling comistands to
). Clearly [44) implies[(43) if we let: be the counting measure ¢handé = % While it is natural
to conjecture that it is possible to tage= 1 in (43), this has been proved whehis a 2-step nilpotent
group [53], but it is unknown in general. <

4 Thezerosection of Z1Z

This section is devoted to the proof of the following theorem
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Theorem 4.1. Let(ZZ)q be the zero section @t Z, i.e. the subset &  Z consisting of al(f,x) € Z:Z
with x = 0, with the metric inherited fror ¢ Z. Then for all pe [1, 2] we have
p+1

ap(Z X Z)o, dzz) = p

Proof. The fact thatr}, ((Z  Z)o, dziz) < %1 follows from a variant of an argument frornl [4]—see Lemma
7.8 in [44]. We present an alternative proof of this fact ict®m[7 below.

Fix £ € (0,1). In [44] we have shown that there exists a functien: Z 1 Z — L, such that the metric
IFo(f x1) = (f2, X2)llp iIs Z ¥ Z-invariant and for all {, X) € Z Z we have

XAP " ()P + max{|jP - f(x+ j) # 0] < IFo(f, X)  Fo(0,0)lI§ < dziz((f, %), (0,0)°, (45)
jez
where here, and in what follows, the implied constants deey onp ands. We note that while (45) was
not stated as a separate result’in [44], it is contained impthef of Theorem 3.3 there—see equation (28)
in [44] with a = 1 andb = 1 — &. Alternatively [45) is explained in detail for the cape- 2 in Remark 2.2
of [6]—the same argument works when we replace in that pkeddy L, and leta be arbitrarily close to
(p-1)/p (instead of arbitrarily close to/2).

Let{ejxs : ],k ¢ € Z} be the standard basis &(Z x Z x Z). For every §,0) € (Z 2 Z)o define
2 & 2(k+(p-1)0)/p 27if (j)
@(f,0) = Z Z Z T exp( * )ej,u.

¢=1 k=0 JeZ
ljle[2-1-1,2¢-1)

Our embedding ofZ ¢ Z)q will be
F=Foo®eclp(ZXZXZ)®L,.

Observe that for everyf(0), (g, 0) € (Z ¢ Z)o we have||®(f,0) — ®(g, 0)llp = [I®(f — g,0) — @(0, 0)ll,, so it
will suffice to prove the required compression boundg|fdqf, 0) — F(g, 0)l|, wheng = 0.

From now on we shall fixf, 0) € (Z 2 Z)o. For everyf, m € Z denote
E(,m) = {j €Z: |jle2t =120 -1) A |f(j) €[2™, 2m+1)}.

We also writeM := max]j| : f(j) # 0}, so that

dzz((f,0),(0,0)) < M+ Iflly = M+ " If()l =< M+ > " 2"E(e, m)] (46)
jeZ ¢=1 m=0
Now,
0 ® ok+(p-1)¢ 271 f (j) p
l®(f,0) - ©(0,0)p = — |1 exp(—)
; é sz: (k+2)p 2k
ljle[2-1-1,2~1)
XX okH(p-1)f X 27if (j) p
= l—exp( )‘ . (47

17



Note that

m<k-2 =

NL
1- exp(%)‘ = 2P E(£, m)). (48)
jeE(¢,m)

and for allm k € Z,

1-exp 252 < ecem (49)
jeE@,m) 2

Plugging [48) and (49) intd_(47) we see that

o0 o0 [m+1 ok+(p-1)¢

lo(f,0)- 2©O,0F s >° > | > 5 G T B M+ Z (k+ e 2p(m—k)|E(€ m)|}

¢=1 m=0\ k=0 k=m+2
S o 2P [ m+(p-1)¢ 1p\P
<Y Y TEemi=| ) ) (T | . )
; O(m 1)p ;.rr;) (m+2)pP
Using the fact that for akh, b > 0 we haveabP! < (%’)p we can bound the summands[inl(50) as follows:
mi-(p-1)¢ 1/p m ;
(2 E(C m)|) <) 2MEC, m)+ (ml)p/(p 5 If E(C, m) # 0, (51)
(m+1)p 2ME(¢, m))| otherwise

Note that ifE(¢£,m) # 0 then there exist§ € Z with |j| € [271 — 1,2¢ — 1) such thatf(j) # 0. By the
definition of M this implies that 2 < M. Using this observation while substituting the the esteadB1)
in (50) we see that

[log, M| 0

(o] (o) 1
10(f,0) - (0,0)ll, < 2ME(¢, m)| + 20N ———
P n;; ; mZ:O (m+ 1)P/(p-1)

< 303 2mE(m)+ M D d((1.0).0,0). (52)

=1 m=0
This shows thafiF|lip < 1

In the reverse direction write

D= dea(,O,00) DM+ Y Y |f(j>|xz[2f+ D If(J)I]

20<M |jle[2(-1-1,2(-1) 20<M ljle[26-1-1,20-1)

It follows that there exists an integérs log M such that

D < log(M +1)- [2'5 + Z If(j)l]- (53)

ljle[2¢-1-1,2¢-1)

We shall fix this¢ from now on. Observe that

M= > 2MEE ).

ljle[2/-1-1,2/~1) 2™ 1||f g
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Hence there exists an integars log(1 + || f||1) such that
1T(D)I < 2ME(, m)| - log(1+ [If]l1). (54)
lile[26-1-1,2¢-1)

We shall fix thism form now on. Combining (83) Wit[(54) yields the bound:
D < log(M + 1) - (2 + 2"E(¢, m)! - log(1 + ||f||1)) (Iog(D +1)7- (2 + 2ME@. m)).  (55)

Substitute[(4B) intd (47) to get the lower bound

p-1)¢ m+(p-1)¢ mH+(p-21)¢

|(f,0) - ©(0,0)I5 2 Z e ;)pr(m‘k)lE(é’ m)|~2—|E(€,m)|2

m+ 1) fogD + 1y M-

Also (45) implies that

IFo(f,0) = Fo(0,0)lIp 2 MU-9P 4+ 2MPIE(, m)] 2 209 1 2MPIE(Z, m).
Thus

1 §
IF(f,0) - F(0,0)ll, 2 2079 + 2ME(, m)[Y/P + TrCESE 2MP|E(L, my /P21
1 "
(2 + 2MEC, MR + 2VPE(E, mYP2IP-DIP) T (56)

> 000000
~log(D +1)
We claim that

o+ 2MEQ, M) T

2"+ 2ME(L, [P + 2VPIE(L, m)[H/P2APIIP > >

(57)

+1 +1
Indeed, if (2ME(¢, m)|)pZ_p < 2¢ then [BY) is trivial, so assume that:= (2ME(¢, m)|)pZ_p > 2¢. Since
|E(6, m)| = 2~™ . a2P/(P+1) e see that

2L+ 2ME(L, m)|YP + 2WPIE(L, m)|Y/P2IP-D/P > p(p-1m/pg2/(p+l) | 2/ (p+1)2lp-1)/p, (58)

Note that by definition 2" - a2?/(P+*1) = |E(¢,m)| < 2¢, so 2" > 2= . a2P/(P+D) Substituting this bound
into (58) we see that

2L+ 2ME(L, m)|YP + 2WPIE(L, m)|YP2UP-1/P > 2-Up-1)/p . g2p/(P+1) | 52/(P+1)pl(p-1)/P
+1
> 2a=2(2"E(L. M) # .
where we used the arithmetic m¢g@ometric mean inequality. This completes the proof of .(57)

A combination of [(5b),[(56) and_(57) yields

p+1 l-¢
IF(f,0) - F(0,0)I, (2 + @EE ) F)

log(D + 1)
l £ prl D(l 8) p+1 +1
> T .(25 + 2ME(S, m)|)(l )25 > - (1-20) 55 )
log(D + 1) (log(D + 1))1+2(1_8) 20
This completes the proof of Theorém#.1. i
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5 General compression upper bounds for amenable groups

Let " be a group which is generated by the finite symmetricSset I'. Let p be a left-invariant metric
onI such thatB,(er,r) = {x e I' . p(x,€) < r}is finite for allr > 0. In most of our applications of the
ensuing arguments the metgowill be the word metric induced b, but we will also need to deal with
other invariant metrics (see Sectidn 7).

Given a symmetric probability measugeon I' let {g},>, be i.i.d. elements of which are distributed
according tq:. Theu-random walkW,'};° is defined asVfj = er andW;' = g1g>---gi fort e N. Fix p> 1
and assume that

[ Pt eyt = B, o (W @)"] <o (59)

Let {u};-, be a sequence of symmetric probability measures satisthimgntegrability condition[(39) and
define

_ log (B [o (WE", er)])
* 03 , =1 ‘
By ({ﬂt}t_l p) 'T_,SOOUpmg (tEy [p (v, ef)p])

(60)

Finally we letgy (I, p) be the supremum ¢ ({,ut}{jl,p) over all sequences of symmetric probability mea-
sures{ut}”, onT satisfying

e [ plxe)du() <co and it (" (erl)) = . (61

Whenp is the word metric induced by the symmetric generatingSsete will use the simplified notation
Bp(L, p) = Bp(I'). This convention does not create any ambiguity since Iglggi(I’, p) does not depend on
the choice of the finite symmetric generatingS¢this follows from the fact that due tb (61) the denominator
in (€0) tends too with t—we establish this fact below).

To better explain the definitiof (60) we shall make some pielary observations before passing to the main
results of this section. We first note that

Bi(T,p) < 1. (62)

Indeed, since we are assuming that all gHealls are finite there exisjg > 0 such that for every distinct
X,y € ' we havep(x,y) > po. Hence for every symmetric probability measurenT” which satisfies[(59)
we have

p
By o (WA er)"] = pfu 0\ fer)). (63)
Holder's inequality therefore implies that:

B o (Wi er)] = Bu o (Wi er) B |

< u(C\ (e )P (B, [o (W, er)p])l/ P %Eﬂ I er)p] . (64)
0
On the other hand, by the triangle inequality we have:
t 3
Bl (e < DR (W) = B e (We)] S m b (We)] 69
i=1 0
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It follows that if {};°, are symmetric probability measures bsatisfying [61) then

imeup_ 9 G lo (W @) @ P C— T
oo log(tEy, [0 (WA, er)"]) teo log (tut (T \ {er})) + plogpo ’
implying (62).
We also claim that if 1< q < p < oo then
Bp(l, p) < By(T, p). (66)

Indeed, letu};2, be symmetric probability measures Bsatisfying [(61) and note that

By [0 (VW )] < (T \ {er )PP (B, [ (WA &) ])Q/ P @pl alp (W e)]. (67)
Hence,
limsup Iog(Em [p(WtM’ )]) QBSZD limsup Iog( [ (th’ )]) : :
oo log(tE,, [o (Weser)°]) — o log(tEy, [o (WS er)]) 1+ |og(a(ai_[z)(®?f;)ql)
& log (Ey | (W*, er)) 1 €D
< limsup : - < By(T.p),
tos log (B, [o (W' ef)q]) 1+ |09(t#t((F1)"\{qgrk}))§)Jfg|09Po i
implying (68).

The main result of this section is the following theorem:

Theorem 5.1. Assume thaf is amenable and that X is a metric space with Markov type pnTheevery
left-invariant metrico onT" such thatB,(er,r)| < oo for allr > 0 we have:

1
ay([,p) < ———.
RS o)
Remark 5.2. In [6] [44] it was essentially shown that the bound in Theofefh®lds true withsy(T, o)
replaced bys’ (T, o), which is a weaker bound due fo {66). More precisely [6, £8ltwith the case when
all the measureg; equal a fixed measuge in which case the second requirementofl (61) is simply ghat
not supported ofer}. If we restrict to this particular case we can define an amalsgparameter by

P log(E W er
Bolup) = By (st 1.p) = limsup (B [f)étt )

and similarly by taking the supremum over all symmetric pitibity measures measuresatisfying (61) we
can define the parametgf(T’, o). An inspection of the results il[6, 44] shows that a varzitheoren 5.11

is established there withy(T, p) replaced byB: (T, p). Thus Theoren 51 is formally stronger than the
results of [6[44]. As we shall see in Sect[dn 6, this is asimprovement which is crucial for our proof of
the bounde(Z 2 Z) < L and in Sectiofn]7 we will also need to use a family of non-idehtmeasures

{,ut }t—l <
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Proof of Theorern Sl1Let {Fn};’ , be a Falner sequence foyi.e., for everys > 0 and any finitek C T, we
have|Fra(FnK)I < elFq| for large enoughn. Fix g < (I, p). Then there exists a sequence of symmetric

probability measure§u )}, onT which satisfy [(61) ang < g5 ({1}, p). This implies that there exists an
increasing sequence of integétig,” , for which

B, [ (W )] = € (B, [o (W er)7]).
for all k. For everyt,r € N consider the event

t
Adr) = ) {We € By(er, 1)}
j=1

By the monotone convergence theorem for edegyN there existsy € N such that

B o (0 2) 10, 0] > (B, o (0 0)") ©)

Since|B,(er, ry)| < oo for everyk € N we can findng € N such that if we denot@ := F, By(er,rk) 2 Fn,
then we have (by the Fglner condition with= 1),

1
A\ Fnl <IFnd = [Fnl 2 SIA. (69)

Fixk e Nand let{gi};°, € I' be i.i.d. group elements distributed accordingifosuch that\/\ft'tk = 0102 O
for everyt € N. LetZy be uniformly distributed oveA and independent db;};°,. Fort € N define

7 . Zi 1o if Ziag e A
'~ z.; otherwise

Consider the everf := {Zg € Fy, } mAtnk(rk). By construction whe® occurs we havé&;, = ZOV\/t:‘k. Hence

Eﬂtk lo (Z. Zo)] = Emk [p (ZOVVtttk, Zo) lQ]
= P(Zo€ Fnl By, [p(Woor) Iao0] 2 38 (Bu [o(Wer) ). (70)
where in ¢) we used the independenceZfand{g;};°, and the left-invariance qf.

On the other hand fix € (0, 1) and assume that there exists an embedding” — X andc,C € (0, «)
such that

xyel = cp(xy)* < dx(f(x), f(x)) < Co(xy). (71)

Our goal is to show that < p—lﬂ. Sinces < 1 this inequality is vacuous e < 1. We may therefore assume
thatpe > 1. Since{Z;};, is a stationary reversible Markov chain, for evéity> Mp(X) andk € N we have

E[dx(f(Zy), f(Z0)?] < MPE [dx(f(Z1), f(Z0))"]

D MPCPE [p(z0, Z0)P] © M PCPYE,, [0 (W™ er)]. (72)
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Where in §&x) we used the point-wise inequalipfZi, Zo) < p(91, €r) = p(V\/l“k, ep). On the other hand,

B [dk(F(Z). FZ0)°] S P [o (24, £20)°P]

. ptaﬁp o
2 e EpE 20" S e E (e 09

Combining [72) and_(43) we deduce that

app-1 €3 A app-1 _ 4*PMPCP
(pBtisn 0\ ter) ™ < (B, [0 (W™, er) )™ < ——. (74)
Takingk — oo in (74) while using the assumptioln_(61) we conclude th#p < 1, as required. i

The following theorem is a variant of Theorédm|5.1 which deaih equivariant embeddings of general
groups (not necessarily amenable) into uniformly smoothagh spaces. Its proof is an obvious modifica-
tion of the proof of Theorem 2.1 in_[44]: one just has to noticat in that proof the i.i.d. group elements
{0, Need not be uniformly distributed over a symmetric genegasetS c I'—the argument goes
through identically if they are allowed to be distribute¢t@aling to any symmetric probability measwre
satisfying the integrability condition_(59).

Theorem 5.3. LetI" be a group ang a left-invariant metric orl” such thatB,(er,r)| < co for allr > 0.
Assume that X is a Banach space whose modulus of uniformtsnessthas power-typed[1, 2]. Then:

1

o%(T.p) < BT

By the results of Sectidi 9 Theorém15.3 implies Thedrerh 5.&ndhis a Banach space whose modulus of
uniform smoothness has power-typeather than a general metric space with Markov tppé&lote that the
former assumption implies the latter assumption as sho4bh

6 Stablewalksand the L, compression of Z:Z

This section is devoted to the proof of the following theorem
Theorem 6.1. For every pe (1, 2) we have

) op-1
pZZ) = ppz .

Note that since in[[44] we proved that(Z : Z) > Tp—l Theoren 511 implies thagy(Z 2 Z) < Z‘j—';l

Thus in order to prove Theorem 6.1 itfBaes to show tha#y(Z 2 Z) > 2‘?—';1 which would also imply that

ap(ZrZ) = Wp—l In order to establish this lower bound Bj(Z : Z) we will analyze certain symmetric
random walks or¥ @ Z which arise from discrete approximations @&table random variables for some

qe(p.2).

23



6.1 Some general propertiesof symmetric walkson Z

Let X be aZ-valued symmetric random variable and gt X, ... be i.i.d. copies oX. For eachh € N
defineS, = Xy +--- + X, (and setSy = 0). We also defin&|y to be the random s¢8y, . .., Sp}. We will
record here for future use some general properties of thie 8¢alThese are simple facts which appeared in
various guises in the literate (though we did not managertpgint cleanly stated references for them). We
include this brief discussion for the sake of completeness.

Lemma6.2. For S, as above we have
1
E[ISnll = ZE[Spa |- (75)

Proof. Fix R > 0 and denote := min{t > 0 : |S;| > R}. Note the following inclusion of events:

{ISn| >R} 2 {r <nA sign{ Z Xk} = sign(ST)}.

k=7+1
It follows that:;

n

P[|Sn|2R]ZZP

T=mA sign[ Z Xk} = sgn(Sm)

= ZP[sz] P[Sn_m > 0]
m=0

m=0 k=m+1
1 1
> EZP[T= m = >P[r<n]. (76)
m=0
where in ) we used the symmetry &, . Note that if|S[o,n]| > 2Rthen one of the numbetiSy|, . . ., |Snl}

must be at leadR. Thus
P[r <n] > P|[Spn| > 2R]. (77)

It follows that;

- @ONTD) 1
B[Sl = ) PUSH 2R = 5 > P[|Seal> 2R]
R=0 R=0

N 1 P[|S[0,n]| > ZR] + P“S[o,nﬂ > 2R+ 1] 1

*3 24 5 = ZE“S[Qn]H’

as required. m|

The proof of the following lemma is a slight variant of the amgent used to prove the first assertion of
Lemma 6.3 in[[44].

Lemma6.3. Let S, be as above and denotg = |(ke€ {0,...,n} : Sk =0}|. Then

n

P|R, > . (78)

NI =
(ool

P[S, = O]‘ >
0

{=
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Proof. SinceR, = }.7_, 1;s,-0 We haveE[R;] = X}}_oP[S, = 0] and:

E R :anp[sg:ohz Z P[Si=S; =0

i,j€{0,....,n}

=E[RI+2 ), PISi=0]-P[S;:=0| <E[R]+(E[R]) < 2(E[Ra)*.

i,j€{0,...,n}

1 (E[2)?
4 E[Z7]

sequence of the Cauchy-Schwartz inequality—s$eé [[48, 2]edrice thalP[Rn > %E[Rn]] > %;, as re-
quired. m]

Since for every nonnegative random variaBleve haveP [Z > lE[Z]] > (which is an easy con-

The proof of the following lemma is a slight variant of the amgent used to prove the second assertion of
Lemma 6.3 in[[44].
Lemma6.4. For S, as above we have:

n+1

| 250 JP[S;=0] (79)

E||Sponnl

Proof. Fixk e {1,...,n+ 1} and denote = min{k, |S[o,n]|}. LetVy, ...,V be the first distincEintegers
that were visited by the wallso, Sy, ...,Sn. For simplicity of notation we also s&f; = n+ 1 when
jelk+1,...,n}. Write
. ,_{ minf0<t<n: S;=Vj} jsE,
71 n+1 j>k
DenoteY := |{0 <jsn: Sje{vy,. --’VF}}|- Then

k

E[Y{] =ZE[|{O§€§n: sg=v,-}|] :iE

i=1 j=1

n
> P[Str =0||7j| <k > P[S,=0]. (80)
j=1 | =1 =0
Hence .
E[Yyx] ) Kk
P[|s[o,n]|sk]sp[vkzn+1]sn+1 < m;P[Sg:O]. (81)
It follows that if we denotan = E&% then
n+1 n+1 &) [m] k—1
E||Spal] = D P[[Soa| 2 K] = > (1-P[|Spn| <k-1]) =" > (1— ?)
k=1 k=1 k=1
3 _[mi(fm1-1) _ [m] n+1
= fmi 2m 25 2 2% oP[Sc =0
as required. O
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6.2 Ananalysisof aparticular discrete stablewalk on Z

In this section we will analyze a specific random walkzowhich will be used in estimating,(Z:z). Similar
bounds are known to hold in great generality for arbitraryk&avhich are in the domain of attraction of
g-stable random variables, and not only for the walk preseb&tow. Specifically, such general results can
be deduced from Gendenko’s local central limit theorem &mvergence to stable laws (see Theorem 4.2.1
in [35]), in combination with some estimates on such walksfi{27] (see section 1X.8, Theorem 1 there).
Since for the purpose of proving compression bounds all veel ieto construct one such walk, we opted
for the sake of concreteness to present here a simple saHined proof of the required properties of a
particular walk which is perfectly suited for the purposeoaf applications to embedding theory.

In what follows fixq € (p, 2). Definea; = a_; = 0 and forn € (N'\ {1}) U {0},
. _=D)"a) (-1 d@-1)---(@-n+1)
8 =8an= 2qg \n/ = 2q n! '

Note that sincey € (1, 2) the definition[(8R) implies that far # 1 we havea, > 0. Since we defined.; to
be equal 0 it follows thatan}nez € [0, o0). An application of Stirling’s formula implies that as— oo we

have L L 1
_+(nh=-aq=-4_ 1

where the implicit constants depend only @ifand are easily estimated if so desired). Note in particular
that sinceq > p, (83) implies that

(82)

D anlP < oo, (84)

nez
and

o(0) = ) ane™ (85)

nez

converges uniformly on{r, 7]. Moreover it is easy to computg(d) explicitly:

et 1 q\ oy (1- ei9)q +(1- e‘i")q
0(6) = ——+ % ;(—1)”(n) (e'”g +e '”9) = CoSsf + %

a/2 _
= cosf + 2?(1 — cosf)¥/? cos(q(ﬁ—zg)) eR. (86)

An immediate consequence ¢f [(86) is that.; an = ¢(0) = 1. Thus we can define a symmetric random
variableX onZ by P[X = n] = a,. With this notation[(84) becomé&&X|P < «. Another corollary of the
identity (86) is that there exits = £(q) € (0,1) andc = ¢(q) > 0 such that for every € [-¢, £] we have
E[€%] = ¢(6) € [e2#"", 9|, Note also that since for everys 0 we havey(6)l < Ynez a = 1 there
exists some = §(q) € (0, 1) such that for every € [-n, —£] U [&, 7] we havelp(0)] < 1 - 6.

Now let X1, Xo, ... be i.i.d. copies oK. DenoteS,, = X1 + - - - + Xn. Then the above bounds imply that
P[Sh=0] = 1 fﬂ (E[€%0])do = 1 fngo(e)”de
: 2 J_, 2t J_,

1 & &
e — [ f e Xntlgg — f (1-6)"do, f e dg + f (1-6)"do|.
2r - [, —€]U[e,n] - [-m,—€]U[e,n]
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This implies that as — oo we have

Substituting[(87) into[(79) we see that
E||Siom|| = E[l(So. ... Snll] 2 0. (88)

In combination with[(7PB) it follows that
E[ISnl] 2 n*/e. (89)

Additionally, if we letR, be as in LemmA 613 (for the particular symmetric walkstudied here) then by
plugging [87) into[(7B) we get the bound

E [Rﬁ/q] > n@-1/d (90)

6.3 Theinduced walk on ZZ and the lower bound on B;(Z  Z)

In this section we will conclude the proof of Theorém]6.1. Mimdthe previous preparatory sections, the
argument below closely follows the proof of Theorem 6.2 ii][4

For everyny, np, ng € Z definefy,, : Z — Z by

m if k=0,
: n ifk=n3 A ng#0,
faine(K) = MLioy + Mol =3 % e Z 0= g
0 otherwise
Denote
an,l’lz,n3 = (fr?f:nz, n3) € Z 7. (91)

To better understand the meaning of this group elementthatéor every §, £) € Z2Z we have @, £)Xn, ny.n; =
(h, ¢ + n3) where

g(k) + ng if k=¢,

h(k) = g(k) + ny ifk=€+n3 A ng#0,
g) +np+ny ifk=¢ Ang=0,
gk otherwise

Thus if we letu be the symmetric probability measure @n Z given by u({Xn,.no.ns}) = @n8n,8n,, Where
{anlnez are the cofficients from Sectiof 612, then the watW{‘}in can be described in words as follows:
start at 0, 0) and at each step choose three i.i.d. numhens,, n3 € Z distributed according to the random
variableX from Sectiod 6.2. Adah; to the current location of the lamplighter, move the lamiptég nz units
and addh; to the new location of the lamplighter.

Write W' = (f;, m;). By the above descriptiom has the same distribution as the waikfrom Sectior 6.0.
Fix n € N and form € Z denoteTy, := [{t € {0,...,n} : m; = m}|. The above description of the walik’
ensures that conditioned ¢fim}mez and on “terminal point'm, if k € Z \ {0, my} then f,(m) has the same
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distribution asSpr,,, if m € {0, my} andm, # 0 then f,(m) has the same distribution &gax21,,-1.0;, and if
m € {0, my} andmy, = 0 thenf,(m) has the same distribution &sr,,. Thus using[(89) we see that

E[Ifo(m)] 2 E[To9]. (92)

Fix me Z and fort € {0, ..., n} define the evenk; := {m=m A m¢ {0,..., m_1}. Note that conditioned
on A; the random variabl&y, has the same distribution &, , where{Ry};_ is as in[[@0). Hence,

n/2] Ln/2]
B[TH = > By E[T,}q/q| At] 2 > BA) -G YE < DR [me fmo,... myz)]. (93)
t=0 t=0

It follows that

2o (WL 0. 0)] 2 Y 2 0am] F S B[TH9] B 10 S me (m, ... My
mezZ

mezZ mezZ
- n(Q—l)/qu“{SO, ...Sh /2J}|] ) n@D/@ gt/ = n@a-D/e (94)
On the other hand it follows froni (84) thEt[ngZ (W’l‘ (0, 0))p] < oo S0 we deduce from the definition of
Bp(ZZ) that
2q-1
@

E;(Z Z) =

Lettingq — p" we deduce Theorem 6.1. o

Remark 6.5. The same argument as above actually shows that for evergljigjenerated grou@® and
everyp € (1, 2] we have

ByGZ) = —; + (1 - ?1)) B(G). (95)

This implies Theorerh 61 since the computations in SeéfidrsBow thas(Z) > %) Note of course that
due to Theorer 511 we actually know tii(Z) = % We also observe thatH is a finitely generated group
whose growth is at least quadratic th#j{G:H) = 1. Indeed we have established the fact #j#GH) < 1
in (&2), while the lower bound follows from Theorem 6.1[in[4¢hich states thgs*(G t H) = 1, combined
with the obvious fact that*(G t H) < (G tH). <
Remark 6.6. Define inductivelyZu) = Z andZy,1 = Zk ¢ Z. Then forp € (1, 2] we havegy(Z1)) = %)
and [35) implies tha8}(Z.1)) > —é + (1 - —é)ﬁ;(z(k)). It follows by induction that for alk € N we have

k
ﬁE(Z(k)) >1- (1 - —;) . (96)

Note thata(Z(1)) = 1 and by [54]e,(C2 2 Z) = 1 (see also the fierent proof of this fact in‘[44]). Thus
Corollary[2.2 implies that
Py (Z )

Pap(Zg) + p—1

ap(Zks+1)) =
It follows by induction that

CXTJ(Z(k)) > 97)

p(1-(-3))
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By combining [96) and{97) with Theordm 5.1 we see that

k
* 3k 1
ap(Zw) = and Bp(Zw) =1- (1 - —p) .

_

1\K
p(1-(2-3))
For p € (2, o) the same reasoning (using the fact thgthas Markov type 2 [45]) shows tha{,(Z)) =
a,(Z) andBy(Zw) = Bo(Z))- <

7 A computation of 8y ((Z 2 Z)o, 0z:z)

The purpose of this section is to prove the following result:

Theorem 7.1. Let G H be infinite groups generated by the finite symmetric setscSG and &4 € H,
respectively. LetGtH)o = {(f,X) e GtH : x = ey} be the zero section of GH. Then for all pe [1, 2] we

have
2

p+1

Bp (G tH)o, dain) = : (98)

Specializing to the casé = H = Z we can apply Theorefn 8.1 wheris the metric induced frori ¢ Z on
the amenable groufZ@ Z)o to deduce that

p+1 1 . amdD p+1
> > Z 1 Z)o, d = —_—
20 2 0B (@2 D)ooy = P (B2 20 dz) 2p

Thus in particular there is equality in (98) whén=H = Z.

(99)

Proof of Theorerh 711For everyk € N let gx € G andhg € H be elements satisfyinds (g, &) = k and
dn (hg, e4) = k. Such elements exists sinGeH are assumed to be infinite. We shall write beln;yb = h_y.
Fix an even integen € N. For everyk € [1,n/2] U [-n/2,-1] ande, 6 € {-1,1} definefi.s : H —» G by

gh if X=-ey,
fies(®) =1 o) if x=hy,
& otherwise
Let un be the symmetric measure da (H)p which is uniformly distributed on therdelements
{(fk,8,5a eH) : k € [15 n/2] U [_n/25 _l]a 8a5 € {_la 1}} g (G t H)O
Then the following point-wise inequality holds true:
0 < da (WE", ecent) < 3N, (100)

It follows in particular that the conditions if_(61) hold &dor the sequencgu);y ;. Moreover, for each
k € [1,n/2] U [-n/2,—1] the probability that in exactly one of the finststeps of the WaII{VV{‘”}:O the hy

, -1 :
coordinate was altered (SL— %)n > 1. Therefore the expected number of of coordindteshat were
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altered exactly once is greater that8. Each such coordinate contribute® the distance betweah’," and
exH- Hence

2
By, [deum (WA )] > - (101)

It follows from the definition[(6D) that

. v (1 oo (@OON @) log(n*/3) 2
Bp (G tH)o, dain) > By ({ﬂn}nzl’dG?H) = ! noo  l0g(3PNl+P) - p+1’

as required. m]

8 An application to the Lipschitz extension problem

The purpose of this section is to prove the following thearem

Theorem 8.1. There exists a Lipschitz function:HZ  Z)o — L, which cannot be extended to a Lipschitz
function fromZZ to L.

The key step in the proof of TheordmB.1 is the use of the fanatbnstructed in Theorem 4.1. The other
fact that we will need is Lemnia 8.2 below. Recall that a Markb&in{Z;};°  is called a symmetric Markov
chain onZZ if there exists am-point subsetz, ..., zy} € Z:Z and anN x N symmetric stochastic matrix
A = (&j) such thatP[Zg = z] = ﬁ foralli € {1,...,N}and for alli, j € {1,...,N} andt € N we have
P[Zi11 = XjlZt = 7] = &;j.

The following lemma asserts that there is a fast-divergingraetric Markov chain oz : Z which remains
within a relatively narrow tubular neighborhood around zBeo sectionZ ¢ Z)o.

Lemma8.2. For everye > Qthere exists an integeip(e) € N such that for all = ng(¢) there is a symmetric
Markov chain{Z};?, onZ : Z which satisfies the following conditions:

1. dnz(Za, Zp) < 4 (point-wise),
2. duz (Zi, (Z 2 Z)o) < 2n+9)/2 for all t > 0 (point-wise),

3. E[dzz (Zn, Zo)] 2 n¥/4.
Assuming Lemm&38]2 for the moment we shall prove Thedrein 8.1.

Proof of Theoreh 811Fix ¢ € (0,1/11). By Theoreni 4]1 there exists a functibn: (Z tZ)o — L, and
¢ = ¢(g) > O such that|F||Lip = 1 and for everyx,y € (Z : Z)o we have

IF(X) — FYll2 > cdzz(x, y) &4, (102)

Assume for the sake of contradiction that there exists atiom& : Z 2 Z — L, such thaF [(zz),= F and
“IE”Lip =L <o
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Let no(e) and{Z};°, be as in Lemma 812 and fix > no(s). Write Z; = (fi,k) and deﬁnezt0 = (f,0) €
(Z 1 Z)o. The second assertion of Lemimal8.2 implies that for alD we have

dzz (2, Z0) < 2n9/2, (103)

Using the Markov type 2 property df, [8] (with constant 1) and the first assertion of Lemimd 8.2 we se
that: _ _ ) _ _ )
E[”F(Zn) - F(zo)||2] < nE[HF(Zl) - F(Zo)||2] < NL%E [tz (20, Z0)?) < 16012, (104)

Note the following elementary corollary of the triangle glity which holds for every metric spack, d),

everyp > 1 and evenay, ap, by, by € X:

@, ba)® > =50, )P — (e, )P — oy, bo)”. (105)

Hence we have the following point-wise inequality:

[Fen) - Feol; =" 3 (29) - F (23); - |Fezn - F (23] - | Feeor - F (23
=3 %dm (28,29 - L2z (20 29)° - L2021z (20, 29)°
@é@) % (%dZIZ (Zn, ZO)(3—5)/2 — Oy (Zn, Zg)(3_8)/2 — o (Zo, Zg)(3—8)/2) _gL2pl+e
) ¢ drz (Zn, Zo)® )2 — 10L%n1+e. (106)

= 9

Taking expectation if(106) and using the third assertiobeshmda 8.2 we see that:
2 £ £ 2] _ ¢ (3-2)/2 2, 1+s
1602 > E|[F@0) - F@a)l}| > SB(dze @0 20%97] - 1000
> (E [dZIZ (Zn, ZO)])(S—S)/Z _ 10L2n1+.9 > n3(3—8)/8 _ 10L2n1+8,

which is a contradiction for large enougtsince the assumptian< 1/11 implies that@ >1l+e. O
It remains to prove Lemmnia8.2.
Proof of Lemm&8]2Fix an integem € N ande € (0, 1/4). Define two subsetd,, V, € ZZ by

Un = {(f.k) € Z2Z: supp(f) < [-n.n], |k < 2n®2 [f (o) <n? ¥ ¢ e Z},

Vo= {(f.K) € Z2Z: supp(f) € [-n.n], [kl < 2 |f(6) <n?-2nV e Z}.

2n+1 (

Then|U,| = (2n2 + 1)2n+l (4n(1+8)/ 2+ 1) and|Vq| = (2n2 —4n+ 1) (202 4 1) so that

IVl
s 1 107
|Unl (107)

Consider the se® = {Xn o, © N1, M2, N3 € {—1,1}}, wherexn, n,n, are as defined if.(91). TheBis
a symmetric generating set @f: Z consisting of 8 elements. L&k, gp,... be i.i.d. elements oZZ
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which are uniformly distributed ove® and denotéVy, = g1 ---dm = (fm, km). Then by construction the
sequencekm} -, has the same distribution as the standard random walk oB., the same distribution as
{Sm = &1+ -+ + emly_, Whereey, &, ... are i.i.d. Bernoulli random variables (this fact was expéai in
greater generality in Section 6.3). Also, as showr’EbychIer [26], we have

E [dzz (Wh, (0,0))] > cn®/?, (108)

wherec > 0 is a universal constant. Note that sirggz(Xn, n,.ns, (0, 0)) < 4 for everyng, np, nz € {-1, 1} we
have point-wise bound

dziz (Wh, (0,0)) < 4n. (109)

Now let Zy be uniformly distributed oved, and independent d§;};°,. Fort € N define

7 Zi 10 if Zi_10t € U,
t~) z.; otherwise

The first two assertions of Lemrha B.2 hold true by constractibremains to establish the third assertion
of Lemmd8.2.

Consider the events = {Zy € V) andF = {maxngn K| < n(1+8)/2}. Note that if the evenf N ¥ occurs
thenZz, = ZgW, since by design in this cas® € V, and thereforeZgW; cannot leaveJ,, for allt < n. It
follows that

E[dzz (Zn, Zo)] = E [dzz (Wh, (0, 0)) 1gns | = P[E] (E [dziz. (Wh, (0, 0)] — E [dz,z (Wh, (O, 0)) Lr<])
o o) % (cr®* - an(1 - P[7])) mzm) e/ — 4an(1 - P[F]). (110)
For large enougin (depending o) we have

4n(1 - P[F]) < gn3/4, (111)

since Doob’s maximal inequality (see elg.|[25]) implies floa every p > 1 we have

p p p p/2
1-— P[ﬂ =P rpglx|km| N n(l+8)/2:| < p E[|81 + + 3n| ] *) p (10'] p) _ C(p) (112)

- (p - 1) nP(1+&)/2 ~ (p - 1) np(l+e)/2 — ppe/2’

where in &) we used Khinchine’s inequality (see elg.][43]) &ig) depends only op. Hence choosing
large enough in(112) (depending enimplies [111). Combinind(110) and (111) implies that

E [dzz (Zn, Z0)] 2 n*/4,

which completes the proof of LemrhaB.2. m|

9 Reduction to equivariant embeddings

Recall that a Banach spack, || - ||x) is said to be finitely representable in a Banach spage: (lv) if for
everye > 0 and every finite dimensional subspde& X there is a linear operatdr : F — Y such that for
everyx € F we have|X|x < [T Xly < (1 + &)lIXlIx.
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Theorem 9.1. LetI” be an amenable group which is generated by a finite symmetri§ s I'. Fix p > 1,
two functionsw, Q : [0, ) — [0, o0) and a Banach spacgX, || - ||x) such that there is a mapping: T’ — X
which satisfies:

ghell = w(dr(9,h) <I¥(9) - v(hlix < Q(dr(g, h)). (113)

Then there exists a Banach space Y which is finitely reprakentn £,(X) and an equivariant mapping
¥ : T — Y such that

g.hell = w(dr(g,h) <II¥(9) - ¥(M)lly < Q(dr(g,h)). (114)

Moreover, if X= Lp(u) for some measurg then Y can be taken to be isometric tg L

Note that as a special case of Theofenm 9.1 we conclude thewdoyp > 1 if I is an amenable group then
ap(l) = aﬁ(F).

In what follows given a Banach spadewe denote by IsonX) the group of all linear isometric automor-
phims ofX. We shall require the following lemma in the proof of Theoi@d:

Lemma 9.2. Fix p € [1, ). Let G be a finitely generated group a(@, ¥, u) be a measure space (thus
Q is a set,¥ is a o algebra, andu is a measure o). Assume thaty : G — Isom(Lp(u,?')) is a

homomorphism and thap £ ZX(G, 7o) a 1-cocycle. Then there exists a homomorphisnG — Isom(L)
and al-cocycle fe ZY(G, r) such that| f(X)Il., = ||f0(x)|||_p(ﬂf) forall x € G.

Proof. GivenA c Ly(u, 7) we denote as usual the smallest sulaigebra ofF with respect to which alll
the elements oA are measurable hy(A). Define inductively a sequend&y},” ; of subeo algebras off

and two sequencetn}; ,, {Vn} , of linear subspaces &fy(u, ) as follows:

Uy = spar{U mo(X) fo(G)], F1:=0(U1), Vi=Lp 1),
xeG

and inductively

Un:1 = spa U ﬂO(X)Vn) , Frer=0(Uny1), Vo= Lp(ll,7'-n+1)-

xeG

By construction for each € N we haveU, C V, C Up,1, the measure spac(Fn, u) is separable (since
G is countable) andr,.1 2 . Let 7., be theo-algebra generated Qy,, ; . Note that for every: > 0
and everyA € ¥, there is soma € N andB € ¥, such thaj.(AAB) < ¢ (this is because the set of all such
A € ¥ forms ao algebra, and therefore contaifis,). By considering approximations by simple functions
we deduce that

Lo, Foo) = | Vi (115)
n=1

where the closure is taken Iry(u, 7). We claim that for eaclx € G we havero(X) € Isom(Ly(u, 7).
Indeed, by constructiong(X)U,, = Uy, for all n € N, and thereford/,, C ng(X)Vni1 € Vii2, which implies
thatmo(X)Lp(u, Foo) = Lp(i, ), as required. Note also th&(G) C Lp(u, Foo).
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Sincel (i, F) is separable it is isometric to one of the spaces:

Lo, o {63 . Loty (Lp@fp) (116)

n=1’
where the direct sums in_(1116) afgdirect sums (seé [57]). In what follows we will slightly aleusotation
by saying that ,(u, ¥) is equal to one of the spaces listed[in (116). The standatd¥a6) follows from
decomposing the measuyiels  into a non-atomic part and a purely atomic part, and notiag tthe purely
atomic part can contain at most countably many atoms whéentin-atomic part is isomorphic to,[0]
(equipped with the Lebesgue measure) by Lebesgue’s istisangheorem (seé [32]).

If Lp(u, F») = Lp then we are done, since we can take= mg MLop(u7w), SO assume thdt (i, Foo) IS
not isometric toL,. We may therefore also assume tipatt 2. If Lp(u, Fo) = €p then by Lamperti's
theorem|[39] (see also Chapter 3[in[[28]) for evary G, sincerg(X) is a linear isometric automorphism of
lp (andp # 2) we haverg(X)g = 6Xex(;) for all i € N, where{g }”, is the standard coordinate basis(gf
the functiont™ : N — N is one-to-one and onto an@| = 1. Definern(X) € Isom(Lp) andf : G — Ly by

setting forh € L andt € [271, 27+1],
a(Yh(t) = 6¥h (277 0t) and  F)(t) = 2/7(fo(x). @).

It is immediate to check that, f satisfy the assertion of LemrhaP.2.

It remains to deal with the cadey(u, 7o) = Lp ® £p(S) whereS is a nonempty set which is finite or
countable. In this case we use Lamperti’s theorem once noodeduce that for eack € G the linear
isometric automorphismyg(x) maps disjoint functions to disjoint functions, and therefit maps indicators
of atoms to indicators of atoms. Heneg(X)L = L andmo(X)¢p(S) = £p(S). Now, as aboverg(X) [¢,(s)
must correspond (up to changes of sign) to a permutatioreafdbrdinates. Hence, denoting the projection
from L, @ £p(S) onto L, by Q, the same reasoning as above shows that there exists a hopiosno
n:G—Lyandf’ e Z1(G, n’) such that for all € G we havel| f" (X)L, = Ifo(X) — Qfo(X)ll¢,(s)- It follows
that if we definer(x) € Isom(Lp@ Lp) by n(X) = mo(X) T, &’ andf : G —» Lp@ Lp by f(x) = (Qf) &
then (using the fact that, ® L, is isometric toL) the assertion of Lemnia 9.2 follows in this case as
well. ]

Proof of Theorern 9l1Let {Fy};’ , be a Fglner sequence fbrand let7 be a free ultrafilter oiN. Define
M () = R by
1
A(F) =lim — f(x). 117
(f) %anlerFn() (117)

It follows immediately from the Falner condition tha# is an invariant mean oF, i.e., a linear functional
M () — R which maps the constant 1 function to 1, assigns non-negatilues to non-negative
functions and#Z (R, f) = .#(f) for everyy € I, whereR, f(x) = f(xy) (we refer to [[55] for proofs and
more information on this topic). Define a semi-ndfnfi_, p on {(I', X) (the space of alK-valued bounded
functions o) by:

felallX) = IIfllap = (2 (1715))"".

This is indeed a semi-norm since invariant means satistgéts inequality (see for example Lemma 2 on
page 119 of Section II1.3 in [24]). Hence if we I = {f € (. (I',X) . [Ifll.zp = O} thenW is a linear
subspace any := ¢.,(I", X)/W is a hormed space. L&tbe the completion oYy.
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By a slight abuse of notation we denote Yoe I" and f € £, (", X), R(f + W) := R/f + W, which is a well
defined linear isometric automorphismYyf since|| - || p is R-invariant. MoreoveR is an action of” on
Yo by linear isometric automorphisms, and it therefore exddéndsuch an action ovi as well.

Note that by virtue of the upper bound [n_(113) for evgrx € I" we have|ly(xg) — ¢(X)||x < Q (dr(g, er)).
ThusRyy — ¢ € {(I', X) and we can defin®(g) € Y by Y(g) = (Ryy —¢) + W. ThenV¥ € ZI,R).
Moreover¥(er) = 0 and for eveng,, g € I’ we have

1¥(01) - P(@)lly = (- ([Rests = Reat|2))"" %€ [ (e (91 92) » @ (d (91 82)] -

This establishe$ (114), so it remains to prove the requireggsties ofY, i.e., that it is finitely representable
in £p(X) and that it is arp(v) space ifX is anLp(u) space.

Up to this point we did not use the fact that’ was constructed as an ultralimit of averages along Fglner
sets as in(117) and we could have tak#ghto be any invariant mean dn But now we will use the special
structure of.# to relate the spac¥ to a certain ultraproduct of Banach spaces. We do not knowihehe
the properties required of hold true for general invariant means BnWe did not investigate this question
since it is irrelevant for our purposes.

For eachn > 0 let X, be the Banach spac€™ equipped with the norm:

1/p
) 1
WiFno X = iy, =[ﬁ > ||w(h)||§} .

heFn

Let X be the uItraproduc@H;":0 Xn) ” We briefly recall the definition oX for the sake of completeness

(seel[19] 20, 34] for more details and complete proofs of tisei@g claims). LeZ be the spac(el‘[;‘;o Xn)oo,

i.e., the space of all sequences: (X, X1, X2, .. .) wherex, € X, for eachn and||X||z := SUpg [IXnllx, < 0.

Let N C Z be the subspace consisting of sequenggk(, for which limy [|x,|lx, = 0. ThenN is a closed
subspace of andX is the quotient spacg/N, equipped with the usual quotient norm. We shall denote an
element ofX, which is an equivalence class of elementZijrby [x.]*",. The norm onX is given by the
concrete formuld{[xa]* || = lim [Xallx,

Since by construction each of the spa¥gembeds isometrically intf,(X), by classical ulraproduct theory
(see[[34])X is finitely representable ifi,(X). Moreover, ifX = Lp(u) for some measurg then, as shown
in [19,[20,34],X = Lp(7) for some measure.

DefineT : Yo — X by T(f + W) = [f MFalo- Then by construction (and the definition\8f) T is well
defined and is an isometric embeddingygfinto X. Hence alsef embeds isometrically intX, and for ease

of notation we will identifyY with T(Yo) € X. It follows in particular thaty is finitely representable in
Lp(X).

It remains to show that iK = L(u) thenY = L(v) for some measure since once this is achieved we can
apply Lemma9J2 in order to repladeby L,. We know that in this cas¥ = Lp(r) but we need to recall
the lattice structure oX in order to proceed (since we do not know whether the actidnaf Y extends
to an action of” on X by isometric linear automorphisms). Since edGhis of the formLp(un) for some
measures,, the ultraproducX has a Banach lattice structure whose positive cor{[a@;’;o D OVn}
and n]> o A [Ynlozo = [Xn A Yalngr Xalnig V [Ynlg = [Xa V Wnlos, (all of this is discussed in detail
in [34]). The explicit embedding oy into X ensures thak Ay, x vy € Yo for all x,y € Yo. Moreover
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1/p
if X,y € Yo are disjoint, i.e.|x| A ly| = O, then|x + Y|l = (||x||§ + ||y||§) . These identities pass to the

closureY of Yg (since, for example, we know tht= Lp(7) and therefore convergence Xnimplies almost
everywhere convergence along a subsequence). This shaithélBanach spaceis an abstrack , space,
and therefore by Kakutani’s representation theorem [3§¢ @so the presentation in [40{)= Ly(v) for
some measure m]

10 Open problems

We list below several of the many interesting open questiefeted to the computation of compression
exponents.

Question 10.1. Does G @ Z2 admit a bi-Lipschitz embedding inta 2.

The significance of Questidn 10.1 was explained in the inictidn. Since we know that;] (Cz 2 ZZ) =1
the following question is more general tHen 10.1:

Question 10.2. For which finitely generated groups G and>pl is a,(G) attained?

Somewhat less ambitiously than Question 110.2 one mightaskéaningful conditions o6 which imply
thata(G) is attained. As explained in Remadrk13.2, this holds true ¥ 1 andG = C, * H whereH is a
finitely generated group with super-linear polynomial gttowvhich admits a bi-Lipschitz embedding into
Lp. In particular this holds true fdg = C;? Z? andp > 1. Note that not every group of polynomial growth
H admits a bi-Lipschitz embedding into, as shown by Cheeger and Kleiner|[16] whers the discrete
Heisenberg group, i.e. the group ok3 matrices generated by the following symmetricSet GL3(Q)

and equipped with the associated word metric:
110¢(1 -10(101(1 0-1(1 00 (1 0 O
S=¢/0 1 0,0 1 0f,J0 2 0},/O0 1 O},/O0 1 1{,JO 1 -1}}.
0010 0 1y\0O0 YOO 1)00 1JlO O 1
Similarly to Question 7.1 in [44] one might ask the followiggestion:
Question 10.3. Is it true that for every finitely generated amenable groupr@ avery pe [1, 2] we have

% _ 1
@p(C) = 55y ?

It was shown in[[3] the for everw € [0, 1] there exists a finitely generated groGpsuch thate(G) = a.
Since there are only countably many finitely presented gralp set

Q, = {ar(G) : Gfinitely presentefic [0, 1]

is at most countable for evefye [1, o) (though it seems to be unknown whether or not it is infini@he

can similarly define the sétﬁ of possible equivariant compression exponents of finitebsented groups.
Several restrictions on the relations between these diis/flvom the following inequalities which hold for
every finitely generated group: for everyp > 1 we haver,(G) > a;(G) sincel; embeds isometrically into
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Ly (see e.g.[[57]). Similarly Lemma 2.3 in [44] states th%(G) > oﬁ;(G). Sincelq embeds isometrically
into Lp for 1 < p < q < 2 (seel[56]) we also know that in this casf(G) > o (G). Forevery 1< p < q
the metric spac(eLp, lIx — y||g/q) embeds isometrically intbq (for 1 < p < q < 2 this follows from [12[ 58]
and for the remaining range this is proved in Remark 5.10 2f)[4Hence ifp € [1,2] andp < g then
4(G) = max{E, 8} - a5(G) and if 2< p < qthenay(G) > Lap(G).

Question 10.4. Evaluate the (at most countable) s€1s, Qﬁ. Is Qg finite or infinite? How do the sets
Q. QF vary with p? Is it true that);, = QF?

In this paper we computee,((Z2Z)o, dz.z). Note that the metric on the zero secti@Z)o is not equivalent
to a geodesic metric. This fact makes it meaningful to carsésnbeddings of % Z)o, dz:z) into L, which
are not necessarily Lipschitz, leading to the following sjian:

Question 10.5. For everya; > 0 evaluate the supremum oves > 0 such that there exists an embedding
f 1 (Z1Z)o — Lp which satisfies

XY €(Z1Z)y = cdznz(Xy)" < [IT(X) = f(Ylp < dzz(X, y)™,
for some constant c.

We believe that the methods of the present paper can be usethwer Question 10.5 at least for some
additional values ofr; (we dealt here only witly; = 1), but we did not pursue this research direction.

Question 10.6. The present paper contributes methods for evaluating cessprn exponents of wreath
products G H in terms of the compression exponents of G and H. This agegithe lines of research

studied in [29] 3, 54, 51,16, 44, P1]. It would be of great ietgr(and probably quite challenging) to design
such methods for more general semi-direct products k&

In Theoreni 3.1 we computed},(C, : H) whenH has polynomial growth. It seems likely that our methods
yield non-trivial compression bounds also wh#as intermediate growth. But, it would be of great interest
to design methods which deal with the case whemas exponential growth. A simple example of this type
is the groupC; @ (C, @ Z), for which we do not even know whether the Hilbert compr@ssxponent is
positive.

Question 10.7. In our definition of L, compression we considered embeddings intbécause it contains
isometrically all separable p(u) spaces. Nevertheless, the embeddings that we constriect/aédikes in
the sequence spacg. Does there exist a finitely generated group G for whigkG) # cx;p(G)? Is thetp
compression exponent of a net ig &qual to1? Note that for p# 2 the function space J.does not admit
a bi-Lipschitz embedding into the sequence sgaeethis follows via a gferentiation argument (seé [10])
from the corresponding statement for linear isomorphic eduaings (se€ [49]).

The subtlety between embeddings intg and embeddings int6, which is highlighted in Question 10.7
was pointed out to us by Marc Bourdon.
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